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1. Introduction

Bifurcating autoregressive processes (BAR) generalize autoregressive (AR) pro-
cesses, when the data have a binary tree structure. Typically, they are involved
in modeling cell lineage data, since each cell in one generation gives birth to two
offspring in the next one. Cell lineage data usually consist of observations of
some quantitative characteristic of the cells, over several generations descended
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from an initial cell. BAR processes take into account both inherited and environ-
mental effects to explain the evolution of the quantitative characteristic under
study. They were first introduced by Cowan and Staudte [4]. In their paper,
the original BAR process was defined as follows. The initial cell is labelled 1,
and the two offspring of cell k£ are labelled 2k and 2k + 1. If X, denotes the
quantitative characteristic of individual &, then the first-order BAR process is
given, for all k > 1, by

Xop = a+bXy + eop,
Xoky1 = a+bXg +éeopi1.

The noise sequence (g, €25+1) represents environmental effects, while a, b are
unknown real parameters, with |b| < 1, related to the inherited effects. The
driven noise (€9, €2x+1) was originally supposed to be independent and identi-
cally distributed with normal distribution. But since two sister cells are in the
same environment at their birth, o, and 9541 are allowed to be correlated, in-
ducing a correlation between sister cells, distinct from the correlation inherited
from their mother.

Recently, experiments made by biologists on aging of Escherichia coli [15],
motivated mathematical and statistical studies of the asymmetric BAR process,
that is when the quantitative characteristics of the even and odd sisters are al-
lowed to depend on their mother’s through different sets of parameters (a,b),
see Equation (2.1) below. In [9, 8], Guyon proposes an interpretation of the
asymmetric BAR process as a bifurcating Markov chain, which allows him to
derive laws of large numbers and central limit theorems for the least squares
estimators of the unknown parameters of the process. This Markov chain ap-
proach was further developed by Bansaye [2] in the context of cell division with
parasite infection, and by Delmas and Marsalle [5], where the cells are allowed
to die. Another approach based on martingales theory was proposed by Bercu,
de Saporta and Gégout-Petit [3], to sharpen the asymptotic analysis of Guyon
under weaker assumptions.

The originality of this paper is that we take into account possibly missing
data in the estimation procedure of the parameters of the asymmetric BAR
process, see Figure 1 for an example. This is a problem of practical interest,
as experimental data are often incomplete, either because some cells died, or
because the measurement of the characteristic under study was impossible or
faulty. For instance, among the 94 colonies dividing up to 9 times studied in
[15], in average, there are about 47% of missing data. It is important to take
this phenomenon into account in the model for a rigorous statistical study.

Missing data in bifurcating processes were first modeled by Delmas and
Marsalle [5]. They defined the genealogy of the cells through a Galton-Watson
process, but they took into account the possible asymmetry problem only by
differentiating the reproduction laws according to the daughter’s type (even or
odd). The bifurcating process was thus still a Markov chain. However, consid-
ering the biological issue of aging in E. coli naturally leads to introduce the
possibility that two cells of different types may not have the same reproduc-
tion law. In this paper, we thus introduce a two-type Galton-Watson process to
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F1c 1. A tree associated with the bifurcating auto-regressive process up to the 4th generation.
The dashed cells are not observed.

model the genealogy, and lose the Markovian structure of the bifurcating chain,
so that we cannot use the same approach as [5]. Instead, we use the martingale
approach introduced in [3]. It must be pointed out that missing data are not
dealt with in [3], so that we cannot directly use their results either. In particular,
the observation process is another source of randomness that requires stronger
moment assumptions on the driven noise of the BAR process and careful choice
between various filtrations. In addition, the normalizing terms are now random
and the convergences are only available on the random non-extinction set of the
observed process.

The naive approach to handle missing data would be to replace the sums over
all data in the estimators by sums over the observed data only. Our approach is
slightly more subtle, as we distinguish whether a cell has even or odd daughters.
We propose a joint model where the structure for the observed data is based
on a two-type Galton-Watson process consistent with the possibly asymmetric
structure of the BAR process. See e.g. [12, 1, 10] for a presentation of multi-type
Galton-Watson processes and general branching processes. Note also that our
estimation procedure does not require the previous knowledge of the parameters
of the two-type Galton-Watson process.

This paper is organized as follows. In Section 2, we first introduce our BAR
model as well as related notation, then we define and recall results on the two-
type Galton-Watson process used to model the observation process. In Section 3,
we give the least square estimator for the parameters of observed BAR process
and we state our main results on the convergence and asymptotic normality of
our estimators as well as estimation results on data. The proofs are detailed in
the following sections.

2. Joint model

We now introduce our joint model, starting with the asymmetric BAR process
for the variables of interest.
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F1G 2. The tree associated with the bifurcating auto-regressive process.

2.1. Bifurcating autoregressive processes

On the probability space (€2, A, P), we consider the first-order asymmetric BAR
process given, for all £ > 1, by

{sz = a + bXy + e, 2.1)

Xogpy1 = ¢ + dXp + o1

The initial state X is the characteristic of the ancestor, while (2, €2x+1) is the
driven noise of the process. In all the sequel, we shall assume that E[X¥] < co.
Moreover, as in the previous literature, the parameters (a, b, ¢, d) belong to R*
with

0 < max(|b],]d]) < 1.

This assumption ensures the stability (non explosion) of the BAR process. As
explained in the introduction, one can see this BAR process as a first-order au-
toregressive process on a binary tree, where each vertex represents an individual
or cell, vertex 1 being the original ancestor, see Figure 2 for an illustration. We
use the same notation as in [3]. For all n > 1, denote the n-th generation by
G, = {2",2" +1,...,2"" — 1}, In particular, Go = {1} is the initial genera-
tion, and Gy, = {2, 3} is the first generation of offspring from the first ancestor.
Let G,, be the generation of individual k, which means that r, = [log,(k)],
where [z] denotes the largest integer less than or equal to x. Recall that the
two offspring of individual k& are labelled 2k and 2k + 1, or conversely, the
mother of individual k is [k/2]. More generally, the ancestors of individual &k
are [k/2], [k/2%),..., [k/2"]. Denote by T, = J,_, Ge,the sub-tree of all indi-
viduals from the original individual up to the n-th generation. Note that the
cardinality |G,| of G, is 2", while that of T,, is |T,| = 2"*! — 1. Next, T de-
notes the complete tree, so to speak T = J,,~,Gn = U,,»o Tn = N* = N\{0}.
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Finally, we need to distinguish the individuals in G,, and T,, according to their
type. Since we are dealing with the types even and odd, that we will also label 0
and 1, we set

GY=G,N(2N), GL=G,n(@2N+1), T®=T,N(2N),

T, =T,N@2N+1), T°=Tn((2N) and T'=TnN(2N+1). (2.2)

We now state our assumptions on the noise sequence. Denote by F = (F,)
the natural filtration associated with the first-order BAR process, which means
that F,, is the o-algebra generated by all individuals up to the n-th generation,
Fn = 0{Xi,k € T,}. In all the sequel, we shall make use of the following
moment and independence hypotheses.

(HN.1) For all n > 0 and for all k € G,,;1, e, belongs to L®. Moreover, there
exist (02,74, k%) € (0, +00)3, (|p'], 2, A*) € [0,1)3 such that:

e Vn>0and k € Gyiq,
Elex|Fn] = 0, E[e2|Fp] = 02, Elep|Fn] = 74, E[e}|Fn] = ° aus.

o Vn>0 Vk#Il€ Gy with [k/2] = [1/2],

Elever| Fnl = p = p'0?, Eledeanin | Fn] = V274, Elegiesis1|Fn) = A& as.
(HN.2) For all n > 0 the random vectors {(e2x, £2k+1), k € G, } are condition-
ally independent given F,.

2.2. Observation process

We now turn to the modeling of the observation process. The observation process
is intended to encode if a datum is missing or not. The natural property it has
thus to satisfy is the following: if the datum is missing for some individual, it is
also missing for all its descendants. Indeed, the datum may be missing because
of the death of the individual, or because the individual is the last of its lineage
at the end of the data’s gathering, see Figure 3 for an example of partially
observed tree.

2.2.1. Definition of the observation process

Mathematically, we define the observation process, (x)ker, as follows. We set
01 = 1 and define recursively the sequence through the following equalities:

52k = 5k<}2 and 52k+1 = 5]@@%, (2.3)

where (¢, = (¢, ¢})) is a sequence of independent random vectors of {0, 1}2,
¢} standing for the number (0 or 1) of descendants of type i of individual k.
The sequences ({;,, k € 2N*) and (¢, k € 2N + 1) are sequences of identically
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F1G 3. The tree associated with the observed data of the tree in Figure 1.

distributed random vectors. We specify the common laws of these two sequences
using their generating functions, f(©) and f(*) respectively:

f(O) (507 51) = p(O) (Oa O) + p(O)(lv O)SO +p(0) (Oa 1)51 + p(O)(lv 1)50517
f(l)(S()? Sl) = p(l)(07 O) + p(l)(17 O)SO +p(l)(07 1)81 + p(l)(17 1)80817

where p (jo, j1) is the probability that an individual of type i gives birth to jo
descendants of type 0, and j; of type 1. The sequence (dy) is thus completely
defined. We also assume that the observation process is independent from the
BAR process.

(HI) The sequences (d;) and (¢;) are independent from the sequences (Xj)
and (eg).

Remark that, since both ¢} and ¢} take values in {0, 1} for all k, the observation
process () is itself taking values in {0, 1}. Finally, Equation (2.3) ensures that
if 65, = 0 for some k > 2, then for all its descendants j, §; = 0. In relation with
the observation process (dx), we introduce two filtrations: Z,, = o{¢,k € Ty},
0, = o{ok,k € T,}, and the sigma field O = o{dy,k € T}. Notice that
On41 C Z,. We also define the sets of observed individuals as follows:

GZ:{kGGndk:r} and T;;:{kGTn(Sk:l}

Finally, let £ be the event corresponding to the cases when there are no indi-
vidual left to observe. More precisely,

&= Jile; =0} (249

n>1

We will denote £ the complementary set of €.
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2.2.2. Results on the observation process

Let us introduce some additional notation. For n > 1, we define the number
of observed individuals among the n-th generation, distinguishing according to
their types:

Z% =|G;N2N| and Z!=|G;N(2N+1)], (2.5)

and we set, for all n > 1, Z,, = (22, Z!). Note that for i € {0,1} and n > 1 one

has
Z, = E O2kyi-
k€eGyH 1

One has G§ = Gy = {1}, but, even if 1 is odd, the individual whose lineage we
study may as well be of type 0 as of type 1. Consequently, we will work with
possibly two different initial laws: P(-|Z¢ = e;), for i € {0,1}, where ey = (1,0)
and e; = (0,1). The process (Z,,n > 0) is thus a two-type Galton-Watson
process, and all the results we are giving in this section mainly come from [12].
Notice that the law of {j,, for even k, is the law of reproduction of an individual
of type 0, the first component of ¢, giving the number of children of type 0, the
second the number of children of type 1. The same holds for ¢, with odd k,
mutatis mutandis. This ensures the existence of moments of all order for these
reproduction laws, and we can thus define the descendants matrix P

P— ( Poo  Poi ) ,
Pio P11
where p;p = p(i)(1,0)+p(i)(1, 1)and pn = p® (0, 1)+p(i)(1, 1), fori € {0,1}. The
quantity p;; = E[¢], ;] is thus the expected number of descendants of type j of an
individual of type i. We also introduce the variance of the laws of reproduction:
O'l-zj = E[(Cg-ﬂ _pij)2]7 for (’L,]) S {0,1}2 Note that Ui2j = plj(l —plj) It is
well-known (see e.g. Theorem 5.1 of [12]) that when all the entries of the matrix

P are positive, P has a positive strictly dominant eigenvalue, denoted 7, which
is also simple. We make the following main assumptions on the matrix P.

(HO) All entries of the matrix P are positive: for all (i, ) € {0,1}?, p;; > 0,
and the dominant eigenvalue is greater than one: 7 > 1.

Hence, still following Theorem 5.1 of [12], we know that there exist left and
right eigenvectors for m which are positive, in the sense that each component
of the vector is positive. We call y = (y°,y')? such a right eigenvector, and
z = (29, 21) such a left one; without loss of generality, we choose z such that
2V + 2! = 1. Regarding the two-type Galton-Watson process (Z,,), 7 plays the
same role as the expected number of offspring, in the case of standard Galton-
Watson processes. In particular, 7 is related to the extinction of the process,
where the set of extinction of (Z,,) is defined as U,>1{Z,, = (0,0)}. Notice that
{Z,=(0,0)} ={Z°+ Z! =0} = {|G%| = 0}, so that this set coincides with &,
defined by Eq. (2.4). Now let ¢ = (¢°,¢'), where, for i € {0, 1},

qi = P(5|ZQ = 6i).
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The probability ¢° is thus the extinction probability if initially there is one
individual of type i. These two probabilities allow to compute the extinction
probability under any initial distribution, since P(£) = E[(¢°)%0 (¢*)%0], thanks
to the branching property. Hypothesis (HO) means that the Galton-Watson
process (Z,,) is super-critical, and ensures that 0 < ¢* < 1, for both i = 0 and
¢ = 1. This immediately yields

P(&) < 1. (2.6)

Under that condition, we also have the existence of a non-negative random
variable W such that for any initial distribution of Z|
m—1

Zy,
lim =2 = lim Zzg Wz as. (2.7)

n—-+oo M nStoo Tl — 1
It is well-known that {W = 0} = &£ a.s., so that the set {W > 0} can be

viewed as the set of non-extinction £ of (Z,), up to a negligible set. These
results give the asymptotic behavior of the number of observed individuals,

since |G| = Z0 + Z}, and |T| = >, (27 + Z}):

G,
fm 198l gy 7T7|1I‘*|_ a.s.
n—+oo TN n—-+oo 1

Roughly speaking, this means that 7™ is a deterministic equivalent of |T%| and
Eq. (2.7) implies that 2! is the asymptotic proportion of cells of type i in a given
generation. We will thus very often replace |T%| by «” for computations, and
the next lemma will be used frequently to replace 7" by |T%|.

Lemma 2.1. Under assumption (HO), we have

" T—11
hrn ]]'{|G*

notoe UG = T 48

2.3. Joint model

The model under study in this paper is therefore the observed BAR process
defined by

0ok Xor = o (¢ + bXp + ),
Ookt1Xokt1 = Oopp1 (¢ + dXp +  e2p41)-

The aim of this paper is to study the sharp asymptotic properties of the least-
squares estimators of the parameters (a,b, ¢, d) and the variance matrix of the
noise process.

3. Least-squares estimation

Our goal is to estimate @ = (a, b, c,d)! from the observed individuals up to the
n-th generation, that is the observed sub-tree T7.
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3.1. Definition of the estimators

We propose to make use of the standard least-squares (LS) estimator 6., which
minimizes
An(O) = Z 52k(X2k —a— ka)2 + 52k+1(X2k+1 —C— ka)Q.
k€T, -1

Consequently, we obviously have for all n > 1

On 0ok Xk
~ by, 1 02k X Xok
o)=| 2 |=x : 3.1
R I R D I 5.1
d, "\ o1 XeXokt1

where, for all n > 0,

S?l 0 7 Xk
En:< O S}l), and Sn2262k+1(X Xk )

keT,,

for i € {0,1}. In order to avoid intricate invertibility assumption, we shall
assume, without loss of generality, that for all n > 0, 3,, is invertible. Otherwise,
we only have to add the identity matrix I, to X,,, as Proposition 4.2 states that
the normalized limit of X, is positive definite.

Remark 3.1. Note that when all data are observed, that is when all §; equal 1,
this is simply the least squares estimator described in the previous literature.
However, one must be careful here with the indices in the normalizing matrix,
as there are now two different matrices S and S}, while there was only one in
the fully observed problem. The intuitive way to deal with missing data would
be to restrict the sums to the observed data only. Note that our estimator is
more complex as it involves sums depending on the absence or presence of even-
or odd-type daughters of the available data.

We now turn to the estimation of the parameters o and p. We propose to
estimate the conditional variance o2 and the conditional covariance p by

1
~2 ~2 ~2 ~
Op = |T*| E (52k + 52k+1)7 Pn = T*Ol § 52k52k+17
kET? kET,

where for all £ € G,,,

{5% = Sok(Xok — Gn — buXy),
Eoprr = Ot (Xopsr — &0 — duXp).

and
T = {k €T, : dopdopr1 = 1},

so to speak T:%! is the set of the cells of the tree T,,_; which have exactly two
offspring.
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3.2. Main results

We can now state the sharp convergence results we obtain for the estimators
above. We introduce additional notation. For ¢ € {0, 1}, let us denote:

i mzt R 701 _ p(1,1) A1
- ntk - L0:1 101
where z = (29,2!) is the left eigenvector for the dominant eigenvalue m of

the descendants matrix P introduced in section 2.2.2, h*, k' are defined in
Propositions 6.3 and 6.5 and the four terms of L%! defined in Proposition 6.6.
We also define the 4 x 4 matrices

LO 0 0_2L0 LO,l
> = < 0 Ll >, and T = ( pLO"l 5‘21—/1 ) . (32)

Our first result deals with the strong consistency of the LS estimator 5n

Theorem 3.2. Under assumptions (HN.1), (HN.2), (HO) and (HI), 0., con-
verges to @ almost surely on € with the rate of convergence

~ log [T, _,|
Loz lBn - 07 =0 (25 1e s @)
|Tn71|
In addition, we also have the quadratic strong law
. IS 1 PPN T—1 ,
Jim 16 0y > IT |6 — 6)'2(6, — 0) =4 0’1z a.s. (3.4)

=1

Our second result is devoted to the almost sure asymptotic properties of the
variance and covariance estimators 62 and p,,. Let
2 1 1

_ 2 2 _
n |'IF*| 2(5%5% + 52k+152k+1)7 Pn = |’]1‘*01 Z 02kE0k 02k 1162k +1-
nkeTr_, n=1l ke

n—1

a.

Theorem 3.3. Under assumptions (HN.1), (HN.2), (HO) and (HI), G, con-

verges almost surely to o® on €. More precisely, one has

1
. 1 ~
nh—%o ]l{|@;|>0}g E E 52k+i(52k+i — 52k+i)2 =4(m — 1)02115 a.s. (3.5)

k€T, 1 i=0
lim Lg« (>0 [T (62 —02) = 4(r — 1)o?15 a.s. (3.6)
nseo T UGHI>0 n n £

In addition, p, converges almost surely to p on € and one has

1
lim g — 0ok (Eox — €21)0 E: —¢
Jim 1651501, ke% ok (B2 — €2k )02k+1(E2k+1 — E2k41)
n—1

— I (@)@ V) E  as. (37)
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T -
n

. _ ™ _ _
Jm 1g6; >0y == (Pn — pn) =P Uf?“((Ll) DAL )1 as.
(3.8)

Our third result concerns the asymptotic normality for all our estimators @m o2
and p,, given the non-extinction of the underlying Galton-Watson process. For

this, using the fact that P(E€) # 0 thanks to Eq. (2.6), we define the probability
Pg by

P(ANE)

P(€)

Theorem 3.4. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have
the central limit theorem

VIT: (6, — 0) S5 N(0,S7'TS ™Y on (E,Py). (3.9)

In addition, we also have

for all A € A.

m(tt — ot D it — ot _
VITHI(@5 — 0%) £ (0, =2 )+ 2L I D) on @),

™

where p(1,1) is defined in Eq. (6.6) and

VT (B = p) =5 N (0,077 = p?) on (€, Ps). (3.11)

The proof of our main results is going to be detailed in the next sections.
It is based on martingale properties, and we will exhibit our main martingale
(M) in Section 4. Sections 5 to 7 are devoted proving to the sharp asymptotic
properties of (M,). Finally, in Section 8 we prove our main results. Before
turning to the definition of the martingale (M), we present a short application
of our estimation procedure on data.

3.3. Results on real data

The biological issue addressed by Stewart et al. in [15] is aging in the single cell
organism FEscherichia coli, see also [7] for further biological details. E. coli is a
rod-shaped bacterium that reproduces by dividing in the middle. Each cell has
thus a new end (or pole), and an older one. The cell that inherits the old pole
of its mother is called the old pole cell, the cell that inherits the new pole of
its mother is called the new pole cell. Therefore, each cell has a type: old pole
(even) or new pole (odd) cell, inducing asymmetry in the cell division.

Stewart et al. filmed colonies of dividing cells, determining the complete lin-
eage and the growth rate of each cell. Their statistical study of the averaged
genealogy and pair-wise comparison of sister cells showed that the old pole cells
exhibit cumulatively slowed growth, less offspring biomass production and an
increased probability of death. Note that their test assumes independence be-
tween the averaged pairs of sister cells which is not verified in the lineage.
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TABLE 1
Estimation on the data set penna-2002-10-04-4

parameter a c
estimation 0.03627 0.03058

C.L (0.03276; 0.03979] [0.02696; 0.03420]
parameter b d
estimation 0.02662 0.17055

C.I. [—0.06866;0.12191] | [0.07247;0.26863]

Another analysis was proposed in [9]. They model the growth rate by a
Markovian bifurcating process, allowing single-experiment statistical analysis
instead of averaging all the genealogical trees. Asymptotic properties of a more
general asymmetric Markovian bifurcating autoregressive process are then in-
vestigated in [8], where a Wald’s type test is rigorously constructed to study
the asymmetry of the process. These results cannot be compared to ours be-
cause this model does not take into account the possibly missing data from the
genealogies, and it is not clear how the author manages them, as not a single
tree from the data of [15] is complete. In [5], the authors take missing data into
account but, contrary to our approach, they allow different sets of parameters
for cells with two, one or no offspring, making the direct comparison with our
estimator again impossible.

We have applied our methodology on the set of data penna-2002-10-04-4
from the experiments of [15]. It is the largest data set of the experiment. It
contains 663 cells up to generation 9 (note that there would be 1023 cells in a
full tree up to generation 9). In particular, we have performed

e point estimation of the vector 0,
e interval estimation for the coefficients (a, b, ¢, d),

~

e Wald’s type symmetry tests for the entries of 6,,.

Table 1 gives the estimation 8y of 8 with the 95% Confidence Interval (C.L)
of each coefficient. The variance given by the CLT for € in Eq. (3.9), is ap-
proximated by X 1I‘n2; ! thanks to the convergence given in Corollary 4.3.
The confidence intervals of b and d show that the non explosion assumption
(|b] < 1 and |d| < 1) is satisfied. Some empirical computation on the process
(0) gives the following estimation for the highest eigenvalue of the Galton-
Watson process: 7 = 1.35669 (with confidence interval [1.27979,1.43361], see
[14]), also satistying the super-criticality assumption. Wald tests of comparison
between the coeflicients of 8 have been deduced of the CLT. The null hypotheses
(a,b) = (¢,d) (resp. a = ¢, b = d) are rejected with p-values p= 0.0211 (resp.
p= 0.0158 and p=0.0244). Hence on this data set the cell division is indeed
statistically asymmetric.

4. Martingale approach

To establish all the asymptotic properties of our estimators, we shall make
use of a martingale approach, similar to [3]. However, their results cannot be
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used in our framework, since the randomness comes now not only from the state
process, but also from the time space (genealogy). These two mixed randomness
sources require careful choice between various filtrations, and stronger moment
assumptions on the driven noise of the BAR process. For all n > 1, denote

t
M, = g (02k€2k, O2kXk€2k, O2k+1€2k4+15 O2kt+1XkE2k41) -
k€TH 1

Thus, for all n > 2, we readily deduce from Equations (3.1) and (2.1) that

dokEak
6,-0=3." 021X 2 =31 M,. (4.1)
02k +1E2k+1
k€T, 1
Ook1 XpE2k41

The key point of our approach is that (M) is a martingale for a well chosen
filtration.

4.1. Martingale property

Recall that O = 0{dj, k € T} is the o-field generated by the observation process.
We shall assume that all the history of the process (Jx) is known at time 0 and
use the filtration FO = (F2) defined for all n by

FO=0Vo{oXp,keTy} =0V o{Xy, keT:},

where F V G denotes the o-field generated by both F and G. Note that for all
n, FQ is a sub o-field of O V F,,.

Proposition 4.1. Under assumptions (HN.1), (HN.2) and (HI), the process
(M) is a square integrable F©-martingale with increasing process given, for all

n>1, by
0.250 pso,l
< M >n: I‘n, — n—1 n—1 ,
' ( pSuly oS
where 8O and S are defined in section 3.1 and
1 X
Syt = sz: 02k02k-+1 ( X, X2 ) :
6 n

Proof. First, notice that for all n > 1, one has

dorEak
O Xrear
02k+1E2k+1
Ook 1 XkE2k41

AM, =M, - M, ;= Z
keG, 1
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Now, we use the fact that for all n, F© is a sub-o field of O V F,,, the indepen-
dence between O and F,, under assumption (HI) and the moment hypothesis
(HN.1) to obtain

Eldokean | FEy] = OukE[Elear | OV Fooa] | Foy]
= O0uE[Eleak | Fra] | Fooy] = 0.

We obtain similar results for the other entries of AM,, as o1 and X} are
also FO_,-measurable. Hence, (M) is a FO-martingale. It is clearly square in-
tegrable from assumption (HN.1). The same measurability arguments together
with assumption (HN.2) yield

E[AM,(AM,)" | F7|]

02 8a5, 02095 X, pO2kd2k+1  PO2kdokt1 Xk
_ Z 02821 Xk 0200, X} pO2r02k 11Xk pOordopr1 X7
s PO2102k+1  pOakdak+1 Xk 0209541 020914+1 Xk
TN pOoloki1 Xk pOakloki1 XP 0201 Xk 0201 X7
Hence the result as < M >,= "} | E[AM,(AM,)! | F° ]. O

Our main results are direct consequences of the sharp asymptotic properties
of the martingale (M ,,). In particular, we will extensively use the strong law of
large numbers for locally square integrable real martingales given in Theorem
1.3.15 of [6]. Throughout this paper, we shall also use other auxiliary martin-
gales, either with respect to the same filtration F@, or with respect to other
filtrations naturally embedded in our process, see Lemma 5.1.

4.2. Asymptotic results

We first give the asymptotic behavior of the matrices S%, S% and S%'. This is
the first step of our asymptotic results.

Proposition 4.2. Suppose that assumptions (HN.1), (HN.2), (HO) and (HI)
are satisfied. Then, for i € {0,1}, we have

i 0,1

) no_ a7 : X Pn_
nl;ngol{|G;|>o}— IgL" as. and nlggoﬂ{mnbmmm

=1=L%' q.s.
T ¢

In addition, L° and L*, hence ¥ are definite positive.

A consequence of this proposition is the asymptotic behavior of the increasing
process of the martingale (M ).

Corollary 4.3. Suppose that assumptions (HN.1), (HN.2), (HO) and (HI)

are satisfied. Then, we have

. 3 . r,
A e >0 ey = T and i Te; >0} ey = TeT
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This result is the keystone of our asymptotic analysis. It enables us to prove
sharp asymptotic properties for the martingale (M ,,).

Theorem 4.4. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have
L{c; 1>01 M, 2,1 My, = O(n) a.s. (4.2)

In addition, we also have

: 1< _
Jim 165500~ Y MZ L M = 40%1g a.s. (4.3)
{=1

Moreover, we have the central limit theorem on (€, Pg)

1

n—1

~

As seen in Eq. (4.1), (6,, — 0) is closely linked to M,, and this last theorem
is then the major step to establish the asymptotic properties of our estimators.
The proof of this Theorem is given in Section 7. As explained before, it is a
consequence of Proposition 4.2 which proof is detailed in Section 6. In between,
Section 5 presents preliminary results in the form of laws of large number for
the observation, noise and BAR processes.

5. Laws of large numbers

We now state some laws of large numbers involving the observation, noise and
BAR processes. They are based on martingale convergence results, and we start
with giving a general result of convergence for martingales adapted to our frame-
work.

5.1. Martingale convergence results

The following result is nothing but the strong law of large numbers for square
integrable martingales, written in our peculiar setting, and will be repeatedly
used.

Lemma 5.1. Let G = (G,) be some filtration, (H,) and (Gy,) be two sequences
of random wvariables satisfying the following hypotheses:

(1) for alln > 1, for all k € Gy, Hy is G,—1-measurable, Gy, is G,-measurable,
and E[(HyGy)?] < 400,
(ii) there exist ¢ > 0, r € [—1,1], such that for alln > 1, for all k,p € G,

c  ifk=np,
E[Gk|Gn-1] =0, E[GkGp|Gn-1]=1{ rc® ifk#p and [k/2] = [p/2],
0 otherwise,
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(iii) there exists a sequence of real numbers (an) that tends to oo such that
e, Hii = Olan).
Then Zke'ﬂ‘n Hi Gy is a G-martingale and one has

1
lim — Z H;.G, =0 a.s.

N—>00 (U, netT
n

Proof. Define D, =, .p HyGy. Assumptions (i) and (ii) clearly yield that
(D,,) is a square integrable martingale with respect to the filtration (G, ). Thanks
to (ii), its increasing process satisfies

<D>, = CQ(ZH7§+2T Z H2kH2k+1)

k€T k€T, 1

< (L mer X ko)
keT, k€T, -1

< A(r+1) ) HE

keT,,

and now, (iii) implies that < D >,= O(ay). Finally, since the sequence (ay,)
tends to oo, Theorem 1.3.15 of [6] ensures that D,, = o(a,) a.s. O

We also recall Lemma A.3 of [3] that will be useful in the sequel.
Lemma 5.2. Let (A,,) be a sequence of real-valued matrices such that
ZO |A| < oo and "lggokzﬂAk = A.

In addition, let (X ) be a sequence of real-valued vectors which converges to a
limiting value X . Then,

lim_ g A, X, = AX.

5.2. Laws of large numbers for the observation process

We now give more specific results on the asymptotic behavior of the observation
process (0 )r>1. Recall the notation T¢, defined in (2.2).

Lemma 5.3. Under the assumption (HO), we have the following convergences,
for (i,j) in {0,1}?

. 1 T i
i o D ey =py W s
kET,
lim i Z 02k 02k +1 :p(i)(l 1)LWZZ a.s.
n—+oo M -1

keT?,
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Proof. Recall that day,1; = 0,(], so that

Z 52k+j = Dij Z o + Z 5k ng = Dij <Z+ZZE> + Dp,
=1

k€T, kET, k€T,
since Go = {1}, so that Tﬁl contains 1 or not, according to ¢ = 1 or not, and where
D, = Zkeﬂr; 8%(¢l — pij). To deal with D,,, we use Lemma 5.1,‘With G=(2Z,
(recall that Z,, = O'{Ck,k eT,}), H. = 5k]l{k€'ﬂ-i}, and Gy, = (Ci —pij)ﬂ.{kevﬂ-i}.
Assumption (i) of Lemma 5.1 is obviously satisfied, since d, for k € G, is
Z,_1-measurable. Regarding (ii), since the sequence (Ck) is a sequence of i.i.d.
random variables with expectation p;; and variance U ,we have E[G|Z,-1] =0
and E[G}|Z, 1] = o}, for k € G, and E[G,G,, |Zn 1] =0, for k # p € Gy,
Finally, we turn to assumption (iii):

ZHk—Zék—z—i—ZZg ),

keTy, keTE,

thanks to (HO) and Eq. (2.7). Finally, D,, = o(7™), and again using Eq. (2.7),
we obtain the first limit. The proof of the second one is similar using the Z-
martingale:

> 0k(0akbok1 — pP(1,1)) = D Lireriy Linery (GG — pP (1,1)),

KET, kETy

Hy, Gy,

and Lemma 5.1 again. (]

5.3. Laws of large numbers for the noise process

We need to establish strong laws of large numbers for the noise sequence (g,)
restricted to the observed indices.

Lemma 5.4. Under assumptions (HN.1), (HN.2), (HO), (HI) and for i €
{0,1}, one has

lim — E Ook+i€2kri =0 a.s.
n—+oo
k€T, -1
Proof. Set
§ 52k+1 E2k+i -
——
KeTn 5 o

We use Lemma 5.1, with G = (FS,,). Assumpt1on (i) is obvious. For k € G/, 1,
we have E[Gk|Fn+1] = 0 and E[G;|F9, ] = 0?2, and E[G,G,|FS,,] = 0, for
k # p € G!_,. Finally, we turn to assumption (iii):

n+1

Z ng = Z 5§k+i = Z Zé =0O(n"),
(=1

keT, keT,
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as n tends to infinity, thanks to Eq. (2.7). We obtain the result. O

Lemma 5.5. Under assumptions (HN.1), (HN.2), (HO), (HI) and for i €
{0,1}, one has

: 1 2 2 T i
ngr-ir-looﬁ E €0 = o 71-—1WZ a.s.
KET\To
lim S g dordokr12kEaktn = ppP(1,1) w2 oas
n—+oo M - -1
keTi \To

Proof. In order to prove the first convergence, we apply again Lemma 5.1 to the
FO-martingale:

Qn= Y (F-0")0k= Y LgerOk Lppersy (e — o),
kETINT, ATy

Under (HN.1), (HN.2), we have E[G,|F9] = 0 and E[G2|FY] = 7 — 0%, and
E[GrG,FY] =0, for k # p € G,,. Thanks to Eq. (2.7), we have:

1 1 =, ; s ;
LS =ty zi—— T we as
™ e ™im o e Tl

which both implies assumption (iii) and the first convergence. To prove the
second convergence, we write

1
— E 02k02k+1€2kE 2k+1
m .
keTi \To

1 1
= — E L(keriyO2k02k+1 Liperiy (E26€2k+1 — p) tp E O2k02k+1
keT,\To keTi \To

Hy, G

We use Lemma 5.1 to prove that the first term converges to 0; Lemma 5.3 gives
the limit of the second term. O

Corollary 5.6. Under assumptions (HN.1), (HN.2), (HO), (HI) and for
i €{0,1}, one has

1 T )
lim — E 200py; = 0°p;i——=W2' a.s.
n—+oo " - kO2h+ Pij T—1
keTi \To
. 1 _ s
lim — E 52k52k+152k52k+1 = pp(l, 1)—W a.s.
n—+oo M m—1
keTn\TO

Proof. The proof of the first limit is similar to the preceding ones, using the
decomposition do4; = 6,(i and the properties of the sequence (¢7). Using
Lemma 5.5 the second one is straightforward. O



Estimation for missing data BAR 1331

Lemma 5.7. Under assumptions (HN.1), (HN.2), (HO), (HI) and for i €
{0,1}, we have

. 1 ™ .
lim — E opey = 71t Wz a.s.
n—+oo N - T—1
keTi \To
1 ) T )
lim — E 0210 g2, 2 = 2ripD, 1) —— W2t a.s.
nstoo : 2k02k+1€2kE 2k 41 P (1, )7r—1
keT:

Proof. The proof follows essentially the same lines as the proof of Lemma 5.5
using the square integrable real martingales

4_ 4 2 2 2 4
Qn = E Or(e; —7%), and R, = E 02;02j41(€3;65;11 —V°T").
k€T \To k€T \To

It is therefore left to the reader. O

6. Convergence of the increasing process

We can now turn to the proof of our keystone result, the convergence of the
increasing process of the main martingale (M,,).

6.1. Preliminary results

We first need an upper bound of the normalized sums of the d2,.;X2, and
82n.02,+1X 2 before being able to deduce their limits.

Lemma 6.1. Under assumptions (HN.1), (HN.2), (HI) and (HO), and for
i €{0,1}, we have

Z (521€+in3 = O(F") and Z 62k52k+1X]§ = O(W") a.s.
keT,, keTy,

Proof. In all the sequel, for all & > 1, define as, = a, bop, = b, agk41 = ¢,
bok+1 = d and ni = ay, + € with the convention that n; = 0. It follows from a
recursive application of relation (2.1) that, for all k > 1,

rr—1 TE—1 -1
X = < 11 b[;g]>X1 +> (wa)mw (6.1)
=0 =0 p=0

with the convention that an empty product equals 1. Set o = max(|al|,|c|),
B = max(|b],|d|) and notice that 0 < § < 1. The proof of Lemma A.5 in [3]
yields
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TE— 1 T — 1
2 Y
Z OopyiXy < T ﬁ Z O2kti Z pie? % T ﬁ Z 02kt Z B
keT,\To k€T, \To k€T, \To
+2X3 Z Sok4iB°"E,
k€T, \To

< 2 Ai+42BZ+2XC’ (6.2)

T 1l-p" 1P '

where, for i € {0,1},
Te— 1 Tk — 1 )
= > Okt Z Bleluy Bu= D o Z B Ch= D Gokaf*.
keT,\To k€T, \To k€T, \To

The last two terms above are readily evaluated by splitting the sums genera-
tion-wise. Indeed, the last term can be rewritten as

n

- i Z SonriB? = ZB%ZZH = W"i ~lyn— £<ﬁ2e Zf;;l)'
=1

(=1 keGy (=1

We now use Lemma 5.2 with A, = 7~ and X,, = $%"Z} ;7 ™. On the one
hand, the series of (7~™) converges to m/(m — 1) as w > 1 by assumption; on the
other hand, 32" tends to 0 as n tends to infinity as 8 < 1, and Z! 7~ converges
a.s. to Wz" according to Eq. (2.7), hence 82" Z} ;7™ tends to 0 as n tends to
infinity. Lemma 5.2 thus yields

n

Zi .
. —1\n—0 [ p20 7L+1 ) _ (— n
nlgrgo E (7™ ) (ﬁ 7) =0 and C; =o(n") a.s.

=1
We now turn to the term B :

é
Z Z 52k+1 Z Z 52k+1 > |T’ri+;|) O(Trn)a

(=1 keGy, é 1 keG,

due to Lemma 2.1. It remains to control the first term A% . Note that e; appears
in A% as many times as it has descendants up to the n-th generation, and its
multiplicative factor for its p-th generation descendant k is SPd2x. This leads to

2P —1

Z Z EkZﬂp Z 52(2T’k:+m)+z

(=1keG, p=0 m=0

Now, note that Em 0 (52 (2P ktm)i = 5;€Z 52(2pk+m)+z is the number of
descendants of type i of individual %k after p —|— 1 generations. We denote it
7}, (k), and split A}, the following way:

n—~

Z > Zﬁ”ék o ( +Z ST (e -0 pronZl (k). (6.3)

(=1 keGy, p=0 {=1 keGy, p=0
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We first deal with the second term of the above sum.

n—~{
S Y)Y Faal) - Zﬂ”zz )0 Zy 11 (k)
=1 keGy p=0 =1 keGy

= Z fed Z Y,
p=0 =1

where Y;p > ke, (€8 — 0°)0rZ, 11 (k). Tedious but straightforward compu-
tations lead to the following expression for the second order moment of Yg ,
relying on assumptions (HI), (HN.1) and (HN.2). We also use the fact that
for k € Gy, conditionally to {0y = 1}, Z}, (k) follows the same law as Z,,,,
and is independent of any Z;, (k), for k" # k € Gy.

E[(Y/,)’] = (" —0o"E[Z] + Z}]E[(Z;H) ]

+(V27-4 — ) p+1 |: Z 52k52k+1]

keGp_q

< (7= MEIZ) + Z})(El(Zh40)%) + EIZ) ).

since ZkeGe,l Oordopr1 < ZkeGl,l (62k + Gak+1) = Z§ + Z}. Now, using results
on the moments of a two-type Galton-Watson process (see e.g. [12]), we know
that E[(Z},,)?] = O(x?"). Recall Eq. (2.7) to obtain that E[(Y/ )?] = O(z‘x?"),
which immediately entails that |V} | = o(m*77P) as., for any a > 1/2 and
v > 1. We thus one gets

ZBFZYM O(r")") = O(x")  as.,
p=0 =

since we can choose 7 close enough to 1 to get 77 < 7, as 8 < 1. We have thus
proved that the second term in the sum in (6.3) is O(#n™), we now turn to the
first one

S Y S a0

(=1keG, p=0

n n—~{ n n—~{

_ 2 D _ 2 D 71

= YD D wZpn(k) = D> 2
=1 p=0 keGy ¢=1 p=0

= QZﬁpZZHpH < 02ZBP|T 1l =0@") a.s.
p=0 =1

Finally, A, = O(7™), and the first result of the Lemma is proved. The second
result follows immediately from the remark that the second sum in Lemma 6.1
is clearly smaller than the first one. Il
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Lemma 6.2. Under assumptions (HN.1), (HN.2), (HI) and (HO), and for
i €{0,1}, we have

Z 52k+iX,3 =0(r") and Z 52k52k+1X,3 =0(") as.

keT, keT,

Proof. The proof mimics that of Lemma 6.1. Instead of Equation (6.2), we have

4 . 4ot . -
> dmeiXi < 0 AL+ 16 © Bl +8X{C}
k€T, \To ( - ﬁ) ( B B)
with, for ¢ in {0, 1}
’I"kfl kal
A=) ok Y 535?2%]7 Bli= > Gy 3 B Ch= > Garpif'™.
KET\To (=0 k€T \Ty (=0 k€T \To

We can easily prove that (B! +C?%) = O(n™). Therefore, we only need a sharper
estimate for A?. Via the same lines as in the proof of Lemma 6.1, but dealing
with e} instead of €7, we can show that AY = O(n™) a.s. which immediately
yields the first result. The second one is obtained by remarking that the second
sum is less than the first one. O

6.2. Asymptotic behavior of the sum of observed data

We now turn to the asymptotic behavior of the sums of the observed data. More
precisely, set H), = 3" cp dax i Xy, for 7 in {0,1}, and H,, = (H;, H,)". The
following result gives the asymptotic behavior of (H,,).

Proposition 6.3. Under assumptions (HN.1), (HN.2), (HI) and (HO), we
have the convergence:

where

hO ~ _ azo ~ 1 b O
h:(hl ):(IQ—Pl) 1Pt( ! ) and P1:;Pt< 0 d).
Proof. We first prove that the sequence (H,, ) satisfies a recursive property using
Equation (2.1).

HY = X162+Z(a+bX[§]+sk)5gk+ 3 (c+dX[§]+sk)52k

kETO keTL\To
= X2+ az5gk + bZX[g]lszk +c Z dok +d Z X[%]a%
EETY, kET? k€T \To keT:\To
+ Z erdak
k€T, \To

= prOHg—l + dploH,ll_l + Bg,
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with
32 = X102 +a Z dor + ¢ Z dok + Z €02k
KETY, KETL\To k€T, \To
+b Y Xpbok(Oak —poo) +d > Xibawi1(Sarra — pro)-
k€T, 1 keT, -1

Similarly, we have

H} = bpo1 HY_, + dp1 H):_, + B,

with
B. = Xid3+a Z dokt1 + ¢ Z d2k+1 + Z Erb2kt1
kETO kETI\T, k€T, \To
+b > Xibok(Garsr —por) +d > Xibokt1(Sakts — pir)-
ke’]l‘7171 kE'JI‘n71

Let us denote B,, = (B2, B})!. The last equations yield in the matrix form:

Hn ~ Hn—l Bn ~n n ~n—kﬂ
™ ™

with ) )
B bpoo  dp1o tef b 0
T r ( bpor  dp1 s 0 d
One has ||1~3;l|| < 7 "B P"||. Tt is well known that 7" P™ converges to a
fixed matrix (see e.g. [13]) as P is a positive matrix with dominant eigenvalue

m. Since 8 < 1, the sequence P1 thus converges to 0 as n tends to 1nﬁn1ty In
addition, > ||P1 | is bounded, Iy — P is invertible and > n>0 P1 converges

to (I — P1) 1 In order to use Lemma 5.2, we need to compute the limit of
B,,/7". First, we prove that

> erborri = o(x™), (6.4)

k€T, \To

for i € {0,1}, thanks to Lemma 5.1. Indeed, set G = F©, Hy = dop1s, Gi = cg.
Thus hypothesis (i) of Lemma 5.1 is obvious, (ii) comes from (HN.1) and
(HN.2). Finally, the last assumption (iii) holds, since

n+1
Z 62k+1 Z ZE = O(ﬂ—n)v
k€T, \To (=1

the last equality coming from (2.7), which holds thanks to (HO). Now, we turn
to the terms

Z X0k 1i(02(2k4i)+j — Pij) = Z Xk52k+z'(égk+i —pij),

keT, keT,
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for (i,7) € {0,1}?. We use again Lemma 5.1, with the following setting: (G,) =
(Zny1 V Fog1), He = Xibopyi, G = (. — pij- For k € Gy, we check
that Xydor+s is G,—1-measurable, since Xy, is F,-measurable and do4; is Z,-
measurable. Next, because of (HI) and of the independence of the sequence
(C1)s ElCss — Pij|Zn V Fn] = 0. The same independence hypothesis yields that
E[GrGp|Z, V Fu] # 0 only if k = p, and then equals o7;. Finally,

Z (Xbok4i)? Z XP0ok4s = O(n™),

keT, keT,,

thanks to Lemma 6.1. Now, Lemma 5.1 allows to conclude that

Z X021 (02(2k4i)+5 — Pig) = o(m"), (6.5)
keT,,
for (i,7) € {0,1}2. Next, Lemma 5.3 gives the limit of the term >, cpi Gop+j,
for (i,7) € {0,1}2, so that we finally obtain:
. Bn m az’poo + cz'pio gl ¢ [ a2’
s =W ( az’po1 + cz'pin ) WoP e &5
and we use Lemma 5.2 to conclude. O

Remark 6.4. Putting together Proposition 6.3 and Eq. (6.5) above, we imme-
diately get that under the same assumptions as that of Proposition 6.3,

7T .
lim — Z XkO2k+i02(2k4i)+j = mhlpz.jV[/ a.s.

n—oo Tr
keT,,

for all (4,7) € {0,1}?, result we will use for the study of the limit of > X2dog1;.

6.3. Asymptotic behavior of the sum of squared observed data

We now turn to the asymptotic behavior of the sums of the squared observed
data. Set K| = Y, cp Oornyi Xy, for i in {0,1}, and K,, = (K}, K})". The
following result gives the asymptotic behavior of (K,,).

Proposition 6.5. Under assumptions (HN.1), (HN.2), (HI) and (HO), we

have the convergence:

lim ﬁ S Wk a.s.,
n—oo M T—1
where
2
R T <l IR S
k1 (2 +0%)z' + 2edh )’
and

S A I
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Proof. We use again Equation (2.1) to prove a recursive property for the se-
quence (K ). Following the same lines as in the proof of Proposition 6.3, we
obtain:

n— @Cg
+ -2 = PyKo+ Z P, —.
£=1

where C,, = (CY,CL)! is defined by

Ch = Xibapi+a® Y Sopi+0" D> Xi0or(Oakss — pos)
kEeTY, k€T, —1

+2ab Z Xi0ok04k1i + 2a Z €kb2k+i + 2b Z X[%]Eké%_,_i
k€Tn—1 kTS kT,

+ Z Exdakyi + Z Sokti + d* Z XE0ok+1(Oaproti — p1i)
k€T, \To kETL\To k€T, -1

+2cd Z Xk02k+104k+2+i + 2¢ Z €xd2kyi + 2d Z X[§]5k52k+ia
k€Tn-1 keTL\To keTL\To

for i € {0,1}. Note that ||P2H < W‘"ﬂQ"HP"H so that P2 converges to 0. In
addition, ) ||P2 | is bounded, Iy — Py is invertible and > n>0 P2 converges

to (I — Pg) 1 In order to use Lemma 5.2, we have to compute the limit of
C,,/m". Following the proof of (6.4), we already have, for (i,5) € {0,1}2,

Z Exdok+i = o(m™) a.s.

keT,

We now turn to the terms Y, p X202k 1i(02(2k+i)+5 — Pij)for (i,5) € {0,1}2.
To deal with these terms, we use Lemma 5.1 with the same setting we used to
prove Eq. (6.5), except that we replace Xj with X7. Assumptions (i) and (ii)
of Lemma 5.1 have thus already been checked, and regarding (iii), we have
>oker, , X2kt = O(7") a.s. thanks to Lemma 6.2. We conclude that

Z X7 00k+i(O2(2k1i)+5 — Pij) = o(m™)  as.
k€T, 1

Next, we study >, X(51€k02k+5, for (i,7) € {0,1}2. We use the same mar-
tingale tool, so to speak Lemma 5.1, with G = FO, H), = X[ ]52k+j]l{k€w} and
G) = e). Assumptions (i) and (ii) are easily checked, and since

Z Xﬁ%]é%-i-j = Z Xiba(htiys < Z Xiboyi = O(x"),

keT?, k€Tn 1 k€Tn 1

the last equality coming from Lemma 6.1, assumption (iii) is satisfied and

Z X[g]sk(SQkJrj = 0(71'”) a.s.

keT?,
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Now, Corollary 5.6 yields that for i € {0,1},

. 1 2 _ 2 0 N
nl;ngo p Z exdokti = 0 (poiz” + priz )mW a.s.
k€T, \To
Finally, Remark 6.4 gives the limit of 77" >, ¢ Xx0ok1i02(2k+4)4, and Lem-

ma 5.3 that of 77" ZkeTj 02k, SO that we finally obtain

C., Wr [ poo pro y (a® +0%)2° + 2abh®

a.s.

n—oo ™ mw—11\ Po1 P11 (c? +0%)2! + 2cedh!

And we conclude using Lemma 5.2 again. O

Propositions 6.3 and 6.5 together with Equation (2.7) give the asymptotic
behavior of the matrices SO and S},. The next result gives the behavior of matrix
S%l given through the quantities Zke'ﬂ‘n dok02k+1 Xk and Zkem SokO2k+1 X7 It
is an easy consequence of Propositions 6.3 and 6.5, together with Lemma 5.3
for the first limit.

6.4. Asymptotic behavior of covariance terms

Finally, we turn to the asymptotic behavior of the covariance terms, which
are involved in matrix S%'. We thus define HY' = > ker, 02k02k+1 X and

Kol = Yer, O2k02k41 XF.
Proposition 6.6. Under assumptions (HN.1), (HN.2), (HO) and (HI), we

have the almost sure convergences:

1 s
i _ _
Jim > Garbakia — Wn(1,1),
keT,,
01 01
im = = T wp%l gnd lim = = T g0l
n—oo N T—1 n—oo M T—1
where
p(1,1) = p@1,1)2° +pM(1, 1), (6.6)
Ko ht
ROt = pO(1,1) (azo + b—) +pM(1,1) (cz1 + d—) ,
T T
k0 ho
Ot = pO1,1) (a220 + b=+ 2ab—>
™ T

k! ht
+pM(1,1) (0221 +d>=— + 2cd—> +02p(1,1).
™ T

Proof. The first limit is a consequence of Lemma 5.3. Next, using Eq. (2.1)
we obtain H)'7r~™ and K\'m~" in terms of ">, ) Ok, H! _ym~™ and

K! 7™ and the result follows from Propositions 6.3 and 6.5. O
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Proof of Proposition 4.2. We are now in a position to complete the proof of
Proposition 4.2. Simply notice that we have proved in Propositions 6.3, 6.5 and
6.6 all the wished convergences, except that we normalized the sums with 7.
Thanks to Lemma 2.1, we end the proof. Il

Remark 6.7. In the case of fully observed data, the matrix P is a 2 X 2 matrix
with all entries equal to 1, m equals 2 and the normalized eigenvector z equals
(1/2,1/2). One can check that in that case, our limits correspond to those of [3].

7. Asymptotic behavior of the main martingale

Theorem 4.4 is a strong law of large numbers for the martingale (M,,). The
standard strong law for martingales is unhelpful here. Indeed, it is valid for
martingales that can be decomposed in a sum of the form Y, , ¥,_1&, where
(Ty) is predictable and (&) is a martingale difference sequence. In addition, (¥)
and (&,) are required to be sequences of fized-size vectors. Such a decomposition
with fixed-sized vectors is impossible in our context (see Lemma A.2), essentially
because the number of observed data in each generation asymptotically grows
exponentially fast as 7. Consequently, we are led to propose a new strong law
of large numbers for (M,,), adapted to our framework.

For all n > 1, let V,, = M.X. 1 M, where ¥, is defined in Section 3.1.
First of all, we have

Vn-i—l
= (M, +AM, 1) (M, + AMp11),
= VML= -2 M, 4 2ME S P AM, - AMY S VAM,
Note that M!X 'AM,; and AM! 3 "M, are scalars, hence they are
equal to their own transpose and as a result, one has M!> 'AM,,; =
AM;E;anH. By summing over the identity above, we obtain the main

decomposition
Vn+1 + A, =V + Bn+1 + W1, (7-1)

where
A= My -2 My,
n 221 n
Boi1 =2 MS'AMi1, Wy =» AM} 3 AM .
=1 =1

The asymptotic behavior of the left-hand side of (7.1) is as follows.

Proposition 7.1. Under assumptions (HN.1), (HN.2), (HO) and (HI), we
have

, Vi + A, 4(m—1
lim 165 50— SR it )

lelg a.s.
n—-+o0o n
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Proof. Thanks to the laws of large numbers derived in Sections 5 and 6, the
proof of Proposition 7.1 follows essentially the same lines as [3] and is given in
Appendix A. O

Since (V,,) and (A,,) are two sequences of non negative real numbers, Propo-
sition 7.1 yields that 1|gx|>0}Vn = O(n) a.s. which proves Equation (4.2). We
now turn to the proof of Equation (4.3). We start with a sharp rate of conver-
gence for (M,,).

Proposition 7.2. Under assumptions (HN.1), (HN.2), (HO) and (HI), we,
we have, for allm > 1/2,

Lies >0p | My [I°= o(|T;,_;In") a.s.

Proof. The result is obvious on £. On &, the proof follows again the same lines
as [3] thanks to the laws of large numbers derived in Sections 5 and 6. It is given
in Appendix B. O

A direct application of Proposition 7.2 ensures that 1|g: |0} Va = 0(n") a.s.
for all n > 1/2. Hence, Proposition 7.1 immediately leads to the following result.

Corollary 7.3. Under assumptions (HN.1), (HN.2), (HO) and (HI), we
have

A, 4(r—1)
lim 1gg- — =
Jm T >0~

Proof of Result (4.3) of Theorem 4.4. First of all, A,, may be rewritten as

2
ol a.s.
T &

An =Y My -5 YM = Mz MPas P My,
/=1 /=1

where A,, = I, — £1/% 5-1511/2  Thanks to Corollary 4.3, we know that

. T™—1
nli)II;O ]]'{‘GZDO}A" = TI4]].§ a.s.
Besides, Corollary 7.3 yields that A, ~ anA402 a.s. on &. Plugging these two
results into the equality

— 1 _ - - -1 -
Ao =" Mis M+ Mis (Ag I 14) x, 2 M,

s s
/=1 =1

gives that > M(X, " M, ~ A, == a.s. on € and convergence (4.3) directly
follows. O

8. Proof of the main results

We can now proceed to proving our main results.
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8.1. Strong consistency for 6,

Theorem 3.2 is a direct consequence of Theorem 4.4.

Proof of result (3.3) of Theorem 3.2. Recall that V,, = M! > M, It clearly
follows from Equation (4.1) that

Vo = (0, — 0)'S,_1(0, — 6).

Consequently, the asymptotic behavior of §n—0 is related to the one of V,,. More
precisely, we can deduce from Corollary 4.3 and the fact that the eigenvalues of
a matrix are continuous functions of its coefficients the following result

Amin Z:n
lim ]]-{|G*|>O} ( )

et W = /\mm(Z)]lg a.s.

where Apin(A) denotes the smallest eigenvalue of matrix A. Since L as well as
Y is definite positive, one has Apin(X) > 0. Therefore, as

<
o )\mln(zn—l) ,

we use Result (4.2) of Theorem 4.4 to conclude that

n log [T, 4|
L oor|n — 02 =0 (L)1, =0 2811l g 8.
fe; >0 I (|1r 1|) € ( T /e

which completes the proof of results (3.3). O

16, — 6]* <

We now prove the quadratic strong law (QSL).

Proof of result (3.4) of Theorem 3.2. The QSL is a direct consequence of re-

sult (4.3) of Theorem 4.4 together with the fact that 0, — 6 = > M,.
Indeed, we have

1 & .
Lij: >0~ D My Mo
/=1

1 ~ ~
= Lepo 2(04 —0)'3,_1(0,—0)

(=1
)P
= H{IG*|>0}_Z|T5 1| )]l{|@ 1‘>0}|11‘* 1|(04 0)
=1 _
I m o .
= 1{|GZ|>O}EZ|T571|(0€_e)tz(el—0)+0(1) a.s.
/=1

which completes the proof. Il
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8.2. Strong consistency for the variance estimators

For n > 1, set
¢ e ~ ~ ¢
Vi = (02k€2k, O2kt1820+1) Vi = (62kE2k, 02k+1E2k+1) -

The almost sure convergence of 52 and p,, is strongly related to that of Vk —Vi.

Proof of result (3.5) of Theorem 3.3. Equation(3.5) can be rewritten as

: 1 =
lim ﬂ{\@;|>0}ﬁ Z Vi — ‘/kH2 =4(7 — 1)02]l§ a.s.

n—oo
keT, -1

Once again, we are searching for a link between the sum of |V, — V|| and the
processes (A;,,) and (V,,) whose convergence properties were previously investi-
gated. For i € {0,1} and n > 0, let

n

B — do(2m)+i da(2n 1 1)+i do(ant1-1)4i
52(2n)+iX2" 52(2"+1)+iX2"+1 52(2n+1—1)+iX2"+1—1

be the collection of (dog+i,dok+iXk)t, k € Gy, and set

) 0
(T )

Note that ¥,, is a 4 x 277! matrix. For all n > 1, we thus have, in the matrix
form

SNV=Vill? = > do(Ear — e2k)? + Sarpr (Forsr — 2641)%,
keG,, keG,
= (0, —6)'¥,¥ (6, —0),
= M.>3.L,9,¥9,3 1 M,,
M3, A,z M,
where

Ay =3, 00,08 1P =3 (- 2 )8,
Now, we can deduce from Corollary (4.3) that
nh_)rI;O ]l{\G;*l\>O}An =(r— 1)14]1@ a.s.

which implies that

Lies s0p O IV — Vil = MLS L M, (1 — 1+ 0(1)) Ljje: 150y ass.
KEG,
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Therefore, we can conclude via convergence (4.3) that

. 1 =
lim Tgje;)50) > IVe—Vi)?

n—oo

k€T, -1
: 1 ¢ 1
= dm Lgeo ;MEEZAME = 47— 1)o’1z as.

which completes the proof. O
Proof of result (3.6) of Theorem 3.3. First of all, one has

~ 1 <

0721_0721 = |T*| Z (HVkHQ_HVkH2)7

" RET, 1

1 ~ ~
= w2 (IVe=VilP +2(Vi = Vi)'Vy).

Tl S,
Set .
Po= > (Vi-VR)'Vi=> Y (Vi-Vi)'V,
KETy—1 (=1 kEGy_y
We clearly have

APyy1 =Py — P = Z (ﬁk - Vk)tvk-
keG,

One can observe that for all k € G,,, Vi—Vyis FO-measurable. Consequently,
(P,) is a real martingale transform for the filtration F©. Hence, we can deduce
from the strong law of large numbers for martingale transforms given in Theorem
1.3.24 of [6] together with (3.5) that

Ligy>01Fn =0 Z Vi = ViI? | =on) a.s.
kETn_1

It ensures once again via convergence (3.5) that

: T3]~ 2y _ : 1 % 2
Jim Ly 0y (00 — o) = lim Lgegsop - S V=V
k€T, -1
= 4(r—1)o’lg a.s.
which completes the proof of result (3.6). O

Proof of results (3.7) and (3.8) of Theorem 3.3. We now turn to the study of
the covariance estimator p,. We have

N 1 o~
Pn=Pn = i E 2k 02k+1(E2kE2k+1 — E2kE2k+1),
n=1l ger,_,
1 - - 1
W E Ok (Ear — €2k )02k+1(Eakt1 — E2k41) + WQm
n—1 n—1

keT, 1
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where
Qn = Y Ookbort1(Eak — €2x)e2k 11 + Oakdoni1 (Bari1 — Eani1)e2
keT, 1
= Y (Vi=Vi)'IVy,
keT,—1
with

0 1
e (00).

The process (Q,,) is a real martingale transform for the filtration F© satisfying

Qu=o Y IVi=Vill*]| =o0(n) a.s.

keT, 1

It now remains to prove that

: 1 ~ ~
Jim e >0y~ Z O2k02k+1(E2k — €2k) (E2kt1 — E2k41)
n k€Tn 1
= lim B _ p(r — Dtr (L") "1 (L") (L) )1z a.s. (8.1)
n—,oo n £ o ’

where .
Ry=) Ms; (T2 0 ®01(2)1)) 5 M.,
r=1
where ® denotes the Kronecker product of matrices, i.e.
0 P

Jo @ @) (@) = < B0 (301! 0

and <I>21 is defined similarly as <I>3 and <I>% by the collection of (daxd2k+1,
Sondar 1 Xi)t, k € Gp.o As ®0H(@M)E = 8% — §Y | proposition 4.2 implies
that

lim 2 (T, @ @0 (@S 1 = (r - )S 2T, 0 LS Y2 as.

n
n—oo

so that the asymptotic behavior of R,,/n boils down to that of
ST MBI 0 L s M,
=1
A proof along the same lines as in Section 7 finally yields the expected results,

i.e.

T—1

. Ry, - -
nli)n;oﬂ{‘gz‘>o}7 = p tT((Ll) 1(L0’1)2(L0) 1)]].§ a.s.
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which completes the proof of convergence (8.1). We then obtain

!

25— ) = o Tt (L) EODAEY) g s

Jim 1gi6x1>0)
which completes the proof of Theorem 3.3. O

8.3. Asymptotic normality

Contrary to the previous literature on BAR processes, we cannot use the central
limit theorem given by Propositions 7.8 and 7.9 of [11] as in [8, 3] because the
normalizing term is now the number of observations and is therefore random.
The approach used in [5] strongly relies on the gaussian assumption for the noise
sequence that does not hold here. Instead, we use the central limit theorem for
martingales given in Theorem 3.11.10 of Duflo [6]. However, unlike the previous
sections, this theorem can not be directly applied to the martingale (M,,) be-
cause the number of observed data in a given generation grows exponentially
fast and the Lindeberg condition does not hold. The solution is to use a new
filtration. Namely, instead of using the observed generation-wise filtration, we
will use the sister pair-wise one. Let

go OV {061 X1, (626 X2k, 02k+1X2k+1), 1 <k <p}

be the o-algebra generated by the whole history O of the Galton-Watson pro-
cess and all observed individuals up to the offspring of individual p. Hence
(O2kEok, Ookt+1E2k+1) 1S g,?—measurable. In addition, assumptions (HN.1) and
(HI) imply that the processes (52k62k,Xk52k62k,52k+1€2k+1,Xk52k+1€2k+1)t,
(O2k€3; + Oak4165441 — (O2k + O2kg1)0?) and (oxdor+1(e2kE2r41 — p)) are Gp'-
martingale difference sequences. In all the sequel, we will work under the prob-
ability Pz and we denote by Egz the corresponding expectation.

Proof of Theorem 8.4, first step. We apply Theorem 3.I1.10 of [6] to the G-
martingale M™ = (M{")(,>1; defined by

. doreak
. Xp.0ore
Z with D, - k02kE2k
— O2k+1€2k+1
XkO2kt+1€2k+1

|T*

Set v, = |T,| = 2"*! — 1. Note that if k ¢ T}, then Dy = 0 which implies that

(n) o
M =

1
b —_— D
VIT3| ; . V |T* k;r:*
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As the non-extinction set € is in g,? for every k > 1, it is easy to prove that

Eg[DiD} |G 1] = E[Dy DG ]

0200 02005 Xk pO202k 1 PO2rdapt1 Xy
_ 02025 Xk, 0200, X7 pOokbori1 Xk  pOakloki1 X}
pOarbort+1  PO2klokr1 Xk 0209511 0209541 Xk,

POor0ok i1 Xy pOolop1 X7 0201 Xk 0201 X7
and Corollary 4.3 gives the Pz almost sure limit of the increasing process

T,
| > Ez[DyD}|GP ] = ——T. (8.2)

(n)
<M Zn= reTs |T*| n—00

|T*

Therefore, the first assumption of Theorem 3.I1.10 of [6] holds under P¢. We
now want to prove the Lindeberg condition that is the convergence in probability
to 0 of the following expression L,, for all € > 0:

Ln = | n|kezvﬂ‘*E |DkH ]]_{HDICH>€\/|T—*}|g]€ 1]
< |T*| S Bl Del 162 P(I1Dk | > ey/TT5] 168.1)
keTy,

< sukaOE[||DkHT|Q,?_1] Z E?[HDk”Q |gl?71]
B [T [T ’
keT?,
for some r > 2 and thanks to Holder and Chebyshev inequalities. Besides, using
Eq. (6.1) and similar calculations as in Lemma 6.1, one readily obtains

rn—1

8 7 k 7 R8Ty v 8
X8 <27(1-8 Zﬂln%|+2ﬂ X5,

Now, assumption (HN.1) together with 8 < 1 yield the existence of a constant
C such that

sup E[X}] < C(1 + E[XT]),
k>0

and recall that E[X?] < oco. Finally, since the entries of Dy, are combinations of
€ar+i and X, using again (HN.1) and (HI), one obtains that

SuE[| D69 ,] <00 ass.
k>0

with » = 8. The Lindeberg condition is thus proved, plugging the convergence
(8.2) into the following equality:

e 3 BellDulP 1084 = (o 3 BelDuDL 684]) o ()

keTy, keTy
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We can now conclude that under Pz
1 1
—— D, =

| n—1| kGT;71

———— M, 5 N(0,T).
|Tn—1|

Finally, result (3.9) follows from Eq. (4.1) and Corollary 4.3 together with Slut-
sky’s Lemma. O

Proof of Theorem 3.4, second step. On the one hand, we apply Theorem 3.11.10
of [6] to the GF-martingale M®) = (Mé")){pE} defined by

M™ —

p
P \/W—*ka

As above, one clearly has

MY = > o= VIT;l(on — %)
% |T* KTy,

Using assumptions (HN.1), (HI) and Lemma 5.3 we compute the limit of the
increasing process under Pz

and v = dokedy + Ookt18041 — (S2k + Oopt1)0”

2p(1,1
lim < M™ >, = (r* — %) + LY

n—00 ™

Therefore, the first assumption of Theorem 3.I1.10 of [6] holds under Pg. Thanks
to assumptions (HN.2) and (HI) we can prove that for some r > 2,

(2t —ot) Pz a.s.

supEe[[up 162, <00 as.
k>0
which implies the Lindeberg condition. Therefore, we obtain that under Pz

VITil(oh = 0%) = N0, (7 = o) + (Pt — o).

Furthermore, we infer from Eq. (3.6) that

lim /|T%[(G2 —02) =0 Pz as.

n—roo

which yields result (3.10).
We turn now to the proof of result (3.11) with another GY'-martingale (M (n))
defined by

2p(1,1)
™

1
MM = —— Z5zk52k+1(€2k82k+1 p)-
/|T*01 |k 1

As above, one easily shows that

1
M,S:f) = — Z 02i02i+1(€2i€2i41 — p) = \/ | Tnly|(pn — p)-

| n— 1|'L€T* 1
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Using assumptions (HN.1) and (H.I), we compute the limit of the increasing

process

lim < M™ >, =12

T4 — p? Pz a.s.
n—oo

We also derive the Lindeberg condition. Consequently, we obtain that under Pz,

one has
. c
VITiY [(pn — p) = N(0,0%7* — p?).

Furthermore, we infer from (3.8) that

lim /[T (P — pn) =0 Pz as.

n—oo

Finally, result (3.11) follows, which completes the proof of Theorem 3.4. O

Appendix A: Quadratic strong law

In order to establish the quadratic strong law for the main martingale (M), we
are going to study separately the asymptotic behavior of (W,,) and (B,,) which
appear in the main decomposition given by Equation (7.1).

Lemma A.1. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have

4(r—1
L)U2]lg a.s.
T

. 1
m Lie; >0y - Wn =

n—-+o0o

Proof. First of all, we have the decomposition W,, 11 = Tp11 + Rpy1 where

Z": AM, X 'AM 4y

7;7,—‘,—1 * ’
— T
AM (TS, =3 )AM
Rn+1 = Z |T*| .
(=1 ¢
We first prove that
) 1 4(r—=1) ,
1 ]1_ * —In = ———— ]1_7 =N A.].
Lim Ly >0y T o°lg a.s (A1)

As T, is a scalar and the trace is commutative, one can rewrite T,41 as Tpy1 =
tr(Z7V2H,, 1 27Y?) where

" AM AM
Mo =2 =+

{=1

Our goal is to make use of the strong law of large numbers for martingale trans-
forms, so we start by adding and subtracting a term involving the conditional
expectation of AH,, 11 given FO. We have already seen in Section 4.1 that for
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all n, E[AMnHAM +1|}'0] =T, — I',_1. Consequently, we can split H, 1
into two terms

I -Ty
Hpyr = Z Tﬂ + Ko,
=1

where

z": AM o AMy,  — (T =Ty )

ICri1 =
o |T;]

=1

On the one hand, it follows from Corollary 4.3 and Lemma 2.1 that

Fn - Fn—l o T—1
ngr—ir-loo ]l{\G*\>O} |T:;| = - I‘]lg a.s.

Thus, Cesaro convergence and the remark that {|G}| = 0} C {|G};| = 0} for all
¢ < nyield

1 | e —Ty
lim ]]-{\G*|>O} ZW = lim ]]-{\G*\>0}_Z]]‘{‘G*‘>O} |T*|

n—-+oo — n—-+o0o

T—1

I'ig a.s.

On the other hand, the sequence (IC,,) is obviously a matrix martingale trans-
form and tedious but straightforward calculations, together with Lemmas 6.1
and 6.2 and the strong law of large numbers for martingale transforms given in
Theorem 1.3.24 of [6] imply that 1+ |~0}/Cr = 0o(n) a.s. Hence, we infer from
the equation above that

lim 1yg- >0} ’H ; z a.s. (A.2)

n—-+oo
Finally, we obtain

m—1

T—1

lim 1{\@*\>0} T = tr(2_1/2F2_1/2)]lg: 40°1z as.

n——+00

which proves (A.1). We now turn to the asymptotic behavior of R, 4+1. We
know from Proposition 4.2 that 1{‘G;‘>0}(|T;|2;1 —X71) goes to 0 as n goes
to infinity. Hence, for all positive € and for large enough n, one has

ﬂ{\G;|>O}|AM2+1(|TZ|E;1 - 2371)AJ\4n+1| < 1{|G;|>0}46AM2+1AMH+1,
Using again that {|G;| =0} C {|G},, ;| = 0} for all £ <n + 1, we rewrite

AM (T3, =2 HAM 1,
Lie;,, 1500 Rnt1 =1qi; ,,1>01)_L{j6;1>0) T3] :
(=1
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Hence,
n AM@_HAMH-I
Liic;, 1503 Ruta| < 461{|G2+1|>0}Zﬂ{|65|>0}T

=1
" AM.,  AM

< 461{|G;+1|>0}Z+
— T3]

<

delyic:,,|>o0p tr(Hnt1).

This last inequality holding for any positive € and large enough n, the limit
given by Equation (A.2) entails that

1
1. 1 * _Rn = O .
Jm Loy >0y a.s

which completes the proof of Lemma A.1. O
Lemma A.2. Under assumptions (HN.1), (HN.2), (HO) and (HI), we have

1
].. 1 * _Bn = 0 .S
Jm Lye;jsop a.s

Proof. The result is obvious on the extinction set £. Now let us work on E.
Now for i € {0,1} and n > 1, let &, = (e2n4i,€2n 4244, - - ,52n+1_2+i)t, be the

collection of e, k € G, and set &, = (52, éi)t. Note that &,, is a column vector
of size 2"*1. With these notation, one has

Bui1 =2 MS,"AM =2 MZ, "W, .
=1 =1

The sequence (B,,) is a real martingale transform satisfying
AByi1 =By — By =2MLE, 10,6, .

Consequently, via the strong law of large numbers for martingale transforms,
we find that either (B,,) converges a.s. or B,, = o(< B >,,) a.s. where

<B>ppa=4) M '¥,C¥%; "M,
{=1

with

o p
C—( p 0_2)@12".

As C is definite positive under assumption (HN.1), one has C < 202Ign+1 in
the sense that 20%I5n 41 — C is semi definite positive. Hence, one has

< B>,41< 807 ZMEEZ“I’Z‘I’@Z;IMZ'
—1
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Now, by definition, one has

st (S @@ (s 0
s ( 0 (Sh' (@) (S}

We now use Lemma B.1 of [3] on each entry to obtain
> et <x -8
as the matrix [ in that lemma is definite positive. Therefore, we obtain that
n
<B>p<80” Y My(E, !l -5, )M, =80 A,
=1

Finally, we deduce from the main decomposition given by Equation (7.1) and
Lemma A.1 that

]l{|@;§‘>0} (Vn+1 + .An) = O(An) + O(?’L) a.s.

leading to 1{|gs|>0yVnt1 = O(n) and 1yg: |50y An = O(n) a.s. as Yy and A,
are non-negative. This implies in turn that 1g:|>0}Bn = o(n) a.s. completing
the proof of Lemma A.2. O

Appendix B: Wei’s Lemma

In order to prove Proposition 7.2, we shall apply Wei’s Lemma given in [16]
page 1672, to each entry of the vector-valued main martingale

n
t
M, = Z Z (02kE2k, 02k XkE2ks 02kt 162k 41, 02kt 1 XkE2k41) -
(=1 k€Gy_y
For i € {0,1}, denote
n n
P = Z Z O2k+i€2k+i and Q= Z Z O2kti XkE2k+i-
l=1keGy_1 (=1 keGy_q

On the set &, these processes can be rewritten as

n

Pi=> \JIGiy|vi, QL= ; V|Ge—1]wi,

=1
where
’U; Le: 1»@}% E 02k+i€2k+i
n—
Vv n—=11 kG,
w; Le: 1»@}% E O2k+i X kE2k+i-
n—
Vv n—=11 keG,, _,
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On the one hand, we clearly have E[v} ;|FC] = 0 and E[(v}, ,)?|F?] = o2 féjll

a.s. on €. Moreover, it follows from Cauchy-Schwarz inequality that

i 1 G |>0
El0h ) 170) = S{Gan 2 darniBledi 7Y
n keG,

+1{\G:l|>0}

Gepr 2o D OowridaurilS, ol P B ol

p€G, k#p

< 3C1yc: >0} Sup E[5§k+i|FS] a.s.
keG,
as Z 1G] is bounded.This implies that sup E[(v!, ;)*|F¢] < +00 a.s. Con-
sequently, we deduce from Wei’s Lemma that for all n > 1/2,
Lic:_, >0y (Pp)? = o(|T,_;[n")1g a.s.

On the other hand, it is not hard to see that E[w?_|FS] = 0 a.s. Moreover, it
follows from Cauchy-Schwarz inequality that,

E[(wy 1) 7]

L{c|>0
< % > o i XS i FOT+ 0% D0 Sappibaryi X X7
n keG,, pEGy, k#p
2
1
< 31y sup E[e) ZFS) — Sop i X7 a.s.
{16510 (ke(G]i (ks T |G?5|k§;;n okt i X

which is finite from Proposition 6.5. We deduce from Wei’s Lemma applied to
@y, that for all n > 1/2, 1qc:_ |501/|QpII> = o(|T},_;|n") a.s. which completes
the proof of Proposition 7.2. O
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