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Abstract. Two representations of the exceptional Jordan algebra are presented,
one in terms of bose vertex operators, and the other in terms of superstring
vertex operators in bosonised form, including their BRST ghost contributions.
It is also shown how the non-exceptional Jordan algebras may be constructed
similarly.

1. Introduction

Over the years it has been suggested that Jordan algebras, which originated in the
search for alternative formulations of quantum mechanics [1], might play a role
in the theory of colour and confinement [2], in supersymmetry [3], and more
recently, in the theory of superstrings [4-11]. In particular, physicists have been
fascinated by the existence of the unique, exceptional Jordan algebra which may
be represented in terms of three dimensional hermitian matrices with octonion
elements [12]. In fact Jordan algebras have led to insights more of a mathematical
than physical nature [13]. Perhaps string theory will be different, since it already
has strong connections with algebras in several ways. In particular, the vertex
operators of string theory are able, on the one hand, to represent the couplings of
strings, and on the other, to provide certain representations of Lie and Kac-Moody
algebras [14-16], and other interesting algebras such as the Virasoro algebra and
the algebra associated with the Fischer-Griess monster group [17]. It is therefore
natural to ask if there is a connection between vertex operators and Jordan algebras.
Indeed, there is a suspicion that there should be a relationship between the
exceptional Jordan algebra and the vertex operators of the superstring [5]. Our
aim in this article is to make this connection more concrete.

Since our main motivation is to uncover a relationship between the superstring
vertices [18-22] and the exceptional Jordan algebra, we shall use this particular
example to illustrate our ideas. However, the ideas are certainly extendable to the
other Jordan algebras and the relevant details will be explained in Sect. (4).

Abstractly, a Jordan algebra [12] is a real (finite dimensional) vector space J
together with a symmetric, but not necessarily associative, vector product satisfying
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the Jordan identity. Thus for any two elements X, Y of J their product is written
X° Y, and is required to satisfy

Xo(γoχ2) = (χoγ)oχ2m (1.2)

Commonly, however, we are interested in representing elements of J by hermitian
matrices whose entries are either real, complex, quaternion or octonion. In the
latter case, the matrices must be two or three dimensional, while in the other cases
the matrices may be of any size. Then, the symmetric product is defined to be the
anticommutator

X°Y = \{X,Y}=\{XY+ YX\ (1.3)

and, with the exception of the octonion case, Eq. (1.2) is not restrictive. In the
octonian case, Eq. (1.2) restricts the dimension of J as stated.

The exceptional Jordan algebra elements may be regarded as real linear
combinations of twenty-seven basis elements. These correspond to the three
diagonal units, et, i= 1,2,3:

(ei)kl = δikδil9 fc,/=l,2or3, (1.4)

and the twenty-four hermitian matrices, A^a) ίj = 1,2,3, with i<j:

(Aij{a))kl = aδίkδμ + άδuδjk, (1.5)

where a may be unity, or any one of the octonion imaginary units uh i = 1,..., 7.
In Eq. (1.5) a denotes the octonion conjugate of a. It is also convenient to define
accompanying matrices for / >j via:

Aij(a) = Aji(a). (1.6)

In terms of these elements the algebra may be written:

ei°ej = eiδii, (1.7)

\\Akl(a) i = korl
ei°Akl(a) = \2 kΛ ' . , (1.8)

[0 otherwise

) i <j, (1.9)

δaAjk(άb)

} i<j,k<l. (1.10)

These definitions extend to the other Jordan algebras, for which ij= l,...,JV,
except that in the cases for which N > 3 the units may only be chosen from among
the real, complex or quaternion numbers.

The twenty-seven basic elements of the exceptional Jordan algebra may be
regarded as a 27 of a non-compact E6 algebra, whose twenty-six non-compact
generators are themselves represented by traceless Jordan matrices, and whose
fifty-two compact generators close on F4 [12]. Moreover these latter generators
act as derivations on the Jordan matrices [12]. A distinguished set of derivations,
corresponding to a Z)4 subalgebra, are those which annihilate the diagonal elements
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eί'

(5^ = 0. (1.11)

Put another way, the action of the E6 generators may be taken to be

δxJ = XoJ, TrX = 0, (1.12)

δχγj = Xo(γoj) _ γo(χo j)9 TrX = Tr Y= 0, (1.13)

and this is the way we shall like to think of them whenever it is necessary to do
so. The fact that (1.13) is actually a derivation, i.e.

follows from the associator identity

(X, Y, W°Z) + (W, Y/Z°X) + (Z, Y,XoW) = 0, (1.14)

where,

(X, 7, Z) = X°{Y°Z) - (XoY)oZ.

Equation (1.14) itself is a direct consequence of Eq. (1.2). However, the fact that
any derivation has the form (1.13) is a theorem [12].

The F 4 subalgebra leaves invariant the quadratic form

while the full Eb has a cubic invariant:

C = Tr(X°(YxZ)l

where the Freudenthal product [13] is defined to be

YxZ= y ° Z i

It is interesting to note that the non-compact E6 also contains as a non-compact
subalgebra so(991), which like the compact subalgebra F 4 , contains D4. Note, the
quadratic form is not so (9,1) invariant.

Goddard, Nahm, Olive, Ruegg and Schwimmer (GNORS) [5] have demons-
trated that part of the Jordan product, Eq. (1.10), can be represented by vertex
operators defined on the shortest (i.e. length squared one) vector, spinor or
conjugate spinor weights of Z)4. This fact is interesting since these particular vertex
operators also occur in the superstring [22] viewed from the light-cone (or
transverse) gauge. They represent the Ramond [18] or Neveu-Schwarz [19] fields,
and the fermion emission vertex or its conjugate [20], respectively. GNORS did
not, however, represent the rest of the algebra, Eqs. (1.7)-(1.9), involving the
diagonal units ei9 and it is tempting to speculate that to do so must involve the
vertex operators of the covariant superstring. These, in turn, inevitably involve
factors containing BRST ghosts [21]. We shall demonstrate the sense in which we
have found this speculation to be reasonable, and the sense in which the ghostly
contributions are important for representing the diagonal units. It seems to us that
the covariant lattice formulation of superstring models [21] may contain interesting
structure, besides providing an approach to four dimensional string theories [23].
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Actually, we have not found it possible to extend the GNORS representation
to the remainder of the algebra in a straightforward way. Recall that their
representation was based on the operator product of conformal weight one-half
operators of the form,

K(ι;, z) V(s, ω) - (z - ω)" 1 / 2 K(s, ω), (1.15)

where v.s= — 1/2 and v + s = s. One would then expect a leading square root
singularity to occur in the operator products representing each of the non-zero
terms in Eqs. (1.7)--(1.9). The major problem is how to represent the idempotents
e{. In fact, we have not found a satisfactory way to do so via vertex operators. On
the other hand Eq. (1.8) suggests an alternative. Recall the operator product:

/ P(z)l/(/c,ω)-(z-ω)- 1/ /cK(/c,ω), (1.16)

where P(z) = idX(z). Equation (1.16) has the kind of structure required by Eq. (1.8)
except for the singularity, which fails to match the singularity in Eq. (1.15).
Unfortunately, even if the wrong singularity were permissible, we could not regard
the idempotents as components of the momentum operator, since

l P(z)k P{ω)~l-k(z-ω)

which does not match Eq. (1.7).
One possibility is suggested by the schizophrenic role played by the Jordan

elements themselves. As we have already mentioned, they can be regarded as a
twenty-seven dimensional representation of E 6 and so might be represented as
vertex operators defined on a set of 27 weights. We have tried that before and it
does not by itself work [9J. Alternatively, the twenty-six traceless matrices are a
subset of the generators of £ 6 , in the sense of Eq. (1.12). From that point of view,
we might expect to represent these elements as vertex operators or momentum
operators defined in terms of the E6 roots. That also cannot by itself work. Apart
from the objection raised above, the Frenkel-Kac- Segal (FKS) [14,15] mechan-
ism would force the operator products of these vertices to close within the
F 4 subalgebra, whose generators are not themselves represented as Jordan elements,
but rather as derivations.

We are led to suppose that the algebra cannot be represented in the normal
operator product way; some modification is required. For example, it is known
that the momentum operators alone corresponding to N string degrees of freedom
can represent the real Jordan algebras under a cross-bracket [17]. We have not
discovered a way to a generalize this idea nor can we guess its relevance for the
superstring. Another idea is to attempt to define a product using the action of E6

on its twenty-seven dimensional representation. After all, if we are to append an
"identity" operator to the set of twenty-six non-compact generators we ought to
be able to define a "product1' in which one factor is represented as a combination
of vertex operators defined on the roots of E 6, and the other is a combination of
vertex operators defined on the weights of Eβ. What we need is a correspondence
between the non-compact generators of E6 and each of the basis elements oϊ the
exceptional Jordan algebra. As we shall see, it will be necessary to extend the root
lattice by embedding it in a seven dimensional space, in order to define ^eh the
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identity operator. Supposing this, we shall have a set of twenty-seven operators,
denoted generically L{J^ with respect to which a general Jordan element J = ̂ ]j J-
is represented as

Similarly, we shall have a set of twenty-seven basis states defined on the weights
(or, using the usual arguments of conformal field theory, vertex operators) \Jt}
with respect to which a general Jordan element is expressed:

A useful observation is that among the twenty-seven states there is one, called the
identity |1>, which is annihilated by all the generators of F 4 (put J = 1 in Eq.
(1.13)). In particular, 11 > is annihilated by the non-zero commutators of the
non-compact Eβ generators L(J). We shall find,

(1.19)

L(J)L(K)\1) = L(J)\K) = \JoK} = L(J°K)\l}, (1.20)

as a consequence of the detailed action of the vertex operators on the states. Note
the product (1.20) is easily seen to be symmetric since

| J o / C > - | K o j > = [L(J),L(K)]|l> = 0. (1.21)

The Jordan identity becomes a statement about F4 generators and can be checked
directly without difficulty. At the level of the operators Eq. (1.2) becomes

[L(X\L(X oX)^=0. (1.22)

In terms of basis elements (1.22) may be written as

mΏ LiJk°Jύi = o, α-23)

and is reminiscent of a Bianchi identity. It is in the sense of Eq. (1.20) that the
whole Jordan algebra is represented in terms of vertex operators. We shall find
that the existence of an identity operator is closely related to the BRST ghosts.

In Sect. (4) we shall show how the same construction can be applied equally
well for the other Jordan algebras, although there is no apparent relationship with
any string theory.

2. Jordan Elements as Vertex Operators and States

E6 Roots and Weights. The roots of E6 may be expressed conveniently in terms
of the roots and weights of D 4 , and a set of (scaled) roots of Λ2:

' 0 ) (2 1)

φ ±ctij) ij= 1,2,3,

where ω 0 is any root of D 4 (taken to satisfy ω§ = 2), and ω i 2 , ω 2 3 , ω 3 1 are any
of the vector, spinor or conjugate spinor weights of D 4 , respectively. The vectors
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%ij are a scaled set of A2 roots:

Recalling the strategy outlined in the introduction, we shall regard the scaled A2

roots as embedded in a three dimensional space and able to be expressed in terms
of a "spray" of three real linearly independent vectors vh ί= 1,2,3, entirely
orthogonal to the Z)4 weight space. Thus,

α.. = v — v (2 3)

where,

v v =[1/2 + β i = = j (2 4)
ViVj [β i±j

Note, (2.3) and (2.4) imply (2.2) with no restriction on β. In addition

for any E6 root r.
The weights of the 27 of E6 may be expressed similarly,

where the vectors λtj are defined to be,

λij = Vi + Vj. (2-6)

Since the vectors vt are, for general β (β φ — 1/6) linearly independent, the weights
(2.5) are not symmetrically placed relative to the origin. Nevertheless, the inner
products between roots and weights are as they should be; that is,

[0 i = k

± 1/2 otherwise

or,

r w = 0 or + 1 .

The normalizations of the weights w depends on β,

+ ^ (2.8)
ww' = 4β or 1 -f 4β.

Hence, the weights are integral provided 4β is a integer. As we shall see, particularly
interesting cases occur for β = 0 or — 1/4. The signature of the metric in the subspace
spanned by the vf is also dependent upon β. In fact, the eigenvalues of the metric
are always

\ + Nβ, \{N- 1 times) (2.9)

for any N dimensional spray. Thus, for β = 0 the metric is Euclidean as expected,
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but for β = — 1/4 the space is Minkowski, provided N §: 3. For TV = 3 the metric
has eigenvalues,

and the vectors λVj are each light-like. In the latter case, the E6 roots and weights
have been embedded in a seven dimensional Minkowski space; a fact which certainly
suggests a connection with the superstring vertices and ghosts in their bosonized
form [21]. In the former case, β = 0, the weights and roots together are roots of
EΊ. Finally, there is another set of twenty-seven weights corresponding to (2.5),
with the signs of the v's reversed:

f i , - / 0 . ) z = l ; 2 , 3 ,

E6 and F4 Vertex Operators. The E6 algebra can be represented in terms of vertex
operators using the FKS construction [16]. The vertex operators are defined using
the string field,

Y ~z~\ α = l,...,6, (2.11)
«lz n
to

and the roots, r, (2.1). Explicitly,

where

V(r9 z) = : exp ίr X{z): C{r\ (2.13)

and the factors C(r) are special functions of momentum, necessary for the correct
insertion of the appropriate cocycles. Thus setting

C{r) = eιr qC(r)9

we have the (associative) product,

C(r)C(s) = (~γsC(s)C(r) = ε{r,s)C(r + s), (2.14)

implying that ε is a 2-cocycle:

ε(r, s)ε(r + s,t) = ε(r, s + t)ε(s, t) (2.15)

and

^ J n . (2.16)S(r,s) ^ J ( ( n .
ε(s, r)

The symmetry factor in brackets is appropriate for the E6 roots, but not necessarily
for the weights. We shall also assume C(r)C(~r)= 1, C( — r) = C\r\ which amounts
to a partial "gauge" fixing of the cocycle.
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In terms of the vertex operators and momenta pa, the E6 algebra is

[V(r\

Equation (2.11) refers only to the six components of the string field appropriate
to the six-dimensional Euclidean lattice spanned by the roots of E6. However, as
we have indicated in the introduction, we shall need an extra additional component
in order to be able to accommodate the Jordan product. Using the extra component,
the twenty-seven states corresponding to the weights in (2.5) are,

|w> = e i w * |0>, (2.17)

and we note the action of the vertex operators:

/?|w> = w|w>,

, ^ . Γ ^ - \ (2.18)
r, w)|w-hr> r w = — 1 .

In the latter part of (2.18) we have assumed the extension of the cocycle and
symmetry factor, S(x, y) = ε(x, y)/ε(y, x), to the roots and weights in the seven
dimensional space.

Our next task is to divide the E6 generators into a set closing on F 4 , and the
other twenty-six non-compact generators. Fortunately, this is easy to do with the
aid of an involution automorphism, or second order "twist," of the roots. The
appropriate automorphism, σ, has the effect of interchanging ωtj + aι} and ω{j — α ι ; ,
but leaving the D 4 roots, ω 0 unaffected. That is

σ(ωtj ± Zij) = ωη + αi/9 σ(ω0) = ω 0 . (2.19)

Lifting this automorphism to the algebra, it is clear that four dimensions worth
of momenta (the D4 Cartan subalgebra), is invariant, but the remainder, vt p,
changes sign. It is equally clear that while the vertex operators corresponding to
the D 4 roots are invariant, there will be combinations of the twenty-four pairs of
vertex operators V(ω^ ± a(J) which are not. In other words the twenty-seven
operators we are after, will be the twenty-four non-invariant combinations of vertex
operators, and the momenta in the space spanned by the "spray" of vectors vh

(2.3), (2.4). More specifically, we must ensure the operators representing the Jordan
elements are hermitian. Thus, we shall write

I ^ K ) = I K / K + « y ) ± κy(v>a - αo )
+ b*tJV(-ωu + α o ) ± < / ( - ω ί 7 - α l7)], (2.20)

where the plus sign corresponds to the twist non-invariant generators, the minus
sign to the twist invariant generators. The twist lifts into the Eb algebra via,

σ(V(r)) = σrV(σ(r)\ (2.21)
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where

σσir)σr=\, σσ(r) = σf,

σxσvε(σ(x), σ(y)) = σx + yε(x, y).

To ensure the twist invariant combination is the expected one, we also have

<*«„= -Kfω^. (2.23)

The twist invariant combination must annihilate the state |1 >, which we naturally
define to be

| l>=Σk>, k > = 120 = 14), (124)
ί

and provides a further relationship between the coefficients aωtj and bωιj. Specifical-
ly, it is,

V , Φ λ ; + αi7, /Ίj) = bω^{ωι} - α i j5 λu). (2.25)

Equations (2.23) and (2.25) together provide an expression for the phase, σr,
occurring in Eq. (2.21) which must be consistent with Eq. (2.22). Indeed, using
(2.23), (2.25) and the cocycle condition (2.15), Eq. (2.22) reduces to a correct
statement about the symmetry factor (making use of the bilinearity of the extended
symmetry factor).

Equation (2.20) supply twenty-four of the Jordan operators. The other three
are momentum contributions of the form

U.ed = xsp, (2.26)

where the vectors γa are linear combinations of the three v's, designed so that

Thus,

*fvJ = ± δ ^ = v'-y2ΪNβΣ^ (2-27)

and the identity operator L(l) is given by

= ϊ ^ ? v ' P = ̂  (2.28)

It is easy to check that L(l) commutes with every E6 generator, and hence everything
in the list (2.20). Moreover, its action on the twenty-seven weights is as it should
be, L{ϊ)\\v) = |w>. These facts follow from the observations

s r = O, s-w=U (2.29)

where r may be any E 6 root, and w is any of the 27 (not 27') weights, Eqs. (2.5), (2.6).
We note also, the operators L(et) satisfy

X | e J . > = [£?,>, (2.30)
j

as they ought.
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Finally, we end this section by examining the action of each of the twenty-four
twist non-invariant operators (2.20) on the identity state:

+ kA-Vii + aij>λu)\ ~ ωu + λa>> (2 3 1 )

where we have made a partial use of Eq. (2.25). It is easy to check,

U + ((Dij)(U + (ωtj)11 >) = Iaω | 2 ( | λ d > + |λj->), (2.32)

which implies the coefficient aω is a phase, in order to guarantee the product (1.9).
Again, (2.32) follows from the cocycle condition and the properties of the Eb

symmetry factor.

3. The Jordan Algebra

For each of the special weights of D 4 , we have defined a hermitian operator, (2.20),
and a corresponding state (2.31), each of which depends upon a phase, aίOιj, yet to
be determined. If we were to follow as closely as possible the manipulations of
GNORS we should be forced to select these phases, and a representation of the
cocycles, so that each hermitian operator, corresponding to a certain triple of
weights selected from ω J 2 , ω 2 3 , ω 3 ί , would correspond to an off-diagonal Jordan
matrix containing either unity or one of the octonion units as elements. Then the
algebra product (1.10) can be checked directly.

An alternative, and more general, strategy is to define the product in terms of
the operators (2.20) and their action on the weight states, and check the Jordan
identity directly without any specific reference to the octonions, or any particular
choice for the cocycle. To facilitate this check we shall change notation slightly to
incorporate the unspecified phases. Thus, we write

L(a, jQj y) = U + ( ω ^ ), | a | 2 = 1, (3.1)

where by convention we shall suppose,

O . — (!) • -4- Ύ . O . — (!) . — ΠF. . — it). . -\- Ύ ..
Λl£ιj ~~ iUιj ^ M] > ^άμ ~~ LUίj ^ij ~ UJιj ' ^jf

where oji} is any of the weights in the ijth weight set, and so,

Notice, there are eight independent operators for each pair (ij), as there should be.
Similarly, the state corresponding to L(a, Ωtj) is denoted by

L(fl,Ωu)\\ > - Iα,Ωij> = aε(Ωii9λ^ω^ + λtjy + b*ε(-Ωji9λ}j)\ - ωtj + λu). (3.3)

Then, the Jordan algebra is defined in terms of the operators L(a, Ωt) and L(ef),

with the basic products:

0 i Φj or k

a,ΩJk} i=j or fe
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f° ^J°ΐk

 β5)
\l/2L(α,fl,t)|l> i=j or k,

L(fl,Λi/)L(fl',Λ}t|l > = L(a,Ωi,)\a',Ω'ik) = \a",Ω-k) (3.6)

= L(a",Ω'!k)\\} iΦk, (3.6)

with a" = aa'ε(ΩiJ,Ω'Jk), Ω'{k = Ωij + Ω'jk, provided ωi} ω'jk= — 1/2 (we need not
consider the case when co^-w^ = 1/2 separately since we can re-express it above
using the relations (3.2)),

( θ ωij'ω'ij = 0

LJ(a,Ωiί)Uat

9Ω'iJ)\iy = i Re(αV)(Lfe) + L{e))\\ > β = β ' u (3.7)

[ Re (α

As we remarked before, each of these products is actually symmetric since the
commutator of any pair of L's is an F 4 generator which annihilates the identity
state by construction.

To establish that Eqs. (3.4)-(3.7) do indeed yield a Jordan product, the identity
(1.23), equivalent to the Jordan identity, must be checked. This is not difficult.
Basically, there are four different possibilities.

(i) Three diagonal units L(e X L(<?; ), L(ek); each term in the identity is trivially zero,
(ii) Two diagonal units, L(e )̂, L(ej) and one off diagonal unit L(a,Ωkl)\ the
identity is trivial when / and j match k and /, respectively (or vice versa), in which
case useful facts are

tχi>p,U+(ωίjn=±U-(ωij\ (3.8)

from which the identity follows, using also (3.5).
(iii) One diagonal unit, L(et), and a pair of off diagonal units L(a, Ωkl), L{a\Ω'nm); the
identity requires checking when / = m and i = either / or n. It follows from (3.8), using
(3.5) and (3.6) to define the products of the various units.
(iv) Three diagonal units, L(a,Ωη), L(a\Ω'kl), L(μ",Ω"nm)\ since the pairs of labels
may only be chosen from the set {(1,2), (2,3), (3,1)} there are three possibilities. If
(ij) = (fe, /) = (n, m) the identity follows from (3.7) and (3.8). If (ij) = (k, I) φ (n, m) the
identity follows from (3.6), (3.7) and (3.8). If the three labels are different the identity
is trivially satisfied unless ω + ω' + ω" = 0. In that case, it is useful to note

^ ^ j

 fa"ε{Ω'jkM^)ωifp, (3.9)

and

ε(Ωφ Ω'jk) = εiΩ'j^Ω'ώ = ε(Ω^ β / ;), (3.10)

from which the identity follows. Equation (3.9) is a direct consequence of the
algebra of the vertex operators defined in (2.20), and the condition (2.25).

4. Local Vertex Operators

To each E6 generator, there corresponds a vertex operator. To each weight state
we also have a corresponding vertex operator V(w, z). However, although the latter
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have local operator products with respect to the former, they will not in general
be local with respect to each other. Special cases occur when 4β is an integer, as
we have already mentioned. We shall explore the implications of the choices
4β = 0, — 1 in this section.

We have seen in what sense any twenty-seven dimensional representation of
Ee generates a Jordan algebra provided the roots and weights are non-trivially
embedded in a seven dimensional space. The leading term in the operator product
corresponding to these weights is:

V(w\ z) V{w\ ω) ~ ε(w, W)(z - ω)w'w> V(w + vv', ω). (4.1)

The relations (2.8) imply these operator products are non-local unless 4β is an

integer. An obvious choice is to take 4β = 0, in which case the right-hand side of

Eq. (4.1) is never singular. Moreover, in that case, the length of any weight is ^/2,

the same as a root. The metric in the space spanned by the weights is Euclidean.

In fact, these weights, together with the 27', Eq. (2.10), contribute the set of roots

which must be added to the E6 roots to yield the roots of EΊ. The vector s, (2.28),

used to define the identity of the Jordan algebra is a special EΊ weight corresponding

to the label:

In other words, the highest weights of the 56 representation of EΊ. These statements
match similar statements made in ref. [11].

Another choice is 4 β = - 1. The operator products (4.1) are now, in general,
singular. Also, the length of any weight is unity, and so we would expect the vertex
operators to be fermionie in character. Indeed, the naive conformal weight of F(w, z)
is w2/2= 1/2. This is certainly their conformal weight relative to the standard
energy-momentum operator:

T(z) = tP(zyP(z) = ΣLnz-»-2. (4.2)

In addition, the appropriate choice for the symmetry factor is

S(w,ω/) = ( - Γ w ' + w2w'2, (4.3)

the bilinear choice which guarantees that vectors of odd (even) length correspond
to fermionie (bosonic) vertex operators. (The choice (4.3) is in accord with all our
previous arguments involving symmetry factors.) However, as we pointed out
briefly, earlier, these weights are not standard since the metric in the space spanned
by them has signature ((-h)6, ( —)). Indeed the vectors λu are light-like, while

s2 = (-2γjvi)
2=~3. (4.4)

To gain a better understanding of the meaning of the vector s we notice that if
we shift the Virasoro generators (4.2) by an amount proportional to s:

L ; - L , + i ( π + l ) s αH, (4.5)
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the central charge is now given by

D 2

Also, with respect to the new Virasoro generators the vertex V(w, z) has conformal
weight

4 w = iw(w + s), (4.7)

precisely unity since ws = 1, Eq. (2.29). We also remark, the anomaly (4.6) is exactly
appropriate to be cancelled by an ordinary bosonic string anomaly in ten
dimensions (D/12 - 26/12 = - 16/12). In other words, the choice 4β = - 1 yields
a set of vertex operators which correctly include the ghostly contributions of the
covariant superstring vertices. Moreover, the identity operator in the Jordan
algebra is determined by the background "ghost charge," as is easily checked on
comparing (4.7) with the standard formulae for the conformal weights of the
super-conformal ghosts of the superstring. This seems to us to be a suprising and
mysterious connection.

By choosing a specific form of basis we may write

vt =(0,0,-1/2),

v2 = (-l/2,-l/2,l/2), (4.8)

v 3 = (1/2,-1/2,1/2),

where the middle entry refers to the component which contributes with a negative
sign in the inner product. The middle entry refers, in the usual interpretation, to
the "(/>•" ghost, the last entry to the "χ" ghost in the notation of ref. [21]. Thus,
the original Eb weights are explicitly written:

(0,0,0,-1),

YO,+1,-1,1)
(4 9)

(v, 0,-1,1) ' l j

(s, 1/2, -1/2,0)

(c, -1/2, -1/2,0),

where v, s, c are the D 4 fundamental weights. The bracketed sets of weights are
gathered together as so(9,1) weights, a vector and a chiral spinor, respectively. The
vector s is seen to be

s= - 2 £ v f = (0,0,2,-1), (4.10)

and so according to Eq. (4.7) the conformal dimension of a vertex operator
associated with an arbitrary vector of the form w = (λ, c[φ,qγ), where λ is an so(9,1)
weight, is given by

just as it should be., verifying our claim that the identity of the Jordan algebra is
represented by the background ghost charge.
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(4.11)

Corresponding to the basis (4.9), the E6 roots are:

(ω0,0,0,0),

(y, ±(-1,0,0)),

(s, ±(1/2,-1/2,1)),

(c, ±(1/2,1/2,-1)),

and it is natural to ask if they (and the weights (4.9)) may be regarded as elements
of a seven dimensional Lorentzian lattice extending the E6 root lattice. Such a
lattice is not associated with the EΊ Dynkin diagram, which defines a Euclidean
lattice. Nor is it merely the affine E6 Dynkin diagram. That extends the E6 lattice
by appending multiples of a light-like vector, whereas our lattice contains vectors
whose squared lengths are actually negative. In other words, the lattice we are
seeking is hyperbolic, rank 7, and there are only a few of these [24,25]. In fact,
the possibilities correspond to the diagrams,

and actually, it is the first, (a), which is the appropriate one for us, the others
requiring irrational points relative to (4.11). We have no explanation for this
observation. In this case, the vector —s/2 represents the fundamental weight
corresponding to

1

Selecting a set of simple roots, corresponding to the labelling in (a) above we could
take,

(-1,0,0,0,1,0,0)

(1,-1,0,0,0,0,0)

(0,1,-1,0,0,0,0)

(0,0,1,1,0,0,0)

( - 1/2, - 1/2, - 1/2, - 1/2, - 1/2,1/2, - 1)
(0,0,1,-1,0,0,0),
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in which case the seventh root turns out to be,

rΊ: (-1/2, - 1/2, - 1/2, -1/2, - 1/2,1/2,1).

All but rΊ are orthogonal to s, and

r7 s = - 2 ,

as claimed.
If we associate a vertex operator to every element of the lattice (a), those

commuting with Lo, defined in (4.5), correspond to the zeroth moments of the E6

operators. This fact demonstrates that the background ghost charge plays a role
akin to a shift, breaking the hyperbolic algebra down to E6. This role needs
examining further, it seems not to have been studied previously since the "χ" ghost
is mainly associated with the phenomenon of "picture changing," and otherwise
ignored.

We end this section with one further remark. If we compute the operator
product of vertex operators defined on the weights, we find

V(w2Ί,z)V(W2Ί,ω) ~ (z - ω)w'w'ε{w, w')V(w^r ~ s,ω),

V(w2T,z)V{W2r,ω) ~{z- ω)w'w'ε(w, W)V(W^Ί + s,ω), ^A2)

where the subscripts 27,27' refer to the two conjugate twenty-seven dimensional
sets of weights. Equations (4.12) are related to the Freudenthal product, as we
pointed out before [9]. Clearly, there are infinitely many copies of the twenty-seven
dimensional representations, differing by s, obtained by computing operator
products of a representation with itself. Since the vertex operators of the
twenty-seven correspond to superstring vertex operators plus ghosts this replication
of representations is highly suggestive of "picture changing" [21]. Of course, we
cannot make a direct contact with the usual formalism because we have not
discussed the bosonic part of the string. It would be interesting if the ghostly sector,
and in particular picture changing, could be understood more algebraically than
at present.

5. Non-Exceptional Jordan Algebras

With a suitably altered choice of roots and weights, the discussion of Sect. (2) can
be taken over to discuss the other, non-exceptional Jordan algebras. In particular,
the algebras playing the role in the quaternion N x N case (the other cases are
special versions of this), analogous to E6 and F 4 , are a non-compact su(2N) with
a maximal compact subalgebra sp(N). We may adopt the same notation as (2.1).
However, in the new situation, the roots ω 0 are roots of su(2) -+-••• + su(2) (N times),
the weights ωtj are scaled roots of so(2N) and the quantities α^ are scaled roots
of su(N) satisfying (2.2), together with

XijΌckι = 0, if ij, k, I different. (5.1)

Specifically, we may take [5],

ω u = ~ ^ ( ± e I ±e i), (5.2)
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where ei9 i= 1,...,iY, are orthonormal unit vectors. As before, we need a "spray"
of vectors vh i = 1,..., ΛΓ, such that

α i ; = v(- v; , (5.3)

and Eq. (2.2) holds. Equally, we may take over (2.5) with the definition

ki = Vι + Vp ( 5 4 )

and the extra fact:

λij ockι = 0, if ij, k, I different. (5.5)

There are N(2N — 1) weights, corresponding to the irreducible representation of
su(2N) with Dynkin label:

1 2 3 2N - 1

The weights are a reducible representation of sp(N), decomposing into a singlet
(the identity of the Jordan algebra), and an irreducible representation, correspond-
ing to

The discussion of the Jordan algebra follows the lines of the rest of the discussion
in Sect. (2) rather closely. Indeed our notation was designed for this purpose.

As before, the vertex operators defined on the weights are bose or fermi depending
on the choice 4β = 0, — 1, respectively. In the former case, the weights will be roots
enhancing the A{2IS-1} Dynkin diagram to that of D 2 j V, in which case s, the "shift,"
corresponds to a spinor weight. In the fermionic case, the signature of the space
in which the weights lie is indefinite and given by (2.9). It is not clear what the
appropriate Dynkin diagram might be for 2N > 10. This is because the hyperbolic
lattices have dimension ^ 10. When IN = 10, the only possibility (containing A9

as a sublattice) is £ 1 0 :

-O

When 2N = 8 or 6, respectively, the possibilities (containing A 7 and A 5 , respectively)
are
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and

In each case, the "shift," s, has a non-zero inner product with the simple root
labelled (*).

Notice, the square of the shift vector is given by,

and thus the conlbrmal anomaly, corresponding to the shifted Virasoro algebra,
is computed to be, (Eq. (4.7)),

M ί Ί, \

(5.6)

Again, we may compare (5.6) with a bosonic anomaly and find that it cancels, for
integer dimension, when /V = 3,4,5,8 corresponding to D = l l , 12, 11 and 6,
respectively. We do not know if these "coincidences" are significant. It is however
curious that the hyperbolic lattices mentioned above correspond to the first three
special values of Λf, while the last, N = 8, although it does not correspond to a
hyperbolic lattice, is nevertheless an interesting one in the bose case. There, the
extended lattice is D j 6 , enhanced by the shift vector to one of the self-dual lattices
associated with the original heterotic string [26]! Actually, the N = 4 case, in the
bose situation, leads to the extended lattice D8 enhanced by a spinor weight to
the self-dual E8 lattice.

6, Discussion

Our aim has been to discover a sense in which Jordan algebras may be represented
by vertex operators. While we are unable to achieve this straightforwardly, we
have discovered a way of defining a Jordan algebra which associates it rather
closely with certain collections of vertex operators. Moreover, we have found two
main ways of doing this, one of which is strikingly close to the superstring, in the
sense that the vertex operators we need involve momenta lying in a non-Euclidean
lattice. In addition, the non-Euclidean momenta, in the exceptional case, are exactly
the same as those momenta corresponding to the bosonized fermion vertices of
the superstring, taking account of their ghostly contributions. What we have not
yet found is a Lagrangian starting point, although we feel that if the Jordan matrix
is one of the basic ingredients, the Lagrangian will have to be cubic in order to
accommodate the SΌ(9,1) invariance (this is not the invariance group of any
quadratic form involving Jordan matrices), and hence presumably it will have an
E6 or even greater symmetry. We are intrigued by the fact that the spacetime
supersymmetry generator, which is after all a zero momentum vertex operator
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[20,21], actually seems to belong naturally to an £ 6 representation with fermionic
character. As we have said, it seems to us that the usual decomposition of
components into ghostly and non-ghostly pieces may be artificial and correspond
to a choice of basis or "gauge." The usual choice of light-cone, or transverse, gauge
is also expressed nicely in the Jordan language, via Eq. (1.11), restricting the
derivations in the exceptional case to D 4 .

Beyond this, we have yet to find a way to incorporate the bosonic part of the
superstring in order to be able to explore further how supersymmetry and "picture
changing" might fit in with the algebraic ideas we have discussed.

There is also a hint of other connections with hyperbolic lattices, remarked upon
in Sect. (4), which we have hardly explored, but find intriguing and puzzling.
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