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Semiclassical Quantum Mechanics

I. The ft-»0 Limit for Coherent States

G. A. Hagedorn*

The Rockefeller University, New York, NY 10021, USA

Abstract. We consider the ft-»0 limit of the quantum dynamics generated by
the Hamiltonian H(h) = — (h2/2m)A + V. We prove that the evolution of certain
Gaussian states is determined asymptotically as ft—>0 by classical mechanics.
For suitable potentials Fin n^3 dimensions, our estimates are uniform in time
and our results hold for scattering theory.

1. Introduction and Results

The purpose of this paper is to give simple proofs of two theorems concerning the
classical limit of quantum mechanics. Our first theorem deals with finite times. The
second deals with infinite times in the framework of scattering theory.

For the potentials which we consider, the quantum Hamiltonian
H(h)=-(h2/2m)A + V(x) = H0(h)+V on L2(IR") is essentially self-adjoint on the
C°°(IRW) functions of compact support. The corresponding classical Hamiltonian is
H(ξ,x) = ξ2/2m+V(x) on the phase space R2π.

Under the Hamiltonian H(h) we study the evolution of the Gaussian wave
functions ψΛ(A, J3, ft, α, η, x) which are defined below. The state ψJ(A, B, ft, α, η, x) is
concentrated near the position a and near the momentum η. Heuristically, its
position width and momentum width are given by the matrices ha(AA*)1/2 and
(ft1~α/2)(BB*)1/2, respectively. Our motivation for considering the states
ψΛ(A,B,h,a,η,x) comes from explicit calculations for harmonic oscillators. The
precise definition is the following:

Definition. Let A and B be complex n x n matrices with the following properties:

A and B are invertible; (1.1)

BA~1 is symmetric ((real symmetric)+ z (real symmetric)); (1.2)

1)*^ is strictly positive definite; (1.3)

(1.4)
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For αeIR", ί/elR", αeIR, and ft>0, we define

The choice of the square root in this definition will depend on the context and will
always be specified.

Remarks. 1. If A and B satisfy conditions (1.1)-(1.4), then these conditions are also
satisfied when A and B are interchanged, i.e., (ReAB~ 1)~ 1 =BB*. See the proof of
Lemma 2.1.

2. Whenever we write ψa(A,B,h,a,η,x), we tacitly assume that conditions
(1.1)-(1.4) are fulfilled.

3. If A and B satisfy conditions (1.1)-(1.4), then \\ψΛ(A9B9h9a9η9 )ll = 1.
4. Any normalized Gaussian has the form ψΛ(A9 B, h, α, η, x) for some choice of

A, B^h, a, and η. To see this we note that the quadratic form in any Gaussian is
given by an invertible symmetric matrix Q, whose real part \(Q + Q*) = \(Q -f Q) is
strictly positive definite. We can choose h=l, y4 = (Reg)"1/2, and B = QA. The a
and η are unique and easy to find.

5. The matrices A and B are not unique. Nothing is changed if we multiply
both A and B on the right by the same unitary matrix whose determinant is 1.

6. For each ft>0 we define the Fourier Transform, ̂ , by

The inverse transform, J^~ 1, is given by

R"

We denote \_^h\pa(A,B,h,a,η, •)](£) by ψΛ(A,B,h,a9η9ξ). Explicitly,

ψΛ(A9 B, h, a, η, ξ)

We must be careful about the branch of the square root. The choice of the branch is
independent of a, η, and ξ, so we take them all to be zero. Next, we notice that

must be positive when z = 0. Furthermore, this integral is analytic for z in some
complex neighborhood of the real interval [0,1]. This determines (detlM"1)1''2,
which determines the branch of (det5)~1/2 = (det5^1"1)~1/2(det^)"1/2 from the
choice of (det^4)~ 1/2.

The following notation will be used throughout the paper: For FeC2(IR"),

F(1)(.x) denotes the gradient — (x) I, and F(2)(x) denotes the Hessian - (x) .
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The Euclidean norm of V(ί\x) is |F(1)(x)|, and the operator norm of V(2\x) on IR" is

||02)(χ)||.
With this notation, we can now state our first theorem.

Theorem 1.1. Suppose l/3<α<2/3, FeC2(IR"), \V(x)\^C^eMx\ and V^-C2.
Assume F(2) is uniformly Lipschitz on compact subsets ofW1 (i.e., given any R>Q,
there exists β, such that \\V(2\x) - V(2\y)\\ ^β\x~y\ whenever \x <R and \y\<R).
Let 00eIRn, /70eIR", and let A0 and B0 satisfy conditions (1.1)-(1.4). Then for each
T>0 and each positive A<Min{3α— 1,2 — 3α}, there exist C and <5>0 such that
h<δ implies

(1.5)

whenever \t\^T (άQtA(t) is never zero, and the branch of the square root
(detA(t))~ί/2 in the definition of ψΛ(A(t), B(t\ h, a(t\ η(t),x) is determined by
continuity in t). Here \_A(t\ B(t\ a(t\ η(t\ 5(ί)] is the unique solution to the system of
coupled ordinary differential equations :

(1.6)

(1.7)

dA
— (t) = ihl-2*B(t)/2m, (1.8)

(1.9)

2m-V(a(t)), (1.10)

subject to the conditions A(0) = AQ9 B(Q) = B0, α(0) = α0, η(Q) = η0, and S(0) = 0.

p ,/ ^ Λ /r , / A , AFurthermore, the differentials ^ ^λ, ^ ,^ , ^ x^x , αnα . .̂ βxϊ5ί, and
JJ da(0) dη(0) da(0) dη(0)

<'•»>
.

Remarks. 1. In the above theorem α(ί) and /?(£) are, of course, the classical position
and momentum at time ί. S(ί) is the classical action.

2. Equations (1.11) and (1.12) show that the spreading is also determined
asymptotically as ft-»0 by classical mechanics. The classical paths which are
"near" the path (α(ί), η(t)) determine the spreading in time. Of course, the meaning
of "near" depends on haA0 and fe1"αB0. For example, if α<l/2, then as ft-»0, A(t) is

asymptotic to — — -^4(0). In this case the behavior of A(t) as h^O is determined by
00(0)
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the paths which have initial positions approximately equal to α(0) and have initial
momenta equal to η(0). If α> 1/2, then the asymptotic behavior of A(t) as ft->0 is
determined by the paths which have initial positions equal to α(0) and initial
momenta approximately equal to (̂0). The same results hold for B(t).

3. The branch of the square root (detτ4(ί))~ 1/2 is related to the Maslov index of
the path (a(t\ η(ή) [1, 3, 10]. So, from our point of view, the Maslov index is simply
a winding number. The position space caustics (which are usually mentioned in

connection with the index) are the points at which det — — — =0 or
\ δα(0)/

det- — - 1=0. As mentioned above, when α<l/2, A(t) is asymptotic to
\

). Since ft"α|det,4(£)| is essentially the volume of

the set on which \ψa(A(t), B(t), h, a(t\ η(t\ x)| is large, we see that our wave function

is exceptionally singular at those times when det =0 as ft-»0.

The momentum space caustics are the points at which det-—— =0 or
V

det- — -I =0. These give rise to singular behavior ofψa(A(t), B(t\ ft, α(ί), η(t\ ξ) as
\ da(Q)J
h-+Q.

4. Our proof of Theorem 1.1 involves little more than the Trotter product
formula [11] and the approximation of Fby its second order Taylor expansion.
For harmonic oscillators, our approximate evolution is consequently exact !

5. Classical particles can be "captured" if they have just enough energy to get
to the top of a potential hill (see [14, Appendix 2]). Such capture processes
contribute to exceptional sets in classical scattering. There are no such excep-
tional sets in quantum scattering, and it is instructive to see what happens to
a semiclassical particle in one dimension. At the top of the hill, V(2}(x) is negative.
So, Eqs. (1.8) and (1.9) show that the position width function h*A(t) is approxi-
mately a linear combination of exponentials. Generically, such a linear com-
bination diverges exponentially in time. The behavior of the momentum width
function hί~aB(t) is similar.

6. Theorem 1.1 is related to a theorem of Hepp [7] which is concerned with
expectation values of Weyl operators in coherent states as ft-»0. Yajima's papers
[15, 16] implicitly contain Theorem 1.1, although Yajima focuses his attention on
infinite time problems.

Our second theorem deals with scattering theory. For potentials FeL°°(IRM)
which satisfy IFMI^^l + lxl)" 1" 6, the quantum mechanical wave operators

Ω ± (h) = strong-lim eitίί(m e ~ "*<>(*)/*
ί-» +00

exist for each h>0. Furthermore, they are asymptotically complete:
Ran(ί2 + (ft)) - Ran(Ω~(ft)) - the continuous subspace for H(h) (see e.g., [4.12]). This
implies the unitarity of the quantum S-matrix, S(h) = Ω~ (h)* Ω+ (h).
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If a potential FeC3(R") satisfies ||Fω(x)|| ^cj.(l + |x|)~1" /~ v for O^/gS and
some v>0, then given any α_eIR" and η_eWl with η_ ΦO, there exists a unique
solution \_a(t\η(t)~\ to Eqs. (1.6)-(1.7), such that

Jim |α(f)-α_-f7_ί/m =0 (1.13)

and

lim \η(t)-η_\=Q. (1.14)
ί-» - 00 ^ '

Furthermore, there is a closed set S£ {(<2_,7y_)eIR 2 n :/?_ φO} of Lebesgue measure
zero in IR2", such that (a_,η_)φS implies the existence of a+ and η+ φO such that

lim \a(t)-a+-η+t/m\=Q (1.15)
ί-» + oo

and

lim |f/(ί) — f7 + | = 0. (1.16)

For proofs of these facts, see [8, 12, 13, 14]. The classical ^-matrix,
S^:R2V-^lR2n is defined by S Λ /α_, f/_) = (α+,ί/ + ).

Theorem 1.2. Lei n^3 and αe(l/3, 2/3). For some v>0, assume FeC3(lRn) satisfies

||0Λ(x)||^c/H-|x|)"1" /-v for 0^3.

Suppose (α_, f/_)e!R2"\(f, απd suppose A_ and B_ are complex nxn matrices
satisfying conditions (1.1)-(1.4). Then there exist ^ + ΦO, α+ElR", 5+eIR, matrices
A+ and B+ satisfying conditions (1.1)-(1.4), and a unique solution [_A(t\ B(t\ a(t\
η(t\ 5(ί)] to the system (1.6)-(1.10), such that Eqs. (1.13)-(1.16) hold, and the
following asymptotic conditions are satisfied:

lim \\A(t)-A+-ih1~2«B+t/2m\\=Q, (1.17+)
ί-» ± oo ~ " ~

lim |S(ί)-ί(ί?_)2/2m|=0, (1.19)
ί-> — oo

and

lim \S(t)-S+-t(η + )2/2m\ = Q. (1.20)
-

The functions a(t), α + , η(f), and η+ are differ entiable functions of a_ and η_9 and the
following relations hold :

, (1.21)
ca_ dη_

A , (1.22)
da_ " v 7

^. (1.23)I T " ' * Λ -«-' — 5θί?_

_2j^-1^±^_. (1.24)
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For each /l<Min{3α — 1,2 — 3 a}, there exist sC such that h ̂ l implies

(1.25)

sup \\e-
itHW*Ω+(K)ψΛ(A_9B_, ft, α_, f j _ , •)

ίeIR

and

_,B_,h,a_,η_, .)-eiS+l*ψΛ(A + ,B + ,h9a + ,η + 9 )\\<Chλ. (1.26)

To determine the branch of the square root, (det.4(ί)) 1/2, which occurs in Eq. (1.25),
we first notice that (det,4_)~1/2 determines (det[^_ +ih1~2aB_t/2m])~1/2 by
continuity from ί = 0. Next, (det^4(ί))~1/2 is determined by continuity and the
requirement

lim (detτ4(ί))~1/2

t~> — OC

Similarly, (detyl + )"1/2 in (1.26) is determined from (det,4(f))~1/2, continuity in t, and
the two requirements

lim (det^ + )" 1/2 - (det(4(f)- f f t 1 ~2α5+ ί/2m))~ 1/2 =

Remarks. 1. Yajima's theorem [15] deals with the case α=l with less restrictive
conditions on the states which are considered. However, Yajima has not proved
that his exceptional set has measure zero. See [16] for results on long range
scattering.

2. Our methods can easily be generalized to handle a Coulomb singularity. Of
course, the exceptional set $ must be increased to include paths which hit the
singularity, but this larger set is again a closed set of measure zero in R2n. Our
method can therefore be extended to include Yukawa potentials.

3. The classical field limit of scattering which has been studied by Ginibre and
Velo [5, 6] should not be confused with the limits we are studying. The problems
which they are addressing are very different from ours.

2. Finite Times

In this section we prove Theorem 1.1. We begin with three preliminary lemmas.
The first one deals with solutions of certain matrix valued differential equations,
such as Eqs. (1.8) and (1.9). The second gives exact formulas for

e-
itHo(W*ψΛ(A9B9h,a9η9x) and e~ίtWlhιpΛ(A,B,h,a,η,x\ where ΐ^is any quadratic

polynomial on IR". The third lemma contains the crucial estimate to be used to
prove Eq. (1.5). Modulo technicalities, Theorem 1.1 follows easily from these
lemmas and the Trotter product formula.

Lemma 2.1. Let f(t) and g(t) be real symmetric nxn matrix valued functions on
\_-T9T] such that ||/(ί)-/(s)|| + \\g(t)-g(s)\\ ^β\t-s\ for some β. Let A0 and B0 be
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complex matrices which satisfy conditions (1. !)-(!. 4). Then for \t\^T there exists a
unique bounded solution \_A(t\ B(t)\ to the equations

dA
~(t) = ίf(t)B(t), (2.1)

(2.2)

such that A(0) = A0 and B(Q) = B0. Moreover, A(t) and B(t) satisfy conditions

Proof. The existence, uniqueness, and boundedness are standard results for
ordinary differential equations (see e.g., [2]).

Let F(t) = A(t)*B(t) + B(t)*A(t) and G(t) = A(t)tB(t)-B(t)tA(t). Equations (2.1)
and (2.2) and the conditions on /(ί) and g(t) show

F'(t) = A(t)* B'(t) + A'(t)* B(f) + B(f)* A(f) + F(ί)* A(t)

= iA(t)*g(t)A(t) - iB(tY f(t)B(t) + iβ(ί)* f(t)B(t) - iA(t)* g(t) A(t)

= 0,
and

G'(ί) = A((f B'(t) + A'(ffB(t) - B(tjA(t) - B'(tjA(t)

= iA(tJg(t}A(t) + iB(tJf(t)B(t) - iB(tJ f(t)B(t] - iA(tJ g(t] A(t)

-0.

Thus, F(t) and G(t) are constant. Since (Re50^Q ί)~1=A0A$,

F(t) = F(0) = A*tB0A~ 1 + (B0A~ ^*] A0 = 2A*(ReB0A^ *)A0 = 21 .

So for zeC", 2<z,z> = <z,F(ί)z> = <^(ί)2:, B(ί)z> + <B(ί)z, 4(ί)z> is zero only if
z = 0. Thus, ker>4(ί) = kerβ(ί) = {0} and both A(t) and β(ί) are invertible.

We can now easily verify relation (1.4) for A(t) and B(t):

This relation and the invertibility of A(t) ensure that ReB(t)A(t) 1 is strictly
positive definite.

Since BQA~1 is symmetric, G(t) = G(ty = At

Q\_BQA~ 1-(B0AQ ί)t~]A0 = Q. Thus,
Q = lA(t)tT1G(t}A(tΓ1=B(t)A(tΓ1-[B(t)A(tΓ1y, and B(t)A(tΓl is sym-
metric. Π

Lemma 2.2. Choose A, B, ft, α, η, and α as in the definition ofψa(A, B, ft, a, 77, )e L2(IR").

polynomial on IR".

a)A&
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and

Continuity in t determines the choice of the square roots in the definitions of the ψa's
on the right hand sides of the above equations.

Proof. Verification of the first result is a trivial algebraic exercise. To compute
jt the fact

, B, h, a + tη/m,η,ξ).

Applying the inverse Fourier transform, we see that we need only show

(ReB(A + ith1~2aB/2mΓ1Γ1=AA* and that B(A + ith1~2aB/2mΓ1 is symmetric.
This follows from Lemma 2. 1 with f(f) = hl~ 2a/2m and g(ή = 0. Π

Lemma 2.3. Suppose α>l/3, /eL^R"), FeC2(IR"), \V(x)\^C^^2, and V(2} is
uniformly Lipshίtz on compact subsets ofW1 (i.e. given any R >0, there exists β such
that \\V(2\x)-V(2\y)\\^β\x-y\ whenever \x\<R and \y\<R). Let KgW be
compact. Define

Wy(x) = V(y) + < V(l\y\ (x - y» + i<(x - y\ V(2\y) (x - y)> .

Then for each ΛΓ>0, p<α, and ye(0,α — p\ there exist C2 and δe(ΰ, 1) such that

||(e-^_e-™^

for all SEIR whenever \\A\\ ^Nh~p, yeK, and h<δ.

Proof. The hypotheses on V imply the existence of β, such that yeK and \x — y\ ̂  1
imply \V(x)-Wy(x}\^β\x-y\\

Let X^(h,y, •) and X2(h,y, •) denote the characteristic functions of
{x :|x — y\^hj} and {x :\x — y\> hγ}, respectively. Then, for h ̂ 1,

\\(e-W»-e-"w>Ί*)fψJίA,B,h,y,η, )\\

^ l l / ILf t ' 1 !
+ \\X2(Λ,y, )\V-Wy\ψΛ(A,B,h,y,η,

Since yeK, we now need only show \\X2(h, y, x)eM\x~y\2ψx(A, B, h, y, η, x)\\ is less
than some constant multiple of h3y whenever h"\\A\\ ^=N and h is less than some
c)>0. However, (1.4) shows that

\\X2(h,y,x)euWψa(A,B,h,y,η,x)\\
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whenever M— \\A\\~ 2h'2aβ is negative. Since \\A\\ ^Nh~p and p<α, there
obviously exists <S>0 such that h<δ implies

is negative. Furthermore, since y<α — p, there exist C" such that h<δ implies
2n/2exp{Mh2y-h~2a+2p+2yβN2}^C"h?>y. This implies the lemma. Π

Proof of Theorem l.i. The hypotheses on V guarantee the existence of a unique
bounded solution to the system (1.6)-(1.10) for |ί|^T(see e.g., [2, Sect. V.I 1];

energy conservation shows that a and η are bounded). Furthermore,

, and exist [2, Sect. V.12]. Equations (1.6) and (1.7) imply,
oα(O) 077(0)

o
Differentiating this with respect to α(0) and ^(0), we have

and

These are two independent solutions to the linear equation

From Eqs. (1.8) and (1.9), we see that A(t) also satisfies this equation. Consequently,
(1.11) holds for all te[—T,T], since the correct boundary conditions are satisfied at
j _ A

To verify (1.12), we first notice that — „ ,^ and — — — — — =rn~1^—-— arey at da(ϋ) da(G) at da(0)
d da(t) , dη(t) „. .Λ Λ d da(f) , dη(t)

continuous. It follows that - -- ^4 =m~l— '-—-. Similarly, — — - ~- =m~1~^~.
at da(0) da(0) y at dη(0) dη(0)

dA
Using these two facts, we can compute -—(ί) by differentiating (1.11). Substituting

at
the result in Eq. (1.8), we obtain Eq. (1.12).

We now turn to the proof of (1.5). There exists a constant ^ (clearly
independent of ft!) such that \a(t)\<Rί/2 whenever \t\^T. Also, Eq. (1.11) shows
that there exists R2 such that \\A(t)\\ ^h~pR2/2 for |ί|^T and ft^l, where

Since /l>0, some arithmetic shows that α, p, and γ = (λ + 1)/3 satisfy α>p and
ye(0,α-p). So, by Lemma 2.3, there exist C and <5>0 such that h<δ, \a\<Rl9

/eL°°(IRM), and \\A\\ ^R2h~p imply

(2.3)

where Wa(x) = V(d) + < F(1)(α), (x - α)> + i<(x - a\ V(2\d) (x - α)>.
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For the Remainder of the Proof, we fix h<δ and fe [— T, T].
By using the Trotter product formula and Eq. (2.3) in tandem, we will be led to

the following discrete time analogs of the solution to Eqs. (1.6)-(1.10): For
l^n^N, we define α^(0) = α(0), i/^O) = ιy(0), AN(Q) = A(Q)9 SN(0) = 5(0), 5 (̂0) = 0,

) = η(0)- V™(aN(j-l))t/N ,
j = ι

n

ηN(j)t/Nm
7=1

7=1

7 = 1

and

S» - Σ [(^(/'))2/2m - V(aN(j - 1))] ί/JV .
7=1

Our conditions on V imply that by taking N very large we can make

|φί/JV) - aN(n)\ + \η(nt/N) - ηN(n)\ + || A(nt/N) - AN(n) \\

+ \\B(nt/N)-BN(n)\\+\S(nt/N)-SN(n}\

arbitrarily small for all n = 1, 2, . . ., N (see e.g., [2, Sect. VII. 12]). So, by Lemma 2.1
and the dominated convergence theorem, there exists N± such that N>Nl implies
for n^N, that (A^n))'1 exists, \aN(n)\<Rl9 \\AN(n)\\ <R2h~p, and

\ BN(N\ ft, fljv(N), ηN(N\ - )

,a(i)^(i), O i l <Chλ/3. (2.4)

The Trotter product formula [11] shows the existence of N2 such that N>N2

implies

e - itH(h)/h —Γe' itH0 (h)/Nh e - itV/Nh-ι N\

ΨΛ(A(0)9 B(Q\ ft, α(0), η(0)9 ) II < Cft λβ . (2.5)

Now suppose N>Max{Nl9N2}. Since ^<^, |aN(0)|<^1? and MN(0)||
inequality (2.3) shows

_ e ~ ίtwa(0)/N^ φα(^(θ)? 5(0), ft, α(0), ̂ (0), ) II < ChλβN .

Hence,

), B(0l ft, α(0), /7(0), Oil < Chλ/3N .

However, Lemma 2.2 shows

-itwa«»/m] ψa(A(Q\ β(0), ft, α(0), ιy(0), x)

αμN(i), jy i), ft, %(i), ι
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By our choice of TV, we may iterate this procedure to obtain
n

Π [e~ίίHo(*)/N*e~ίίF/™]^ •)
<nChλβN (2.6)

for n = l,2, ...,7V. In particular, this holds for n = N.
The proof is now completed by combining inequalities (2.4), (2.5), and

(2.6). α

3. Scattering Theory

The purpose of this section is to prove Theorem 1.2. Although the proof of this
theorem is similar to that of Theorem 1.1, it requires two lemmas which are not in
Sect. 2. Lemma 3.1 establishes properties of solutions of Eqs. (1.6)-(1.10) for infinite
times. Lemma 3.2 is the infinite time analog of Lemma 2.3.

Lemma 3.1. Suppose h>0 and αe(0,1). For some v>0, assume FeC3(lR") satisfies

for 0 ̂ 7 rg 3 .

Let a_ eIR", η_ eIRn, and let A_ and B_ be any two complex nxn matrices. Ifη_ή=Q,
then there exists a unique solution \_A(t\ B(t\ a(t\ η(t\ S(tJ] to the system (1.6)-(1.10)
such that (1.13), (1.14), (1.17_), (U8_), (1.19), (1.21), and (1.22) hold. I f ( a _ , η _ ) φ δ ,
then there exist η+ Φθ and a+ such that (1.15), (1.16), (1.17 + ), (1.18 + ), (1.20), (1.23),
and (1.24) also hold. Furthermore, if (a_,η_)φS and A_ and B_ satisfy conditions
(1.1 HI. 4), then the pair A(t\ B(t) and the pair A + 9 B+ also satisfy conditions

Proof. Simon [14, Theorem 2] has shown that given a_ and η_ ΦO, there exists a
unique solution [a(t\η(t)~] to (1.6) and (1.7) which satisfies (1.13) and (1.14).
Explicitly, this solution satisfies

ί s

a(t} = a_+tη_/m-m~1 J ^5 J V(1\a(r))dr (3.1)
— oo — oo

and

η(t} = η_- I V(1\a(s))ds. (3.2)
- oo

Using the idea of Theorem 3 of [14], our hypotheses on Fand Theorem 9.4 of [9]

u da(t) da(t) dη(t) dη(t) . . . .
show that — — , — ̂ -, -—-^i and — ̂ ^ exist and satisfy

ca_ oη_ oa_ cη_

=/-«-' ds I V ^ ( a ( r ) r , (3.3)
— QQ _ OQ oa_

=t/m~m-1 ί ds ] V(2\a(r))d--dr, (3.4)

, (3.5)
da_
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and
}γι(+\ t Plπί^

s. (3.6)

I f ( a _ , η _ ) φ $ , then [8; 13; 14, Theorem 5] there exist a+ and η+ Φθ such that
(1.15) and (1.16) are satisfied. From Eq. (3.2) we see that

η+=η--] V(l\a(s)}ds. (3.7)
— oo

Using this and Eq. (3.1), we have

o o i s
1 j V(l\a(r})dr-m~l f ds J V(l\a(r}}dr

l$ds f F(1)(a(r))dr-m~1 Jίίs J
O - o o O - o o

0 s

-m-1 j ds J
— oo — oo

O

= a_-m~1 j ds
— oo — oo 0 s

Letting ί tend to infinity in this expression, we obtain a formula for α+ :

0 s oo oo

a+=a_-m~ί J ds J V(l\a(r})dr + m-1 j ds f V(ί\a(r)}dr . (3.8)
— oo — oo 0 s

Energy conservation requires (η_)2/2m = (η(s))2/2m+ V(a(s)) for all s.

Thus, ί
S(t) = t(η_)2/2m-2 f F(

is well defined and satisfies (1.10) and (1.19). If (a_,η_)φ£9 then (1.15) and the
hypotheses on Fshow that (1.20) holds with

00

S+ = -2 J V(a(s))ds.
— 00

By standard existence and uniqueness theorems [2], we need only show
existence and uniqueness of A(t) and B(t) on (— oo, — T) for some T. Let Z(t) be any
continuous nx n matrix valued function satisfying 1^11^= sup ||Z(ί)|| rgl.Then Eq.
(1.15) and the hypotheses on Fshow that the integral ίelR

-m"1 J ds I V(2\a(r))[A_+ih1-2arB_
— oo — oo

is bounded by a Z-independent multiple of |ί| v for ί<0. So, by taking T very

large, we see that ̂  is a strict contraction on j t f = JZ : \\Z\\(_T}= sup ||Z(ί)|| ^ll
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Thus, there exists a unique solution ZGJ/ to Z = ̂ Z. This solution is clearly
differentiable, and

2atB_/2m + Z(t\ B(t) = B_-2imh2«'1 Z\t\ a(t\ η(t\ S(t)\

is the unique solution to (1.6)-(1.10) which satisfies (1.13). (1.14), (1.17_), (1.18 _),
and (1.19).

If (a_,η_)φS>, then we can reverse time in the above argument and produce a
mapping A :(A + ,B+)^(A( ),B( )) which is linear and injective. Since the space of
solutions of (1.8) and (1.9) has the same dimension as the space of asymptotes
{(A + ,B + }}, A is surjective, and hence, invertible. Therefore, our solution \_A(t\
B(t)\ satisfies (1.17+) and (1.18 + ) for some A+ and B + .

Next we turn to the proof of Eqs. (1.21) and (1.22). From (3.3) and (3.4) we see

that — — and - — are two independent solutions to the linear equation -r^-(ί)
oa_ oη_ dr

= -m~lV(2\a(ij)f(t). Equations (1.8) and (1.9) show that A(t) also satisfies this
equation. Consequently, (1.21) holds since the right hand and left hand sides have
the same asymptotic behavior as ί-> — oo. Equation (1.22) now follows from (1.21)
in the same way that (1.12) followed from (1.11) in the proof of Theorem 1.1.

To prove (1.23) and (1.24), we assume (a_,η_)φS> and note that we have

already shown that A(t\ - — , and — — satisfy the same differential equation.
oa_ oη_

Furthermore, in our proof of the existence of A+ and B + , we completely analyzed
da(t) da(t)

the asymptotic behavior of all solutions to that equation. Thus,
da

grow at most like constant multiples of t as ί->oo. Using this, we can differentiate
^ -Λ Λ s\

(3.7) and (3.8) to prove that -̂ , -̂ , -̂ , and -̂ - exist and satisfy
oa_ oη_ ca_ oη_

(3.10)
dη. -\

and

^ = -m~1 f ds f V^a^^dr + m^ldslv^a^^dr. (3.12)
dη- -oo -oo Sη_ J

0 dη_

Substituting (3.3) and (3.4) into (1.21) and using (3.9)-(3.11), we see that A(t) is
asymptotic to

Λ * •*• \ -J VI V _ Λ~r I I _ J. Λ- I T f l l - _ ^̂

oa_ oη_ m\oa_ oη_

Similarly, by combining (1.22), (3.5), (3.6), (3.9), and (3.10) we see that

- -
dη_ oa
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These results imply (1.23) and (1.24).

Finally, let (a_, η_)φ$, and suppose A_ and B_ satisfy conditions (!.!)-( 1.4).
The proof of Lemma 2.1 clearly shows that there exist constant matrices C1 and
C2 such that B(t)*A(t) + A(t)*B(t) = C1 and B(tJ A(f)-A(tjB(t) = C2. Thus,

B(t)*lA(t) - ίft1 ~ 2αίJ5(ί)/2m] + [A(t) - ih1 " 2αί£(ί)/2m] * B(t) = C1

and

γ \_A(t) -ih1' 2atB(t)/2m] - [A(t) -ih1' 2αί5(ί)/2m]ί B(t) = C2 .

However, by using \\V(2\x)\\ ^c2(l + |x|)~3~ v and Eqs. (1.21), (1.22), and (3.3)-(3.6),
we see that lim A(t)-ih1~2atB(t}/2m = A_. Thus, C^ = B*A_ +A*_B_ and C2

f-* — oo

= Bt_A_-A*_B_. Since 4_ and B_ satisfy (1.1)-(1.4), the proof of Lemma 2.1
shows that Cί=2I and C2 = 0. The proof of Lemma 2.1 now shows that A(t) and

satisfy conditions (!.!)-( 1.4) for all t.

By using the hypothesis ||F(2)(x)|| ^c2(l + |x|)~3~v, our growth estimates on
da(t)

da_
and

da(t)

dη_
, Eqs. (1.21)-(1.24), (3.3)-(3.6), and (3.9)-(3.12), we can show that

lim A(t)-ίh1-2atB(t)/2m = A + . It follows that B*+A+ +A*+B+ =C, =21 and
£-> + oo

Bt

+A+—At

+B+=C2=Q. The proof of Lemma 2.1 now shows that A+ and B +

satisfy (1.1)-(L4). Π

Remark. Toward the end of the above proof, we noted that Eqs. (1.21)-(1.24),
(3.3)-(3.6), and (3.9)-(3.12) show that

lim A(t)-ihί-2atB(t)/2m = A+. (3.13)
ί-> ± oo -

Similarly, Eqs. (3.1), (3.2), (3.7), and (3.8) can be used to show that

lim a(t)-tη(t)/m = a+. (3.14)
t-»± oo -

This statement is already implicitly contained in [14].
Also, Eqs. (3.2) and (3.7) and the formulas for S(i) and S+ show that

lim S(t)-t\η(t)\2/2m = S+. (3.15)
f-» + oo

Lemma 3.2. Let the dimension of space be n ̂  3. Let αe(l/3, 2/3) αnd/eL°°(IRw). For
some v>0 assume FeC3(IR") satisfies

||F(Λ(x)||^c/l + M)-1- '-v for 0^3.

Given (a_,η_)φ$, and A_ and B_ satisfying conditions (!.!)-( 1.4), let \_A(t\ B(t\
a(t\ η(t\ S(tJ] be the solution to Eqs. (1.6)-(1.10) constructed in Lemma 3.1. If we
define Wy(x) by

= V(y) + < 0%), (x - y)> + £<(x - y), F(2)(y) (x -
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then for each positive A<Min{3α — 1, 2— 3α}, there exists a positive continuous
function F(ί)^C(l + |ί|)~1~v/2, such that h^ί implies

, B(t), h, a(t), η(t\ Oi l £F(t) \\f\\ „ \s\hl.

Proof. Suppose μ<ί and |x — y|:gμ(l + |y|). Let z be the element of {z = rx
+ (ί — r)y Orgr gl} which minimizes |z|. Then by the triangle inequality,

|| F(2)(χ)_

So, if we set β(y) = c3(ί -μ)~4~v(ί + |y|Γ4~v, then \χ-y\ ^μ(\ + \y\) implies || F(2)(x)
-V(2\y)\\^β(y)\x-y). From this, it follows that \x-y\^μ(ί + \y\) implies
\V(x)-Wy(x)\£β(y)\x-y\3/6.

Let X^(h,y, •) and X2(h,y, •} denote the characteristic functions of
{x:\x- y\^h(λ+1}/3μ(ί + \y\)} and {x:\x-y\>h(λ+1}/3 μ(l + \y\)}, respectively.
Then, for h ̂ 1,

Wa(t}\Ψaί(A(t),B(t),h,a(t),η(t), )||

^flW, )\V-Wa(t}\ψx(A(t),B(t),h,a(t),η(t),

)Λα(ί),'ί(ί), O i l )

, B(t),h,a(t),η(t), Oi l

,Λ,fl(ί),»/(0, Oil}

The asymptotics of a(t) guarantee the existence of a positive continuous
function F1(ί)^C1(l + |ί|)-1-v, such that |/(ί)l^*Ί(ί)ft(A+1)

By Holder's inequality, II(ή is bounded by

||X2(ft, α(ί), x) exp{ - (8/z2α)- l <(χ - α(ί)), ReB(ί) A(ί)- x (x

- a(f)\ ^B(f)A(tΓl (x - α

where p 1 + q 1 = 1/2.
Since A(t) and B(t) satisfy conditions (1.1)-(1.4), the first factor of (3.16) is

bounded by exp {- (8ft2T1 \\A(t)\\~2[h(λ+ 1)/3μ(l + I«(OI)]2}- τhe continuity
and asymptotics of a(t) and A(t) show that this is bounded by exp{ — C'h~ε}, where
C is some constant independent of h and f, and ε = 2(α — (λ +1)/3). Our hypotheses
on α and λ guarantee ε>0. By interpolation between q = 2 and q=co, the third
factor of (3.16) is bounded by some ft-independent multiple of (hna\detA(ή\)1/q~1/2

for 2^g^oo. Since rc^3, our hypotheses on V guarantee the existence of some
p < n(l + v/2)~1 such that || F||p < oo. Making such a choice for p, we see that Π(t) is
bounded by a multiple of (ftw a |detA(i)|)~1 / pexp{-C'ft~e}. So, the continuity and
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asymptotics of A(t) show the existence of a positive continuous function F2(t)
l + |ίl)~1~ v / 2 such that \II(t)\^F2(t)hλ+1.

ΠI(f) is bounded by a sum of three terms :

2(h,a(t\ )ψJίA(t),B(t)9h,a(t),η(t)9 )ll

))| \\X2(h, a(t\ x) \x - a(t)\ ιpa(A(t\ B(t\ ft, a(t\ η(t\ x) \\

+ \ || V(2\a(t}} || ||X2(ft, a(t\ x) \x - a(t}\ 2 ψΛ(A(t)9 B(t\ ft, a(t\ η(t\ x) || .

By the analysis used to control //(ί), this sum is bounded by

|| I I |x - a(t)\2 φβ(ί, ft, χ)||] exp{ - Q

where

• exp{ - (8ft2α)~ 1 <(x

We write the above I?-norms as square roots of integrals, and then change the
variable of integration to z = A(t) ~ 1 (x — a(t)). This leads to the bound

where D1? D2, and D3 are constants. The hypotheses on Kand the asymptotics of
a(t) and A(t) now show that lΠ(t) is bounded by hλ+1F3(t) for some positive
continuous function F3(ί)^C3(l + |ί|)~1~v.

Setting F = F1 + F2 + F3, the proof is complete. Π

Proof of Theorem ί.2. Lemma 3.1 establishes everything we need except for Eqs.
(1.25) and (1.26). Furthermore, by Lemma 2.2 and Eqs. (3.13)-(3.15),

lim e-ίtH°(h}/heίS(t}/tlιpa(A(tl B(t\ ft, a(t\ η(t\ x)
-ί-> oo

Thus, (1.25) implies (1.26).
To prove (1.25) we need only prove that given ε>0, there exists Tsuch that

s< — T implies that

for all ίeR
By Lemmas 2.2 and 3.1, and the dominated convergence theorem, there exists

T such that s < — T implies
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Thus, it is sufficient to prove that for any t and s, there exists a C such that

\\eίs^ιpa(A(slB(s\h,a(s\η(s),.)

-eί(t-s}H(fl}/fleίS(t}/hψΛ(A(tlB(tlh,a(tlη(tl )ll <Chλ.

To prove this, we simply repeat the Trotter product formula argument at the
end of the proof of Theorem 1.1, with Lemma 2.3 replaced by Lemma 3.2. The

00

value of C which we obtain is j F(t)dt, where .FeZ^IR) is the function in the
— oo

conclusion of Lemma 3.2. Π
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