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practical importance. Singh et al. (2005) provide a compelling framework
for combining information from multiple sources using the framework of
confidence distributions. In this paper we investigate the feasibility of us-
ing the Dempster-Shafer recombination rule on this problem. We derive a
practical combination rule and show that under assumption of asymptotic
normality, the Dempster-Shafer combined confidence distribution is asymp-
totically equivalent to one of the method proposed in Singh et al. (2005).
Numerical studies and comparisons for the common mean problem and the
odds ratio in 2× 2 tables are included.

AMS 2000 subject classifications: Primary 62A01; secondary 62F99.
Keywords and phrases: Confidence distribution, Dempster-Shafer cal-
culus, generalized fiducial inference, meta analysis.

Received March 2012.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1944
1.1 Confidence distributions . . . . . . . . . . . . . . . . . . . . . . 1945
1.2 Dempster-Shafer theory . . . . . . . . . . . . . . . . . . . . . . 1947
1.3 Generalized fiducial inference . . . . . . . . . . . . . . . . . . . 1949

∗Jan Hannig’s research was supported in part by the National Science Foundation under
Grant No. 1007543 and 1016441.

†Minge Xie’s research was supported in part by the National Science Foundation under
Grant No. 0851521, 0915139 and 1107012.

1943

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/12-EJS734
mailto:jan.hannig@unc.edu
http://www.unc.edu/~hannig
mailto:mxie@stat.rutgers.edu
http://www.stat.rutgers.edu/~mxie


1944 J. Hannig and M.-g. Xie

2 Dempster-Shafer recombination rules . . . . . . . . . . . . . . . . . . 1950

2.1 Dempster-Shafer recombination rule for continuous data . . . . 1950

2.2 Dempster-Shafer recombination rule for discrete data . . . . . . 1952

3 Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1955

4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 1957

4.1 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . 1957

4.2 Real data examples . . . . . . . . . . . . . . . . . . . . . . . . . 1959

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1962

Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1962

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1965

1. Introduction

In many cases, there are multiple estimates of a particular quantity of interest
arising from different experiments, or representing the particular quantity with
respect to different populations, locations, years, etc. This scenario occurs often
in, but not limited to, the context of meta-analysis, in which it is often desired
to combine information from independent studies. There are numerous devel-
opments in this area. The range of meta-analysis approaches include the classi-
cal approaches of combining p-values, model-based (both fixed-effects and ran-
dom effects) meta-analysis approaches, as well as specialized meta-analysis ap-
proaches targeting specific settings such as the Mantel-Haenszel method, Peto’s
method and a recently proposed exact meta-analysis approach by Tian et al.
(2009) on combining confidence intervals, among others. Singh et al. (2005) pro-
posed a simple but general recipe for combining confidence distributions from
independent studies. Xie et al. (2011) and subsequent research showed that
this general recipe and its extension can provide a unifying framework for al-
most all information combination methods used in current practice, including all
aforementioned meta-analysis approaches. This unifying framework provides a
compelling theoretical framework to understand and explore existing combining
information approaches and also to develop new methodologies; cf., Xie et al.
(2011).

Since confidence distributions are associated with Fisher’s fiducial distribu-
tions and the Dempster-Shafer (DS) theory of belief functions, natural questions
are whether it is possible to use the general Dempster-Shafer recombination rule
(Dempster, 2008) to combine confidence distributions and how such a rule would
relate to the general combination framework of Singh et al. (2005). This paper
investigates these questions and in so doing links for the first time the seem-
ingly unrelated research directions of Dempster-Shafer calculus and frequentist
confidence distributions together through the combination.

The concept of confidence distributions has often been loosely referred to as a
sample-dependent distribution function that can represent confidence intervals
of all levels for a parameter of interest, see Cox (1958). It has a long history,
especially when its interpretation is fused with fiducial inference (Fisher, 1973;
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Efron, 1993). Historically, it has been long considered as part of fiducial in-
ference, although recent developments tend to define and interpret it within
the frequentist framework without involving any fiducial reasoning, see Xie and
Singh (2012) for a comprehensive review on the concept. In recent years, the
notion of confidence distribution has attracted a surge of renewed attention.
Together with the developments on generalized fiducial inferences and belief
functions under Dempster-Shafer theory, it represents an emerging new research
field to address problems where frequentist methods with good properties were
previously unavailable.

In this paper we link together seemingly unrelated research directions of
Dempster-Shafer calculus and confidence distributions. The paper is organized
as follows. We first present in the remainder of this Introduction section the basic
ideas of confidence distribution, Dempster-Shafer calculus, generalized fiducial
inference and our extensions. Section 2 develops practical procedures for com-
bining confidence distributions for either discrete or continuous data based on
the Dempster-Shafer recombination rule. Section 3 shows that the combined
confidence distributions are asymptotically equivalent to one of the methods
proposed in Singh et al. (2005). Section 4 discusses results of two simulation
studies, as well as provides real data examples and comparisons for the common
mean problem and the odds ratio in 2 × 2 tables using two real data sets from
the literature. Technical proofs are provided in Appendix.

In order to prevent confusion we use the following notation: Any object, e.g.,
density or centering, that is connected to the confidence distribution combined
using the Dempster-Shafer recombination rule will have superscript (DS). Sim-
ilarly any object connected to the confidence distribution combined using the
rule of Singh et al. (2005) will have superscript (c).

1.1. Confidence distributions

Let us assume that the observed data were generated from some distribution
with parameters (θ0, ξ0) ⊂ Θ × Ξ, where θ0 is a one-dimensional parameter of
interest and ξ0 is a nuisance parameter. Denote by X the random sample, x
its sample realization, and X the sample space. The following is a frequentist
definition formulated by both Schweder and Hjort (2002) and Singh et al. (2001,
2005), where the parameters (θ0, ξ0) are treated as unknown fixed (not random)
quantities.

Definition 1. A sample-dependent function H(·,x) on Θ×X → [0, 1] is called
a confidence distribution (CD) for the parameter of interest θ, if
(i) H(θ,x) is a cumulative distribution function in θ for a given sample x and
(ii) H(θ0,X) follows the standard uniform U [0, 1] distribution under the sample
probability measure P(θ0,ξ0).

The function H(θ,X) is an asymptotic confidence distribution if (ii) is true
only asymptotically.

The density h(θ,x) = (∂/∂θ)H(θ,x), if it exists, is called a confidence density,
also known as a CD density; see, e.g., Efron (1993); Singh et al. (2007). For
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each fixed observed data x, Singh et al. (2007) and Xie and Singh (2012) call
a random variable Q ∈ Θ distributed according to the confidence distribution
function H(θ,x) a CD random variable.

The concept of confidence distribution is quite broad, it encompasses and
unifies a wide range of examples; from regular parametric cases to bootstrap
distributions, p-value functions, normalized likelihood functions and, in some
cases, Bayesian priors and Bayesian posteriors; see, e.g., Singh et al. (2005); Xie
and Singh (2012). In particular, generalized fiducial distribution as described
in Hannig et al. (2006); Hannig (2009, 2012); Wang et al. (2012) is often an
asymptotic confidence distribution.

Singh et al. (2005) proposed a simple but general recipe for combining confi-
dence distributions from, say k, independent studies, using a coordinate-wise
monotonic function from a k-dimensional cube [0, 1]k to the real line R =
(−∞,∞). The recipe is an extension of the combining rules of the classical
methods of combining p-values. Specifically, let Hi(·,xi) be a confidence distri-
bution for θ from the sample xi of the ith study and suppose gc(u1, . . . , uk)
is a given continuous function on [0, 1]k → R1 which is nondecreasing in each
coordinate. Singh et al. (2005) proposed a general framework for combining the
k independent confidence distributions Hi(·,xi), i = 1, . . . , k:

H(c)(θ,x1,x2, . . . ,xk) = Gc{gc(H1(θ,x1), . . . , Hk(θ,xk))}. (1)

where the function Gc(·) is completely determined by the monotonic gc function
with Gc(t) = P (gc(U1, . . . , Uk) ≤ t). Here, U1, . . . , Uk are independent U [0, 1]
random variables. The combined function H(c)(·) contains information from all
k studies and Singh et al. (2005) showed that the combined function H(c)(·) is
a confidence distribution for the parameter θ.

A nice feature of the combining method (1) is that it does not require any in-
formation regarding how the input confidence distributions Hi(·) are obtained,
aside from the assumed independence. Xie et al. (2011) and subsequent research
showed that this general recipe and its extension can provide a unifying frame-
work for almost all information combination methods used in current practice.
This includes the classical approaches of combining p-values, e.g., Fisher, Stouf-
fer, Tippett, Max and Summethods, and the modern model-based meta-analysis
approach, e.g., fixed and random effects models.

A special class of choices for gc illustrated by Singh et al. (2005) is:

gc(u1, . . . , uk) = F−1(u1) + . . .+ F−1(uk),

where F (·) is a given cumulative distribution function. In this case, Gc(·) is
the convolution of the k copies of F (·). When F (t) = exp(t), for t < 0, is
the cumulative distribution function of the negative exponential distribution,
the recipe (1) is an extension of Fisher’s way of combining p-values. When
F (t) = Φ(t), the cumulative distribution function of the standard normal, we
have

H(c)(θ,x1,x2, . . . ,xk) = Φ

(

1√
k

k
∑

i=1

Φ−1{Hi(θ,xi)}
)

, (2)
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which is an extension of Stouffer’s way of combining p-values. Xie et al. (2011)
suggested to include weights in the combination to improve efficiency. In par-
ticular, (2.2) of Xie et al. (2011) suggested using

H(c)(θ,x1,x2, . . . ,xk) = Φ

(

∑k
i=1 w

−1
i Φ−1{Hi(θ,xi)}

(
∑k

i=1 w
−2
i )1/2

)

, (3)

where the weights wi could be sample dependent. In Section 4 of this article,

we focus on the special combination rule (3) with wi = τi
def
= {H−1

i (.75) −
H−1
i (.25)}/{2Φ−1(0.75)}, where H−1

i (β) is the β quantile of the confidence dis-
tribution Hi(θ,xi) (i.e., it solves the θ equation Hi(θ,Xi) = β for a given
0 ≤ β ≤ 1). In this case (with sample-dependent weights and under mild condi-
tions), an inference based on (3) is only asymptotically valid.

In Section 1.2 next, we provide an introduction of the Dempster-Shafer the-
ory of inference and demonstrate that confidence distributions as defined in
Definition 1 also fit into this framework. This relationship allows us to derive
an alternative approach for combining confidence distributions.

1.2. Dempster-Shafer theory

In this section we provide a brief introduction of the Dempster-Shafer theory.
A more thorough introduction can be found in Dempster (2008) and Shafer
(1976). Some comments can be also found in Hannig (2009) and Zhang and Liu
(2011). The main purpose of the Dempster-Shafer theory is to convert observed
data and pivotal relationships to “upper” and “lower” probability statements.
Mathematically, these statement are derived with the help of random subsets of
the parameter space.

In particular, Dempster starts with an auxiliary equation

0 = a(X, θ,U)

relating the observable data vector X ∈ X , the parameters θ ∈ Θ and an
auxiliary random vector U with a fully known distribution independent of any
parameters, e.g., vector of independent standard uniforms U(0, 1). Traditionally,
the auxiliary equation is either in the form of a data generating equation

X = G(θ,U) (4)

or a pivotal equation U = H(X, θ) and is chosen based on the distribution of
the observable data.

Dempster-Shafer theory then inverts the auxiliary equation into the multi-
valued mapping

M(U) = {(X, θ), a(X, θ,U) = 0}
that is called the Dempster-Shafer model. After observing a particular data
vector x we constrain the multivalued mapping to a random set of parameters

Mx(U) = {θ, a(x, θ,U) = 0}.
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For any assertion A ⊂ Θ about the parameters Dempster-Shafer theory then
gives three probabilities

p =
P (A ⊂Mx(U))

P (Mx(U) 6= ∅) , q =
P (A∁ ⊂Mx(U))

P (Mx(U) 6= ∅) , r = 1− p− q. (5)

Here p is interpreted as the probability in support of A, q the probability in
contradiction to A and r the probability “do not know”, supporting neither A
nor A∁.

By inspecting (5) we see that Dempster-Shafer inference is based on random
set Q̃ with a distribution given by the conditional distribution of

Q̃ ∼ [Mx(U) | {Mx(U) 6= ∅}] , (6)

so that p = P (Q̃ ⊂ A) and q = P (Q̃ ⊂ A∁). In this article we will call Q̃ belief
random set.

Let us demonstrate this on two simple examples. First, consider the simple
example of a single observation x from the N(θ, 1). The appropriate data gener-
ating equation isX = θ+U , where U ∼ N(0, 1). After observing x the constraint
multivalued mapping is the singleton Mx(U) = {x−U} and Q̃ = {Q} where Q
follows N(x, 1).

Second, let X1, . . . , Xn be a sample from Bernoulli(p). A possible data gen-
erating equation is Xi = I(0,p)(Ui), i = 1 . . . , n, with Ui i.i.d. U(0, 1). After
observing the vector x the constraint multivalued mapping

Mx(U) =

{

p ∈ [0, 1] :
p ≤ Ui if xi = 0

p ≥ Ui if xi = 1

}

.

An exchangeability argument shows that the belief random set has the same
distribution as the random interval Q̃ = [U(x), U(x+1)] where U(x) is the xth
order statistics of U1, . . . , Un.

Dempster-Shafer theory provides a recombination rule to combine informa-
tion from several sources into a single object. We will state this recombination
rule in the language of belief random sets. Let Q̃1, . . . , Q̃k be belief random sets
to be combined. The combined belief random set Q̃ will have as its distribution
the following conditional distribution

k
⋂

i=1

Q̃i | {
k
⋂

i=1

Q̃i 6= ∅}. (7)

Both (6) and (7) provide a general recipe. However, it is not always clear
how to implement them in any given particular situation. In particular the con-
ditional distribution in (6) and (7) is not uniquely defined if the condition has
probability zero due to the Borel paradox (Casella and Berger, 2002). For this
reason, Dempster-Shafer theory is predominantly applied to discrete distribu-
tions where the problem of the Borel paradox does not arise. In the next section
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we comment on how this limitation can be overcome using ideas of generalized
fiducial inference.

Confidence distributions can be formally put into Dempster-Shafer framework
as follows. Let H(θ,X) be a confidence distribution function. The equation
H(θ,X) = U is a pivotal equation, since by Definition 1 the random variable
U has the standard uniform distribution U(0, 1). Assuming that the solution
to H(·,x) = u exists for the observed x and almost all u ∈ (0, 1), the belief
random set defined in (6) is a singleton Q̃ = {Q} where Q is a CD random
variable distributed according to H(·,x).

1.3. Generalized fiducial inference

The aim of generalized fiducial inference is to define a measure on the probability
space by inversion from the structural generating equation (4). In this section
we explain two ideas of generalized fiducial inference pertinent to this paper.

In the case when the belief random set is a singleton Q̃ = {Q} with probability
1, the generalized fiducial distribution is the same as the distribution of Q. When
the belief random set is not a singleton Hannig (2009) suggest selecting one of
the elements of Q̃ based on a predetermined, possibly random rule. Hannig
(2012) shows that for many popular models the effects of this choice disappear
asymptotically.

If the belief random set is an interval Q̃ = [Q−, Q+] with probability 1 then
it is often recommended to maximize the variance of the fiducial distribution by
selecting either end of the interval with probability 0.5. This selection is called
“half correction” (Efron, 1998; Schweder and Hjort, 2002; Hannig, 2009) and we
will use it in Section 2.2.

A more serious issue arises when P (Mx(U) 6= ∅) = 0. In this case the quan-
tities in (5) and (6) are not well defined due to Borel paradox. Hannig (2012)
recommends a plausible resolution of this non-uniqueness by discretizing the
data.

In particular, define

Mx,ǫ(U) = {θ, ‖x−G(θ, U)‖∞ < ǫ}.

Here ‖v‖∞ is the l∞ norm of the vector v. Notice that for any observable x and
ǫ > 0 the P (Mx,ǫ(U) 6= ∅) > 0. The generalized fiducial distribution of Hannig
(2012) is the weak limit of the conditional distributions

Q̃ ∼ lim
ε→0

[Mx,ǫ(U) | {Mx,ǫ(U) 6= ∅}] .

Under weak assumptions Hannig (2012) shows the limit exists and provides
a formula for the density of the generalized fiducial distribution. For example, if
θ ∈ R, x ∈ R

n and the inverse to (4) denoted by u = H(x, θ) exists, the density
of generalized fiducial distribution simplifies to

r(θ) ∝ J(x, θ)f(x, θ),
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where f(x, θ) is the likelihood and

J(x, θ) =

∥

∥

∥

∥

∂

∂θ
G(θ,u)

∣

∣

∣

u=H(x,θ)

∥

∥

∥

∥

1

where ‖v‖1 is the l1 norm of the vector v.
In Section 2.1 we will use the same discretization idea to resolve non-uniqueness

due to the Borel Paradox in the Dempster-Shafer recombination rule (7).

2. Dempster-Shafer recombination rules

In this section we derive Dempster-Shafer based formulas for combining confi-
dence distributions derived from either discrete data or continuous data. Con-
tinuous data are dealt with in Section 2.1 and discrete data are addressed in
Section 2.2.

2.1. Dempster-Shafer recombination rule for continuous data

Let us assume that we have k confidence distributions for a single parameter θ
based on independent data sets. In particular we assume that we have Hi(θ,xi),
i = 1, . . . , k, each satisfying conditions (i) and (ii) of Definition 1.

In this section we will make the following additional assumptions for all i =
1, . . . , k and an open A ∈ θ

(A1) For all ui and all x in a neighborhood of xi the equation Hi(·,x) = ui
has a unique solution Qi(ui,x).

(A2) The partial derivatives (∂/∂θ)Hi(θ,x) and the gradients∇xHi(θ,x) are
continuous for all θ and all x in a neighborhood of xi.

(A3) For all θ ∈ A, the Euclidean norm (l2) of the gradient

DxiHi(θ,xi) = ‖∇xHi(θ,xi)‖2 > 0. (8)

We remark that the conditions (A1) – (A3) are well suited for confidence
distributions derived from continuously distributed data sets. They are satisfied
for most usual continuous distributions such as exponential family. Discretely
distributed data will be dealt with in the next section.

The belief random sets are Q̃i = {Qi(Ui,xi)}. Consequently, the Dempster-
Shafer recombination rule (7) gives the distribution of the combined belief ran-
dom set as

{Qi(Ui,xi)} | Q1(U1,x1) = · · · = Qk(Uk,xk), (9)

where Ui are i.i.d. U(0,1). Unfortunately the condition in (9) has probability 0
and therefore the conditional distribution in (9) is not unique due to the Borel
paradox.

We follow the spirit of the generalized fiducial inference in interpreting (9).
Using the Euclidean neighborhoods of xi denote

Q̃i,ǫ(ui,xi) = {θ : Hi(θ,x) = ui for some ‖x− xi‖2 < ǫ}.
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Then define the distribution of the Dempster-Shafer recombined belief random
set as the weak limit as ǫ→ 0 of conditional distributions

k
⋂

i=1

Q̃i,ǫ(Ui,xi) | {
k
⋂

i=1

Q̃i,ǫ(Ui,xi) 6= ∅}.

Continuity implies that Qi,ǫ(ui,xi) = [Q−
i,ǫ(ui,xi), Q

+
i,ǫ(ui,xi)]. The existence

of the total derivative, Cauchy-Schwartz inequality and some calculus shows
that the limiting belief random set Q̃(DS) = {Q(DS)}, where Q(DS) is a random
variable with density

h(DS)(θ|x1, . . . ,xk) ∝ L(θ|x1, . . . ,xk)J(θ|x1, . . . ,xk). (10)

Here

L(θ|x1, . . . ,xk) =

k
∏

i=1

DxiHi(θ,xi),

with DxiHi(θ,xi) defined in (8), could be viewed as a profile likelihood induced
by the confidence distribution and

J(θ|x1, . . . ,xk) =

k
∑

i=1

∣

∣

∂
∂θHi(θ,xi)

∣

∣

DxiHi(θ,xi)

is similar to the fraction of Jacobians seen in Hannig (2012).
To demonstrate this rule we will consider two examples.

Example 1. Let us consider k independent normal samples with common un-
known mean and known variances. Denote the standard normal density and
distribution function by ϕ(z) and Φ(z) respectively. The individual confidence
distributions based on each of the k samples are

Hi(µ,xi) = Φ

(

µ− x̄i
σi/

√
ni

)

, i = 1, . . . k,

respectively. The Dempster-Shafer recombined density (10) is proportional to

h(DS)(µ|x̄1, . . . , x̄k) ∝
k
∏

i=1

ϕ

(

µ− x̄i
σi/

√
ni

)

.

A simple calculation shows that the recombined confidence distribution is the
normal distribution with mean (

∑k
i=1 σ

−2
i nix̄i)/(

∑k
i=1 σ

−2
i ni) and variance

(
∑k
i=1 σ

−2
i ni)

−1. This is the same as the combined confidence distribution us-
ing (3).

Example 2. Let us consider k independent normal samples with common un-
known mean and unknown unequal variances. Denote the density and distri-
bution function of the t distribution with m degrees of freedom by fm(z) and
Fm(z) respectively. The individual confidence distributions are

Hi(µ,xi) = Fni−1

(

µ− x̄i
si/

√
ni

)

, i = 1, . . . k,
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respectively. Here x̄i and si are the sample mean and standard deviation of the
ith sample.

To compute the Dempster-Shafer recombined density (10) we evaluate

∂

∂µ
Hi(µ,xi) = fni−1

(

µ− x̄i
si/

√
ni

) √
ni

si
=

√
niCni

si

{

1 +
ni(µ− x̄i)

2

(ni − 1)s2i

}−ni/2

and

‖∇xiHi(µ,xi)‖2 = fni−1

(

µ− x̄i
si/

√
ni

)∥

∥

∥

∥

∇xi

µ− x̄i
si/

√
ni

∥

∥

∥

∥

2

=
Cni

si

{

1 +
ni(µ− x̄i)

2

(ni − 1)s2i

}−(ni−1)/2

.

Thus the density from Dempster-Shafer recombination is

h(DS)(µ|x1, . . . ,xk) ∝
[

n
∑

i=1

{

1

ni
+

(µ− x̄i)
2

(ni − 1)s2i

}−1/2
]

×
k
∏

i=1

{

1 +
ni(µ− x̄i)

2

(ni − 1)s2i

}−(ni−1)/2

. (11)

Surprisingly, this is not the same as the generalized fiducial distribution for
the common mean problem using the pooled data (Hannig et al., 2006). Re-
gardless, arguments similar to the arguments in Hannig et al. (2006) prove (11)
is an asymptotic confidence distribution.

We study small sample performance of (11) in Section 4.1. In particular we
compare (11) with the confidence distributions combined using methods (2) and
(3) in terms of coverage and median length of 95% confidence intervals. A nu-
merical example in Section 4.2 illustrates the use of this recombined distribution
on a real data example.

2.2. Dempster-Shafer recombination rule for discrete data

When dealing with confidence distributions for discrete data, it is often the
case that there is a range of acceptable (approximate) confidence distributions;
this is due to the discrete nature of the data. This uncertainty due to dis-
cretization is often dealt with by splitting the difference and applying the “half
correction” (Efron, 1998; Schweder and Hjort, 2002; Hannig, 2009). Here, “ac-
ceptable” means that these distributions can be utilized to make valid inference,
e.g., they are asymptotic confidence distributions.

Let us assume that we have Hi(θ,xi), i = 1, . . . , k, where the “half cor-
rected” CD has been obtained by averaging the right and left limit {H+

i (θ,xi)+
H−
i (θ,xi)}/2, where both H±

i (θ,xi) are approximate CDs, see Definition 1. By
the nature of “half correction”, any distribution function between H+

i (θ,xi) and
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H−
i (θ,xi) is an approximate confidence distribution and so we define the belief

random sets as

Q̃i(u,xi) = {θ : u ∈ [H+
i (θ,xi), H

−
i (θ,xi)]}

with the understanding that if a > b then we reverse the interval [a, b] to [b, a].
The Dempster-Shafer recombination rule (7) simplifies in this setting to the

conditional distribution of

k
⋂

i=1

Q̃i(Ui,xi) | {
k
⋂

i=1

Q̃i(Ui,xi) 6= ∅}, (12)

where Ui are i.i.d. U(0,1).
To simplify (12) into a workable formula we make the following assumptions

for all i = 1, . . . , k and an open A ⊂ Θ.

(A1’) For all ui and the observed xi the equations H+
i (·,xi) = ui and

H−
i (·,xi) = ui have a unique solution Q+

i (ui,xi) and Q
−
i (ui,xi) respectively.

(A2’) The partial derivatives (∂/∂θ)H+
i (θ,xi) and (∂/∂θ)H−

i (θ,xi) are con-
tinuous for all θ.

(A3’) For all θ ∈ A, the absolute value of the difference

DxiHi(θ,xi) =
∣

∣H−
i (θ,xi)−H+

i (θ,xi)
∣

∣ > 0. (13)

These assumptions are satisfied for the usual discrete families of distributions
such as those based on exponential families.

Notice that the assumptions imply Q̃i(Ui,xi) = [Q−
i (Ui,xi), Q

+
i (Ui,xi)]

modulo a possible reversal of the interval. Consequently the intersection
⋂k
i=1 Q̃i(Ui,xi) is an interval or an empty set. A simple calculation shows that

the conditional distribution (12) is a random interval [Q(DS)−, Q(DS)+], where
Q(DS)± have a marginal density proportional to

h(DS)±(θ|x1, . . . ,xk) ∝ L(θ|x1, . . . ,xk)J
±(θ|x1, . . . ,xk)

respectively, with

L(θ|x1, . . . ,xk) =

k
∏

i=1

DxiHi(θ,xi),

DxiHi(θ,xi) defined in (13),

J+(θ|x1, . . . ,xk) =

k
∑

i=1

∣

∣

∣

∣

∣

∂
∂θH

+
i (θ,xi)

DxiHi(θ,xi)

∣

∣

∣

∣

∣

and

J−(θ|x1, . . . ,xk) =

k
∑

i=1

∣

∣

∣

∣

∣

∂
∂θH

−
i (θ,xi)

DxiHi(θ,xi)

∣

∣

∣

∣

∣

respectively. The half corrected Dempster-Shafer recombined density is then

h(DS)(θ|x1, . . . ,xk) =
1

2

{

h(DS)−(θ) + h(DS)+(θ)
}

. (14)

We will demonstrate (14) on the following examples.
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Example 3. Let us assume that we have k independent binomial samples with
common probability of success p and number of trials n1, . . . , nk. Denote the
observed values by x1, . . . , xk. The half corrected confidence distribution (Efron,
1998; Schweder and Hjort, 2002; Hannig, 2009) is obtained from Hi(p, xi) =
Pp(Xi > xi) as

Hi(p, xi) +Hi(p, xi − 1)

2
=

∑

xi<k≤ni

(

ni
k

)

pk(1−p)ni−k+
1

2

(

ni
xi

)

pxi(1−p)ni−xi .

Thus H+
i (p, xi) = Hi(p, xi) and H

−
i (p, xi) = Hi(p, xi − 1). Notice that the half

corrected confidence distribution function is the 50-50 mixture of the Beta(xi, ni−
xi + 1) and Beta(xi + 1, ni − xi) distributions.

In order to evaluate (14) set x =
∑k

i=1 xi and n =
∑k

i=1 ni and compute

∂

∂p
H+
i (p, xi) =

pxi(1− p)ni−xi−1

B(xi + 1, ni − xi)
,

∂

∂p
H−
i (p, xi) =

pxi−1(1− p)ni−xi

B(xi, ni − xi + 1)
,

DxiHi(p, xi) =

(

ni
xi

)

pxi(1− p)ni−xi .

From here we see immediately that h(DS)+(θ|x1, . . . , xk) and h(DS)−(θ|x1, . . . , xk)
are the density of Beta(x, n−x−1) and Beta(x−1, n−x) respectively. Therefore
the half corrected Dempster-Shafer recombined confidence distribution function
is given by

∑

x<k≤n

(

n

k

)

pk(1− p)n−k +
1

2

(

n

x

)

px(1− p)n−x

which is the same as the half recombined confidence distribution computed
from the pooled sample which is known to have good small and large sample
properties (Hannig, 2009).

Example 4. In the meta-analysis literature, many articles have considered the
setting of performing a combined inference for the common odds ratio across
a series of 2 × 2 tables from binomial clinical trials; see Liu et al. (2011), and
references therein. Consider a series of k independent 2 × 2 tables formed by
binomial random variables (X1i, X0i) with probability of a success (p1i, p0i and
number of trials (n1i, n0i). Assume that the odds ratio

ψ =
p1i/(1− p1i)

p0i/(1− p0i)

remains constant across the tables. Set Ti = X1i +X0i and define

Hi(ψ, xi, ti) = Pψ(Xi > xi|Ti = ti).
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We have H+
i (ψ, xi, ti) = Hi(ψ, xi, ti), H

−
i (ψ, xi, ti) = Hi(ψ, xi − 1, ti) and

DxHi(ψ, x, ti) = Pψ(Xi = x|Ti = ti)=

(

n1i

x

)(

n0i

ti−x

)

ψx

∑Ui

k=Li

(

n1i

k

)(

n0i

ti−k

)

ψk
, (x=Li, . . . , Ui).

with Li = max(0, ti − n0i) and Ui = min(n1i, ti).

To simplify the formulas set F (ψ, n,m, t) =
∑U
k=L

(

n
k

)(

m
t−k

)

ψk. This is a
constant multiple of the hypergeometric 2F1 function. Notice that the derivative
F ′(ψ, n,m, t) = nF (ψ, n−1,m, t−1). By collecting the terms together we obtain

h(DS)±(ψ) ∝ ψ
∑k

i=1
xi−1J±(ψ)

∏k
i=1 F (ψ, n1i, n0i, ti)

(15)

where

J+(ψ) =
k
∑

i=1

∣

∣

∣

∣

∣

Ui−xi
∑

l=1

ψl
(

n1i

xi+l

)(

n0i

ti−xi−l

)

(

n1i

xi

)(

n0i

ti−xi

)

(

(xi+ l)− n1iψF (ψ, n1i− 1, n0i, ti− 1)

F (ψ, n1i, n0i, ti)

)

∣

∣

∣

∣

∣

and

J−(ψ) =

k
∑

i=1

∣

∣

∣

∣

∣

Ui−xi
∑

l=0

ψl
(

n1i

xi+l

)(

n0i

ti−xi−l

)

(

n1i

xi

)(

n0i

ti−xi

)

(

(xi+ l)− n1iψF (ψ, n1i− 1, n0i, ti− 1)

F (ψ, n1i, n0i, ti)

)

∣

∣

∣

∣

∣

.

If desired, the density of the confidence distribution for the log odds ratio
θ = logψ can be obtained by a simple change of variable.

We report results of a simulation study in Section 4.1 comparing confidence
distribution combined using (15) with the confidence distributions combined
using (3) in terms of coverage and median length of 95% confidence intervals.
A numerical example in Section 4.2 illustrates the use of this recombined dis-
tribution on a real data example.

3. Asymptotic results

It is often the case that each of the confidence distributions we are recombining

is asymptotically normal; i.e. Hi(θ,xi) ≈ Φ
( θ−Ti(xi)

ci

)

for some statistic Ti(xi)
and scaling ci. We explain in what sense the confidence distribution should be
asymptotically close to normal in the assumptions below. We show that un-
der the assumptions the confidence distribution combined using the Dempster-
Shafer rule (10) is asymptotically equivalent to the combination rule (3). Addi-
tionally, we show that under the assumptions the Dempster-Shafer recombined
distribution is an asymptotic confidence distribution.

In the assumptions below we assume that we have a sequence of asymptotic
confidence distributions Hi,n(θ,Xi,n) each based on a sample Xi,n generated
from a distributions with a common parameter of interest θ0 and increasing
sample size (see Assumption 1a). We also assume that these sample sizes grow
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to infinity at the same rate (see Assumption 3). To highlight the dependence
of certain terms on sample sizes, we add subscript n’ to these terms whenever
it applies in this section. For instance, in this section and in the Appendix we
write Xi,n instead of Xi, Hi,n(θ,Xi,n) instead of Hi(θ,Xi), etc.

The assumptions and the theorem are formulated for the continuous case. In
the discrete case we can modify the the Assumption 2a by slightly modifying As-
sumption 2b so that it holds for both (∂/∂θ)H+

i,n(θ,xi,n) and (∂/∂θ)H−
i,n(θ,xi,n).

Then (16) in the Theorem 1 will hold for both h
(DS)±
n .

Assumption 1. For all i = 1 . . . k as n→ ∞:

(a) Hi,n(θ0,Xi,n)
D−→ U(0, 1) and X1,n, . . . ,Xk,n are independent for each n.

(b) Hi,n(θ0,Xi,n)− Φ
( θ0−ti,n(Xi,n)

ci,n

) P−→ 0.

Assumption 2. For all i = 1, . . . , k as n→ ∞

(a)
∫

Θ

∣

∣Dxi,nHi,n(θ,Xi,n)− 1
ci,n

ϕ
( θ−ti,n(Xi,n)

ci,n

)∣

∣ dθ
P−→ 0.

(b)
∫

Θ

∣

∣

∂
∂θHi,n(θ,Xi,n)− 1

ci,n
ϕ
( θ−ti,n(Xi,n)

ci,n

)∣

∣ dθ
P−→ 0.

(c) ci,nDxi,nHi,n(θ,Xi,n) is bounded in probability.

Assumption 3. For all i = 1, . . . , k, ci,n(
∑k

j=1 c
−2
j,n)

1/2 → ri ∈ (0,∞) as
n→∞.

We will first state a theorem showing asymptotic normality of the Dempster-
Shafer combined confidence distribution.

Theorem 1. Suppose Assumptions 1, 2, 3. Using tj,n(x) and cj defined in
Assumption 2 define the centering

T (DS)
n =

∑k
j=1 tj,n(Xj,n)c

−2
j,n

∑k
j=1 c

−2
j,n

.

Also denote by h̃n(θ|t) the density of N(t,
∑k
j=1 c

−2
j,n). Then

∫

Θ

∣

∣

∣h(DS)n (θ|X1,n, · · · ,Xk,n)− h̃n(θ|T (DS)
n )

∣

∣

∣ dθ
P−→ 0 (16)

and the Dempster-Shafer recombined confidence distribution is an asymptotic
confidence distribution.

The combined confidence distribution using the Dempster-Shafer recombined
rule is

H(DS)
n (θ,X1,n, · · · ,Xk,n) =

∫ θ

−∞

h(DS)n (η|X1,n, · · · ,Xk,n)dη.

The following theorem states that, under certain conditions, the confidence dis-

tribution H
(c)
n (θ,X1,n,X2,n, . . . ,Xk,n) obtained by the CD combination recipe

(3) is asymptotically equivalent to the recombination confidence distribution

H
(DS)
n (θ,X1,n, · · · ,Xk,n) obtained by the Dempster-Shafer recombination rule.
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Theorem 2. Suppose the assumptions in Theorem 1 holds. We have τi,n =
ci,n + op(1/n), for each i = 1, 2, . . . ,K and

∣

∣

∣H(DS)
n (θ,X1,n, · · · ,Xk,n)−H(c)

n (θ,X1,n,X2,n, . . . ,Xk,n)
∣

∣

∣

P−→ 0. (17)

We remark that the Assumptions 1–3 required in the two theorems are triv-
ially satisfied for the normal example (Example 1) in Section 2.1. Arguments
similar to the proof of Proposition 3 of Hannig et al. (2006) show that the
assumptions cover the t example (Example 2) and many other examples of
likelihood inference where the corresponding likelihood is asymptotically nor-
mally distributed. The assumptions do not cover examples of likelihood inference
where the corresponding likelihood is not asymptotically normally distributed
such as inference about parameters of a uniform distribution.

4. Numerical examples

In this section, we use both simulation and real data sets to study the properties
of the combination rule based on Dempster-Shafer recombination developed
in Section 2. The results are compared with corresponding CD combination
methods.

4.1. Simulation studies

Example 5. This is a continuation of Example 2, the common mean problem,
in Section 2.1.

We simulate k independent samples of sizes ni from N(µ, σ2
i ). Without loss

of generality, the common mean parameter µ is set to be µ = 0. Then, based
on these k independent normal samples and using (11) based on the Dempster-
Shafer recombination rule, we obtain a 95% confidence interval for the common
mean parameter µ. We repeat the simulation 1000 times, and computed the em-
pirical coverage rate (the percentage of times that the 1000 confidence intervals
cover the true µ = 0) and the median length of the 1000 confidence intervals.
The same 1000 data sets are analyzed using the corresponding normal-based
and asymptotically equivalent CD combination method (3) and the no-weight
rule (2).

In our simulation study, the number of studies is k = 9. We have consid-
ered three × two settings of parameters and sample sizes. The sample sizes
n1 = n2 = . . . = n9 ≡ n have three choices: I) n = 5, II) n = 25 and III)
n = 125, representing small, medium and large sample sizes. In each of the
three sets of sample sizes n, we consider two sets of variances: (a) equal variances
σ2
1 = σ2

2 = . . . = σ2
9 ≡ 0.01 and (b) unequal variances (σ2

1 , . . . , σ
2
9) = (0.0007,

0.0007, 0.0013, 0.0009, 0.0007, 0.0004, 0.0004, 0.0002, 0.0004).The variances in (b)
mimic a real data set of a key comparison by Strawderman and Rukhin (2010)
studied in Section 4.2. The numerical results are reported in Table 1.
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Table 1

Numerical comparison of DS versus CD for the common mean problem. We report the
empirical coverage, median length of 95% CIs and relative median length (1− a/b) for

method-a versus method-b

DS-recombination Weighted No-weight Relative length
method CD-method CD-method

Setting Coverage Length Coverage Length Coverage Length CDw CDw/o CDw/o

vs DS vs DS vs CDw

I-(a) 92% 6.36×10−3 86% 5.91×10−3 95% 6.19×10−3 7.2% 2.7% −4.7%
II-(a) 95% 2.68×10−3 95% 2.63×10−3 95% 2.65×10−3 1.8% 0.9% −0.9%

III-(a) 95% 1.17×10−3 94% 1.17×10−3 95% 1.17×10−3 0.4% 0.2% −0.2%

I-(b) 93% 2.80×10−4 89% 2.59×10−4 94% 3.12×10−4 7.5% −11.7% −20.8%
II-(b) 95% 1.12×10−4 95% 1.10×10−4 94% 1.29×10−4 2.1% −14.6% −17.1%

III-(b) 95% 4.91×10−5 94% 4.85×10−5 96% 5.67×10−5 1.3% −15.4% −16.9%

Table 1 suggests that the approach applying the Dempster-Shafer recombi-
nation rule and the norm-based weighted CD combination approach (3) have
almost the identical performance when sample sizes are large. The weighted CD
combination approach (3) typically provides shorter confidence intervals, but
when the sample sizes are small the approach has an under-coverage problem.
The approach using the Dempster-Shafer recombination rule also has a slight
under-coverage problem when sample sizes are small, but their performance are
better than the weighted CD combination approach (3). The norm-based no-
weight CD combination approach (2) can produce intervals at right coverage at
all cases. But when samples have heterogeneous variances, the no-weight CD-
combination approach (2) produces longer confidence intervals, suggesting a loss
of efficiency. This loss of efficiency will not be diminish even when sample sizes
go to ∞.

Example 6. This is a continuation of Example 4, common odds ratio, in Sec-
tion 2.2.

We simulate k sets of independent sample (x1i, x2i) from two independent
Binomial distributions x1i ∼ Binomial(n1,i, p1i) and x0i ∼ Binomial(n0,i, p0i),
for i = 1, . . . , k. To ensure that we have the common odds ratio, say ψ, across all
k studies, we set values for ψ and p1i, and compute p0i by p0i = eπ0i/(1+e

π
0i) with

π0i = {p1i/(1 − p1i)}/ψ, for i = 1, . . . , k. Then, based on these k sets of paired
binomial samples and using (15) based on the Dempster-Shafer recombination
rule, we obtain a 95% confidence interval for the log common odds ratio log(ψ).
We repeat the simulation 1000 times, and compute the empirical coverage rate
and the median length of the 1000 confidence intervals. The same 1000 data sets
are analyzed using the asymptotically equivalent CD combination method (3).

In this simulation example, the number of studies is k = 6. We have consid-
ered three × five = 15 different settings of parameters and sample sizes. Five
values of the true common odds ratio ψ are considered: ψ = 0, 3, 6, 1/3, 1/6. For
each of the five ψ values, we have considered thee sample sizes and p1i settings:
I) n1 = . . . = n6 = 20, m1 = . . . = m6 = 20, (p11, p12, p13, p14, p15, p16) = (0.10,
0.20, 0.10, 0.05, 0.10, 0.15); II) (n1, n2, n3, n4, n5, n6) = (39, 44, 107, 103, 110, 154),
(m1,m2,m3,m4,m5,m6) = (43, 44, 110, 100, 106, 146), (p11, p12, p13, p14, p15, p16)
= (0.0513, 0.0909, 0.0561, 0.0680, 0.0636, 0.0714); III) n1 = n2 = . . . = n6 = 200,
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Table 2

Numerical comparison of DS versus CD for the 2× 2 table setting. We report the empirical
coverage, median length of 95% CIs and the relative median length (1− a/b) for method-a

(CD) versus method-b (DS)

DS-recombination method Weighted CD-method Relative length
Setting Odds Ratio Coverage Length Coverage Length CD vs DS

I 1 96% 1.66 98% 1.71 3.3%
II 1 95% 0.959 97% 0.981 2.3%
III 1 95% 0.505 95% 0.509 0.7%
I 3 96% 2.24 97% 2.12 −5.3%
II 3 95% 1.33 97% 1.35 1.4%
III 3 96% 0.669 97% 0.676 1.1%
I 6 98% 3.23 91% 2.35 −27.2%
II 6 94% 1.78 93% 1.68 −5.5%
III 6 96% 0.861 95% 0.868 0.8%
I 1/3 96% 1.44 97% 1.47 2.5%
II 1/3 95% 0.802 96% 0.813 1.3%
III 1/3 95% 0.442 95% 0.444 0.5%
I 1/6 95% 1.40 97% 1.42 1.7%
II 1/6 96% 0.765 95% 0.772 0.9%
III 1/6 94% 0.432 95% 0.433 0.4%

m1 = m2 = . . . = m6 = 200, (p11, p12, p13, p14, p15, p16) = (0.10, 0.20, 0.10, 0.05,
0.10, 0.15). The numerical results are reported in Table 2.

Table 2 suggests that the approach applying the Dempster-Shafer recombi-
nation rule and the norm-based weighted CD combination approach (3) provide
more or less very similar results, in terms of the coverage rate and interval length.
The results are getting closer and closer when the sample sizes increases. Unlike
the previous example, the approach based on Dempster-Shafer recombination
rule produces slightly shorter intervals in majority settings, although the com-
puting based on Dempster-Shafer recombination rule is much more complicated
in the discrete settings. The equivalent CD recombined method applies the half
correction to each of the individual confidence distribution before combining
them while the Dempster-Shafer rule first recombines the confidence random
sets and then applies the half correction to the final results.

4.2. Real data examples

We end with analysis of two real data sets. One concerns pp′-DDT levels in fish-
oil measured by nine laboratories (Webb et al., 2003; Strawderman and Rukhin,
2010) and the other is an analysis of mortality data for control and intravenous
lidocaine treatment from six studies (Normand, 1999).

For increased clarity, we illustrate our numerical results by plotting confi-
dence curves (Birnbaum, 1961). For a given confidence distribution H(θ,x), its
corresponding confidence curve is defined as

CV (θ) = 1− 2|H(θ,x)− 0.5| = 2min

{

H(θ,x), 1 −H(θ,x)

}

.
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Table 3

CCQM-K21 data on pp′-DDT in fish-oil for nine laboratories

Sample size (ni) 4 3 4 5 4 4 4 4 4
Mean (µgg−1) .0732 .0794 .0756 .0736 .0711 .0739 .0725 .0724 .0768
SE (µgg−1) .0007 .0007 .0013 .0009 .0007 .0004 .0004 .0002 .0004

On a plot of CV (θ) versus θ, a line across the height (y-axis) of α, for any 0 <
α < 1, intersects with the confidence curve at two points, and these two points
correspond (on x-axis) to a 1−α level, equal tailed, two sided confidence interval
for θ. Thus, a confidence curve is a graphical device that shows confidence
intervals of all levels; see, e.g. Birnbaum (1961); Bender et al. (2005). The mode

of a confidence curve plot θ̂ = arg maxθ CV (θ) = H−1(1/2) is the median of
the confidence distribution. It provides a point estimator which is typically a
median unbiased (Birnbaum, 1961) and consistent under some mild condition
(Singh et al., 2007; Xie and Singh, 2012).

Example 7. An interlaboratory study CCQM-K21 involving nine national lab-
oratories across nine different countries (Webb et al., 2003) reported concentra-
tions of pesticide pp′-DDT in fish-oil collected by the nine national laboratories,
with each making replicate measurements on aliquots of fish-oil. Table 3 is a re-
production of the nine means and standard errors reported in Table 1a of Webb
et al. (2003), along with the reported sample sizes ni. A consensus (or reference)
value is required to be established by combining information from the results
of these nine laboratories. Strawderman and Rukhin (2010) studied the point
estimation problem for the data. We provide here combined confidence distribu-
tions (distributional estimation) using the the Dempster-Shafer recombination
rule (11), the asymptotically equivalent CD combination rule (3), and also the
CD combination rule without any weight (2).

Figure 1 plots the confidence curves obtained from the Dempster-Shafer re-
combination rule, the two CD combination methods and the individual confi-
dence curve from data collected in each laboratory. The plots indicate that all
combination rules provide a good aggregation of the information for the nine
individual laboratories. The combined confidence curves by the three methods
appear close, although the recombined confidence curve by the Dempster-Shafer
recombination rule is slightly skewed and also slighted shifted to the left and
the combined confidence curve by the no-weight CD combination (2) is slightly
wider and also slightly shifted to the right. The point estimate of the common
mean by the three methods are 0.0727, 0.0732 and 0.0736, with corresponding
95% confidence intervals (0.0723, 0.0736), (0.0726, 0.0740) and (0.0728, 0.0745),
respectively.

Example 8. Table 1 of Normand (1999) contained mortality data for control
and intravenous lidocaine treatment from k = 6 studies. The sample sizes of
these six studies range from 82 to 300 heart attack patients. A parameter of
interest is the logarithm of the odds ratio parameter of the treatment versus
control. In this example, we obtain and compare the combined estimators of the
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Fig 1. The comparison of confidence curves for combination of several confidence distributions
for the common normal mean for data in Example 7. The plot displays confidence curves
combined using the Dempster-Shafer based rule (11), the asymptotically equivalent normal
based CD combination (3), the CD combination rule without weight (2) and the individual
confidence curves that are being combined. The red circles denote the median of each of the
confidence distributions.

common odds ratio using both the combination rule based on Dempster-Shafer
recombination (15) and the normal based CD combination rule (3).

Figure 2 below plots the confidence curves obtained from the Dempster-Shafer
recombination rule (15) and its asymptotically equivalent CD combination (3),
as well as the individual confidence curve from data collected in each clinical
trial. For each individual trial, the confidence distribution used is the p-value
function from the left-sided test using the Fisher exact test but with half cor-
rection, as stated in Section 2.2. Based on Figure 2, we see again that both
combined inferences provide a good aggregation of of the information for the
six individual clinical trials. Again, the combined confidence curves by the two
different methods are very similar. The point estimate of the common log odds
ratio by the two methods are 0.575 and 0.568, with corresponding 95% confi-
dence intervals (0.010, 1.126) and (0.033, 1.142), respectively.
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Fig 2. The comparison of confidence curves for combination of several confidence distributions
for the logarithm of the odds ratio for data in Example 8. The plot displays confidence curves
combined using the Dempster-Shafer based rule (15), the normal based CD combination rule
(3) and the individual confidence curves that are being combined. The red circles denote the
median of each of the confidence distributions.
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Appendix: Proofs

Proof of Theorem 1. Assumption 1 and some algebra imply that ci,n
−1{ti,n×

(Xi,n)− θ0} D−→ N(0, 1). Consequently (
∑k

j=1 c
−2
j,n)

1/2(T
(DS)
n − θ0)

D−→ N(0, 1).
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We will now investigate the right-hand-side of (10). Define Xn = (X1,n, . . . ,
Xk,n) and

Kn(Xn) = (2π)−
k−1

2 exp

(

k
∑

i=1

{

ti,n(Xi,n)− T
(DS)
n

}2

2c2i,n

)

.

Notice that Kn(Xn) is bounded in probability and

h̃n(θ|T (DS)
n ) = Kn(Xn)

(

k
∑

i=1

c−2
i,n

)1/2 n
∏

i=1

ϕ

(

θ − ti,n(Xi,n)

ci,n

)

.

Fix j = 1, . . . , k and denote the term

h̃
(DS)
j,n = Kn(Xn)

(

k
∑

i=1

c−2
i,n

)1/2

cj,n

∣

∣

∣

∣

∂

∂θ
Hj,n(θ,Xj,n)

∣

∣

∣

∣

k
∏

i=1
i6=j

∣

∣ci,nDxi,nHi,n(θ,Xi,n)
∣

∣ .

Compute

∣

∣

∣h̃
(DS)
j,n − h̃n(θ|T (DS)

n )
∣

∣

∣

≤
k
∏

i=1
i6=j

∣

∣ci,nDxi,nHi,n(θ,Xi,n)
∣

∣

×Kn(Xn)cj,n





k
∑

j=1

c−2
j,n





1/2
∣

∣

∣

∣

∂

∂θ
Hj,n(θ,Xj,n)−

1

cj,n
ϕ

(

θ − tj,n(Xj,n)

cj,n

)∣

∣

∣

∣

+
k−1
∏

i=1
i6=j

∣

∣ci,nDxi,nHi,n(θ,Xi,n)
∣

∣ϕ

(

θ − tj,n(Xj,n)

cj,n

)

×Kn(Xn)ck,n





k
∑

j=1

c−2
j,n





1/2
∣

∣

∣

∣

∂

∂θ
Hk,n(θ,Xk,n)−

1

ck,n
ϕ

(

θ − tk,n(Xk,n)

ck,n

)∣

∣

∣

∣

+
k−2
∏

i=1
i6=j

∣

∣ci,nDxi,nHi,n(θ,Xi,n)
∣

∣ϕ

(

θ − tk,n(Xk,n)

ck,n

)

ϕ

(

θ − tj,n(Xj,n)

cj,n

)

×Kn(Xn)ck−1,n





k
∑

j=1

c−2
j,n





1/2

×
∣

∣

∣

∣

∂

∂θ
Hk−1,n(θ,Xk−1,n)−

1

ck−1,n
ϕ

(

θ − tk−1,n(Xk−1,n)

ck−1,n

)∣

∣

∣

∣

+ . . .
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integral of which is converging to 0 by Assumption 2. Equation (16) follows
by uniform integrability arguments (Durrett, 2005, Theorem 5.2) and summing
over j.

To prove that the Dempster-Shafer recombined confidence distribution is an
asymptotic confidence distribution notice that

∫ θ0

−∞

h(DS)n (θ|X1,n, · · · ,Xk,n) dθ =

∫ θ0

−∞

h̃n(θ|T (DS)
n ) dθ + εn,

where

|εn| ≤
∫

Θ

∣

∣

∣
h(DS)n (θ|X1,n, · · · ,Xk,n)− h̃n(θ|T (DS)

n )
∣

∣

∣
dθ

P−→ 0

and

∫ θ0

−∞

h̃n(θ|T (DS)
n ) dθ = Φ

{(

k
∑

j=1

c−2
j,n

)1/2

(θ0 − T (DS)
n )

}

D−→ U(0, 1),

since (
∑k

j=1 c
−2
j,n)

1/2(T
(DS)
n − θ0)

D−→ N(0, 1). The statement now follows.

Proof of Theorem 2. For a given β, 0 < β < 1, by basic calculations and As-
sumption 2b, we have

∣

∣

∣Hi,n

(

tj,n(Xi,n) + ci,nΦ
−1(β)

)

− β
∣

∣

∣

=

∣

∣

∣

∣

∫ ti,n(Xi,n)+ci,nΦ
−1(β)

−∞

dHi,n(θ,Xi,n)

−
∫ ti,n(Xi,n)+ci,nΦ

−1(β)

−∞

1

ci,n
ϕ

(

θ − ti,n(Xi,n)

ci,n

)

dθ

∣

∣

∣

∣

≤
∫ ti,n(Xi,n)+ci,nΦ

−1(β)

−∞

∣

∣

∣

∣

∂

∂θ
Hi,n(θ,Xi,n)−

1

ci,n
ϕ

(

θ − ti,n(Xi,n)

ci,n

) ∣

∣

∣

∣

dθ

≤
∫

Θ

∣

∣

∣

∣

∂

∂θ
Hi,n(θ,Xi,n)−

1

ci,n
ϕ

(

θ − ti,n(Xi,n)

ci,n

) ∣

∣

∣

∣

dθ
P−→ 0.

Since we assume Hi(θ,Xi,n) is continuous in θ, we have H−1
i (β) = ti,n(Xi,n) +

ci,nΦ
−1(β) + op(1). Thus, τi,n = {H−1

i,n (.75)−H−1
i,n (.25)}/{2Φ−1(.75)} = ci,n +

op(1). The first statement of the theorem follows.

Now, write ǫi,n = Hi,n(θ0,Xi,n)−Φ[{θ0−ti,n(Xi,n)}/ci,n]. By Assumption 1b,

ǫi,n
P−→ 0. From Lemma 1 of Xie et al. (2011) and also noting that τi,n =

ci,n + op(1), we have
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∣

∣

∣

∣

∣

∣

H(c)
n

(

θ,X1,n,X2,n, . . . ,Xk,n

)

− Φ

{(

k
∑

j=1

c−2
j,n

)1/2

(T (DS)
n − θ0)

}

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Φ

(

∑k
i=1 τ

−1
i,nΦ

−1{Hi(θ,X1,n)}
(
∑k

i=1 τ
−2
i,n )

1/2

)

− Φ

(

∑k
i=1 c

−1
i,nΦ

−1{Φ({θ − ti,n(Xi,n)}/ci,n)}
(
∑k

i=1 c
−2
i,n)

1/2

)∣

∣

∣

∣

∣

≤
k
∑

i=1

ǫi,n + op(1)
P−→ 0.

Thus, H
(c)
n (θ,X1,n,X2,n, . . . ,Xk,n) and

Φ

{(

k
∑

j=1

c−2
j,n

)1/2

(θ − T (DS)
n )

}

=

∫ θ

−∞

h̃n(η|T (DS)
n ) dη

are asymptotically equivalent. The second statement of the theorem follows from
equation (16).
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