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Removable Singularities in Yang-Mills Fields
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Abstract. We show that a field satisfying the Yang-Mills equations in dimen-
sion 4 with a point singularity is gauge equivalent to a smooth field if the
functional is finite. We obtain the result that every Yang-Mills field over R*
with bounded functional (L2 norm) may be obtained from a field on S4 =
jR4u{oo}. Hodge (or Coulomb) gauges are constructed for general small
fields in arbitrary dimensions including 4.

There has been a great deal of mathematical interest in the topological ana
geometrical methods used to construct the instanton solutions to the Yang-Mills
equations [1-3]. More recently several articles treating analytic properties have
appeared [6], [8], [10], [14]. We consider properties of the Euclidean (Riemannian,
elliptic) equations and derive some standard a priori estimates on solutions. The
main result is a local regularity theorem in 4-dimensions: A Yang-Mills field
with finite energy cannot have isolated singularities if its structure group is compact.
Apparent point singularities, including singularities in the bundle, may be removed
by a gauge transformation. In particular, a Yang-Mills field on a bundle over
JR4 extends to a smooth field on a bundle constructed over R 4 u {oo} = S4.

For convenience we concentrate on bundles over flat manifolds. For the
regularity theory, the curvature of the manifold itself is not particularly important.
In this paper we also assume all solutions have smooth curvatures where they
are defined. Other references have handled the question of weak solutions in
detail [10,14,16]. An announcement of the results in this paper has appeared
[15] and an outline of the proof also appears in [6]. Parker has generalized
these results to coupled systems in 4 dimensions.

We give a brief description of the problem in Sect. 1 to establish our notation.
In Sect. 2, we prove a number of tedious technical lemmas on canonical gauges
for fields with small curvatures which are necessary later. Standard a priori
estimates appear in Sect. 3. The proof of the removability of singularities in
Sect. 4 is remarkably similar to the proof of the removability of singularities of
harmonic maps contained in [12].
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1. Yang-Mills Equations

The differential objects we will be working with are a Riemannian manifold M,
a vector bundle η over M with fiber ηx ^ R* and compact structure group G. Denote
the Lie algebra of G by © and the adjoint and automorphism bundles by Ad η and
Aut η respectively. Assume also η has a metric compatible with the action of G
and an inclusion G <= SO(^). We use the metric on G induced by the trace inner
product metric on <SΌ(/).

Since our theorems are all local, it is not necessary to work only with these
abstract elements. We assume often that M = % is a coordinate chart, and that
some local choice of gauge p : η\ % = °lί x R? has been made. Then p : Aut η \°lί =
fy x G and p:Ad?/ = °U x (5. We compute in these cross-product structures.

The gauge group is ^ = C°°(Aut r\\ which in our trivial bundle case is
^ = C^{°lί,G). The choice of p introduces a flat covariant derivative d =
(d/dx1,..., d/dxn). Any covariant derivative D is given by D = d + A = {d/dx1 + A.}
where /l.(x)e©. One can think of A as a Lie algebra valued 1-form, or locally
A :% -+ Rn (x) ©. Gauge changes 5 : ^ -+ G act on D = d + A by

s'1 °D°s = d + s~1ds + s~ ιAs = d + A.

This means A and Jϊ = s " 1 ^ + s~1As represent the covariant derivative in
different coordinates (or gauges).

The curvature or field F = F(D) of a connection D measures the extent to
which covariant derivatives fail to commute. (We always use the symbols d and
D to represent exterior differentiation; the symbol V is used for full covariant
differentiation). Then F = D2 = dA+ [A, A~\ is a section of T*M Λ T*M (X) Ad η.
Locally in the trivial bundle Ad η ^ % x ©, we have F M -• Rn A Rn® (δ is a
Lie algebra valued two-form, F = {F..} = {[D., Dϊ]}.

FtJ = δ/d^Aj - d/dxjAt + [Ai9 Aj]e&.

Curvature is actually a section of T*M Λ T*M® Ad© and transforms under
a gauge transformation seΉ by F -^ s~ 1Fs.

The Yang-Mills equations are the Euler-Lagrange equations for an action
integral

j
M °U

Here the second integral is in local coordinates, gik is the induced metric tensor,
g2 its determinant, and {A,B} = tr ,42?* is the trace inner product in © <= SO{ί).
Usually we assume the metric is flat; gij = δίj.

The Yang-Mills equations, or the Euler-Lagrange equations for the integral
|| F | |2, are written as D*F = 0. In the case gίj = <5.. in coordinates on %, this means
explicitly,

(D*F)j = Σ(d/d*FtJ + [Ait F y ] ) = 0.
i

A similar equation holds in general metrics. We say D is a Yang-Mills connection
and F = F(D) is a Yang-Mills field if D*F = 0. If s e ^ lies in the gauge group
| | s " 1 F s | | 2 = | | F | | 2 . Therefore the solutions of D*F = 0, as either Yang-Mills
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connections or fields, are an invariant space under gauge transformation. This
is the main difficulty in treating the regularity theory.

The Bianchί identities DF = 0, are always true for F = F(D). This means in
coordinates: D.Fkj + DkFj. + DjFίk = 0. The abelian case, the case where all
brackets are zero, is the basic linear model for the theory. In this case F = dA,
the Bianchi identites are dF = d2A = 0, and the Yang-Mills equations are d*F = 0.
The system dF = 0, d*F = 0 is an elliptic system for F.

The situation is more complicated in the non-abelian case. In the abelian case,
A-+A + du under a gauge transformation s = eue^ and F = dA — dA + d2u
is left invariant. However, in the non-abelian case, F transforms to s~1Fs under
a gauge transformation se^. If s is not smooth, it can make a smooth field into
a discontinuous one. So the choice of good gauges is much more important to
the non-linear (non-abelian) theory.

The linearized Yang-Mills equations written for A are d*dA = 0. As noted,
this is the exact equation if G is abelian. This single system is not elliptic, and as
in the Hodge theory for exact forms on manifolds, one usually adds a second
equation such as d*A = 0 to complete the elliptic theory. In the abelian case,
this involves solving the linear equation d*(Ά + du) = d*A = 0 for u :%->(&.
Here A is the original connection form and 5 = eue(£ the gauge transformation.
The equation d*A can also be added to the non-linear theory as a method of
choosing a good gauge. In the general case, it is a non-linear elliptic equation
which must be solved to get this "good" gauge in which d*A = 0.

Such a gauge seems to have many names in the physics literature (Lorentz,
Landau, Coulomb). For the purposes of this paper, we use our original mathe-
matical term Hodge gauge. The entire chapter following this one deals with the
technical problem of constructing the Hodge gauges we will need in Sect. 4 for
the main proof.

2. Canonical Choices of Gauge

This section treats the problem of finding a gauge in a domain °U for a connection
in which D + d + A and d*A = 0 when || F \\ ̂  = max | F(x) | is sufficiently small.

xe°U

We prove this in three cases: when % = Sn~1 = {xeRn :\x\ = 1},

W = Bn = {xeRn:\x\Sl) and % = 91 = {xeRn :1 ̂  |x | ^ 2 } .

Assume a gauge is given in which D = d + A. Then it is an elementary calcu-
lation that the equations d*A = d*(s~1ds + s~ιAs) = 0 for se& are Euler-
Lagrange equations for the integral

There is a relationship between finding Hodge gauges and the existence of harmo-
nic maps from % to G. The two equations agree in their top orders. We know
quite a lot about harmonic maps. In particular, we know we do not have a good
global theory [12], but we do have good local theories [7].

First we find some gauge which is not too large when || F || is not too large
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(Lemmas 2.2-2.4). Then we use the implicit function theorem to find a Hodge
gauge d*A = 0 with estimates (Theorems 2.5-2.8). Assume throughout that G
is compact and every connection has some gauge in which it is continuously
differentiable.

The simplest geometric method of choosing a local gauge is to fix a fiber over
xQ and identify nearby fibers in a geodesic ball by setting (x'(t)Ά(x(t))) = 0 along
all geodesies x(t) emanating from x0 (meaning x(0) = x0). This fixes gauge in
all balls within the cut locus of M. In a Euclidean ball Bn with x0 = 0, this corres-
ponds to v4(0) = 0 and Yjx

JΛj(x) = Ar = 0. We call such a gauge an exponential
gauge. J

A word on notation. We use the coordinate change x = {xj"= 1 = (r, φ) =
(|x|, {x^/lxj}) for ι/̂  = X / I ^ I G S " " 1 as transformation from Euclidean to spherical
coordinates. The one-form A = {A.} = (Ar, Aφ) splits into radial and spherical
parts. The two form F = {F j} = {Frιj/, Fφψ) splits into two pieces also (note Frr = 0
because of anti-symmetry). Here Fψφ is a two-form along Sn~x. In the sphere
SΛ~\ we sometimes change coordinates on S"" 1 ,^ ^ (φ9 θ) from spherical to
"polar" coordinates. Here φe(0,π) is the polar angle, θeSn~~2 and φ = (cosφ,
sinφθ) = x/\x\. Again on Sn~\ A = {Aφ} = (Aφ, Aθ) and F = {Fφφ} = (F φ β , FJ
in a natural way. This notation is used throughout the paper.

Lemma 2.1. In an exponential gauge in Rn,

\A(x)\^l/2-\x\ max \F(y)\. (2.1-a)

Proof. Assume a gauge is given in which D = d + Ά;dΆ + [A, A] = P. Solve
the ordinary differential equation in t with ψ fixed.

— σ{t,ψ)= - Ar(t,ψ)σ(t9ψ)9

with initial condition σ(0, ψ) = IeG a SO{ί). Then the gauge transformation
s{x) = σ{\x\,xl\x\)sCι(Bn, G) if A is continuously differentiable. Also s~1d/drse
C1(Bn, G). By construction, in the gauge changed by 5, D = d + A, where 4̂ =
s~xds + s~1Άs, and ^xk>lfc(x) = ̂ lr(x) = 0. Note that A is not necessarily as

~ k

differentiable as A, but that F = s~ιFs exists.

We compute easily from the equation ΣxkAk = 0.

j + x\Ak,
k

= rd/drAj + A - d/dr{rA).

By integrating we get

0 k

y£\χ\
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The same argument is carried out to get an exponential gauge in Sn~ι based
at the north or south pole. Only the estimate is slightly different due to the curva-
ture. Here in this gauge (Aφ) = {Aφ, Aθ) = (0, Aθ).

\Aβ(φ,θ)\ =

However, in τ*Sn~1 we use the correct norms

\\Aθ(φ, θ) || = (sin φ)~ι \Aθ{φ, θ) \ (etc.).

\\Aβ{φ9θ)\\=cscφ\Ae(φ9θ)\

gcscφί Jsinτrfτ Jmax[|Fφθ(τ, θ)(csc φ]
\o /

= l - c o s φ

ύnφ " l lco*

This gives the estimate on Sn~ι for exponential gauges:

μ^^ll^tan^HFll^. (2.1-b)
At the cut locus from φ — 0, as φ -> π, the estimate blows up and the exponential
gauge becomes singular.

Finally, given a gauge for 77IS""1, we may also extend it with Ar = 0, into a
collar neighborhood. The integral formula is

AJίx)=l/\x\AJx/\x\) + Σ ί τxkFkj(xτ)dτ.
j i/\χ\

Call these normal exponential gauges transverse. For these transverse gauges off
S"" 1 we get the estimate

=
max \F(y)\.

The next three lemmas are proved in precisely the same way. In each case,
two exponential or transverse gauges are matched by a rotation.

Lemma 2.2. There exists α0 > 0 and K < 00 depending on G, such that if D is a
connection in a bundle over S"" 1 in which

ψeSn~ 1

then there exists a gauge p :η = S"'1 x R? in which \A\^ ^κ\F\ao.

Proof. Let D = d° + A0 in the exponential gauge from the north pole (φ = 0)
and D = dπ + An in the exponential gauge from the south pole (φ = π). From
(2.1-b)

II A°(φ9 0) I = esc φ | A°(φ9 θ) \ g tan φ/2 \\ F \\ m

\\Aπ(φ,θ)\\=cscφ\Aπ(φ,θ)\Sten(π-φ)/2\\F\\oΰ.
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Because D = d° + A0 = dπ -f ,4π, ,4° and ̂ π are related by a gauge change

Therefore s(φ, θ) = s(θ) for s :Sn~2 -* G. Moreover | ds(0) | = |ds(π/2, 0) | =
I A°θ(π/2, θ) - 4J(π/2, θ)\ g 21| F ||^ < 2α0. If α0 < 1/4 (length of the shortest non-
minimizing geodesic in (G), then s(0) = s0 exp u(0), where u : 5" ~ 2 -• ((5). By assuming

I u = 0, we have

Define a new gauge by multiplying the exponential gauge from the north pole by
h:S"-1-{π,θ}-+G.

h(φ,θ)=soexp(sin2(φ/2)uψ)).

This is the same gauge defined by rotating the exponential gauge from the south
poleby<?:1S

n-1-{0,θ}^G.

q(φ9 θ) = exp( - cos2 φ/2 u{θ)).

This new gauge is defined on all of Sn~\ and if D = d + A in this gauge

A = h-1A°h + h-1dh=q-1Anq + q-1dq.

On the entire sphere

\Aφ{φ9θ)\ = \h{φ9θ)sinφβcosφ/2\\u(θ)\

= \q(φ, θ) sin φ/2 cos φ/2\\u{θ)\

One way to estimate || Aθ(φ, θ) || is

esc φI Aθ{φ9 θ)\ £ esc φ(\ A°{φ9 θ)\ + \dθh\).

The other way is by

The first gives the estimate for φ ̂  π/2, the second for φ ̂  π/2.
The next two lemmas involve fixing gauge on the boundary, as in Dirichlet

boundary conditions. Note we actually allow these boundary gauges to rotate by
a constant element s0 of G. Later on we shall see this extra degree of freedom makes
the appropriate Dirichlet problem on an annular region lί confusing. This particu-
lar problem is a familiar annoyance in gauge theory.

Lemma 2.3. Let η be a bundle with a covariant derivative D over Bn and curvature

|| F || ̂  ^ α. Assume a gauge is fixed on η |S n~ 1 = η|dBn in which D^ = d^-\- Aψ,

\Aψ(l9φ)\^0L all ψeSF1'1. Then there exists ocχ = α 1 ( G ) > 0 such that if α < α 1 9

there exists a gauge onη\Bn in which D = d + A,Aφ = A^on^S"'1 and || A || ̂  g κ:α.

Proo/ Consider the exponential gauge from zero, D = d° + A° and match by
rotation with the transverse gauge off the unit sphere D = d1 + A1 which fixes
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Ar From (2.1 -a)

From (2.1-c) we have the inequality

Then the two gauges are related by s = s0 exp ύ(ψ). Change gauge from the expo-
nential gauge at zero by so(exp r2 u(φ)). Estimate as in the previous lemma.

Lemma 2.4. Let ηbea bundle with a covariant derivative D over U ~ {x: 1 <Ξ |χ | ^ 2}
and curvature WFW^ ̂ α . Let S"'1 = {x:\x\ — t}. Suppose gauges are chosen on
ηIS"~* in which D™= d\ + A^ with \ A^{t9 ψ)\ ̂ <x for t = (1,2). Then there exists
α 2 > 0 such that if a < α 2 , ί/zere is α gαwge on ?/|U in w/πc/z D = d + A, Ά^ = Aψ

K W W
Proof. Match transverse gauges from the boundary sphere S"~ \ t = (1, 2) exactly
as before.

At this point we are in a position to apply the ordinary implicit function theorem
in Banach spaces to solve the non-linear elliptic system

for 5 when A is small enough. Unfortunately, the exponential and transverse gauges
used to construct a connection A from small curvatures F in Lemmas 2.2-2.4
produce estimates on A of the same differentiability as F. Intuitively, we should be
able to get one more derivative on A than on F. Since a method for doing this has
not appeared so far, the applications of this entire procedure are limited. The trick
used in [16] to circumvent the construction of A does not work here. We use
Sobolev spaces L\ of connections or maps in the k derivatives in LP. We are restrict-
ed to using the implicit function theorem on the equation d* A = 0 as a mapping
on Sobolev spaces L^-^LP_1 because A is not smooth enough to use the more
usual map Lp

2^ LP0. Also, the difference in the behavior of the boundary conditions
on 5n~ \ Bn and II" leads us to state the theorems separately, although the proofs
follow the same line of argument.

Theorem 2.5. Let η be a bundle over Sn~1 with a covariant derivative Z), curvature
F = F(D). There exists y0 > 0 such that if || F\\ ̂  ^ y0, then there exists a gauge
p : η ^ Sn~ι x R* in which D = d + A and d*A = 0. Furthermore, \\ A ^ S K || F \\ ^.
The choice of gauge is unique up to constant multiplication by an element ofG.

Proof From Lemma 2.2, if γ0 ^ α0 we can construct a gauge in which D = d+ Ά,
|| A || ̂  ^ K IIFII ̂  ^ κγ0. Fix any GO > p > n — 1. The expression

Q(u,B) = d* [exp ( — u)d exp u 4- exp (— u) Bu]

induces a C00 map on ueL\{Sn~x, (δ\BeLp(Sn~\&(S)Rn).

The image actually lies in
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Likewise define

Lp

1-
±(SH-\<&) = {ueL*(Sn-1

9(5): J M = 0}.
Sn-1

Then d ^ ^ Q j i L ^ ί S ^ S β H L ^ ί S " " 1 , ® ) is an isomorphism. (Note d ^ o )
u — Δu). The ordinary implicit function theorem in Banach spaces now says we
may solve

Q(u, A) = d*(s-χds + s-'Λs) = d*A = 0

if ieI?(S I I" 1,©(g)Λ' I~ 1) is sufficiently small. Here s = exp ueL\{Sn- \ G) and
ueLP{\Sn~ \ @). By taking y0 small || A \p ^ cnp || 4 || ̂  < κy0 can be assumed small.

Since the norm || u || 1 is also small, || v4 | |p ^ (1 + κ1) || A || ̂  where 4̂ = s~1

+ s ~1 ^ϊs. Finally, d*A = 0 and J ^ -f [̂ 4, A~\ = F = s ~L Fs. Consequently

|| || || || || M | H L e t « = P/2 to get an
9

estimate on || A f

||β) ^ κ2(p) (|| / ||β + || M | H, + M llβ)
 L e t « P/2 to get an

p . An estimate on || A \q 1 leads by the Sobolev theorems to an
estimate on || A || , for Ijn — 1/q -h l/qf = 0. Once 2q>n this is an improvement and
we get estimates on all || A \\ χ norms.

Corollary 2.6. Under the hypotheses of (2.5) with n = 4, we have

{2-K\\F\U2\\A\2^\\F\2.
3

Proo/. Since A is a co-closed Lie-algebra valued one-form on S3, λ j | ^ | 2 <* j \dA\2

s3 s3

for A the first eigenvalue of the Laplace operator on co-closed one forms on S3.
This can be computed to be 4 from [10]. Using the formula F = dA -f [̂ 4, A], we
estimate the error.

l/2 / \l/2 / \l/2 / \l/2

( ή Π|| (i\\ή+(i\A\
\s3s 3

l/2 / \l/2

lUi\\)
Theorem 2.7. Lei D be a covariant derivative in a bundle over Bn. There exists
yx > 0 such that if\F\(χ)^yγ, then there exists a gauge for η over Bn such that if
D -f d -h A in this gauge, then d*A = 0 in Bn and d^A, =0 on S"'1. Furthermore

Proof If 71<y0, we may apply Theorem 2.5 to fix the gauge on S""1 = dBn

with d*Aψ = 0 and \\Aψ\\^ S ^ I I ^ I L By Lemma 2.3, if X 7 l | α t a n d j ^ α , ,
we may construct an appropriate gauge over B" such that if D = d + A in this
gauge, || A |( ̂  S κι y i We can now solve

Q(u9 A) = d*^l - J*(s~1ds + s-1As) = 0,

for 5 = eu, ulS"'1 = 0 by the implicit function theorem. The formula for Q induces
a smooth map on ueLp

10(Bn, ©), ΆeLp(B\ Rn (x) ©) for p > n.
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Since we are using Dirichlet boundary conditions, the linearization

0,0) = A :L*li0(fl", © ) - ί/_ ^ F 1 , ©)

is an isomorphism. Also, since {{AW^ ^κ1γ1, we clearly make \\A\\p arbitrarily
small by choosing y1 small. This procedure produces s = eueLPί(ffι,G) and the
regularity argument is exactly as in Theorem 2.5.

T h e o r e m 2 .8 . Let D be a covarίant derivative in a bundle η over U = {x:l ^\x\ ^ 2 } .

There exists / > 0 such that if || F || ̂  ^ / , ί/zen ί/zβre ex/sis α gauge in which D =
d + A, d*A = 0, rf*y4^ - 0 on S^ι and Sn~ \ and J 4 r - Ofor all ί e [ l , 2]. Morβ-

Proo/ Apply Theorem 2.5 to D on the boundary spheres S"~ x(ί = 1,2) and con-
struct Ά using Lemma 2.4. Again we shall use the implicit function theorem to
solve the equation

<2(M, A) = d*A = d*(5- xds + s " x i s ) = 0

for s = exp u. This is the variational equation for the problem of minimizing
J|y4|2 = J |s~ 1ds + 5~1^Ϊ5|2

5 subject to the appropriate boundary conditions.
u n
In fact, to preserve the condition d*Aφ = 0, we shall require that s be constant on

each component of dU = S"~x u Sn

2~
1 (although we do not specify the values of

these constants). Thus we set

1/^(11, ©) - {ueU^U, ©):M is constant on Sn

t'
1 for t

= 1,2 and u is //-perpendicular to the constants of ©}.

Then for p> n,Q induces a map

QiU+Ql, ©) ® ί/(U, © ® R")-> Π_ jίU, ©).

However, the linearization has a ©-dimensional kernel (corresponding to the
constant gauge transformations). This allows us to add a ©-valued function

ί, © ® Un) -> ©

given by /(M, A) = J^4r = {^"^δ/Sr^-f s~1y4 |tse®. Then the linearization of

(Q>f) u »

is an isomorphism, and we can solve d*A = 0 and J ^ = 0 when ^ G L P ( U , © ® Un)

u
is sufficiently small. The regularity is proved as in Theorem 2.5.

Finally, since d*A = 0, the integral J Aγ is independent of t and the condition
\χ\ = t

j Ar - 0 implies that J i4r = 09 Vίe[l,2].
n \χ\=t

Corollary 2.9. (For n > 2). There exists a constant λn such that ifD is a covariant

derivative D = d + A in 21 with curvature \F\^<y\d*A = Q,d§A^ = Q and
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J Ar=0,then

Proof. As in the proof of Corollary 2.2, λn is constructed as

λ -

for feL\(T*II), d*/=0, ^ / J S , " ' 1 =0, | / r = 0. The problem is elliptic, so to
u

show λn > 0, we need only show that the value λn = 0 is not taken on. Suppose
λn = 0 is taken on. Then there exists f φθ satisfying the conditions with df = 0.
But 91 is simply-connected; therefore/ = dg. However, on the compact boundary
spheres d*fψ = d*dψg = 0 and g is constant on Sn~ H = (1,2). Since d*f= d*dg =
0, g is a harmonic function on It which is constant on the two boundaries,
or g = cx + c2r

2~n. However, J gr = 0 implies c2 = 0, or/= φ = 0. The rest of

the proof is identical to the proof of Corollary 2.2. Note that the condition that
j Ar = 0 which gave us so much trouble in the proof of Theorem 2.7 is very

\χ\=t

important in showing λn > 0.

3. Basic A Priori Estimates

We assume all covariant derivatives D are smooth in some gauge, since regularity
theorems now appear elsewhere. The basic inequality of Lemma 3.1 is more care-
fully discussed by Bourguignon and Lawson [5]. We assume the metric on M is
flat for convenience. The difference between the flat case and the case where
curvature is not zero contains a lower order term which would be relatively
unimportant in our calculations. In this section B(x, a) = Bn{x,a) = {yeRn:\x — y\

Lemma 3.1. IfF is a Yang-Mills field, then

A\F\^-4\F\2.

Proof. We give a brief outline of the computation [5], From the Yang-Mills
equations D*F = 0 and the Bianchi identities DF = 0 we have (D*D + DD*)F = 0.
The Laplacian D*D + DD* = A on one-forms differs from the full covariant
derivative Laplacian V*V = V2 by a curvature term

(V2 - Δ)φ = IF, φ-] = J Σ [ Γ y , φJk] - [φkj, F.t.] J.

The full covariant Laplacian can be used to estimate a scalar Laplacian on the
norm.

\Ψ\Δ\ψ\ = (ψ,Ψψ> + (vψ,vψ> -\d\φ\\2 ^(ψ,
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These three equations combine to give the first inequality. The second inequality
follows from the rough estimate

We now regard — 4\F\ = b as a fixed function and write the inequality as

for/ = \F\. lϊbeLn/2 + μ for any μ > 0, then a theorem of Morrey (see [9], Theorem
5.3.1) applies to this problem. We state the case of the theorem which applies here.

Theorem 3.2. Let b be bounded in Lq(B(x0,a0)) for q>n/2,f^0, and fye
Ll(B(x0, a0)) for 1/2 < y ̂  1. Suppose also that in a weak sense

Then f is bounded on domains interior to B(xo,ao) and for J3(x, α) c= B(xo,ao)

|/*(;e)|2 £ . * > - ' J \f\y)\2.
B(xo,ao)

Moreover, the constant X'ί depends uniformly on n,q,y andaq

0~
nl2 j \b\q.

B(xo,ao)

Proof If bsLq, we have the inequality

/ \n/2q

ί bnl2M J (bq)\ aμforμ>0.
\x-y\£a \\x-y\£a /

We may then apply Theorem 5.3.1 of Morrey [9]. The requirement/^ 1 is not
necessary here. We can prove the estimate for/1 = JV/+ 1, which implies the same
inequality for/2 = / + ί/N, and then let N-+ co in R. The uniform dependence
of jf1 can be computed by dilating B(x0, a0) to the unit ball.

We wish to make minor extensions of this theorem. These are derived from
the basic a priori integral inequality used by Morrey in proving Theorem 3.2.

Lemma 3.3. Let % a R\feL\ l o c(^) n Lfoc(%)J^ 0, oo > p > 1/2
v = 2n/n - 2 and ueC^{^). Then if

S ί | p ~ 1 \p(2p - l)\Δu2\ + {dufλf1*
\nβ / \2/v

Proof We may replace fbyf+ε, prove the estimate for / + ε and let ε -> 0. Take
u2f2p~ι as a test function. Then

Sd{u2f2p-1) df= -\u2f2p-ιΔf^\bu2f2p.

On the left-hand side, rearrange the integrand algebraically to

(2p - l)/p2 |d(u/")|2 - (p - 2
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The right-hand side can be estimated using Holder's inequality.

This gives us

(2p - l)/p2 ί \d(uf")\2 g \p - 1 |/p ί du2 -dif2")

+ (2p-l)/p2j\du\2f2"

\n/2 / \2/v

Integrate the first term on the right by parts and multiply the entire equation by
p2/(2p - 1) to get the inequality of the lemma.

Lemma 3.4. Assume the conditions of Lemma 3.3, and suppose for q^.1 there

exists a constant cn such that ifB(x0, a0) a °ll,

Then for all B{x, 2a) cz %, we have ufqeL\ {B{x, a)) with

a~n+2 J (dfq)2^cya-n j f2

B(x,a) B(x,2a)
\2/qv

a~" 1 r) Sc'ya-» J f2.
B(x,a) / B(x,2a)

Furthermore, cy and cy depend only ony,q and n.

Proof Lemma 3.3 applies with % = B(x,2a) and 1 Sp ^q. We may assume by
dilation a = 1. For convenience, C/f{μ, p) = max|p — 11p/{2p — 1)| Δu2 \ 4- {du)2.
By applying the Sobolev inequality as well with v = 2n/{n - 2),

^\\d{uΓ)\2^X{u,p)\f2p

\2jnf \2/v

From the hypotheses of this lemma

as well as

We get a bound on the Lpv norm on interior domains in terms of the L2p norm on a
domain. By interation we obtain the result for p. = (n/n — 2)1 = vp._ J2 which gives
us the estimate for q in a finite number of steps.

We can now prove the main result of this section.
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Theorem 3.5. There exists a constant c'n such that if F is a Yang-Mills field in
B(xo,2ao) and J \F\nl2<c'n, then \F(x)\ is uniformly bounded in the interior

B(xo,2ao)

ofB{x0,2aQ)and

\F(x)\2^a-nJtrn J \F\2

B(x,a)

for all B(x, a) <= B(x0, a0).

Proof Let b = 4 | F | and \F\ =fi Choose c'n = cj(4ή) where cn is the constant of
Lemma 3.4. Then Lemma 3.4 applies for q = n, y = cn/3, and

\2/w / \2/n

bn,2\ J J |

B(xo,2ao) / \B(xo,2ao)

Apply Lemma 3.4 to get a bound on j \F\n. NOW Theorem 3.2 applies. Since
B(x,a)

\2/«
j | F | n / 2 I is invariant under dilation, the size of the ball does not affect the

B(x,a) /

constants jfn or cn.
Theorem 3.6. Let Fbea smooth Yang-Mills field in a punctured ball °U = B(x0, a) —
{x0} such that J \F q < oo for q > msix(n/n — 2, n/2). Then F \ is uniformly bounded

in the interior of B{x0, a0).

Proof Apply Lemmas 3.3 and 3.4 with b = 4 | F | , / = \F\ and % = B(xQ9a) - {x0}.
Here we let u be a cut-off function u=v + vr where i; is a cut-off function which
is zero at x 0 and v'eC^(B(xo,a)). We fix v' and let v(x — x0) = φ(x/ε) where φ has
support in the unit ball. Check the growth of the error on the right in Lemma 3.3
(or JΓ(W, p) of Lemma 3.4) as ε -• 0. The contribution from υ' is fixed. So K(u, p) ~
3f(v,p) = ε~2K(φ,p)andwehave

g j f (φ? p)ε"(1 J

The error term contribution to the inequality from the singularity approaches
zero if (1 — 2p/q) — 2/n > 0, or for p <(n — 2)/2nq. Clearly p may be chosen greater
than 1/2 if and only if q > n/(n — 2). Then we have/peL^(jB(x0, α0)) by Lemmas
3.3 and 3.4. If, in addition, q > n/2 we may apply Theorem 3.2.

This theorem can in fact be improved for n = 2,3. The proof in two dimensions
is simple because we can use the first order equations valid only for n — 2,

The proof in three dimensions is considerably more difficult [12]. The differential
inequality — Z J | F | ^ 4 | F | 2 is insufficient due to the fact that the fundamental
solution to the Laplacian in R3 is ί/\x\, of smaller growth than l/|x| 2.

The construction of Yang-Mills fields with point singularities can be accom-
plished by what is in effect a separation of variables. Let D be a connection in a
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bundle η over Sn~ί and let/: Bn - {0} -* Sn~1 be given by/(x) - x/\x\. Then any
connection D on η can be pulled back v i a / t o a connection/*/) on the bundle
f*η. It is an easy calculation that if D is Yang-Mills on η over S""1, then/*Z) is
Yang-Mills over/*??. Moreover, the curvature oϊf*η grows exactly like l/ |x] 2 .
Since S2, S3 and S 4 are known to have non-trivial Yang-Mills fields (in some
bundles) this produces examples of isolated singularities at 0 of Yang-Mills fields
in dimensions 3, 4 and 5. The curvature grows like l/ |x | 2 about the singularity
x = 0, so the integral J |/* (F) \q is finite for q < w/2, but infinite for q ̂  «/2.

4. Removability of Singularities

In this section we complete the proof of our main theorem.

Theorem 4.1. Let D be a Yang-Mills connection in a bundle η over B4 — {0}. //
the L2 norm of the curvature FofD is finite, J F2 < oo , then there exists a gauge in

which the bundle η extends to a smooth bundle η over B and the connection D extends
to a smooth Yang-Mills connection D in B4.

We have the immediate corollary.

Corollary 4.2. Let D be a Yang-Mills connection in a bundle η over an exterior
region °U = {xeR4: \x\ ^ N}. If J F 2 < oo , then \F\ ^C\x\~4 for some constant

x
(not uniform). Moreover, if we map B4 — {0} -• % by f(x) = N—-^, there exists a

gauge change in η such thatf*η andf*D extend to a smooth bundle/*η and a smooth
Yang-Mills connection f*D over all ofB4.

Proof The m a p / i s conformal, so/*D is Yang-Mills in B4 — {0}. Also

Here F is the curvature of D and f*F = F(f*D) is the curvature of the pull-back
connection. We may now apply Theorem 4.1 to/*(D). The growth at infinity is
obtained from the change in variables of two-forms under conformal operations.

xeB4

= (CN2)\x\-4.

The global form of this corollary can be more simply stated.

Corollary 4.3. Let D be a Yang-Mills connection on a bundle η over R4 with finite
L2 norm of its curvature j \F\2 < oo . Then iff: S4 — {0} -» R4 is a stereo graphic

R4

projection, f*D is a Yang-Mills field on f*η over S4 — {0} which extends in some
gauge to a Yang-Mills connection f*D on a bundle f*η over S4.
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The proof of Theorem 4.1 proceeds in two steps. First we need to find a useful
gauge in B 4 — {0}. We do this by piecing together Hodge gauges in the annuli
Uf— {x\2~*~ι 1=k\x\ S 2~^}. Then we use the Yang-Mills equations in this broken
Hodge gauge to show that \F\ actually has better growth near the singularity
x = 0 than \x\~2. In fact, we are luckily able to show directly that \F\ is bounded,
although by Theorem 3.6 any growth ~ | x | ~ 2 + ε f o r ε > 0 would have been suffici-
ent. Once we know \F\ is bounded, we may find a Hodge gauge by applying
Theorem 2.7 directly in Bn.

The construction of the broken Hodge gauge can be carried out in any dimen-
sion, under suitable hypotheses (for example J F n / 2 < oo). However, the second
step is strictly a four dimensional argument.

Lemma 4.4. If the hypotheses of Theorem 4.1 hold, given any ε > 0, we may assume

ί \F\2Se\
B(0,2)

Proof If j F2 < oo, then lim f | ^ | 2 = 0. Assume then, that J | F | 2 g ε 2 .
B4 r->0 \x\^r \x\^p

Change coordinates by y = 2x/ρ. Then F(x) pulls back to a Yang-Mills field
F(y) on {j/:0 < \y\ ̂  2/p} and

j | F | 2 = J | F | 2 ^ 2 .
B(0,2) \x\^p

The truth of Theorem 4.1 for F implies its correctness for F. Note, however, that
the uniformity of the estimates is lost in passing from F back to F.

Lemma 4.5. Under the hypotheses of Theorem 4.1, if J F2 ^ C", then
B(0,2)

\F(x)\2^\x\~4k j F2

B(0,2\x\)

for I x I ̂  1. iίer^ C = C\ and k = k^ are the constants of Theorem 3.5 with n = 4.

Proof If \x\^l,B(x, \x|) c 5(0, 2)and j F2 g J F2 ^ Q2.
B(x,|x|) B(0,2)

We may then apply Theorem 3.5.
We are now directly in a position to construct the broken Hodge gauges. We

break B4 up into annuli

H/ = {x:2"^" 1 g | x | S2~"} for/-{0,1,2,...}

S; = {s = {χ: \χ\ = 2~'} for/ - {0,1,2,...}.

Definition. A broken Hodge gauge for a connection D in a bundle ^ over Bn — {0} =
oo

(J U, is a gauge related continuously to the original gauge in which D = d + A

and A | U^ — ̂ 4(/) have the following properties for

(a)

(c) d*^(0 =

(d) J A Γ ( O = J
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Note that (a) means the gauge is Hodge in l l / ? but not necessarily consistent across
Sr Condition (b) implies that the induced connection on the pull-back bundle
η I Se is the same from the gauges given in U, and U, _ χ. This is actually insured by
the condition that the gauge is continuous. Condition (c) says to choose gauges
over the η\Se which are Hodge, and condition (d) allows us to apply Theorem 2.7
and its Corollary 2.8.

The following theorem is true in all dimensions.

Theorem 4.6. There exists y'( = γn)>0 such that if D is a smooth connection in
Bn — {0}, and the growth of the curvature satisfies |F(x) | |x | 2 rgy gy', then there
exists a broken Hodge gauge in Bn — {0} satisfying

(e)

(f) (λn-k2ω>) J \A(O\2^2-» J |F|2

U(«O u oo

Proof The dilation y = x 2 / + 1 carries U^ into the standard annulus lί of Theorem
2.8. Moreover, the inequality | F ( x ) | | x | 2 ^ y translates into the inequality
|F(y) | |y | 2 ^y, ||^||oo = 7 o n ^ e curvature F in the new variables. So we may
apply Theorem 2.8 to D = D(ί) in the annulus II, to get a gauge over lί(zf) in which
(a), (b), (c) and (d) are true. At first, it is not clear that the gauge changes across the
spheres S^ are continuous. However, recall from Theorem 2.5 that gauges for
η I Sj in which d*Aψ = 0 are unique up to multiplication by constant elements in G.
Therefore, the gauge chosen on Se from the construction on U, differs by a constant
element g£^G from that chosen by the construction on U,_ 1 . Rotate the gauge on
U^ by the constant element he = g^...,g1. Now the choice of gauge is continuous
across Sr The inequality || A || ̂  ^ κ'|| FII oo translates into (e) in the coordinates of
U^ rather than U. Likewise, Corollary 2.9 becomes (f) under the same dilation.

We now restrict our attention to 4-dimensions again. Our main result follows
from the following differential inequality.

Proposition 4.7. Let n — 4. Then there exists ε > 0 such that ifD is a Yang-Mills
connection in B(2, 0)— {0} and J F2 :g ε2 then

5(2,0)

l-ω( S FAII2)( J F2W/4r J F2.

Proof F r o m Lemma 4.5, we get | F ( x ) | 2 ^ | x | ~ 4 fc j F 2 , by choosing ε2 ^ C r.
Λ— -B(0,2|x|)

If we choose ε2k ^^/y', we may apply Theorem 4.6. We now estimate j F in
H

integration by parts in the Hodge gauge. Assume F = F(/), yl = /!(/) in the broken
Hodge gauge over II,.

j F2 = j
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= J < A{£\ - (D*F{ί)

27

Sum this equality over { ^ 0. The boundary terms cancel, except for those over
S o , since A^{t) = A^{ί — 1) | Ŝ  and the curvature F is continuous across Sr The
other boundary terms become negligible as t-+ oo lim J < Aψ (/), F ^ (/) > = 0.

This follows because the estimate of Lemma 4.5, | F ( x ) | 2 | x | ~ 4 ^k' j F2

B(0,\x\)

improves as xell^, *f-> oo. The term D*F(έ) = 0 disappears because D is Yang-

Mills. We now have

So

So

1/2 1/2

Apply Corollary 2.6 to the connection DφΛ-Aφ on ^ | 5 0 . N o t e DJ

have

So So

Corollary 2.9 is used to estimate the error

If

= O. We

Here the factor 2~ 2£ arises from the dilations between U^ and the standard annulus
used to state Corollary 2.9. By Lemma 4.5, we have

y/2 / \i/2

ί \) [ Λ
Assume κ'kε ^ A4/2. The above estimate simplifies to

/2

We go back to the main inequality * and put in the estimates for the right-hand
side.

J J

2-kκ( J

J
,1/2/ y/2

rψ\
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Rearranging terms:

\|*| = 2

/ \l/2

< f \F, 2 f F / | 2 < l / 2 f F2

\ |* ! = 1 / |*| = 1 1*1=1

Let ω = k{2λ~1 + kK/2). Then

( 1 " ω ( ί F 2 ) 1 2 ) ί F2^V4 J F2.

This result for r = 1 implies the inequality for arbitrary r by dilation.

Theorem 4.8. Let n = 4. T/zen ί/ierβ exists ε > 0 swc/z ί/iαί if D is a Yang-Mills
connection in E(2,0) — {0} satisfying j F 2 ^ ε2 ί/ien || F || ̂  is bounded in | x | g 2.

Proof. Using the same ε of Proposition 4.7, (assuming in addition 1 — ωε ~ y > 0)

(1 -ωε) j F 2 gl/4r j F2.

Let/(r)= ί F 2 s o / ( r ) = j F 2 . Since

4(1 - ωε) f\r)
=

by integration

or

J F2^r4V.

Replace the inequality of Proposition 4.7 by

4(1 - ω(2r)2γε)f(r) g r/'(r),

Integration of this differential inequality gives

f(r) g rVωε/y/(1).
Finally, by Lemma 4.5 again,

4fc J F 2-|x|- 4/c/(2
B(0,2|x|)

Our last step is to show the existence of a gauge in which the bundle and co variant
derivative are smooth. The dimension becomes unimportant again.

Theorem 4.9. Let D be Yang-Mills in Bn(ΰ, l)= {xeRn:0 < \x\ ^ 1}. Assume

in addition that F = F(D) is pointwίse bounded in norm. Then there exists a gauge

in which the bundle η extends smoothly to ή over x = 0 and D extends to a smooth

D in ή which is Yang-Mills.
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Proof. As in all the previous calculations, we may assume (by dilation, if necessary)

that Proposition 4.7 holds in \x\ ^ 1. However, in this Hodge gauge, \Λ(/)\ ^

K' II F{ί) || Jl~e. Equivalent^ | A(x) | ^ 2xκ' \\ F || χ . Now apply the implicit function

theorem described in the proof of Theorem 2.7. In the new gauge, d*A = 0. The

general regularity theorem gives the regularity of D — d f A in this gauge

[10,14,16].
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