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ASYMPTOTIC INTERTWINING BY THE IDENTITY
OPERATOR AND PERMANENCE OF SPECTRAL

PROPERTIES
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Communicated by F. Kittaneh

Abstract. We consider permanence of spectral properties of Banach space
operators asymptotically intertwined by the identity operator.

1. Introduction and preliminaries

If A,B are operators in B(X ), and4AB(X) ∈ B(B(X )) is the generalized deriva-
tion 4AB(X) = AX −XB, then B is said to be asymptotically intertwined to A
by X ∈ B(X ), denoted (A,B) ∈ (AX), if

lim
n−→∞

||4n
AB(X)||

1
n = lim

n−→∞
||4AB(4n−1

AB (X))||
1
n = 0.

Asymptotically intertwined operators intertwined by the identity operator I ∈
B(X ) share a number of properties; see [8, Lemmas, 3.4.7, 3.4.8 and Proposition

3.7.11]. In particular, if A has property (β) and limn→∞ ||4n
AB(I)|| 1n = 0, then B

has property (β).
Intertwining by the identity operator preserves the single-valued extension

property (in one direction), but fails to preserve the polaroid property. Here
we say that an operator A ∈ B(X ) is polar at a point λ ∈ isoσ(A) if A − λ
(= A− λI) has finite ascent and descent, and A is polaroid if it is polar at every
λ ∈ isoσ(A). Let us say that the operator B ∈ B(X ) is finitely intertwined to
A ∈ B(X ) by the identity operator if there exists an integer k ≥ 1 such that

Date: Received: 27 June 2012; Accepted: 3 October 2012.
2010 Mathematics Subject Classification. Primary 47A10; Secondary 47B10, 47B47, 47A11.
Key words and phrases. Banach space, asymptotically intertwined, SVEP, property (δ), po-

laroid operator.
186



ASYMPTOTIC INTERTWINING 187

4k
AB(I) = 0. (Such an intertwining of A and B by the identity has been called a

Helton class of order k in [7].) We prove that if B is finitely intertwined to A by
the identity operator and isoσ(B) ⊆ isoσ(A) , then B inherits the polaroid prop-
erty from A; again, if (A,B) ∈ (AI), λ ∈ isoσ(B)∩ isoσ(A) and λ is a finite rank
pole (of the resolvent) of A, then λ is a finite rank pole of B. (A,B) ∈ (AI) does
not, in general, imply the equality σ(A) = σ(B), or that the decomposition prop-
erty (δ) transfers from A to B. We prove that if A and B∗ have the single-valued
extension property and (A,B) ∈ (AI), then A and B have the same spectrum,
the same Browder spectrum and the same Weyl spectrum. If the local spec-
tra σA(x) and σB(x) satisfy the inclusion σB(x) ⊆ σA(x) for all 0 6= x ∈ X and
(A,B) ∈ (AI), then A satisfies (Dunford’s) condition (C) if and only if B satisfies
condition (C); if also A has the single-valued extension property, then A satisfies
property (δ) if and only if B satisfies property (δ). If, instead, (A,B) ∈ (AI), B∗

has the single-valued extension property and σA(x) = σ(A) for all 0 6= x ∈ X ,
then either A,B are quasi-nilpotent or A,B satisfy the abstract shift condition.

An operator T ∈ B(X ) is upper semi Fredholm, T ∈ Φ+(X ), if T (X ) is closed
and α(T ) = dim(T−1(0)) < ∞, T is lower semi Fredholm, T ∈ Φ−(X ), if (the
deficiency index) β(T ) = dim(X/T (X )) < ∞, and T is Fredholm if T is both
upper and lower semi Fredholm. The semi-Fredholm index of T , ind(T ), is the
(finite or infinite) integer ind(T ) = α(T ) − β(T ). The operator T is Weyl if it
is Fredholm of zero index, and T is said to be Browder if it is Fredholm of finite
ascent and descent. The upper essential spectrum, the lower essential spectrum,
the essential spectrum, the Browder spectrum and the Weyl spectrum of T are,
respectively, the sets σle(T ) = {λ ∈ σ(T ) : T − λ /∈ Φ+(X )}, σue(T ) = {λ ∈
σ(T ) : T − λ /∈ Φ−(X )}, σe(T ) = σle(T ) ∪ σue(T ), σb(T ) = {λ ∈ σ(T ) : T −
λ is not Browder} and σw(T ) = {λ ∈ σ(T ) : T − λ is not Weyl}. We say that
an operator T ∈ B(X ) satisfies Browder’s theorem if the complement of σw(T ) in
σ(T ) is the set π0(T ) of finite rank poles of (the resolvent of) T (equivalently, if
σb(T ) = σw(T ) [4, Theorem 3.1]).

Let C denote the set of complex numbers. A Banach space operator T , T ∈
B(X ), has the single-valued extension property at λ0 ∈ C, SVEP at λ0 for short,
if for every open disc Dλ0 centered at λ0 the only analytic function f : Dλ0 → X
which satisfies

(T − λ)f(λ) = 0 for all λ ∈ Dλ0
is the function f ≡ 0. T has SVEP if it has SVEP at every λ ∈ C. The single
valued extension property plays an important role in local spectral theory and
Fredholm theory (see [8] and [1]; also see [6]). Evidently, every T has SVEP at
points in the resolvent ρ(T ) = C \ σ(T ) and the boundary ∂σ(T ) of the spectrum
σ(T ). It is easily verified that SVEP is inherited by restrictions, and that if T has
SVEP and 4n

TY (I) = 0 for some Y ∈ B(X ) and finite positive integer n, then Y
has SVEP.

The local resolvent set ρT (x) of T ∈ B(X ) at x ∈ X is the union of all open
subsets U of C for which there is an analytic function f : U → X which satisfies
(T − λ)f(λ) = x for all λ ∈ U ; the local spectrum σT (x) of T at x is then the set
σT (x) = C \ ρT (x), and the local spectral subspace XT (F ), F ⊆ C, of T is the (not
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necessarily closed) subspace XT (F ) = {x ∈ X : σT (x) ⊆ F}. For an arbitrary
closed subset F of C and T ∈ B(X ), let χT (F ) = {x ∈ X : (T − λ)fx(λ) ≡ x for
some analytic function fx : C \ F −→ X}. The glocal spectral subspace χT (F ) is
a hyper-invariant linear manifold of T such that χT (F ) ⊆ XT (F ), with equality
whenever T has SVEP (and, of course, F is closed) [8, p. 220]. Any further
notation or terminology will be introduced progressively in the sequel, on an as
and when required basis.

2. Main results

Recall, [8, page 253], that the operators A,B ∈ B(X ) are said to be quasi-
nilpotent equivalent if both (A,B) and (B,A) ∈ (AI). Quasi-nilpotent equiva-
lence preserves a number of spectral properties amongst them (Bishop’s) prop-
erty (β), (decomposition) property (δ), (Dunford’s) condition (C), SVEP, spec-
trum and local spectrum [8, Proposition 3.4.11]. Recall, [8], T ∈ B(X ) satisfies:
condition (C) if XT (F ) is closed for every closed set F ⊆ C; property (δ) if
X = χT (U) +χ(V ) for every open cover {U, V } of C; and T satisfies property (β)
if and only if T ∗ satisfies property (δ). The following lemma generalizes a result
known to hold for finitely intertwined by identity operators (see [5] and [7]).

Lemma 2.1. If (A,B) ∈ (AI) for some A,B ∈ B(X ), then A has SVEP implies
B has SVEP.

Proof. The hypothesis (A,B) ∈ (AI) implies the inclusion XB(F ) ⊆ XA(F )
for every closed subset F of C [8, Corollary 3.4.5]. Recall, [1, Theorem 2.8],
that A has SVEP if and only if XA(∅) = {0}. Hence, if A has SVEP, then
XB(∅) ⊆ XA(∅) = {0} implies B has SVEP. �

Remark 2.2. (i). Observe that (A,B) ∈ (AI)⇐⇒ (B∗, A∗) ∈ (AI); hence Lemma
2.1 implies that if B∗ has SVEP, then A∗ has SVEP.

(ii). More can said in the case in which 4k
AB(I) = 0 for some integer k ≥ 1:

If 4k
AB(I) = 0 for some integer k ≥ 1, then A has SVEP at a point µ implies

B has SVEP at µ. This is seen as follows. If µ /∈ σ(B), then B has SVEP at
µ. Hence assume µ ∈ σ(B). Assume further that B does not have SVEP at µ.
Then there exists a non-trivial analytic function f such that (B−λ)f(λ) = 0 for
every λ in an ε-neighbourhood of µ. Since 4k

AB(I) = 0⇐⇒ 4k
(A−λ)(B−λ)(I) = 0,

(A−λ)kf(λ) = 0. But then (since A has SVEP at µ) f(λ) = 0 – a contradiction.

We start by considering the preservation of the polaroid property. For this we
introduce some notation and terminology relevant to our considerations.

The quasinilpotent part H0(T ) and the analytic core K(T ) of T ∈ B(X ) are
defined by

H0(T ) = {x ∈ X : lim
n−→∞

||T nx||
1
n = 0}

and

K(T ) = {x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0 for which

x = x0, T (xn+1) = xn and ‖xn‖ ≤ δn‖x‖ for all n = 1, 2, ...}.
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We note that H0(T ) and K(T − λ) are (generally) non-closed hyperinvariant
subspaces of T such that (T )−q(0) ⊆ H0(T ) for all q = 0, 1, 2, ... and TK(T ) =
K(T ) [9]. An operator T ∈ B(X ) has a (generalized Kato) decomposition at every
isolated point λ of σ(T ), λ ∈ isoσ(T ), namely X = H0(T − λ) ⊕ K(T − λ) [9].
Observe that H0(T − λ) = χT (λ). The ascent of T , asc(T ), is the least non-
negative integer n such that T−n(0) = T−(n+1)(0) and the descent of T , dsc(T ), is
the least non-negative integer n such that T n(X ) = T n+1(X ); if no such integer
n exists, then T is said to have infinite ascent/descent.

An operator T ∈ B(X ) is polar at λ ∈ isoσ(T ) if asc(T − λ) = dsc(T −
λ) < ∞; T is said to be polaroid if T is polar at every λ ∈ isoσ(T ). The
polaroid property is not preserved under asymptotic intertwining by I, even quasi-
nilpotent equivalence. Thus, if A = 0 and B is the weighted forward unilateral
shift

B(x1, x2, ...) = (0,
x1
2
,
x2
3
, ...), (xn) ∈ `2(N),

then A is polaroid, the operator B (being non-nilpotent quasinilpotent) is not

polaroid and limn→∞ ||∆n
AB(I)|| 1n = limn→∞ ||∆n

BA(I)|| 1n = 0. (Also see [3, Ex-
ample 3.17].) However, if ∆n

AB(I) = 0 for some finite n and isoσ(B) ⊆ isoσ(A),
then the polaroid property transfers from A to B. Let σa(T ) = {λ ∈ C : T − λ is
not bounded below} denote the approximate point spectrum of T . Recall that T
is said to be left polar at λ ∈ isoσa(T ) if asc(T − λ) = d < ∞ and (T − λ)d+1X
is closed; T is finitely left polar at λ if T is left polar at λ and α(T − λ) <∞. T
is finitely left polaroid (finitely polaroid) if it is finitely left polar (resp., finitely
polar) at every λ ∈ isoσa(T ) (resp., λ ∈ isoσ(T )).

Theorem 2.3. Let A,B ∈ B(X ).
(a). If ∆n

AB(I) = 0 for some integer n ≥ 1 and isoσ(B) ⊆ isoσ(A), then A
polaroid implies B polaroid.
(b). If ∆n

AB(I) = 0 for some integer n ≥ 1 and isoσa(B) ⊆ isoσa(A), then A
finitely left polaroid implies B finitely polaroid.

Proof. We start by proving that if ∆n
AB(I) = 0 and H0(A−λ) = (A−λ)−p(0) for

some integer p ≥ 1 at a point λ ∈ σ(A) ∩ σ(B), then H0(B − λ) = (B − λ)−q(0)
for some integer q ≥ 1. Since ∆n

AB(I) = 0 ⇐⇒ ∆n
(A−λ)(B−λ)(I) = 0 for every λ,

we may assume that λ = 0. The hypothesis ∆n
AB(I) = 0 implies the inclusion

H0(B) ⊆ H0(A) [8, Corollary 3.4.5]. Let H0(A) = A−p(0) for some integer p ≥ 1.
Assume without loss of generality that n = p+s, for some integer s ≥ 1. Observe
that if x ∈ H0(B), then Btx ∈ H0(B) for all integers t ≥ 1. Let x ∈ H0(B).
Then ∆n

AB(I) = 0 implies

n∑
i=s+1

(−1)i
(
n
i

)
An−iBix = 0.
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Multiplying by An−1 on the left, we have Ap−1Bnx = 0, and hence upon multi-
plying ∆n

AB(I) = 0 by Ap−2 on the left and by B on the right

n∑
i=0

(−1)i
(
n
i

)
An+p−2−iBi+1x = 0

=⇒
n∑

i=s+1

(−1)i
(
n
i

)
An+p−2−iBi+1x = 0

=⇒ {(−1)n−1nAp−1Bn + (−1)nAp−2Bn+1}x = 0

=⇒ Ap−2Bn+1x = 0

for all x ∈ H0(B). Continuing in this fashion we have eventually that Bn+p−1x =
0 for every x ∈ H0(B). Since the inclusion B−t(0) ⊆ H0(B) holds for every
operator B and integer t ≥ 0, we conclude that H0(B) = (Bn+p−1)−1(0), and so
B has finite ascent at 0.

(a). The hypothesis isoσ(B) ⊆ isoσ(A) implies that A − λ is polar at every
λ ∈ isoσ(B). In particular H0(A−λ) = (A−λ)−p(0) for some integer p ≥ 1, and
hence (asc(B−λ) <∞ and) there exists an integer q ≥ 1 such that H0(B−λ) =
(B − λ)−q(0). The point λ being isolated in σ(B),

X = H0(B − λ)⊕K(B − λ) = (B − λ)−q(0)⊕K(B − λ)

=⇒ (B − λ)qX = 0⊕ (B − λ)qK(B − λ) = K(B − λ)

=⇒ X = (B − λ)−q(0)⊕ (B − λ)q)X .

Thus B is polar at every λ ∈ isoσ(B).

(b). If A is left polar at 0 with asc(A) = q <∞, then 0 ∈ isoσa(A), (Aq+1X closed
implies) AqX is closed, A(q) = A|AqX is upper semi Fredholm and asc(A(q)) = q <
∞. Hence there exists an integer p ≥ 1 such that H0(A) = A−p(0) [2, Theorem
2.3]. Since λ ∈ isoσ(B) =⇒ λ ∈ isoσa(B) =⇒ λ ∈ isoσa(A), asc(B− λ) <∞ and
H0(B−λ) = (B−λ)−t(0), for some integer t ≥ 1, at every λ ∈ isoσ(B). This, as
in part (a), implies B is polar at λ. Suppose now that A is finitely left polaroid.
Then, since H0(B−λ) ⊆ H0(A−λ), we have also that dimH0(B−λ) <∞. Hence
B is finitely polaroid. �

It is evident from the example of the operators A = 0 and B = Q a non-
nilpotent quasinilpotent that asymptotic intertwining by the identity operator
does not preserve finite ascent. The preservation of the finite ascent property
under finite intertwining by the identity is proved in [7], Lemma 2.2 and Theorem
2.3, for Hilbert space operators: the argument of [7] works just as well for Banach
space operators A and B. Apparently, 4n

AB(I) = 0 =⇒ 4n
B∗A∗(I∗) = 0, and so

if asc(B∗ − λI∗) < ∞ and λ ∈ σ(A) then asc(A∗ − λI∗) < ∞. Since B is polar
at λ ∈ isoσ(B) if and only if B∗ is polar at λ, it follows that if 4n

AB(I) = 0 and
σ(A) = σ(B) then A is polaroid if and only if B is polaroid.

The Drazin spectrum σD(T ) of T ∈ B(X ) is the set {λ ∈ σ(T ) : asc(T − λ) or
dsc(T − λ) 6<∞}.
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Corollary 2.4. Let A,B ∈ B(X ). If ∆n
AB(I) = 0 for some integer n ≥ 1 and

σ(A) = σ(B), then σD(A) = σD(B).

Proof. Theorem 2.3 implies that A and B have the same poles. Since the Drazin
spectrum is the complement of the set of poles in the spectrum, the proof follows.

�

The Drazin spectrum σD(T ) is a regularity [10, page 50] and so satisfies the
spectral mapping theorem for every f ∈ Hnc(σ(T )), where Hnc(σ(T )) is the set of
functions which are holomorphic on a neighbourhood of σ(T ) and non-constant
on each component of their domain of definition. It is straightforward to see that
if f ∈ Hnc(σ(T )) and λ ∈ isoσ(f(T )) = isof(σ(T )), then λ ∈ f(isoσ(T )). Hence,
if T is polaroid, then f(T ) is polaroid for every f ∈ Hnc(σ(T )). Recall, [4], that T
is said to satisfy Weyl’s theorem if the complement of the Weyl spectrum σw(T )
of T in σ(T ) is set of finite multiplicity isolated eigenvalues of T : a necessary and
sufficient condition for T to satisfy Weyl’s theorem is that T has SVEP at points
λ /∈ σw(T ) and is polaroid at points λ ∈ isoσ(T ) such that 0 < α(T − λ) <∞ [4,
Theorem 4.3]. Hence:

Corollary 2.5. If A has SVEP and either of the hypotheses (a) and (b) of Theo-
rem 2.3 is satisfied, then f(B) satisfies Weyl’s theorem for every f ∈ Hnc(σ(B)).

Proof. f(B) has SVEP (since B has SVEP [1, Theorem 2.39]) and is polaroid (as
seen above). �

The following theorem provides a sufficient condition for the permanence of the
finitely polaroid property under asymptotic intertwining by the identity operator.

Theorem 2.6. Let A,B ∈ B(X ). If (A,B) ∈ (AI), λ ∈ isoσ(A) ∩ isoσ(B) and
λ ∈ π0(A), then λ ∈ π0(B).

Proof. The hypothesis (A,B) ∈ (AI) implies H0(B − λ) ⊆ H0(A − λ), and if
λ ∈ π0(A) then dimH0(A − λ) < ∞. Thus dimH0(B − λ) < ∞, and this since
(B − λ)−t(0) ⊆ H0(B − λ) for every integer t ≥ 0 implies that α(B − λ) < ∞.
The hypothesis λ ∈ isoσ(B) implies X = H0(B − λ) ⊕ K(B − λ), where both
H0(B − λ) and K(B − λ) are closed. Obviously,

(B − λ)X = (B − λ)H0(B − λ)⊕ (B − λ)K(B − λ)

being the sum of a closed subspace with a finite dimensional subspace is closed;
hence B − λ ∈ Φ+(X ). Observe that λ ∈ isoσ(B) implies both B and B∗ have
SVEP at λ; hence B is polar at λ [1, Theorem 3.77]. Since dimH0(B− λ) <∞,
λ ∈ π0(B). �

An operator T ∈ B(X ) is said to satisfy the “abstract shift condition” if the
hyper-range T∞X =

⋂
n∈N T

nX = {0}. If we let

κ(T ) := inf{||Tx|| : x ∈ X , ||x|| = 1}, ι(T) = limn→∞κ(Tn)
1
n = supn∈Nκ(Tn)

1
n

and 5(0, r) = {λ ∈ C : |λ| ≤ r}, then T satisfies the abstract shift condition
implies 5(0, ι(T )) ⊆ σT (x) for all 0 6= x ∈ X [8, Theorem 1.6.3].

Let σsu(T ) = {λ ∈ C : T − λ is not onto} denote the surjectivity spectrum of
T . The following propositions give sufficient conditions for the equality of the



192 B.P. DUGGAL

spectrum, certain distinguished parts thereof, and the preservation of property
(δ) and condition (C) for operators (A,B) ∈ (AI).

Proposition 2.7. Let (A,B) ∈ (AI); A and B ∈ B(X ).

(a) Suppose that σB(x) ⊆ σA(x) for every non-zero x ∈ X .
(i) If A has SVEP, then σ(A) = σ(B) and A satisfies property (δ) if and only if
B satisfies property (δ).
(ii) A satisfies condition (C) if and only if B satisfies condition (C).

(b) If B∗ has SVEP and σA(x) = σ(A) for every non-zero x ∈ X , then either
A,B are quasinilpotent operators or else A,B satisfy the abstract shift condition.

Proof. (a) The hypothesis (A,B) ∈ (AI) implies σA(x) ⊆ σB(x) for every x ∈ X ;
hence if σB(x) ⊆ σA(x) for every non-zero x ∈ X , then σA(x) = σB(x) for every
non-zero x ∈ X .

(i) The hypothesis A has SVEP implies B has SVEP. Since σ(T ) = σsu(T ) when-
ever T ∈ B(X ) has SVEP, it follows from σsu(A) =

⋃
x∈X σA(x) =

⋃
x∈X σB(x) =

σsu(B) that σ(A) = σ(B). Recall from [8, Lemma 3.4.7] that if (A,B) ∈ (AI) and
B satisfies property (δ), then A satisfies property (δ). (Indeed, if (A,B) ∈ (AI),
A has SVEP and B satisfies property (δ), then A and B are quasi-nilpotent
equivalent [8, Corollary 3.4.5].) If, instead, A satisfies property (δ), then X =
χA(U) + χA(V ) for every open cover {U, V } of C. The conclusion σA(x) = σB(x)
for every 0 6= x ∈ X implies XA(F ) = XB(F ) for every closed subset F ⊆ C.
Since both A and B have SVEP, XA(F ) = χA(F ) = χB(F ) = XB(F ) for every
closed subset F ⊆ C. Hence X = χB(U) + χB(V ) for every open cover {U, V } of
C, implies B satisfies property (δ).

(ii) The conclusion σA(x) = σB(x) for every x ∈ X implies XA(F ) = XB(F ) for
every closed subset F ∈ C [8, Corollary 3.6.4]. Evidently, XA(F ) is closed if and
only if XB(F ) is closed; equivalently, A satisfies condition (C) if and only if B
satisfies condition (C).

(b) The hypotheses (A,B) ∈ (AI) and σA(x) = σ(A) for all 0 6= x ∈ X imply
σ(A) = σA(x) ⊆ σB(x) ⊆ σ(B); again, since (A,B) ∈ (AI) =⇒ (B∗, A∗) ∈ (AI)
and since B∗ has SVEP (implies A∗ has SVEP and so σ(T ) = σ(T ∗) = σsu(T

∗)
for T = A or B), σ(B) =

⋃
x σB∗(x) ⊆

⋃
x σA∗(x) = σ(A). Thus σ(A) = σA(x) =

σB(x) = σ(B) for all 0 6= x ∈ X , and hence ι(A) = r(A) = r(B) = ι(B).
We have two possibilities: Either r(A) = r(B) = 0 or r(A) = r(B) > 0. If
r(A) = r(B) = 0, then A and B are quasi-nilpotent; if, instead, r(A) = r(B) > 0,
then A and B satisfy the abstract shift condition [8, Proposition 1.6.4]. �

Remark 2.8. (i) Recall from [8, Lemma 3.4.8] that property (β) transfers from A
to B whenever (A,B) ∈ (AI). Hence it follows from the argument of the proof of
Proposition 2.7(a)(i) that if (A,B) ∈ (AI) and σB(x) ⊆ σA(x) for all 0 6= x ∈ X ,
then A is decomposable if and only if B is decomposable (cf. [7, Theorem 3.4]).
Proposition 2.7(a)(ii) generalizes [7, Theorem 3.7].

(ii) Under the hypotheses of Proposition 2.7(b), if A satisfies property (δ), then A
and B are quasi-nilpotent. Reason: If r(A) > 0, then A satisfies A∞X = {0}, and
hence can not satisfy property (δ) [8, Theorem 1.6.3]. Observe that (A,B) ∈ (AI)
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and B∗ has SVEP ensures A quasi-nilpotent implies B quasi-nilpotent (cf. [7,
Theorem 3.4]).

Although some of the hypotheses of Proposition 2.7 imply σ(A) = σ(B), these
hypotheses are in no way the best possible. We shall prove in the following that
for operators A,B ∈ B(X ) such that (A,B) ∈ (AI), the hypothesis A and B∗

have SVEP is sufficient for σ×(A) = σ×(B) for a variety of choices σ× of some of
the more distinguished parts of the spectrum σ. We shall require the following
construction, known in the literature as the Sadovskii/Buoni, Harte, Wickstead
construction [10, Page 159], in the proof of our next result. The construction
leads to a representation of the Calkin algebra B(X )/K(X ) as an algebra of
operators on a suitable Banach space. Let `∞(X ) denote the Banach space of
all bounded sequences x = (xn)∞n=1 of elements of X endowed with the norm
||x||∞ := supn∈N ||xn||, and write T∞, T∞x := (Txn)∞n=1 for all x = (xn)∞n=1, for
the operator induced by T on `∞(X ). The set m(X ) of all precompact sequences
of elements of X is a closed subspace of `∞(X ) which is invariant for T∞. Let
Xq := `∞X )/m(X ), and denote by Tq the operator T∞ on Xq. The mapping
T 7→ Tq is then a unital homomorphism from B(X ) → B(Xq) with kernel K(X )
which induces a norm decreasing monomorphism from B(X )/K(X ) to B(Xq)
with the property that T is lower semi-Fredholm, T ∈ Φ+(X ), if and only if Tq
is injective, if and only if Tq is bounded below (see [10, Section 17] for details).
A part of the following theorem (for Hilbert space operators) is proved in [7,
Theorem 3.1]. Let π0(T ) = {λ ∈ isoσ(T ) : λ is a finite rank pole of the resolvent
of T}.

Proposition 2.9. Let A,B ∈ B(X ) be such that (A,B) ∈ (AI).
(i) If A has SVEP, then

σle(B) ⊆ σle(A) ⊆ σe(A) = σue(A) ⊆ σ(A) ⊆ σ(B).

(ii) If both A and B∗ have SVEP, then

σ×(A) = σ×(B), where σ× = σ or σb or σw or σe or σle or σre.

Furthermore, σb(X) = σw(X) = σe(X) = σle(X) = σre(X), where X = A or B.

Proof. (i). The hypothesis (A,B) ∈ (AI) implies σA(x) ⊆ σB(x) for every x ∈ X ,
and hence since A and B have SVEP (recall from Lemma 2.1 that (A,B) ∈ (AI)
and A has SVEP implies B has SVEP),

σ(A) = σa(A
∗) = σsu(A) =

⋃
x

σA(x) ⊆
⋃
x

σB(x) = σsu(B) = σa(B
∗) = σ(B).

Since (A,B) ∈ (AI) implies ((Aq, Bq) ∈ (AI) implies) (B∗q , A
∗
q) ∈ (AI),

σa(Bq) = σsu(B
∗
q ) ⊆ σsu(A

∗
q) = σa(Aq).

Now let λ /∈ σle(A). Then (A−λ)q = Aq−λIq is bounded below, and the following
implications hold:

λ /∈ σa(Aq) =⇒ λ /∈ σa(Bq)⇐⇒ B − λ ∈ Φ+(X )⇐⇒ λ /∈ σle(B).

Thus
σle(B) ⊆ σle(A) ⊆ σe(A).
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Evidently, σue(A) ⊆ σe(A). Let λ /∈ σue(A) (⇐⇒ A − λ ∈ Φ−(X )). Then A has
SVEP implies α(A−λ) ≤ β(A−λ) <∞ [1, Corollary 3.19], and hence λ /∈ σe(A).
Thus, if A has SVEP, then σue(A) = σe(A). This proves (i).

(ii). If A and B∗ have SVEP, then (A,B) ∈ (AI) implies A, A∗, B and B∗ all
have SVEP. Thus, since (B∗, A∗) ∈ (AI) implies, σ(B) = σ(B∗) = σsu(B

∗) =⋃
y σB∗(y) ⊆

⋃
σA∗(y) = σsu(A

∗) = σ(A∗) = σ(A) (for every y ∈ X ∗), we have

from σ(A) ⊆ σ(B) (see (i)) that σ(A) = σ(B). It is not difficult to verify
that if an operator T ∈ B(X ) is such that both T and T ∗ have SVEP, then
σe(T ) = σle(T ) = σue(T ) = σb(T ) = σw(T ). (For example, if λ /∈ σle(T ) ⇐⇒
T − λ ∈ Φ+(X ), and both T and T ∗ have SVEP, then ind(T − λ) = 0 and
asc(T − λ) = dsc(T − λ) < ∞, =⇒ T − λ is both Browder and Weyl; see also
[1, pp. 141 - 142].) We prove that σw(A) = σw(B): this would then prove the
equality σ×(A) = σ×(B) of (ii). The property that A and B have SVEP implies
A and B satisfy Browder’s theorem [4, Corollary 3.5], i.e. σ(A) \ σw(A) = π0(A)
and σ(B)\σw(B) = π0(B). Let λ /∈ σw(A); then λ ∈ isoσ(A) = isoσ(B) is a finite
rank pole (of the resolvent) of A. Hence, see Theorem 2.6, λ is a finite rank pole of
B, implies λ /∈ σw(B). Since the same argument works with (B∗, A∗) ∈ (AI), we
have λ /∈ σw(B∗) =⇒ λ /∈ σw(A∗). Hence σw(A) = σw(B). (We remark here that
an operator T satisfies Browder’s theorem if and only if T ∗ satisfies Browder’s
theorem [4, Remark 3.2]; since σ(T ) = σ(T ∗) and σw(T ) = σw(T ∗), we then have
π0(T ) = π0(T

∗).) �

Corollary 2.10. Let (A,B) ∈ (AI), where A,B ∈ B(X ). If σ(B) is totally
disconnected, then a necessary and sufficient condition for σ(A) to be totally
disconnected is that A has SVEP.

Proof. If σ(A) is totally disconnected, then A is super-decomposable [8, Propo-
sition 1.4.5] and so both A and A∗ have SVEP. Conversely, if σ(B) is totally
disconnected and A has SVEP, then σ(A) = σ(B) (by Proposition 2.9). �

Corollary 2.10 implies that if A has SVEP and B is algebraic (i.e., there exists
a non-trivial polynomial p(.) such that p(B) = 0), then σ(A) = σ(B) is a finite
set. Observe that B algebraic implies that the points λ ∈ σ(B) are poles of the
resolvent of B. In particular, σb(B) = ∅; hence, see Theorem 2.9(ii), σb(A) = ∅
and A is algebraic (cf. [7, Proposition 3.6]).

Remark 2.11. Let (A,B) ∈ (AI). If σA(x) = σ(A) for every non-zero x ∈ X , then
A satisfies Dunford’s condition (C) [8, page 83], and so has SVEP. Hence, if also
B∗ has SVEP, then σ(A) = σ(B) (by Proposition 2.9(ii)) and σA(x) = σB(x) =
σ(B) for every non-zero x ∈ X . Consequently, B also satisfies condition (C).
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