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Université de Lille 1, Laboratoire Paul Painlevé, CNRS UMR 8524, France

e-mail: laurence.marsalle@univ-lille1.fr

Abstract: We estimate the unknown parameters of an asymmetric bifur-
cating autoregressive process (BAR) when some of the data are missing. In
this aim, we model the observed data by a two-type Galton-Watson process
consistent with the binary tree structure of the data. Under independence
between the process leading to the missing data and the BAR process and
suitable assumptions on the driven noise, we establish the strong consis-
tency of our estimators on the set of non-extinction of the Galton-Watson
process, via a martingale approach. We also prove a quadratic strong law
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1. Introduction

Bifurcating autoregressive processes (BAR) generalize autoregressive (AR) pro-
cesses, when the data have a binary tree structure. Typically, they are involved
in modeling cell lineage data, since each cell in one generation gives birth to two
offspring in the next one. Cell lineage data usually consist of observations of
some quantitative characteristic of the cells, over several generations descended
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from an initial cell. BAR processes take into account both inherited and environ-
mental effects to explain the evolution of the quantitative characteristic under
study. They were first introduced by Cowan and Staudte [4]. In their paper,
the original BAR process was defined as follows. The initial cell is labelled 1,
and the two offspring of cell k are labelled 2k and 2k + 1. If Xk denotes the
quantitative characteristic of individual k, then the first-order BAR process is
given, for all k ≥ 1, by

{
X2k = a+ bXk + ε2k,
X2k+1 = a+ bXk + ε2k+1.

The noise sequence (ε2k, ε2k+1) represents environmental effects, while a, b are
unknown real parameters, with |b| < 1, related to the inherited effects. The
driven noise (ε2k, ε2k+1) was originally supposed to be independent and identi-
cally distributed with normal distribution. But since two sister cells are in the
same environment at their birth, ε2k and ε2k+1 are allowed to be correlated, in-
ducing a correlation between sister cells, distinct from the correlation inherited
from their mother.

Recently, experiments made by biologists on aging of Escherichia coli [15],
motivated mathematical and statistical studies of the asymmetric BAR process,
that is when the quantitative characteristics of the even and odd sisters are al-
lowed to depend on their mother’s through different sets of parameters (a, b),
see Equation (2.1) below. In [9, 8], Guyon proposes an interpretation of the
asymmetric BAR process as a bifurcating Markov chain, which allows him to
derive laws of large numbers and central limit theorems for the least squares
estimators of the unknown parameters of the process. This Markov chain ap-
proach was further developed by Bansaye [2] in the context of cell division with
parasite infection, and by Delmas and Marsalle [5], where the cells are allowed
to die. Another approach based on martingales theory was proposed by Bercu,
de Saporta and Gégout-Petit [3], to sharpen the asymptotic analysis of Guyon
under weaker assumptions.

The originality of this paper is that we take into account possibly missing
data in the estimation procedure of the parameters of the asymmetric BAR
process, see Figure 1 for an example. This is a problem of practical interest,
as experimental data are often incomplete, either because some cells died, or
because the measurement of the characteristic under study was impossible or
faulty. For instance, among the 94 colonies dividing up to 9 times studied in
[15], in average, there are about 47% of missing data. It is important to take
this phenomenon into account in the model for a rigorous statistical study.

Missing data in bifurcating processes were first modeled by Delmas and
Marsalle [5]. They defined the genealogy of the cells through a Galton-Watson
process, but they took into account the possible asymmetry problem only by
differentiating the reproduction laws according to the daughter’s type (even or
odd). The bifurcating process was thus still a Markov chain. However, consid-
ering the biological issue of aging in E. coli naturally leads to introduce the
possibility that two cells of different types may not have the same reproduc-
tion law. In this paper, we thus introduce a two-type Galton-Watson process to
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Fig 1. A tree associated with the bifurcating auto-regressive process up to the 4th generation.

The dashed cells are not observed.

model the genealogy, and lose the Markovian structure of the bifurcating chain,
so that we cannot use the same approach as [5]. Instead, we use the martingale
approach introduced in [3]. It must be pointed out that missing data are not
dealt with in [3], so that we cannot directly use their results either. In particular,
the observation process is another source of randomness that requires stronger
moment assumptions on the driven noise of the BAR process and careful choice
between various filtrations. In addition, the normalizing terms are now random
and the convergences are only available on the random non-extinction set of the
observed process.

The naive approach to handle missing data would be to replace the sums over
all data in the estimators by sums over the observed data only. Our approach is
slightly more subtle, as we distinguish whether a cell has even or odd daughters.
We propose a joint model where the structure for the observed data is based
on a two-type Galton-Watson process consistent with the possibly asymmetric
structure of the BAR process. See e.g. [12, 1, 10] for a presentation of multi-type
Galton-Watson processes and general branching processes. Note also that our
estimation procedure does not require the previous knowledge of the parameters
of the two-type Galton-Watson process.

This paper is organized as follows. In Section 2, we first introduce our BAR
model as well as related notation, then we define and recall results on the two-
type Galton-Watson process used to model the observation process. In Section 3,
we give the least square estimator for the parameters of observed BAR process
and we state our main results on the convergence and asymptotic normality of
our estimators as well as estimation results on data. The proofs are detailed in
the following sections.

2. Joint model

We now introduce our joint model, starting with the asymmetric BAR process
for the variables of interest.
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Fig 2. The tree associated with the bifurcating auto-regressive process.

2.1. Bifurcating autoregressive processes

On the probability space (Ω,A,P), we consider the first-order asymmetric BAR
process given, for all k ≥ 1, by

{
X2k = a + bXk + ε2k,
X2k+1 = c + dXk + ε2k+1.

(2.1)

The initial state X1 is the characteristic of the ancestor, while (ε2k, ε2k+1) is the
driven noise of the process. In all the sequel, we shall assume that E[X8

1 ] < ∞.
Moreover, as in the previous literature, the parameters (a, b, c, d) belong to R4

with
0 < max(|b|, |d|) < 1.

This assumption ensures the stability (non explosion) of the BAR process. As
explained in the introduction, one can see this BAR process as a first-order au-
toregressive process on a binary tree, where each vertex represents an individual
or cell, vertex 1 being the original ancestor, see Figure 2 for an illustration. We
use the same notation as in [3]. For all n ≥ 1, denote the n-th generation by
Gn = {2n, 2n + 1, . . . , 2n+1 − 1}. In particular, G0 = {1} is the initial genera-
tion, and G1 = {2, 3} is the first generation of offspring from the first ancestor.
Let Grk be the generation of individual k, which means that rk = [log2(k)],
where [x] denotes the largest integer less than or equal to x. Recall that the
two offspring of individual k are labelled 2k and 2k + 1, or conversely, the
mother of individual k is [k/2]. More generally, the ancestors of individual k
are [k/2], [k/22], . . . , [k/2rk ]. Denote by Tn =

⋃n
ℓ=0 Gℓ,the sub-tree of all indi-

viduals from the original individual up to the n-th generation. Note that the
cardinality |Gn| of Gn is 2n, while that of Tn is |Tn| = 2n+1 − 1. Next, T de-
notes the complete tree, so to speak T =

⋃
n≥0 Gn =

⋃
n≥0 Tn = N∗ = N\{0}.
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Finally, we need to distinguish the individuals in Gn and Tn according to their
type. Since we are dealing with the types even and odd, that we will also label 0
and 1, we set

G
0
n = Gn ∩ (2N), G

1
n = Gn ∩ (2N+ 1), T

0
n = Tn ∩ (2N),

T
1
n = Tn ∩ (2N+ 1), T

0 = T ∩ (2N) and T
1 = T ∩ (2N+ 1). (2.2)

We now state our assumptions on the noise sequence. Denote by F = (Fn)
the natural filtration associated with the first-order BAR process, which means
that Fn is the σ-algebra generated by all individuals up to the n-th generation,
Fn = σ{Xk, k ∈ Tn}. In all the sequel, we shall make use of the following
moment and independence hypotheses.

(HN.1) For all n ≥ 0 and for all k ∈ Gn+1, εk belongs to L8. Moreover, there
exist (σ2, τ4, κ8) ∈ (0,+∞)3, (|ρ′|, ν2, λ4) ∈ [0, 1)3 such that:

• ∀n ≥ 0 and k ∈ Gn+1,

E[εk|Fn] = 0, E[ε2k|Fn] = σ2, E[ε4k|Fn] = τ4, E[ε8k|Fn] = κ8 a.s.

• ∀n ≥ 0 ∀k 6= l ∈ Gn+1 with [k/2] = [l/2],

E[εkεl|Fn] = ρ = ρ′σ2, E[ε22kε
2
2k+1|Fn] = ν2τ4, E[ε42kε

4
2k+1|Fn] = λ4κ8 a.s.

(HN.2) For all n ≥ 0 the random vectors {(ε2k, ε2k+1), k ∈ Gn} are condition-
ally independent given Fn.

2.2. Observation process

We now turn to the modeling of the observation process. The observation process
is intended to encode if a datum is missing or not. The natural property it has
thus to satisfy is the following: if the datum is missing for some individual, it is
also missing for all its descendants. Indeed, the datum may be missing because
of the death of the individual, or because the individual is the last of its lineage
at the end of the data’s gathering, see Figure 3 for an example of partially
observed tree.

2.2.1. Definition of the observation process

Mathematically, we define the observation process, (δk)k∈T, as follows. We set
δ1 = 1 and define recursively the sequence through the following equalities:

δ2k = δkζ
0
k and δ2k+1 = δkζ

1
k , (2.3)

where (ζk = (ζ0k , ζ
1
k)) is a sequence of independent random vectors of {0, 1}2,

ζik standing for the number (0 or 1) of descendants of type i of individual k.
The sequences (ζk, k ∈ 2N∗) and (ζk, k ∈ 2N + 1) are sequences of identically
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Fig 3. The tree associated with the observed data of the tree in Figure 1.

distributed random vectors. We specify the common laws of these two sequences
using their generating functions, f (0) and f (1) respectively:

f (0)(s0, s1) = p(0)(0, 0) + p(0)(1, 0)s0 + p(0)(0, 1)s1 + p(0)(1, 1)s0s1,

f (1)(s0, s1) = p(1)(0, 0) + p(1)(1, 0)s0 + p(1)(0, 1)s1 + p(1)(1, 1)s0s1,

where p(i)(j0, j1) is the probability that an individual of type i gives birth to j0
descendants of type 0, and j1 of type 1. The sequence (δk) is thus completely
defined. We also assume that the observation process is independent from the
BAR process.

(HI) The sequences (δk) and (ζk) are independent from the sequences (Xk)
and (εk).

Remark that, since both ζ0k and ζ1k take values in {0, 1} for all k, the observation
process (δk) is itself taking values in {0, 1}. Finally, Equation (2.3) ensures that
if δk = 0 for some k ≥ 2, then for all its descendants j, δj = 0. In relation with
the observation process (δk), we introduce two filtrations: Zn = σ{ζk, k ∈ Tn},
On = σ{δk, k ∈ Tn}, and the sigma field O = σ{δk, k ∈ T}. Notice that
On+1 ⊂ Zn. We also define the sets of observed individuals as follows:

G
∗
n = {k ∈ Gn : δk = 1} and T

∗
n = {k ∈ Tn : δk = 1}.

Finally, let E be the event corresponding to the cases when there are no indi-
vidual left to observe. More precisely,

E =
⋃

n≥1

{|G∗
n| = 0}. (2.4)

We will denote E the complementary set of E .
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2.2.2. Results on the observation process

Let us introduce some additional notation. For n ≥ 1, we define the number
of observed individuals among the n-th generation, distinguishing according to
their types:

Z0
n = |G∗

n ∩ 2N| and Z1
n = |G∗

n ∩ (2N+ 1)|, (2.5)

and we set, for all n ≥ 1, Zn = (Z0
n, Z

1
n). Note that for i ∈ {0, 1} and n ≥ 1 one

has
Zi
n =

∑

k∈Gn−1

δ2k+i.

One has G∗
0 = G0 = {1}, but, even if 1 is odd, the individual whose lineage we

study may as well be of type 0 as of type 1. Consequently, we will work with
possibly two different initial laws: P(·|Z0 = ei), for i ∈ {0, 1}, where e0 = (1, 0)
and e1 = (0, 1). The process (Zn, n ≥ 0) is thus a two-type Galton-Watson
process, and all the results we are giving in this section mainly come from [12].
Notice that the law of ζk, for even k, is the law of reproduction of an individual
of type 0, the first component of ζk giving the number of children of type 0, the
second the number of children of type 1. The same holds for ζk, with odd k,
mutatis mutandis. This ensures the existence of moments of all order for these
reproduction laws, and we can thus define the descendants matrix P

P =

(
p00 p01
p10 p11

)
,

where pi0 = p(i)(1, 0)+p(i)(1, 1) and pi1 = p(i)(0, 1)+p(i)(1, 1), for i ∈ {0, 1}. The
quantity pij = E[ζj2+i] is thus the expected number of descendants of type j of an
individual of type i. We also introduce the variance of the laws of reproduction:
σ2
ij = E[(ζj2+i − pij)

2], for (i, j) ∈ {0, 1}2. Note that σ2
ij = pij(1 − pij). It is

well-known (see e.g. Theorem 5.1 of [12]) that when all the entries of the matrix
P are positive, P has a positive strictly dominant eigenvalue, denoted π, which
is also simple. We make the following main assumptions on the matrix P .

(HO) All entries of the matrix P are positive: for all (i, j) ∈ {0, 1}2, pij > 0,
and the dominant eigenvalue is greater than one: π > 1.

Hence, still following Theorem 5.1 of [12], we know that there exist left and
right eigenvectors for π which are positive, in the sense that each component
of the vector is positive. We call y = (y0, y1)t such a right eigenvector, and
z = (z0, z1) such a left one; without loss of generality, we choose z such that
z0 + z1 = 1. Regarding the two-type Galton-Watson process (Zn), π plays the
same role as the expected number of offspring, in the case of standard Galton-
Watson processes. In particular, π is related to the extinction of the process,
where the set of extinction of (Zn) is defined as ∪n≥1{Zn = (0, 0)}. Notice that
{Zn = (0, 0)} = {Z0

n +Z1
n = 0} = {|G∗

n| = 0}, so that this set coincides with E ,
defined by Eq. (2.4). Now let q = (q0, q1), where, for i ∈ {0, 1},

qi = P(E|Z0 = ei).
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The probability qi is thus the extinction probability if initially there is one
individual of type i. These two probabilities allow to compute the extinction
probability under any initial distribution, since P(E) = E[(q0)Z

0
0 (q1)Z

1
0 ], thanks

to the branching property. Hypothesis (HO) means that the Galton-Watson
process (Zn) is super-critical, and ensures that 0 ≤ qi < 1, for both i = 0 and
i = 1. This immediately yields

P(E) < 1. (2.6)

Under that condition, we also have the existence of a non-negative random
variable W such that for any initial distribution of Z0

lim
n→+∞

Zn

πn
= lim

n→+∞

π − 1

πn+1 − 1

n∑

ℓ=0

Zℓ = Wz a.s. (2.7)

It is well-known that {W = 0} = E a.s., so that the set {W > 0} can be
viewed as the set of non-extinction E of (Zn), up to a negligible set. These
results give the asymptotic behavior of the number of observed individuals,
since |G∗

n| = Z0
n + Z1

n, and |T∗
n| =

∑n
ℓ=0(Z

0
ℓ + Z1

ℓ ):

lim
n→+∞

|G∗
n|

πn
= lim

n→+∞

π − 1

πn+1 − 1
|T∗

n| = W a.s.

Roughly speaking, this means that πn is a deterministic equivalent of |T∗
n| and

Eq. (2.7) implies that zi is the asymptotic proportion of cells of type i in a given
generation. We will thus very often replace |T∗

n| by πn for computations, and
the next lemma will be used frequently to replace πn by |T∗

n|.
Lemma 2.1. Under assumption (HO), we have

lim
n→+∞

1{|G∗

n|>0}
πn

|T∗
n|

=
π − 1

π

1

W
1E a.s.

2.3. Joint model

The model under study in this paper is therefore the observed BAR process
defined by

{
δ2kX2k = δ2k (a + bXk + ε2k),

δ2k+1X2k+1 = δ2k+1 (c + dXk + ε2k+1).

The aim of this paper is to study the sharp asymptotic properties of the least-
squares estimators of the parameters (a, b, c, d) and the variance matrix of the
noise process.

3. Least-squares estimation

Our goal is to estimate θ = (a, b, c, d)t from the observed individuals up to the
n-th generation, that is the observed sub-tree T∗

n.
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3.1. Definition of the estimators

We propose to make use of the standard least-squares (LS) estimator θ̂n which
minimizes

∆n(θ) =
∑

k∈Tn−1

δ2k(X2k − a− bXk)
2 + δ2k+1(X2k+1 − c− dXk)

2.

Consequently, we obviously have for all n ≥ 1

(θ̂n) =




ân
b̂n
ĉn
d̂n


 = Σ−1

n−1

∑

k∈Tn−1




δ2kX2k

δ2kXkX2k

δ2k+1X2k+1

δ2k+1XkX2k+1


 , (3.1)

where, for all n ≥ 0,

Σn =

(
S0

n 0

0 S1
n

)
, and Si

n =
∑

k∈Tn

δ2k+i

(
1 Xk

Xk X2
k

)
,

for i ∈ {0, 1}. In order to avoid intricate invertibility assumption, we shall
assume, without loss of generality, that for all n ≥ 0, Σn is invertible. Otherwise,
we only have to add the identity matrix I4 to Σn, as Proposition 4.2 states that
the normalized limit of Σn is positive definite.

Remark 3.1. Note that when all data are observed, that is when all δk equal 1,
this is simply the least squares estimator described in the previous literature.
However, one must be careful here with the indices in the normalizing matrix,
as there are now two different matrices S0

n and S1
n, while there was only one in

the fully observed problem. The intuitive way to deal with missing data would
be to restrict the sums to the observed data only. Note that our estimator is
more complex as it involves sums depending on the absence or presence of even-
or odd-type daughters of the available data.

We now turn to the estimation of the parameters σ2 and ρ. We propose to
estimate the conditional variance σ2 and the conditional covariance ρ by

σ̂2
n =

1

|T∗
n|

∑

k∈T∗

n−1

(ε̂22k + ε̂22k+1), ρ̂n =
1

|T∗01
n−1|

∑

k∈Tn−1

ε̂2kε̂2k+1,

where for all k ∈ Gn,
{

ε̂2k = δ2k(X2k − ân − b̂nXk),

ε̂2k+1 = δ2k+1(X2k+1 − ĉn − d̂nXk).
,

and
T
∗01
n = {k ∈ Tn : δ2kδ2k+1 = 1},

so to speak T∗01
n−1 is the set of the cells of the tree Tn−1 which have exactly two

offspring.
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3.2. Main results

We can now state the sharp convergence results we obtain for the estimators
above. We introduce additional notation. For i ∈ {0, 1}, let us denote:

Li =

(
πzi hi

hi ki

)
L0,1 =

(
p̄(1, 1) h0,1

h0,1 k0,1

)

where z = (z0, z1) is the left eigenvector for the dominant eigenvalue π of
the descendants matrix P introduced in section 2.2.2, hi, ki are defined in
Propositions 6.3 and 6.5 and the four terms of L0,1 defined in Proposition 6.6.
We also define the 4× 4 matrices

Σ =

(
L0 0

0 L1

)
, and Γ =

(
σ2L0 ρL0,1

ρL0,1 σ2L1

)
. (3.2)

Our first result deals with the strong consistency of the LS estimator θ̂n.

Theorem 3.2. Under assumptions (HN.1), (HN.2), (HO) and (HI), θ̂n con-
verges to θ almost surely on E with the rate of convergence1{|G∗

n|>0}‖θ̂n − θ‖2 = O
(
log |T∗

n−1|
|T∗

n−1|

) 1E a.s. (3.3)

In addition, we also have the quadratic strong law

lim
n→∞

1{|G∗

n|>0}
1

n

n∑

ℓ=1

|T∗
ℓ−1|(θ̂ℓ − θ)tΣ(θ̂ℓ − θ) = 4

π − 1

π
σ21E a.s. (3.4)

Our second result is devoted to the almost sure asymptotic properties of the
variance and covariance estimators σ̂2

n and ρ̂n. Let

σ2
n =

1

|T∗
n|

∑

k∈T∗

n−1

(δ2kε
2
2k + δ2k+1ε

2
2k+1), ρn =

1

|T∗01
n−1|

∑

k∈T∗

n−1

δ2kε2kδ2k+1ε2k+1.

Theorem 3.3. Under assumptions (HN.1), (HN.2), (HO) and (HI), σ̂2
n con-

verges almost surely to σ2 on E. More precisely, one has

lim
n→∞

1{|G∗

n|>0}
1

n

∑

k∈Tn−1

1∑

i=0

δ2k+i(ε̂2k+i − ε2k+i)
2 = 4(π − 1)σ21E a.s. (3.5)

lim
n→∞

1{|G∗

n|>0}
|T∗

n|
n

(σ̂2
n − σ2

n) = 4(π − 1)σ21E a.s. (3.6)

In addition, ρ̂n converges almost surely to ρ on E and one has

lim
n→∞

1{|G∗

n|>0}
1

n

∑

k∈Tn−1

δ2k(ε̂2k − ε2k)δ2k+1(ε̂2k+1 − ε2k+1)

= ρ
π − 1

π
tr
(
(L1)−1(L0,1)2(L0)−1

)1E a.s. (3.7)
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lim
n→∞

1{|G∗

n|>0}
|T∗

n|
n

(ρ̂n − ρn) = ρ
π − 1

p̄(1, 1)
tr
(
(L1)−1(L0,1)2(L0)−1

)1E a.s.

(3.8)

Our third result concerns the asymptotic normality for all our estimators θ̂n, σ̂
2
n

and ρ̂n given the non-extinction of the underlying Galton-Watson process. For
this, using the fact that P(E) 6= 0 thanks to Eq. (2.6), we define the probability
PE by

PE(A) =
P(A ∩ E)
P(E) for all A ∈ A.

Theorem 3.4. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have
the central limit theorem

√
|T∗

n−1|(θ̂n − θ)
L−→ N (0,Σ−1ΓΣ−1) on (E ,PE). (3.9)

In addition, we also have

√
|T∗

n|(σ̂2
n − σ2)

L−→ N
(
0,

π(τ4 − σ4) + 2p̄(1, 1)(ν2τ4 − σ4)

π

)
on (E ,PE),

(3.10)
where p̄(1, 1) is defined in Eq. (6.6) and

√
|T∗01

n−1|(ρ̂n − ρ)
L−→ N (0, ν2τ4 − ρ2) on (E ,PE). (3.11)

The proof of our main results is going to be detailed in the next sections.
It is based on martingale properties, and we will exhibit our main martingale
(Mn) in Section 4. Sections 5 to 7 are devoted proving to the sharp asymptotic
properties of (Mn). Finally, in Section 8 we prove our main results. Before
turning to the definition of the martingale (Mn), we present a short application
of our estimation procedure on data.

3.3. Results on real data

The biological issue addressed by Stewart et al. in [15] is aging in the single cell
organism Escherichia coli, see also [7] for further biological details. E. coli is a
rod-shaped bacterium that reproduces by dividing in the middle. Each cell has
thus a new end (or pole), and an older one. The cell that inherits the old pole
of its mother is called the old pole cell, the cell that inherits the new pole of
its mother is called the new pole cell. Therefore, each cell has a type: old pole
(even) or new pole (odd) cell, inducing asymmetry in the cell division.

Stewart et al. filmed colonies of dividing cells, determining the complete lin-
eage and the growth rate of each cell. Their statistical study of the averaged
genealogy and pair-wise comparison of sister cells showed that the old pole cells
exhibit cumulatively slowed growth, less offspring biomass production and an
increased probability of death. Note that their test assumes independence be-
tween the averaged pairs of sister cells which is not verified in the lineage.
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Table 1

Estimation on the data set penna-2002-10-04-4

parameter a c

estimation 0.03627 0.03058
C.I. [0.03276; 0.03979] [0.02696; 0.03420]

parameter b d
estimation 0.02662 0.17055

C.I. [−0.06866; 0.12191] [0.07247; 0.26863]

Another analysis was proposed in [9]. They model the growth rate by a
Markovian bifurcating process, allowing single-experiment statistical analysis
instead of averaging all the genealogical trees. Asymptotic properties of a more
general asymmetric Markovian bifurcating autoregressive process are then in-
vestigated in [8], where a Wald’s type test is rigorously constructed to study
the asymmetry of the process. These results cannot be compared to ours be-
cause this model does not take into account the possibly missing data from the
genealogies, and it is not clear how the author manages them, as not a single
tree from the data of [15] is complete. In [5], the authors take missing data into
account but, contrary to our approach, they allow different sets of parameters
for cells with two, one or no offspring, making the direct comparison with our
estimator again impossible.

We have applied our methodology on the set of data penna-2002-10-04-4

from the experiments of [15]. It is the largest data set of the experiment. It
contains 663 cells up to generation 9 (note that there would be 1023 cells in a
full tree up to generation 9). In particular, we have performed

• point estimation of the vector θ,
• interval estimation for the coefficients (a, b, c, d),

• Wald’s type symmetry tests for the entries of θ̂n.

Table 1 gives the estimation θ̂9 of θ with the 95% Confidence Interval (C.I.)
of each coefficient. The variance given by the CLT for θ in Eq. (3.9), is ap-
proximated by Σ−1

n ΓnΣ
−1
n thanks to the convergence given in Corollary 4.3.

The confidence intervals of b and d show that the non explosion assumption
(|b| < 1 and |d| < 1) is satisfied. Some empirical computation on the process
(δk) gives the following estimation for the highest eigenvalue of the Galton-
Watson process: π̂ = 1.35669 (with confidence interval [1.27979, 1.43361], see
[14]), also satisfying the super-criticality assumption. Wald tests of comparison
between the coefficients of θ have been deduced of the CLT. The null hypotheses
(a, b) = (c, d) (resp. a = c, b = d) are rejected with p-values p= 0.0211 (resp.
p= 0.0158 and p=0.0244). Hence on this data set the cell division is indeed
statistically asymmetric.

4. Martingale approach

To establish all the asymptotic properties of our estimators, we shall make
use of a martingale approach, similar to [3]. However, their results cannot be
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used in our framework, since the randomness comes now not only from the state
process, but also from the time space (genealogy). These two mixed randomness
sources require careful choice between various filtrations, and stronger moment
assumptions on the driven noise of the BAR process. For all n ≥ 1, denote

Mn =
∑

k∈Tn−1

(δ2kε2k, δ2kXkε2k, δ2k+1ε2k+1, δ2k+1Xkε2k+1)
t
.

Thus, for all n ≥ 2, we readily deduce from Equations (3.1) and (2.1) that

θ̂n − θ = Σ−1
n−1

∑

k∈Tn−1




δ2kε2k
δ2kXkε2k
δ2k+1ε2k+1

δ2k+1Xkε2k+1


 = Σ−1

n−1Mn. (4.1)

The key point of our approach is that (Mn) is a martingale for a well chosen
filtration.

4.1. Martingale property

Recall that O = σ{δk, k ∈ T} is the σ-field generated by the observation process.
We shall assume that all the history of the process (δk) is known at time 0 and
use the filtration FO = (FO

n ) defined for all n by

FO
n = O ∨ σ{δkXk, k ∈ Tn} = O ∨ σ{Xk, k ∈ T

∗
n},

where F ∨ G denotes the σ-field generated by both F and G. Note that for all
n, FO

n is a sub σ-field of O ∨ Fn.

Proposition 4.1. Under assumptions (HN.1), (HN.2) and (HI), the process
(Mn) is a square integrable FO-martingale with increasing process given, for all
n ≥ 1, by

< M >n= Γn−1 =

(
σ2S0

n−1 ρS0,1
n−1

ρS0,1
n−1 σ2S1

n−1

)
,

where S0
n and S1

n are defined in section 3.1 and

S0,1
n =

∑

k∈Tn

δ2kδ2k+1

(
1 Xk

Xk X2
k

)
.

Proof. First, notice that for all n ≥ 1, one has

∆Mn = Mn −Mn−1 =
∑

k∈Gn−1




δ2kε2k
δ2kXkε2k
δ2k+1ε2k+1

δ2k+1Xkε2k+1


 .
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Now, we use the fact that for all n, FO
n is a sub-σ field of O∨Fn, the indepen-

dence between O and Fn under assumption (HI) and the moment hypothesis
(HN.1) to obtain

E[δ2kε2k | FO
n−1] = δ2kE

[
E[ε2k | O ∨ Fn−1] | FO

n−1

]

= δ2kE
[
E[ε2k | Fn−1] | FO

n−1

]
= 0.

We obtain similar results for the other entries of ∆Mn as δ2k+1 and Xk are
also FO

n−1-measurable. Hence, (Mn) is a F
O-martingale. It is clearly square in-

tegrable from assumption (HN.1). The same measurability arguments together
with assumption (HN.2) yield

E[∆Mn(∆Mn)
t | FO

n−1]

=
∑

k∈Gn−1




σ2δ2k σ2δ2kXk ρδ2kδ2k+1 ρδ2kδ2k+1Xk

σ2δ2kXk σ2δ2kX
2
k ρδ2kδ2k+1Xk ρδ2kδ2k+1X

2
k

ρδ2kδ2k+1 ρδ2kδ2k+1Xk σ2δ2k+1 σ2δ2k+1Xk

ρδ2kδ2k+1Xk ρδ2kδ2k+1X
2
k σ2δ2k+1Xk σ2δ2k+1X

2
k


 .

Hence the result as < M >n=
∑n

ℓ=1 E[∆M ℓ(∆M ℓ)
t | FO

ℓ−1].

Our main results are direct consequences of the sharp asymptotic properties
of the martingale (Mn). In particular, we will extensively use the strong law of
large numbers for locally square integrable real martingales given in Theorem
1.3.15 of [6]. Throughout this paper, we shall also use other auxiliary martin-
gales, either with respect to the same filtration FO, or with respect to other
filtrations naturally embedded in our process, see Lemma 5.1.

4.2. Asymptotic results

We first give the asymptotic behavior of the matrices S0
n, S

1
n and S0,1

n . This is
the first step of our asymptotic results.

Proposition 4.2. Suppose that assumptions (HN.1), (HN.2), (HO) and (HI)
are satisfied. Then, for i ∈ {0, 1}, we have

lim
n→∞

1{|G∗

n|>0}
Si

n

|T∗
n|

= 1ELi a.s. and lim
n→∞

1{|G∗

n|>0}
S0,1

n

|T∗
n|

= 1EL0,1 a.s.

In addition, L0 and L1, hence Σ are definite positive.

A consequence of this proposition is the asymptotic behavior of the increasing
process of the martingale (Mn).

Corollary 4.3. Suppose that assumptions (HN.1), (HN.2), (HO) and (HI)
are satisfied. Then, we have

lim
n→∞

1{|G∗

n|>0}
Σn

|T∗
n|

= 1EΣ, and lim
n→∞

1{|G∗

n|>0}
Γn

|T∗
n|

= 1EΓ.
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This result is the keystone of our asymptotic analysis. It enables us to prove
sharp asymptotic properties for the martingale (Mn).

Theorem 4.4. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have1{|G∗

n|>0}M
t
nΣ

−1
n−1Mn = O(n) a.s. (4.2)

In addition, we also have

lim
n→∞

1{|G∗

n|>0}
1

n

n∑

ℓ=1

M t
ℓΣ

−1
ℓ−1M ℓ = 4σ21E a.s. (4.3)

Moreover, we have the central limit theorem on (E ,PE)

1√
|T∗

n−1|
Mn

L−→ N (0,Γ) on (E ,PE).

As seen in Eq. (4.1), (θ̂n − θ) is closely linked to Mn and this last theorem
is then the major step to establish the asymptotic properties of our estimators.
The proof of this Theorem is given in Section 7. As explained before, it is a
consequence of Proposition 4.2 which proof is detailed in Section 6. In between,
Section 5 presents preliminary results in the form of laws of large number for
the observation, noise and BAR processes.

5. Laws of large numbers

We now state some laws of large numbers involving the observation, noise and
BAR processes. They are based on martingale convergence results, and we start
with giving a general result of convergence for martingales adapted to our frame-
work.

5.1. Martingale convergence results

The following result is nothing but the strong law of large numbers for square
integrable martingales, written in our peculiar setting, and will be repeatedly
used.

Lemma 5.1. Let G = (Gn) be some filtration, (Hn) and (Gn) be two sequences
of random variables satisfying the following hypotheses:

(i) for all n ≥ 1, for all k ∈ Gn, Hk is Gn−1-measurable, Gk is Gn-measurable,
and E[(HkGk)

2] < +∞,
(ii) there exist c2 > 0, r ∈ [−1, 1], such that for all n ≥ 1, for all k, p ∈ Gn,

E[Gk|Gn−1] = 0, E[GkGp|Gn−1] =





c2 if k = p,
rc2 if k 6= p and [k/2] = [p/2],
0 otherwise,



1328 B. de Saporta et al.

(iii) there exists a sequence of real numbers (an) that tends to ∞ such that∑
k∈Tn

H2
k = O(an).

Then
∑

k∈Tn
HkGk is a G-martingale and one has

lim
n→∞

1

an

∑

k∈Tn

HkGk = 0 a.s.

Proof. Define Dn =
∑

k∈Tn
HkGk. Assumptions (i) and (ii) clearly yield that

(Dn) is a square integrable martingale with respect to the filtration (Gn). Thanks
to (ii), its increasing process satisfies

< D >n = c2
( ∑

k∈Tn

H2
k + 2r

∑

k∈Tn−1

H2kH2k+1

)

≤ c2
( ∑

k∈Tn

H2
k + r

∑

k∈Tn−1

(H2
2k +H2

2k+1)

)

≤ c2(r + 1)
∑

k∈Tn

H2
k ,

and now, (iii) implies that < D >n= O(an). Finally, since the sequence (an)
tends to ∞, Theorem 1.3.15 of [6] ensures that Dn = o(an) a.s.

We also recall Lemma A.3 of [3] that will be useful in the sequel.

Lemma 5.2. Let (An) be a sequence of real-valued matrices such that

∞∑

n=0

‖An‖ < ∞ and lim
n→∞

n∑

k=0

Ak = A.

In addition, let (Xn) be a sequence of real-valued vectors which converges to a
limiting value X. Then,

lim
n→∞

n∑

ℓ=0

An−ℓXℓ = AX.

5.2. Laws of large numbers for the observation process

We now give more specific results on the asymptotic behavior of the observation
process (δk)k≥1. Recall the notation Ti

n defined in (2.2).

Lemma 5.3. Under the assumption (HO), we have the following convergences,
for (i, j) in {0, 1}2

lim
n→+∞

1

πn

∑

k∈Ti
n

δ2k+j = pij
π

π − 1
Wzi a.s.

lim
n→+∞

1

πn

∑

k∈Ti
n

δ2kδ2k+1 = p(i)(1, 1)
π

π − 1
Wzi a.s.
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Proof. Recall that δ2k+j = δkζ
j
k, so that

∑

k∈Ti
n

δ2k+j = pij
∑

k∈Ti
n

δk +
∑

k∈Ti
n

δk(ζ
j
k − pij) = pij

(
i+

n∑

ℓ=1

Zi
ℓ

)
+Dn,

sinceG0 = {1}, so that Ti
n contains 1 or not, according to i = 1 or not, and where

Dn =
∑

k∈Ti
n
δk(ζ

j
k − pij). To deal with Dn, we use Lemma 5.1, with G = (Zn)

(recall that Zn = σ{ζk, k ∈ Tn}), Hk = δk1{k∈Ti}, and Gk = (ζjk − pij)1{k∈Ti}.
Assumption (i) of Lemma 5.1 is obviously satisfied, since δk, for k ∈ Gn, is
Zn−1-measurable. Regarding (ii), since the sequence (ζjk) is a sequence of i.i.d.
random variables with expectation pij and variance σ2

ij , we have E[Gk|Zn−1] = 0

and E[G2
k|Zn−1] = σ2

ij , for k ∈ Gn, and E[GkGp|Zn−1] = 0, for k 6= p ∈ Gn.
Finally, we turn to assumption (iii):

∑

k∈Tn

H2
k =

∑

k∈Ti
n

δk = i+

n∑

ℓ=1

Zi
ℓ = O(πn),

thanks to (HO) and Eq. (2.7). Finally, Dn = o(πn), and again using Eq. (2.7),
we obtain the first limit. The proof of the second one is similar using the Z-
martingale:

∑

k∈Ti
n

δk(δ2kδ2k+1 − p(i)(1, 1)) =
∑

k∈Tn

1{k∈Ti}δk︸ ︷︷ ︸
Hk

1{k∈Ti}(ζ
0
kζ

1
k − p(i)(1, 1))

︸ ︷︷ ︸
Gk

,

and Lemma 5.1 again.

5.3. Laws of large numbers for the noise process

We need to establish strong laws of large numbers for the noise sequence (εn)
restricted to the observed indices.

Lemma 5.4. Under assumptions (HN.1), (HN.2), (HO), (HI) and for i ∈
{0, 1}, one has

lim
n→+∞

1

πn

∑

k∈Tn−1

δ2k+iε2k+i = 0 a.s.

Proof. Set

P i
n =

∑

k∈Tn

δ2k+i︸ ︷︷ ︸
Hk

ε2k+i︸ ︷︷ ︸
Gk

.

We use Lemma 5.1, with G = (FO
n+1). Assumption (i) is obvious. For k ∈ Gi

n+1,
we have E[Gk|FO

n+1] = 0 and E[G2
k|FO

n+1] = σ2, and E[GkGp|FO
n+1] = 0, for

k 6= p ∈ Gi
n+1. Finally, we turn to assumption (iii):

∑

k∈Tn

H2
k =

∑

k∈Tn

δ22k+i =

n+1∑

ℓ=1

Zi
ℓ = O(πn),
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as n tends to infinity, thanks to Eq. (2.7). We obtain the result.

Lemma 5.5. Under assumptions (HN.1), (HN.2), (HO), (HI) and for i ∈
{0, 1}, one has

lim
n→+∞

1

πn

∑

k∈Ti
n\T0

ε2kδk = σ2 π

π − 1
Wzi a.s.

lim
n→+∞

1

πn

∑

k∈Ti
n\T0

δ2kδ2k+1ε2kε2k+1 = ρp(i)(1, 1)
π

π − 1
Wzi a.s.

Proof. In order to prove the first convergence, we apply again Lemma 5.1 to the
FO-martingale:

Qn =
∑

k∈Ti
n\T0

(ε2k − σ2)δk =
∑

k∈Tn\T0

1{k∈Ti}δk︸ ︷︷ ︸
Hk

1{k∈Ti}(ε
2
k − σ2)

︸ ︷︷ ︸
Gk

,

Under (HN.1), (HN.2), we have E[Gk|FO
n ] = 0 and E[G2

k|FO
n ] = τ4 − σ4, and

E[GkGp|FO
n ] = 0, for k 6= p ∈ Gn. Thanks to Eq. (2.7), we have:

1

πn

∑

k∈Ti
n

δk =
1

πn

n∑

ℓ=1

Zi
ℓ −−−−→n→∞

π

π − 1
Wzi a.s.

which both implies assumption (iii) and the first convergence. To prove the
second convergence, we write

1

πn

∑

k∈Ti
n\T0

δ2kδ2k+1ε2kε2k+1

=
1

πn

∑

k∈Tn\T0

1{k∈Ti}δ2kδ2k+1︸ ︷︷ ︸
Hk

1{k∈Ti}(ε2kε2k+1 − ρ)
︸ ︷︷ ︸

Gk

+
1

πn
ρ
∑

k∈Ti
n\T0

δ2kδ2k+1

We use Lemma 5.1 to prove that the first term converges to 0; Lemma 5.3 gives
the limit of the second term.

Corollary 5.6. Under assumptions (HN.1), (HN.2), (HO), (HI) and for
i ∈ {0, 1}, one has

lim
n→+∞

1

πn

∑

k∈Ti
n\T0

ε2kδ2k+j = σ2pij
π

π − 1
Wzi a.s.

lim
n→+∞

1

πn

∑

k∈Tn\T0

δ2kδ2k+1ε2kε2k+1 = ρp̄(1, 1)
π

π − 1
W a.s.

Proof. The proof of the first limit is similar to the preceding ones, using the
decomposition δ2k+j = δkζ

j
k and the properties of the sequence (ζjn). Using

Lemma 5.5 the second one is straightforward.



Estimation for missing data BAR 1331

Lemma 5.7. Under assumptions (HN.1), (HN.2), (HO), (HI) and for i ∈
{0, 1}, we have

lim
n→+∞

1

πn

∑

k∈Ti
n\T0

δkε
4
k = τ4

π

π − 1
Wzi a.s.

lim
n→+∞

1

πn

∑

k∈Ti
n−1

δ2kδ2k+1ε
2
2kε

2
2k+1 = ν2τ4p(i)(1, 1)

π

π − 1
Wzi a.s.

Proof. The proof follows essentially the same lines as the proof of Lemma 5.5
using the square integrable real martingales

Qn =
∑

k∈Ti
n\T0

δk(ε
4
i − τ4), and Rn =

∑

k∈Ti
n\T0

δ2jδ2j+1(ε
2
2jε

2
2j+1 − ν2τ4).

It is therefore left to the reader.

6. Convergence of the increasing process

We can now turn to the proof of our keystone result, the convergence of the
increasing process of the main martingale (Mn).

6.1. Preliminary results

We first need an upper bound of the normalized sums of the δ2n+iX
2
n, and

δ2nδ2n+1X
2
n before being able to deduce their limits.

Lemma 6.1. Under assumptions (HN.1), (HN.2), (HI) and (HO), and for
i ∈ {0, 1}, we have

∑

k∈Tn

δ2k+iX
2
k = O(πn) and

∑

k∈Tn

δ2kδ2k+1X
2
k = O(πn) a.s.

Proof. In all the sequel, for all k ≥ 1, define a2k = a, b2k = b, a2k+1 = c,
b2k+1 = d and ηk = ak + εk with the convention that η1 = 0. It follows from a
recursive application of relation (2.1) that, for all k ≥ 1,

Xk =

(
rk−1∏

ℓ=0

b[ k

2ℓ
]

)
X1 +

rk−1∑

ℓ=0

(
ℓ−1∏

p=0

b[ k
2p

]

)
η[ k

2ℓ
], (6.1)

with the convention that an empty product equals 1. Set α = max(|a|, |c|),
β = max(|b|, |d|) and notice that 0 < β < 1. The proof of Lemma A.5 in [3]
yields
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∑

k∈Tn\T0

δ2k+iX
2
k ≤ 4

1− β

∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βjε2
[ k

2ℓ
]
+

4α2

1− β

∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βℓ

+2X2
1

∑

k∈Tn\T0

δ2k+iβ
2rk ,

≤ 4

1− β
Ai

n +
4α2

1− β
Bi

n + 2X2
1C

i
n, (6.2)

where, for i ∈ {0, 1},

Ai
n =

∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βℓε2
[ k

2ℓ
]
, Bi

n =
∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βℓ, Ci
n =

∑

k∈Tn\T0

δ2k+iβ
2rk .

The last two terms above are readily evaluated by splitting the sums genera-
tion-wise. Indeed, the last term can be rewritten as

Ci
n =

n∑

ℓ=1

∑

k∈Gℓ

δ2k+iβ
2ℓ =

n∑

ℓ=1

β2ℓZi
ℓ+1 = πn

n∑

ℓ=1

(π−1)n−ℓ

(
β2ℓZ

i
ℓ+1

πℓ

)
.

We now use Lemma 5.2 with An = π−n and Xn = β2nZi
n+1π

−n. On the one
hand, the series of (π−n) converges to π/(π− 1) as π > 1 by assumption; on the
other hand, β2n tends to 0 as n tends to infinity as β < 1, and Zi

nπ
−n converges

a.s. to Wzi according to Eq. (2.7), hence β2nZi
n+1π

−n tends to 0 as n tends to
infinity. Lemma 5.2 thus yields

lim
n→∞

n∑

ℓ=1

(π−1)n−ℓ

(
β2ℓZ

i
ℓ+1

πℓ

)
= 0 and Ci

n = o(πn) a.s.

We now turn to the term Bi
n:

Bi
n =

n∑

ℓ=1

∑

k∈Gℓ

δ2k+i
1− βℓ

1− β
≤ 1

(1− β)

n∑

ℓ=1

∑

k∈Gℓ

δ2k+i ≤
|T∗

n+1|
(1− β)

= O(πn),

due to Lemma 2.1. It remains to control the first term Ai
n. Note that εk appears

in Ai
n as many times as it has descendants up to the n-th generation, and its

multiplicative factor for its p-th generation descendant k is βpδ2k. This leads to

Ai
n =

n∑

ℓ=1

∑

k∈Gℓ

ε2k

n−ℓ∑

p=0

βp
2p−1∑

m=0

δ2(2pk+m)+i.

Now, note that
∑2p−1

m=0 δ2(2pk+m)+i = δk
∑2p−1

m=0 δ2(2pk+m)+i is the number of
descendants of type i of individual k after p + 1 generations. We denote it
Zi
p+1(k), and split Ai

n the following way:

Ai
n =

n∑

ℓ=1

∑

k∈Gℓ

σ2
n−ℓ∑

p=0

βpδkZ
i
p+1(k) +

n∑

ℓ=1

∑

k∈Gℓ

(ε2k − σ2)
n−ℓ∑

p=0

βpδkZ
i
p+1(k). (6.3)
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We first deal with the second term of the above sum.

n∑

ℓ=1

∑

k∈Gℓ

(ε2k − σ2)

n−ℓ∑

p=0

βpδkZ
i
p+1(k) =

n−1∑

p=0

βp

n−p∑

ℓ=1

∑

k∈Gℓ

(ε2k − σ2)δkZ
i
p+1(k)

=

n−1∑

p=0

βp

n−p∑

ℓ=1

Y i
ℓ,p,

where Y i
ℓ,p =

∑
k∈Gℓ

(ε2k − σ2)δkZ
i
p+1(k). Tedious but straightforward compu-

tations lead to the following expression for the second order moment of Y i
ℓ,p,

relying on assumptions (HI), (HN.1) and (HN.2). We also use the fact that,
for k ∈ Gℓ, conditionally to {δk = 1}, Zi

p+1(k) follows the same law as Zi
p+1,

and is independent of any Zi
p+1(k

′), for k′ 6= k ∈ Gℓ.

E[(Y i
ℓ,p)

2] = (τ4 − σ4)E[Z0
ℓ + Z1

ℓ ]E[(Z
i
p+1)

2]

+(ν2τ4 − σ4)E[Zi
p+1]

2
E

[ ∑

k∈Gℓ−1

δ2kδ2k+1

]

≤ (τ4 − σ4)E[Z0
ℓ + Z1

ℓ ]
(
E[(Zi

p+1)
2] + E[Zi

p+1]
2
)
,

since
∑

k∈Gℓ−1
δ2kδ2k+1 ≤∑k∈Gℓ−1

(δ2k + δ2k+1) = Z0
ℓ +Z1

ℓ . Now, using results

on the moments of a two-type Galton-Watson process (see e.g. [12]), we know
that E[(Zi

p+1)
2] = O(π2p). Recall Eq. (2.7) to obtain that E[(Y i

ℓ,p)
2] = O(πℓπ2p),

which immediately entails that |Y i
ℓ,p| = o(παℓπγp) a.s., for any α > 1/2 and

γ > 1. We thus one gets

n−1∑

p=0

βp

n−p∑

ℓ=1

Y i
ℓ,p = O((βπγ )n) = O(πn) a.s.,

since we can choose γ close enough to 1 to get βπγ ≤ π, as β < 1. We have thus
proved that the second term in the sum in (6.3) is O(πn), we now turn to the
first one

n∑

ℓ=1

∑

k∈Gℓ

σ2
n−ℓ∑

p=0

βpδkZ
i
p+1(k)

= σ2
n∑

ℓ=1

n−ℓ∑

p=0

βp
∑

k∈Gℓ

δkZ
i
p+1(k) = σ2

n∑

ℓ=1

n−ℓ∑

p=0

βpZi
ℓ+p+1

= σ2
n−1∑

p=0

βp

n−p∑

ℓ=1

Zi
ℓ+p+1 ≤ σ2

n−1∑

p=0

βp|T∗
n+1| = O(πn) a.s.

Finally, Ai
n = O(πn), and the first result of the Lemma is proved. The second

result follows immediately from the remark that the second sum in Lemma 6.1
is clearly smaller than the first one.
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Lemma 6.2. Under assumptions (HN.1), (HN.2), (HI) and (HO), and for
i ∈ {0, 1}, we have

∑

k∈Tn

δ2k+iX
4
k = O(πn) and

∑

k∈Tn

δ2kδ2k+1X
4
k = O(πn) a.s.

Proof. The proof mimics that of Lemma 6.1. Instead of Equation (6.2), we have

∑

k∈Tn\T0

δ2k+iX
4
k ≤ 64

(1− β)3
Ai

n +
64α4

(1− β)3
Bi

n + 8X4
1C

i
n

with, for i in {0, 1}

Ai
n =

∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βjε4
[ k

2ℓ
]
, Bi

n =
∑

k∈Tn\T0

δ2k+i

rk−1∑

ℓ=0

βℓ, Ci
n =

∑

k∈Tn\T0

δ2k+iβ
4rk .

We can easily prove that (Bi
n+Ci

n) = O(πn). Therefore, we only need a sharper
estimate for Ai

n. Via the same lines as in the proof of Lemma 6.1, but dealing
with ε4k instead of ε2k, we can show that Ai

n = O(πn) a.s. which immediately
yields the first result. The second one is obtained by remarking that the second
sum is less than the first one.

6.2. Asymptotic behavior of the sum of observed data

We now turn to the asymptotic behavior of the sums of the observed data. More
precisely, set Hi

n =
∑

k∈Tn
δ2k+iXk, for i in {0, 1}, and Hn = (H0

n, H
1
n)

t. The
following result gives the asymptotic behavior of (Hn).

Proposition 6.3. Under assumptions (HN.1), (HN.2), (HI) and (HO), we
have the convergence:

lim
n→∞

Hn

πn
=

π

π − 1
Wh a.s.,

where

h =

(
h0

h1

)
= (I2 − P̃ 1)

−1P t

(
az0

cz1

)
and P̃ 1 =

1

π
P t

(
b 0
0 d

)
.

Proof. We first prove that the sequence (Hn) satisfies a recursive property using
Equation (2.1).

H0
n = X1δ2 +

∑

k∈T0
n

(
a+ bX[ k

2
] + εk

)
δ2k +

∑

k∈T1
n\T0

(
c+ dX[ k

2
] + εk

)
δ2k

= X1δ2 + a
∑

k∈T0
n

δ2k + b
∑

k∈T0
n

X[ k
2
]δ2k + c

∑

k∈T1
n\T0

δ2k + d
∑

k∈T1
n\T0

X[ k
2
]δ2k

+
∑

k∈Tn\T0

εkδ2k

= bp00H
0
n−1 + dp10H

1
n−1 +B0

n,
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with

B0
n = X1δ2 + a

∑

k∈T0
n

δ2k + c
∑

k∈T1
n\T0

δ2k +
∑

k∈Tn\T0

εkδ2k

+b
∑

k∈Tn−1

Xkδ2k(δ4k − p00) + d
∑

k∈Tn−1

Xkδ2k+1(δ4k+2 − p10).

Similarly, we have

H1
n = bp01H

0
n−1 + dp11H

1
n−1 +B1

n,

with

B1
n = X1δ3 + a

∑

k∈T0
n

δ2k+1 + c
∑

k∈T1
n\T0

δ2k+1 +
∑

k∈Tn\T0

εkδ2k+1

+b
∑

k∈Tn−1

Xkδ2k(δ4k+1 − p01) + d
∑

k∈Tn−1

Xkδ2k+1(δ4k+3 − p11).

Let us denote Bn = (B0
n, B

1
n)

t. The last equations yield in the matrix form:

Hn

πn
= P̃ 1

Hn−1

πn−1
+

Bn

πn
= P̃

n

1H0 +

n∑

k=1

P̃
n−k

1

Bk

πk
,

with

P̃ 1 =
1

π

(
bp00 dp10
bp01 dp11

)
=

1

π
P t

(
b 0
0 d

)
.

One has ‖P̃ n

1‖ ≤ π−nβn‖P n‖. It is well known that π−nP n converges to a
fixed matrix (see e.g. [13]) as P is a positive matrix with dominant eigenvalue

π. Since β < 1, the sequence P̃
n

1 thus converges to 0 as n tends to infinity. In

addition,
∑ ‖P̃ n

1‖ is bounded, I2 − P̃ 1 is invertible and
∑

n≥0 P̃
n

1 converges

to (I2 − P̃ 1)
−1. In order to use Lemma 5.2, we need to compute the limit of

Bn/π
n. First, we prove that

∑

k∈Tn\T0

εkδ2k+i = o(πn), (6.4)

for i ∈ {0, 1}, thanks to Lemma 5.1. Indeed, set G = FO, Hk = δ2k+i, Gk = εk.
Thus hypothesis (i) of Lemma 5.1 is obvious, (ii) comes from (HN.1) and
(HN.2). Finally, the last assumption (iii) holds, since

∑

k∈Tn\T0

δ22k+i =
n+1∑

ℓ=1

Zi
ℓ = O(πn),

the last equality coming from (2.7), which holds thanks to (HO). Now, we turn
to the terms

∑

k∈Tn

Xkδ2k+i(δ2(2k+i)+j − pij) =
∑

k∈Tn

Xkδ2k+i(ζ
j
2k+i − pij),
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for (i, j) ∈ {0, 1}2. We use again Lemma 5.1, with the following setting: (Gn) =
(Zn+1 ∨ Fn+1), Hk = Xkδ2k+i, Gk = ζj2k+i − pij . For k ∈ Gn, we check
that Xkδ2k+i is Gn−1-measurable, since Xk is Fn-measurable and δ2k+i is Zn-
measurable. Next, because of (HI) and of the independence of the sequence
(ζk), E[ζ

j
2k+i− pij |Zn ∨Fn] = 0. The same independence hypothesis yields that

E[GkGp|Zn ∨ Fn] 6= 0 only if k = p, and then equals σ2
ij . Finally,

∑

k∈Tn

(Xkδ2k+i)
2 =

∑

k∈Tn

X2
kδ2k+i = O(πn),

thanks to Lemma 6.1. Now, Lemma 5.1 allows to conclude that
∑

k∈Tn

Xkδ2k+i(δ2(2k+i)+j − pij) = o(πn), (6.5)

for (i, j) ∈ {0, 1}2. Next, Lemma 5.3 gives the limit of the term
∑

k∈Ti
n
δ2k+j ,

for (i, j) ∈ {0, 1}2, so that we finally obtain:

lim
n→∞

Bn

πn
= W

π

π − 1

(
az0p00 + cz1p10
az0p01 + cz1p11

)
= W

π

π − 1
P t

(
az0

cz1

)
a.s.

and we use Lemma 5.2 to conclude.

Remark 6.4. Putting together Proposition 6.3 and Eq. (6.5) above, we imme-
diately get that under the same assumptions as that of Proposition 6.3,

lim
n→∞

1

πn

∑

k∈Tn

Xkδ2k+iδ2(2k+i)+j =
π

π − 1
hipijW a.s.

for all (i, j) ∈ {0, 1}2, result we will use for the study of the limit of
∑

X2
kδ2k+i.

6.3. Asymptotic behavior of the sum of squared observed data

We now turn to the asymptotic behavior of the sums of the squared observed
data. Set Ki

n =
∑

k∈Tn
δ2k+iX

2
k , for i in {0, 1}, and Kn = (K0

n,K
1
n)

t. The
following result gives the asymptotic behavior of (Kn).

Proposition 6.5. Under assumptions (HN.1), (HN.2), (HI) and (HO), we
have the convergence:

lim
n→∞

Kn

πn
=

π

π − 1
Wk a.s.,

where

k =

(
k0

k1

)
= (I2 − P̃ 2)

−1P t

(
(a2 + σ2)z0 + 2

πabh
0

(c2 + σ2)z1 + 2
π cdh

1

)
,

and

P̃ 2 =
1

π
P t

(
b2 0
0 d2

)
.
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Proof. We use again Equation (2.1) to prove a recursive property for the se-
quence (Kn). Following the same lines as in the proof of Proposition 6.3, we
obtain:

Kn

πn
= P̃ 2

Kn−1

πn−1
+

Cn

πn
= P̃

n

2K0 +

n∑

ℓ=1

P̃
n−ℓ

2

Cℓ

πℓ
,

where Cn = (C0
n, C

1
n)

t is defined by

Ci
n = X2

1δ2+i + a2
∑

k∈T0
n

δ2k+i + b2
∑

k∈Tn−1

X2
kδ2k(δ4k+i − p0i)

+2ab
∑

k∈Tn−1

Xkδ2kδ4k+i + 2a
∑

k∈T0
n

εkδ2k+i + 2b
∑

k∈T0
n

X[k
2
]εkδ2k+i

+
∑

k∈Tn\T0

ε2kδ2k+i + c2
∑

k∈T1
n\T0

δ2k+i + d2
∑

k∈Tn−1

X2
kδ2k+1(δ4k+2+i − p1i)

+2cd
∑

k∈Tn−1

Xkδ2k+1δ4k+2+i + 2c
∑

k∈T1
n\T0

εkδ2k+i + 2d
∑

k∈T1
n\T0

X[ k
2
]εkδ2k+i,

for i ∈ {0, 1}. Note that ‖P̃n

2 ‖ ≤ π−nβ2n‖P n‖, so that P̃
n

2 converges to 0. In

addition,
∑ ‖P̃ n

2‖ is bounded, I2 − P̃ 2 is invertible and
∑

n≥0 P̃
n

2 converges

to (I2 − P̃ 2)
−1. In order to use Lemma 5.2, we have to compute the limit of

Cn/π
n. Following the proof of (6.4), we already have, for (i, j) ∈ {0, 1}2,

∑

k∈T
j
n

εkδ2k+i = o(πn) a.s.

We now turn to the terms
∑

k∈Tn−1
X2

kδ2k+i(δ2(2k+i)+j −pij),for (i, j) ∈ {0, 1}2.
To deal with these terms, we use Lemma 5.1 with the same setting we used to
prove Eq. (6.5), except that we replace Xk with X2

k . Assumptions (i) and (ii)
of Lemma 5.1 have thus already been checked, and regarding (iii), we have∑

k∈Tn−1
X4

kδ2k+i = O(πn) a.s. thanks to Lemma 6.2. We conclude that

∑

k∈Tn−1

X2
kδ2k+i(δ2(2k+i)+j − pij) = o(πn) a.s.

Next, we study
∑

k∈Ti
n
X[k

2
]εkδ2k+j , for (i, j) ∈ {0, 1}2. We use the same mar-

tingale tool, so to speak Lemma 5.1, with G = FO, Hk = X[k
2
]δ2k+j1{k∈Ti} and

Gk = εk. Assumptions (i) and (ii) are easily checked, and since
∑

k∈Ti
n

X2
[ k
2
]
δ2k+j =

∑

k∈Tn−1

X2
kδ2(2k+i)+j ≤

∑

k∈Tn−1

X2
kδ2k+i = O(πn),

the last equality coming from Lemma 6.1, assumption (iii) is satisfied and
∑

k∈Ti
n

X[ k
2
]εkδ2k+j = o(πn) a.s.
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Now, Corollary 5.6 yields that for i ∈ {0, 1},

lim
n→∞

1

πn

∑

k∈Tn\T0

ε2kδ2k+i = σ2(p0iz
0 + p1iz

1)
π

π − 1
W a.s.

Finally, Remark 6.4 gives the limit of π−n
∑

k∈Tn−1
Xkδ2k+iδ2(2k+i)+j , and Lem-

ma 5.3 that of π−n
∑

k∈T
j
n
δ2k+i, so that we finally obtain

lim
n→∞

Cn

πn
=

Wπ

π − 1

(
p00 p10
p01 p11

)
×
(

(a2 + σ2)z0 + 2
πabh

0

(c2 + σ2)z1 + 2
π cdh

1

)
a.s.

And we conclude using Lemma 5.2 again.

Propositions 6.3 and 6.5 together with Equation (2.7) give the asymptotic
behavior of the matrices S0

n and S1
n. The next result gives the behavior of matrix

S0,1
n given through the quantities

∑
k∈Tn

δ2kδ2k+1Xk and
∑

k∈Tn
δ2kδ2k+1X

2
k . It

is an easy consequence of Propositions 6.3 and 6.5, together with Lemma 5.3
for the first limit.

6.4. Asymptotic behavior of covariance terms

Finally, we turn to the asymptotic behavior of the covariance terms, which
are involved in matrix S0,1

n . We thus define H01
n =

∑
k∈Tn

δ2kδ2k+1Xk and

K01
n =

∑
k∈Tn

δ2kδ2k+1X
2
k .

Proposition 6.6. Under assumptions (HN.1), (HN.2), (HO) and (HI), we
have the almost sure convergences:

lim
n→∞

1

πn

∑

k∈Tn

δ2kδ2k+1 =
π

π − 1
Wp̄(1, 1),

lim
n→∞

H01
n

πn
=

π

π − 1
Wh0,1 and lim

n→∞

K01
n

πn
=

π

π − 1
Wk0,1,

where

p̄(1, 1) = p(0)(1, 1)z0 + p(1)(1, 1)z1, (6.6)

h0,1 = p(0)(1, 1)

(
az0 + b

h0

π

)
+ p(1)(1, 1)

(
cz1 + d

h1

π

)
,

k0,1 = p(0)(1, 1)

(
a2z0 + b2

k0

π
+ 2ab

h0

π

)

+p(1)(1, 1)

(
c2z1 + d2

k1

π
+ 2cd

h1

π

)
+ σ2p̄(1, 1).

Proof. The first limit is a consequence of Lemma 5.3. Next, using Eq. (2.1)
we obtain H01

n π−n and K01
n π−n in terms of π−n

∑
k∈Ti

n−1

δk, H
i
n−1π

−n and

Ki
n−1π

−n and the result follows from Propositions 6.3 and 6.5.
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Proof of Proposition 4.2. We are now in a position to complete the proof of
Proposition 4.2. Simply notice that we have proved in Propositions 6.3, 6.5 and
6.6 all the wished convergences, except that we normalized the sums with πn.
Thanks to Lemma 2.1, we end the proof.

Remark 6.7. In the case of fully observed data, the matrix P is a 2×2 matrix
with all entries equal to 1, π equals 2 and the normalized eigenvector z equals
(1/2, 1/2). One can check that in that case, our limits correspond to those of [3].

7. Asymptotic behavior of the main martingale

Theorem 4.4 is a strong law of large numbers for the martingale (Mn). The
standard strong law for martingales is unhelpful here. Indeed, it is valid for
martingales that can be decomposed in a sum of the form

∑n
ℓ=1Ψℓ−1ξℓ where

(Ψℓ) is predictable and (ξℓ) is a martingale difference sequence. In addition, (Ψℓ)
and (ξℓ) are required to be sequences of fixed-size vectors. Such a decomposition
with fixed-sized vectors is impossible in our context (see Lemma A.2), essentially
because the number of observed data in each generation asymptotically grows
exponentially fast as πn. Consequently, we are led to propose a new strong law
of large numbers for (Mn), adapted to our framework.

For all n ≥ 1, let Vn = M t
nΣ

−1
n−1Mn where Σn is defined in Section 3.1.

First of all, we have

Vn+1

= (Mn +∆Mn+1)
tΣ−1

n (Mn +∆Mn+1),

= Vn−M t
n(Σ

−1
n−1−Σ−1

n )Mn+2M t
nΣ

−1
n ∆Mn+1+∆M t

n+1Σ
−1
n ∆Mn+1.

Note that M t
nΣ

−1
n ∆Mn+1 and ∆M t

nΣ
−1
n Mn+1 are scalars, hence they are

equal to their own transpose and as a result, one has M t
nΣ

−1
n ∆Mn+1 =

∆M t
nΣ

−1
n Mn+1. By summing over the identity above, we obtain the main

decomposition

Vn+1 +An = V1 + Bn+1 +Wn+1, (7.1)

where

An =

n∑

ℓ=1

M t
ℓ(Σ

−1
ℓ−1 −Σ−1

ℓ )M ℓ,

Bn+1 = 2

n∑

ℓ=1

M t
ℓΣ

−1
ℓ ∆M ℓ+1, Wn+1 =

n∑

ℓ=1

∆M t
ℓ+1Σ

−1
ℓ ∆M ℓ+1.

The asymptotic behavior of the left-hand side of (7.1) is as follows.

Proposition 7.1. Under assumptions (HN.1), (HN.2), (HO) and (HI), we
have

lim
n→+∞

1{|G∗

n|>0}
Vn+1 +An

n
=

4(π − 1)

π
σ21E a.s.
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Proof. Thanks to the laws of large numbers derived in Sections 5 and 6, the
proof of Proposition 7.1 follows essentially the same lines as [3] and is given in
Appendix A.

Since (Vn) and (An) are two sequences of non negative real numbers, Propo-
sition 7.1 yields that 1{|G∗

n|>0}Vn = O(n) a.s. which proves Equation (4.2). We
now turn to the proof of Equation (4.3). We start with a sharp rate of conver-
gence for (Mn).

Proposition 7.2. Under assumptions (HN.1), (HN.2), (HO) and (HI), we,
we have, for all η > 1/2,1{|G∗

n|>0} ‖ Mn ‖2= o(|T∗
n−1|nη) a.s.

Proof. The result is obvious on E . On E , the proof follows again the same lines
as [3] thanks to the laws of large numbers derived in Sections 5 and 6. It is given
in Appendix B.

A direct application of Proposition 7.2 ensures that 1{|G∗

n|>0}Vn = o(nη) a.s.
for all η > 1/2. Hence, Proposition 7.1 immediately leads to the following result.

Corollary 7.3. Under assumptions (HN.1), (HN.2), (HO) and (HI), we
have

lim
n→+∞

1{|G∗

n|>0}
An

n
=

4(π − 1)

π
σ21E a.s.

Proof of Result (4.3) of Theorem 4.4. First of all, An may be rewritten as

An =
n∑

ℓ=1

M t
ℓ(Σ

−1
ℓ−1 −Σ−1

ℓ )M ℓ =
n∑

ℓ=1

M t
ℓΣ

−1/2
ℓ−1 ∆ℓΣ

−1/2
ℓ−1 M ℓ,

where ∆n = I4 −Σ
1/2
n−1Σ

−1
n Σ

1/2
n−1. Thanks to Corollary 4.3, we know that

lim
n→∞

1{|G∗

n|>0}∆n =
π − 1

π
I41E a.s.

Besides, Corollary 7.3 yields that An ∼ nπ−1
π 4σ2 a.s. on E . Plugging these two

results into the equality

An =
π − 1

π

n∑

ℓ=1

M t
ℓΣ

−1
ℓ−1M ℓ +

n∑

ℓ=1

M t
ℓΣ

−1/2
ℓ−1

(
∆ℓ −

π − 1

π
I4

)
Σ

−1/2
ℓ−1 M ℓ

gives that
∑n

ℓ=1 M
t
ℓΣ

−1
ℓ−1M ℓ ∼ An

π
π−1 a.s. on E and convergence (4.3) directly

follows.

8. Proof of the main results

We can now proceed to proving our main results.
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8.1. Strong consistency for θ̂n

Theorem 3.2 is a direct consequence of Theorem 4.4.

Proof of result (3.3) of Theorem 3.2. Recall that Vn = M t
nΣ

−1
n−1Mn. It clearly

follows from Equation (4.1) that

Vn = (θ̂n − θ)tΣn−1(θ̂n − θ).

Consequently, the asymptotic behavior of θ̂n−θ is related to the one of Vn. More
precisely, we can deduce from Corollary 4.3 and the fact that the eigenvalues of
a matrix are continuous functions of its coefficients the following result

lim
n→∞

1{|G∗

n|>0}
λmin(Σn)

|T∗
n|

= λmin(Σ)1E a.s.

where λmin(A) denotes the smallest eigenvalue of matrix A. Since L as well as
Σ is definite positive, one has λmin(Σ) > 0. Therefore, as

‖θ̂n − θ‖2 ≤ Vn

λmin(Σn−1)
,

we use Result (4.2) of Theorem 4.4 to conclude that1{|G∗

n|>0}‖θ̂n − θ‖2 = O
(

n

|T∗
n−1|

) 1E = O
(
log |T∗

n−1|
|T∗

n−1|

) 1E a.s.

which completes the proof of results (3.3).

We now prove the quadratic strong law (QSL).

Proof of result (3.4) of Theorem 3.2. The QSL is a direct consequence of re-

sult (4.3) of Theorem 4.4 together with the fact that θ̂n − θ = Σ−1
n−1Mn.

Indeed, we have1{|G∗

n|>0}
1

n

n∑

ℓ=1

M t
ℓΣ

−1
ℓ−1M ℓ

= 1{|G∗

n|>0}
1

n

n∑

ℓ=1

(θ̂ℓ − θ)tΣℓ−1(θ̂ℓ − θ)

= 1{|G∗

n|>0}
1

n

n∑

ℓ=1

|T∗
ℓ−1|(θ̂ℓ − θ)t1{|G∗

ℓ−1
|>0}

Σℓ−1

|T∗
ℓ−1|

(θ̂ℓ − θ)

= 1{|G∗

n|>0}
1

n

n∑

ℓ=1

|T∗
ℓ−1|(θ̂ℓ − θ)tΣ(θ̂ℓ − θ) + o(1) a.s.

which completes the proof.
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8.2. Strong consistency for the variance estimators

For n ≥ 1, set

V k = (δ2kε2k, δ2k+1ε2k+1)
t , V̂ k = (δ2kε̂2k, δ2k+1ε̂2k+1)

t .

The almost sure convergence of σ̂2
n and ρ̂n is strongly related to that of V̂ k−V k.

Proof of result (3.5) of Theorem 3.3. Equation(3.5) can be rewritten as

lim
n→∞

1{|G∗

n|>0}
1

n

∑

k∈Tn−1

‖V̂ k − V k‖2 = 4(π − 1)σ21E a.s.

Once again, we are searching for a link between the sum of ‖V̂ k −V k‖ and the
processes (An) and (Vn) whose convergence properties were previously investi-
gated. For i ∈ {0, 1} and n ≥ 0, let

Φi
n =

(
δ2(2n)+i δ2(2n+1)+i · · · δ2(2n+1−1)+i

δ2(2n)+iX2n δ2(2n+1)+iX2n+1 · · · δ2(2n+1−1)+iX2n+1−1

)

be the collection of (δ2k+i, δ2k+iXk)
t, k ∈ Gn, and set

Ψn =

(
Φ0

n 0

0 Φ1
n

)
.

Note that Ψn is a 4 × 2n+1 matrix. For all n ≥ 1, we thus have, in the matrix
form

∑

k∈Gn

‖V̂ k − V k‖2 =
∑

k∈Gn

δ2k(ε̂2k − ε2k)
2 + δ2k+1(ε̂2k+1 − ε2k+1)

2,

= (θ̂n − θ)tΨnΨ
t
n(θ̂n − θ),

= M t
nΣ

−1
n−1ΨnΨ

t
nΣ

−1
n−1Mn,

= M t
nΣ

−1/2
n−1 ∆nΣ

−1/2
n−1 Mn,

where

∆n = Σ
−1/2
n−1 ΨnΨ

t
nΣ

−1/2
n−1 = Σ

−1/2
n−1 (Σn −Σn−1)Σ

−1/2
n−1 .

Now, we can deduce from Corollary (4.3) that

lim
n→∞

1{|G∗

n|>0}∆n = (π − 1)I41E a.s.

which implies that1{|G∗

n|>0}

∑

k∈Gn

‖V̂ k − V k‖2 = M t
nΣ

−1
n−1Mn (π − 1 + o(1))1{|G∗

n|>0} a.s.
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Therefore, we can conclude via convergence (4.3) that

lim
n→∞

1{|G∗

n|>0}
1

n

∑

k∈Tn−1

‖V̂ k − V k‖2

= lim
n→∞

1{|G∗

n|>0}
1

n(π − 1)

n∑

ℓ=1

M t
ℓΣ

−1
ℓ−1M ℓ = 4(π − 1)σ21E a.s.

which completes the proof.

Proof of result (3.6) of Theorem 3.3. First of all, one has

σ̂2
n − σ2

n =
1

|T∗
n|

∑

k∈Tn−1

(
‖V̂ k‖2 − ‖V k‖2

)
,

=
1

|T∗
n|

∑

k∈Tn−1

(
‖V̂ k − V k‖2 + 2(V̂ k − V k)

tV k

)
.

Set

Pn =
∑

k∈Tn−1

(V̂ k − V k)
tV k =

n∑

ℓ=1

∑

k∈Gℓ−1

(V̂ k − V k)
tV k.

We clearly have

∆Pn+1 = Pn+1 − Pn =
∑

k∈Gn

(V̂ k − V k)
tV k.

One can observe that for all k ∈ Gn, V̂ k−V k is FO
n -measurable. Consequently,

(Pn) is a real martingale transform for the filtration FO. Hence, we can deduce
from the strong law of large numbers for martingale transforms given in Theorem
1.3.24 of [6] together with (3.5) that1{|G∗

n|>0}Pn = o



∑

k∈Tn−1

||V̂ k − V k)||2

 = o(n) a.s.

It ensures once again via convergence (3.5) that

lim
n→∞

1{|G∗

n|>0}
|T∗

n|
n

(σ̂2
n − σ2

n) = lim
n→∞

1{|G∗

n|>0}
1

n

∑

k∈Tn−1

‖V̂ k − V k‖2

= 4(π − 1)σ21E a.s.

which completes the proof of result (3.6).

Proof of results (3.7) and (3.8) of Theorem 3.3. We now turn to the study of
the covariance estimator ρ̂n. We have

ρ̂n − ρn =
1

|T∗01
n−1|

∑

k∈Tn−1

δ2kδ2k+1(ε̂2kε̂2k+1 − ε2kε2k+1),

=
1

|T∗01
n−1|

∑

k∈Tn−1

δ2k(ε̂2k − ε2k)δ2k+1(ε̂2k+1 − ε2k+1) +
1

|T∗01
n−1|

Qn,
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where

Qn =
∑

k∈Tn−1

δ2kδ2k+1(ε̂2k − ε2k)ε2k+1 + δ2kδ2k+1(ε̂2k+1 − ε2k+1)ε2k

=
∑

k∈Tn−1

(V̂ k − V k)
tJ2V k,

with

J2 =

(
0 1
1 0

)
.

The process (Qn) is a real martingale transform for the filtration FO satisfying

Qn = o



∑

k∈Tn−1

||V̂ k − V k||2

 = o(n) a.s.

It now remains to prove that

lim
n→∞

1{|G∗

n|>0}
1

n

∑

k∈Tn−1

δ2kδ2k+1(ε̂2k − ε2k)(ε̂2k+1 − ε2k+1)

= lim
n→∞

Rn

n
= ρ(π − 1)tr

(
(L1)−1(L0,1)2(L0)−1

)1E a.s. (8.1)

where

Rn =
n∑

ℓ=1

M t
ℓΣ

−1
ℓ−1(J2 ⊗Φ01

ℓ (Φ01
ℓ )t)Σ−1

ℓ−1M ℓ,

where ⊗ denotes the Kronecker product of matrices, i.e.

J2 ⊗Φ01
ℓ (Φ01

ℓ )t =

(
0 Φ01

ℓ (Φ01
ℓ )t

Φ01
ℓ (Φ01

ℓ )t 0

)
,

and Φ01
ℓ is defined similarly as Φ0

ℓ and Φ1
ℓ by the collection of (δ2kδ2k+1,

δ2kδ2k+1Xk)
t, k ∈ Gℓ. As Φ01

n (Φ01
n )t = S01

n − S01
n−1, proposition 4.2 implies

that

lim
n→∞

Σ
−1/2
n−1 (J2 ⊗Φ01

n (Φ01
n )t)Σ

−1/2
n−1 = (π − 1)Σ−1/2J2 ⊗L01Σ−1/2 a.s.

so that the asymptotic behavior of Rn/n boils down to that of

n∑

ℓ=1

M t
ℓΣ

−1/2
ℓ−1 (J2 ⊗L01)Σ

−1/2
ℓ−1 M ℓ.

A proof along the same lines as in Section 7 finally yields the expected results,
i.e.

lim
n→∞

1{|G∗

n|>0}
Rn

n
= ρ

π − 1

π
tr
(
(L1)−1(L0,1)2(L0)−1

)1E a.s.
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which completes the proof of convergence (8.1). We then obtain

lim
n→∞

1{|G∗

n|>0}
|T∗

n|
n

(ρ̂n − ρn) = ρ
π − 1

p̄(1, 1)
tr
(
(L1)−1(L0,1)2(L0)−1

)1E a.s.

which completes the proof of Theorem 3.3.

8.3. Asymptotic normality

Contrary to the previous literature on BAR processes, we cannot use the central
limit theorem given by Propositions 7.8 and 7.9 of [11] as in [8, 3] because the
normalizing term is now the number of observations and is therefore random.
The approach used in [5] strongly relies on the gaussian assumption for the noise
sequence that does not hold here. Instead, we use the central limit theorem for
martingales given in Theorem 3.II.10 of Duflo [6]. However, unlike the previous
sections, this theorem can not be directly applied to the martingale (Mn) be-
cause the number of observed data in a given generation grows exponentially
fast and the Lindeberg condition does not hold. The solution is to use a new
filtration. Namely, instead of using the observed generation-wise filtration, we
will use the sister pair-wise one. Let

GO
p = O ∨ σ{δ1X1, (δ2kX2k, δ2k+1X2k+1), 1 ≤ k ≤ p}

be the σ-algebra generated by the whole history O of the Galton-Watson pro-
cess and all observed individuals up to the offspring of individual p. Hence
(δ2kε2k, δ2k+1ε2k+1) is GO

k -measurable. In addition, assumptions (HN.1) and
(HI) imply that the processes (δ2kε2k, Xkδ2kε2k, δ2k+1ε2k+1, Xkδ2k+1ε2k+1)

t,
(δ2kε

2
2k + δ2k+1ε

2
2k+1 − (δ2k + δ2k+1)σ

2) and (δ2kδ2k+1(ε2kε2k+1 − ρ)) are GO
k -

martingale difference sequences. In all the sequel, we will work under the prob-
ability PE and we denote by EE the corresponding expectation.

Proof of Theorem 3.4, first step. We apply Theorem 3.II.10 of [6] to the GO
k -

martingale M (n) = (M (n)
p ){p≥1} defined by

M (n)
p =

1√
|T∗

n|

p∑

k=1

Dk with Dk =




δ2kε2k
Xkδ2kε2k
δ2k+1ε2k+1

Xkδ2k+1ε2k+1


 .

Set νn = |Tn| = 2n+1 − 1. Note that if k /∈ T∗
n, then Dk = 0 which implies that

M (n)
νn =

1√
|T∗

n|

|Tn|∑

k=1

Dk =
1√
|T∗

n|
∑

k∈T∗

n

Dk.
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As the non-extinction set E is in GO
k for every k ≥ 1, it is easy to prove that

EE [DkD
t
k|GO

k−1] = E[DkD
t
k|GO

k−1]

=




σ2δ2k σ2δ2kXk ρδ2kδ2k+1 ρδ2kδ2k+1Xk

σ2δ2kXk σ2δ2kX
2
k ρδ2kδ2k+1Xk ρδ2kδ2k+1X

2
k

ρδ2kδ2k+1 ρδ2kδ2k+1Xk σ2δ2k+1 σ2δ2k+1Xk

ρδ2kδ2k+1Xk ρδ2kδ2k+1X
2
k σ2δ2k+1Xk σ2δ2k+1X

2
k


 ,

and Corollary 4.3 gives the PE almost sure limit of the increasing process

< M (n) >νn=
1

|T∗
n|
∑

k∈T∗

n

EE [DkD
t
k|GO

k−1] =
Γn

|T∗
n|

−−−−→
n→∞

Γ. (8.2)

Therefore, the first assumption of Theorem 3.II.10 of [6] holds under PE . We
now want to prove the Lindeberg condition that is the convergence in probability
to 0 of the following expression Ln for all ǫ > 0:

Ln =
1

|T∗
n|
∑

k∈T∗

n

EE [‖Dk‖21{‖Dk‖>ǫ
√

|T∗

n|}
|GO

k−1]

≤ 1

|T∗
n|
∑

k∈T∗

n

EE [‖Dk‖r|GO
k−1]PE(‖Dk‖ > ǫ

√
|T∗

n| |GO
k−1)

≤ supk≥0 E[‖Dk‖r|GO
k−1]

|T∗
n|

∑

k∈T∗

n

EE [‖Dk‖2 |GO
k−1]

ǫ2|T∗
n|

,

for some r > 2 and thanks to Hölder and Chebyshev inequalities. Besides, using
Eq. (6.1) and similar calculations as in Lemma 6.1, one readily obtains

X8
n ≤ 27(1− β)−7

rn−1∑

k=0

βk|η8[ n
2k

]|+ 27β8rnX8
1 .

Now, assumption (HN.1) together with β < 1 yield the existence of a constant
C such that

sup
k≥0

E[X8
k ] ≤ C(1 + E[X8

1 ]),

and recall that E[X8
1 ] < ∞. Finally, since the entries of Dk are combinations of

ε2k+i and Xk, using again (HN.1) and (HI), one obtains that

sup
k≥0

E[‖Dk‖r|GO
k−1] < ∞ a.s.

with r = 8. The Lindeberg condition is thus proved, plugging the convergence
(8.2) into the following equality:

1

|T∗
n|
∑

k∈T∗

n

EE [‖Dk‖2 |GO
k−1] = tr

(
1

|T∗
n|
∑

k∈T∗

n

EE [DkD
t
k |GO

k−1]

)
−−−−→
n→∞

tr(Γ).
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We can now conclude that under PE

1√
|T∗

n−1|
∑

k∈T∗

n−1

Dk =
1√

|T∗
n−1|

Mn
L−→ N (0,Γ).

Finally, result (3.9) follows from Eq. (4.1) and Corollary 4.3 together with Slut-
sky’s Lemma.

Proof of Theorem 3.4, second step. On the one hand, we apply Theorem 3.II.10

of [6] to the GO
p -martingale M (n) = (M

(n)
p ){p≥1} defined by

M (n)
p =

1√
|T∗

n|

p∑

k=1

vk and vk = δ2kε
2
2k + δ2k+1ε

2
k+1 − (δ2k + δ2k+1)σ

2.

As above, one clearly has

M (n)
νn =

1√
|T∗

n|
∑

k∈T∗

n−1

vk =
√
|T∗

n|(σ2
n − σ2).

Using assumptions (HN.1), (HI) and Lemma 5.3 we compute the limit of the
increasing process under PE

lim
n→∞

< M (n) >νn= (τ4 − σ4) +
2p̄(1, 1)

π
(ν2τ4 − σ4) PE a.s.

Therefore, the first assumption of Theorem 3.II.10 of [6] holds under PE . Thanks
to assumptions (HN.2) and (HI) we can prove that for some r > 2,

sup
k≥0

EE [‖vk‖r|GO
k−1] < ∞ a.s.

which implies the Lindeberg condition. Therefore, we obtain that under PE

√
|T∗

n|(σ2
n − σ2)

L−→ N (0, (τ4 − σ4) +
2p̄(1, 1)

π
(ν2τ4 − σ4)).

Furthermore, we infer from Eq. (3.6) that

lim
n→∞

√
|T∗

n|(σ̂2
n − σ2

n) = 0 PE a.s.

which yields result (3.10).
We turn now to the proof of result (3.11) with another GO

p -martingale (M (n))
defined by

M (n)
p =

1√
|T∗01

n−1|

p∑

k=1

δ2kδ2k+1(ε2kε2k+1 − ρ).

As above, one easily shows that

M (n)
νn =

1√
|T∗01

n−1|

∑

i∈T∗

n−1

δ2iδ2i+1(ε2iε2i+1 − ρ) =
√
|T∗01

n−1|(ρn − ρ).



1348 B. de Saporta et al.

Using assumptions (HN.1) and (H.I), we compute the limit of the increasing
process

lim
n→∞

< M (n) >νn= ν2τ4 − ρ2 PE a.s.

We also derive the Lindeberg condition. Consequently, we obtain that under PE ,
one has √

|T∗01
n−1|(ρn − ρ)

L−→ N (0, ν2τ4 − ρ2).

Furthermore, we infer from (3.8) that

lim
n→∞

√
|T∗01

n−1|(ρ̂n − ρn) = 0 PE a.s.

Finally, result (3.11) follows, which completes the proof of Theorem 3.4.

Appendix A: Quadratic strong law

In order to establish the quadratic strong law for the main martingale (Mn), we
are going to study separately the asymptotic behavior of (Wn) and (Bn) which
appear in the main decomposition given by Equation (7.1).

Lemma A.1. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have

lim
n→+∞

1{|G∗

n|>0}
1

n
Wn =

4(π − 1)

π
σ21E a.s.

Proof. First of all, we have the decomposition Wn+1 = Tn+1 +Rn+1 where

Tn+1 =

n∑

ℓ=1

∆M t
ℓ+1Σ

−1∆M ℓ+1

|T∗
ℓ |

,

Rn+1 =

n∑

ℓ=1

∆M t
ℓ+1(|T∗

ℓ |Σ−1
ℓ −Σ−1)∆M ℓ+1

|T∗
ℓ |

.

We first prove that

lim
n→+∞

1{|G∗

n|>0}
1

n
Tn =

4(π − 1)

π
σ21E a.s. (A.1)

As Tn is a scalar and the trace is commutative, one can rewrite Tn+1 as Tn+1 =
tr(Σ−1/2

Hn+1Σ
−1/2) where

Hn+1 =

n∑

ℓ=1

∆M ℓ+1∆M t
ℓ+1

|T∗
ℓ |

.

Our goal is to make use of the strong law of large numbers for martingale trans-
forms, so we start by adding and subtracting a term involving the conditional
expectation of ∆Hn+1 given FO

n . We have already seen in Section 4.1 that for
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all n, E[∆Mn+1∆M t
n+1|FO

n ] = Γn − Γn−1. Consequently, we can split Hn+1

into two terms

Hn+1 =
n∑

ℓ=1

Γℓ − Γℓ−1

|T∗
ℓ |

+Kn+1,

where

Kn+1 =

n∑

ℓ=1

∆M ℓ+1∆M t
ℓ+1 − (Γℓ − Γℓ−1)

|T∗
ℓ |

.

On the one hand, it follows from Corollary 4.3 and Lemma 2.1 that

lim
n→+∞

1{|G∗

n|>0}
Γn − Γn−1

|T∗
n|

=
π − 1

π
Γ1E a.s.

Thus, Cesaro convergence and the remark that {|G∗
ℓ | = 0} ⊂ {|G∗

n| = 0} for all
ℓ ≤ n yield

lim
n→+∞

1{|G∗

n|>0}
1

n

n∑

ℓ=1

Γℓ − Γℓ−1

|T∗
ℓ |

= lim
n→+∞

1{|G∗

n|>0}
1

n

n∑

ℓ=1

1{|G∗

ℓ
|>0}

Γℓ − Γℓ−1

|T∗
ℓ |

=
π − 1

π
Γ1E a.s.

On the other hand, the sequence (Kn) is obviously a matrix martingale trans-
form and tedious but straightforward calculations, together with Lemmas 6.1
and 6.2 and the strong law of large numbers for martingale transforms given in
Theorem 1.3.24 of [6] imply that 1{|G∗

n|>0}Kn = o(n) a.s. Hence, we infer from
the equation above that

lim
n→+∞

1{|G∗

n|>0}
1

n
Hn =

π − 1

π
Γ1E a.s. (A.2)

Finally, we obtain

lim
n→+∞

1{|G∗

n|>0}
1

n
Tn =

π − 1

π
tr(Σ−1/2ΓΣ−1/2)1E =

π − 1

π
4σ21E a.s.

which proves (A.1). We now turn to the asymptotic behavior of Rn+1. We
know from Proposition 4.2 that 1{|G∗

n|>0}(|T∗
n|Σ−1

n −Σ−1) goes to 0 as n goes
to infinity. Hence, for all positive ǫ and for large enough n, one has1{|G∗

n|>0}|∆M t
n+1(|T∗

n|Σ−1
n −Σ−1)∆Mn+1| ≤ 1{|G∗

n|>0}4ǫ∆M t
n+1∆Mn+1.

Using again that {|G∗
ℓ | = 0} ⊂ {|G∗

n+1| = 0} for all ℓ ≤ n+ 1, we rewrite1{|G∗

n+1
|>0}Rn+1=1{|G∗

n+1
|>0}

n∑

ℓ=1

1{|G∗

ℓ
|>0}

∆M t
ℓ+1(|T∗

ℓ |Σ−1
ℓ −Σ−1)∆M ℓ+1

|T∗
ℓ |

.
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Hence,1{|G∗

n+1
|>0}|Rn+1| ≤ 4ǫ 1{|G∗

n+1
|>0}

n∑

ℓ=1

1{|G∗

ℓ
|>0}

∆M t
ℓ+1∆M ℓ+1

|T∗
ℓ |

≤ 4ǫ 1{|G∗

n+1
|>0}

n∑

ℓ=1

∆M t
ℓ+1∆M ℓ+1

|T∗
ℓ |

≤ 4ǫ 1{|G∗

n+1
|>0} tr(Hn+1).

This last inequality holding for any positive ǫ and large enough n, the limit
given by Equation (A.2) entails that

lim
n→+∞

1{|G∗

n|>0}
1

n
Rn = 0 a.s.

which completes the proof of Lemma A.1.

Lemma A.2. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have

lim
n→+∞

1{|G∗

n|>0}
1

n
Bn = 0 a.s.

Proof. The result is obvious on the extinction set E . Now let us work on E .
Now for i ∈ {0, 1} and n ≥ 1, let ξin = (ε2n+i, ε2n+2+i, . . . , ε2n+1−2+i)

t
, be the

collection of εk, k ∈ Gi
n, and set ξn =

(
ξ0n, ξ

1
n

)t
. Note that ξn is a column vector

of size 2n+1. With these notation, one has

Bn+1 = 2
n∑

ℓ=1

M t
ℓΣ

−1
ℓ ∆M ℓ+1 = 2

n∑

ℓ=1

M t
ℓΣ

−1
ℓ Ψℓξℓ+1.

The sequence (Bn) is a real martingale transform satisfying

∆Bn+1 = Bn+1 − Bn = 2M t
nΣ

−1
n Ψnξn+1.

Consequently, via the strong law of large numbers for martingale transforms,
we find that either (Bn) converges a.s. or Bn = o(< B >n) a.s. where

< B >n+1= 4

n∑

ℓ=1

M t
ℓΣ

−1
ℓ ΨℓCΨt

ℓΣ
−1
ℓ M ℓ,

with

C =

(
σ2 ρ
ρ σ2

)
⊗ I2n .

As C is definite positive under assumption (HN.1), one has C ≤ 2σ2I2n+1 in
the sense that 2σ2I2n+1 −C is semi definite positive. Hence, one has

< B >n+1≤ 8σ2
n∑

ℓ=1

M t
ℓΣ

−1
ℓ ΨℓΨ

t
ℓΣ

−1
ℓ M ℓ.
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Now, by definition, one has

Σ−1
ℓ ΨℓΨ

t
ℓΣ

−1
ℓ =

(
(S0

ℓ)
−1Φ0

ℓ(Φ
0
ℓ)

t(S0
ℓ)

−1 0

0 (S1
ℓ)

−1Φ1
ℓ (Φ

1
ℓ)

t(S1
ℓ)

−1

)
.

We now use Lemma B.1 of [3] on each entry to obtain

Σ−1
ℓ ΨℓΨ

t
ℓΣ

−1
ℓ ≤ Σ−1

ℓ−1 −Σ−1
ℓ ,

as the matrix lk in that lemma is definite positive. Therefore, we obtain that

< B >n+1≤ 8σ2
n∑

ℓ=1

M t
ℓ(Σ

−1
ℓ−1 −Σ−1

ℓ )M ℓ = 8σ2An.

Finally, we deduce from the main decomposition given by Equation (7.1) and
Lemma A.1 that1{|G∗

n|>0}(Vn+1 +An) = o(An) +O(n) a.s.

leading to 1{|G∗

n|>0}Vn+1 = O(n) and 1{|G∗

n|>0}An = O(n) a.s. as Vn+1 and An

are non-negative. This implies in turn that 1{|G∗

n|>0}Bn = o(n) a.s. completing
the proof of Lemma A.2.

Appendix B: Wei’s Lemma

In order to prove Proposition 7.2, we shall apply Wei’s Lemma given in [16]
page 1672, to each entry of the vector-valued main martingale

Mn =
n∑

ℓ=1

∑

k∈Gℓ−1

(δ2kε2k, δ2kXkε2k, δ2k+1ε2k+1, δ2k+1Xkε2k+1)
t .

For i ∈ {0, 1}, denote

P i
n =

n∑

ℓ=1

∑

k∈Gℓ−1

δ2k+iε2k+i and Qi
n =

n∑

ℓ=1

∑

k∈Gℓ−1

δ2k+iXkε2k+i.

On the set E , these processes can be rewritten as

P i
n =

n∑

ℓ=1

√
|G∗

ℓ−1|viℓ, Qi
n =

n∑

ℓ=1

√
|Gℓ−1|wi

ℓ,

where

vin = 1{|G∗

n−1
|>0}

1√
|G∗

n−1|
∑

k∈Gn−1

δ2k+iε2k+i,

wi
n = 1{|G∗

n−1
|>0}

1√
|G∗

n−1|
∑

k∈Gn−1

δ2k+iXkε2k+i.
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On the one hand, we clearly have E[vin+1|FO
n ] = 0 and E[(vin+1)

2|FO
n ] = σ2 Zi

n+1

|G∗

n|

a.s. on E . Moreover, it follows from Cauchy-Schwarz inequality that

E[(vin+1)
4|FO

n ] =
1{|G∗

n|>0}

|G∗
n|2

∑

k∈Gn

δ2l+iE[ε
4
2k+i|FO

n ]

+
1{|G∗

n|>0}

|G∗
n|2

∑

p∈Gn

∑

k 6=p

δ2p+iδ2k+iE[ε
2
2p+i|FO

n ]E[ε22k+i|FO
n ]

≤ 3C1{|G∗

n|>0} sup
k∈Gn

E[ε42k+i|FO
n ] a.s.

as Zi
n+1|G∗

n|−1 is bounded.This implies that supE[(vin+1)
4|FO

n ] < +∞ a.s. Con-
sequently, we deduce from Wei’s Lemma that for all η > 1/2,1{|G∗

n−1
|>0}(P

i
n)

2 = o(|T∗
n−1|nη)1E a.s.

On the other hand, it is not hard to see that E[wi
n+1|FO

n ] = 0 a.s. Moreover, it
follows from Cauchy-Schwarz inequality that,

E[(wi
n+1)

4|FO
n ]

≤ 1{|G∗

n|>0}

|G∗
n|2



∑

k∈Gn

δ2k+iX
4
kE[ε

4
2k+i|FO

n ] + σ4
∑

p∈Gn

∑

k 6=p

δ2p+iδ2k+iX
2
pX

2
k




≤ 31{|G∗

n|>0}

(
sup
k∈Gn

E[ε42k+i|FO
n ]

)(
1

|G∗
n|
∑

k∈Gn

δ2k+iX
2
l

)2

a.s.

which is finite from Proposition 6.5. We deduce from Wei’s Lemma applied to
Qi

n that for all η > 1/2, 1{|G∗

n−1
|>0}‖Qi

n‖2 = o(|T∗
n−1|nη) a.s. which completes

the proof of Proposition 7.2.
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