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We study a Markov process with two components: the first component evolves according to one of finitely
many underlying Markovian dynamics, with a choice of dynamics that changes at the jump times of the
second component. The second component is discrete and its jump rates may depend on the position of the
whole process. Under regularity assumptions on the jump rates and Wasserstein contraction conditions for
the underlying dynamics, we provide a concrete criterion for the convergence to equilibrium in terms of
Wasserstein distance. The proof is based on a coupling argument and a weak form of the Harris theorem. In
particular, we obtain exponential ergodicity in situations which do not verify any hypoellipticity assumption,
but are not uniformly contracting either. We also obtain a bound in total variation distance under a suitable
regularising assumption. Some examples are given to illustrate our result, including a class of piecewise
deterministic Markov processes.

Keywords: ergodicity; exponential mixing; piecewise deterministic Markov process; switching;
Wasserstein distance

1. Introduction

Markov processes with switching are intensively used for modelling purposes in applied subjects
like biology [10,12,16], storage modelling [7], neuronal activity [17,31]. This class of Markov
processes is reminiscent of the so-called iterated random functions [14] or branching processes
in random environment [32] in the discrete time setting. Several recent works [1,3–5,11,13,18,
19] deal with their long time behaviour (existence of an invariant probability measure, Harris
recurrence, exponential ergodicity, hypoellipticity. . . ). In particular, in [1,4], the authors provide
a kind of hypoellipticity criterion with Hörmander-like bracket conditions. Under these condi-
tions, they deduce the uniqueness and absolute continuity of the invariant measure, provided that
a suitable tightness condition is satisfied. They also obtain geometric convergence in the total
variation distance. Nevertheless, there are many simple processes with switching which do not
verify any hypoellipticity condition. To illustrate this fact, let us consider the simple example of
[5]. Let (X, I) be the Markov process on R

2 × {−1,1} generated by

Af (x, i) = −(
x − (i,0)

) · ∇xf (x, i) + (
f (x,−i) − f (x, i)

)
. (1.1)

This process is ergodic and the first marginal π of its invariant measure is supported on R ×
{0}. This suggests that, in general, the law of the process does not converge to its invariant
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measure in the total variation distance. However, it was proved in [5] that it converges in a
certain Wasserstein distance. Let us recall that the pth Wasserstein distance W(p), with p ≥ 1,
on a Polish space (E,d) is defined by

W(p)
d (μ1,μ2) = inf

X1,X2
E

[
d(X1,X2)

p
]1/p

,

for any two probability measures μ1, μ2 on E, where the infimum is taken over all pairs of E-
valued random variables X1, X2 with respective laws μ1, μ2. When p = 1, we set Wd = W(1)

d .
The Kantorovich–Rubinstein duality ([33], Theorem 5.10) shows that one also has

Wd(μ1,μ2) = sup
f ∈Lip1

(∫
E

f dμ1 −
∫

E

f dμ2

)
,

where f :E �→ R is in Lip1 if and only if it is a 1-Lipschitz function, namely

∀x, y ∈ E,
∣∣f (x) − f (y)

∣∣ ≤ d(x, y).

The total variation distance dTV can be viewed as the Wasserstein distance associated to the
trivial distance function, namely

dTV(μ1,μ2) = inf
X1,X2

P(X1 	= X2) = 1

2
sup

‖f ‖∞≤1

(∫
E

f dμ1 −
∫

E

f dμ2

)
,

where the infimum is again taken over all random variables X1, X2 with laws μ1, μ2. In the
present article, we will give convergence criteria for a general class of switching Markov pro-
cesses. These processes are built from the following ingredients:

• a Polish space (E,d) and a finite set F ;
• a family (Z(n))n∈F of E-valued strong Markov processes represented by their semigroups

(P (n))n∈F , or equivalently by their generators (L(n))n∈F with domains (D(n))n∈F ;
• a family (a(·, i, j))i,j∈F of non-negative functions on E.

We are interested by the process (Xt )t≥0 = (Xt , It )t≥0, defined on E = E × F , which jumps
between these dynamics. Roughly speaking, Xt behaves like Z

(It )
t as long as I does not jump.

The process I is discrete and jumps at a rate given by a. More precisely, the dynamics of (Xt )t≥0
is as follows:

• Given a starting point (x, i) ∈ E × F , we take for Z(i) an instance as above with initial
condition Z

(i)
0 = x. The initial conditions for Z(j) with j 	= i are irrelevant.

• The discrete component I is constant and equal to i until the time T = minj∈F Tj , where
(Tj )j≥0 is a family of random variables that are conditionally independent given Z(i) and
that verify

∀j ∈ F, P(Tj > t |Ft ) = exp

(
−

∫ t

0
a
(
Z(i)

s , i, j
)

ds

)
,

where Ft = σ {Z(i)
s |s ≤ t}.
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• For all t ∈ [0, T ), we then set Xt = Z
(i)
t and It = i.

• At time T , there exists a unique j ∈ F such that T = Tj and we set IT = j and XT = XT −.
• We take (XT , IT ) as a new starting point at time T .

Let us make a few remarks about this construction. First, this algorithm guarantees the existence
of our process under the condition that there is no explosion in the switching rate. In other words,
our construction is global as long as I only switches value finitely many time in any finite time
interval. Assumption 1.1 below will be sufficient to guarantee this non-explosion. Also note that,
in general, X and I are not Markov processes by themselves, contrary to X. Nevertheless, we
have that I is a Markov process if a does not depend on its first component. The construction
given above shows that, provided that there is no explosion, the infinitesimal generator of X is
given by

Lf (x, i) = L(i)f (x, i) +
∑
j∈F

a(x, i, j)
(
f (x, j) − f (x, i)

)
, (1.2)

for any bounded function f such that f (·, i) belongs to D(i) for every i ∈ F . We will denote
by (Pt )t≥0 the semigroup of X. To guarantee the existence of our process, we will consider the
following natural assumption:

Assumption 1.1 (Regularity of the jumps rates). The following boundedness condition is veri-
fied:

ā = sup
x∈E

sup
i∈F

∑
j∈F

a(x, i, j) < +∞,

and the following Lipschitz condition is also verified:

sup
i∈F

∑
j∈F

∣∣a(x, i, j) − a(x, i, j)
∣∣ ≤ κd(x, y),

for some κ > 0.

We will also assume the following hypothesis to guarantee the recurrence of I :

Assumption 1.2 (Recurrence assumption). The matrix (a(i, j))i,j∈F defined by

a(i, j) = inf
x∈E

a(x, i, j),

yields the transition rates of an irreducible and positive recurrent Markov chain.

With these two assumptions, we are able to get exponential stability in two situations. The
first situation is one where each underlying dynamics does on average yield a contraction in
some Wasserstein distance, but no regularising assumption is made. The second situation is the
opposite, where we replace the contraction by a suitable regularising property.
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1.1. Two criteria without hypoellipticity assumption

In this section, we assume that we have some information on the Lipschitz contraction (or ex-
pansion) of our underlying processes:

Assumption 1.3 (Lipschitz contraction). For each i ∈ F , there exists ρ(i) ∈ R such that

∀t ≥ 0, Wd

(
μP

(i)
t , νP

(i)
t

) ≤ e−ρ(i)tWd(μ, ν), (1.3)

for any two probability measures μ,ν. Furthermore there exist x0 ∈ E and tx0 > 0 such that if
Vx0 :x �→ d(x, x0) then

sup
t∈[0,tx0 ]

PtVx0(x0) < +∞.

In the previous assumption, given a semigroup (Pt )t≥0, we used the notation μPt to denote
the measure defined by

(μPt )f =
∫

Ptf dμ,

if μ = δx , for some x, then in this work, we also use the notation δxPt (dy) = Pt (x,dy).
To verify equation (1.3) is not much of a restriction because we do not assume that ρ(i) > 0.

The best constant in this inequality is called the Wasserstein curvature in [26,27] and the coarse
Ricci curvature in [29,30], since it is heavily related to the geometry of the underlying space as
illustrated in [34], Theorem 2. If ρ(i) > 0, then we can deduce some properties like geometric
ergodicity, a Poincaré inequality or some concentration inequalities [9,25–27,30]. A trivial bound
on ρ(i) is given in the special case of diffusion processes in Section 4.1.

The bound (1.3) is quite stringent since, if ρ(i) > 0, it implies that there is some Wasserstein
contraction for every t > 0 and not just for sufficiently long times. This is essentially equivalent
to the existence of a Markovian coupling between two instances Xt and Yt of the Markov process
with generator L(i) such that Ed(Xt , Yt ) ≤ e−ρtd(X0, Y0).

In principle, this condition could be slightly relaxed by the addition of a proportionality con-
stant Ci , provided that one assumes that the switching rate of the process is sufficiently slow.
This ensures that, most of the time, it spends a sufficiently long time in any one state for this
proportionality constant not to play a large role.

One could also imagine allowing for jumps of the component in E at the switching times, and
this would lead to a similar difficulty.

In the same way, the distance d appearing in Assumption 1.3 is the same for every i and that
it does not allow for a constant prefactor in the right-hand side of (1.3). This may seem like a
very strong assumption since usual convergence theorems, like Harris’ theorem, do not give this
kind of bound. We will see however in Section 5 an example which illustrates that there is no
obvious way in general to weaken this condition. The intuitive reason why this is so is that if the
process switches rapidly, then it is crucial to have some local information (small times) and not
only global information (large times) on the behaviour of each underlying dynamics.
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We have now presented all the assumptions required to state our main results. The first one
describes the simplest situation, that is when a does not depend on its first component:

Theorem 1.4 (Wasserstein exponential ergodicity in the constant case). Under Assump-
tions 1.1, 1.2 and 1.3, if a(x, i, j) does not depend on x and the Markov process I has an
invariant probability measure ν verifying∑

i∈F

ν(i)ρ(i) > 0,

then there exist a probability measure π , some constants C,λ > 0 and q ∈ (0,1] such that

∀t ≥ 0, Wd(δy0 Pt ,π) ≤ Ce−λt

(
1 +

∑
i∈F

∫
E

d(y0, x)qπ(dx, i)

)
,

for every y0 = (y0, j0) ∈ E, where the distance d, on E, is defined by

d(x,y) = 1i 	=j + 1i=j

(
1 ∧ dq(x, y)

)
, (1.4)

for every x = (x, i), y = (y, j) belonging to E.

This statement is not surprising: it states that if the process contracts in mean, then it converges
exponentially to an invariant distribution. The conditions are rather sharp as will be illustrated
in Section 5. In particular, we recover [5], Theorem 1.10, and this (slight) generalisation could
be deduced from the argument given there. Using Hölder’s inequality, we can also deduce con-
vergence in the pth Wasserstein distance W (p)

d with p ≥ 1 provided that X satisfies a moment
condition.

We provided Theorem 1.4 and its proof for sake of completeness and for a better understanding
of the more complicated case, where a is allowed to depend on its first argument. In this situation,
our main result reads as follows.

Theorem 1.5 (Wasserstein exponential ergodicity with an on–off type criterion). Suppose
that Assumptions 1.1, 1.2, and 1.3 hold and set

F0 = {
i ∈ F |ρ(i) > 0

}
and F1 = {

i ∈ F |ρ(i) ≤ 0
}
,

ρ0 = min
i∈F0

ρ(i) > 0 and ρ1 = min
i∈F1

ρ(i) ≤ 0,

a0 = max
i∈F0

sup
x∈E

∑
j∈F1

a(x, i, j) and a1 = min
i∈F1

inf
x∈E

∑
j∈F0

a(x, i, j).

If

ρ0a1 + ρ1a0 > 0,
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then there exist a probability measure π , some constants C,λ > 0 and q ∈ (0,1] such that

∀t ≥ 0, Wd(δy0 Pt ,π) ≤ Ce−λt

(
1 +

∑
i∈F

∫
E

d(y0, x)qπ(dx, i)

)
,

for every y0 = (y0, j0) ∈ E, where the distance d on E is again given by (1.4).

With this result, we not only recover [5], Theorem 1.15, but we extend it significantly. In our
case, the underlying dynamics are not necessarily deterministic and do not need to be strictly
contracting in a Wasserstein distance. One drawback is that the constants λ and C are much less
explicit. This theorem is a direct consequence of the more general Theorem 3.3 below. These two
theorems are our main results and, contrary to Theorem 1.4, it seems that they cannot be deduced
directly from the approach of [5].

1.2. Two criteria with hypoellipticity assumption

In the previous subsection, we have supposed that some of the underlying dynamics contract
at sufficiently high rate in a Wasserstein distance. This is of course not a necessary condition
for geometric ergodicity in general. Using some arguments of the proof of Theorem 1.4 and
Theorem 1.5, we can deduce a different criterion which uses instead a Lyapunov-type argument
to prove that X converges. We begin by stating an assumption similar to Assumption 1.3:

Assumption 1.6 (Existence of a Lyapunov function). There exist K ≥ 0, a function V ≥ 0, and
for every i ∈ F there exists λ(i) ∈ R such that

∀t ≥ 0,∀x ∈ E, P
(i)
t V (x) ≤ e−λ(i)tV (x) + K. (1.5)

Note again that we have not supposed that λ(i) > 0. One way to prove this kind of bound is
to use the classical drift condition on the generator (see (2.2) below). With this assumption we
are able to prove the following result, where the definition of a “small set” will be recalled in
Definition 2.10 below.

Theorem 1.7 (Exponential ergodicity in the constant case). Suppose that Assumptions 1.1,
1.2 and 1.6 hold, that a(x, i, j) does not depend on x and that I has an invariant probability
measure ν verifying ∑

i∈F

ν(i)λ(i) > 0.

If there exists i0 ∈ F and t0 ≥ 0 such that the sublevel sets {x ∈ E|V (x) ≤ K} of V are small
for P

(i0)
t for every K > 0 and t ≥ t0, then there exist a probability measure π and two constants

C,λ > 0 such that

∀t ≥ 0, dTV(δxPt ,π) ≤ Ce−λt
(
1 + V (x)

)
,

for every x = (x, i) ∈ E.
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We give also the result analogous to Theorem 1.5.

Theorem 1.8 (Exponential ergodicity with an on–off type criterion). Suppose that Assump-
tions 1.1, 1.2, 1.3 hold and set

F0 = {
i ∈ F |λ(i) > 0

}
and F1 = {

i ∈ F |λ(i) ≤ 0
}
,

λ0 = min
i∈F0

λ(i) > 0 and λ1 = min
i∈F1

λ(i) ≤ 0,

a0 = max
i∈F0

sup
x∈E

∑
j∈F1

a(x, i, j) and a1 = min
i∈F1

inf
x∈E

∑
j∈F0

a(x, i, j).

If

λ0a1 + λ1a0 > 0,

and there exists i0 ∈ F and t0 ≥ 0 such that all sublevel sets of V are small for P
(i0)
t , for every

t ≥ t0, then there exist a probability measure π and two constants C,λ > 0 such that

∀t ≥ 0, dTV(δxPt ,π) ≤ Ce−λt
(
1 + V (x)

)
,

for every x = (x, i) ∈ E.

Note that in general it is not necessary to assume that sublevel sets of V are small for any single
one of the underlying dynamics. For example, using the results of [1,4], Section 4.2 gives results
analogous to the two previous theorems, in the special case of piecewise deterministic Markov
processes where the only small sets for the underlying dynamics consist of single points.

The remainder of the paper is organised as follows. The proofs of our four main theorems
are split over two sections: Section 2 deals with the proof of Theorem 1.4 and Theorem 1.7.
In Section 3, we begin by giving a more general assumption in the non-constant case than our
on–off criterion. Then, we introduce a weak form of Harris’ theorem that we will use to prove
Theorem 1.5. The proof of this theorem is then decomposed in such a way to verify each point of
the weak Harris’ theorem. Section 4.1 gives sufficient conditions to verify our main assumption
in the special case of diffusion processes. The section which follows deals with the special case
of switching dynamical system. We conclude with Section 5, where we give some very simple
examples illustrating the sharpness of our conditions.

2. Constant jump rates

In this section, we begin by proving that under Assumptions 1.3 or 1.6, the process X cannot
wander off to infinity, that is, its semigroup possesses a Lyapunov function. We then prove The-
orems 1.4 and 1.7 using a similar argument to [5] for the first one and Harris’ theorem for the
second one.
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2.1. Construction of a Lyapunov function

We begin by recalling the definition of a Lyapunov function

Definition 2.1 (Lyapunov function). A Lyapunov function for a Markov semigroup (Pt )t≥0 over
a Polish space (X,dX) is a function V :X �→ [0,∞] such that V is integrable with respect to
Pt (x, ·) for every x ∈ X and t > 0 and such that there exist constants CV ,γ,KV > 0 verifying

PtV (x) =
∫

X

V (y)Pt (x,dy) ≤ CV e−γ tV (x) + KV , (2.1)

for every x ∈ X and t ≥ 0.

A well-known sufficient condition for finding a Lyapunov function is the following drift con-
dition:

LV ≤ −γV + C, (2.2)

where L is the generator of the semigroup (Pt )t≥0. The condition (2.2) implies a bound like (1.5)
and is clearly stronger than (2.1). In general, our switching Markov process X may not verify
the drift condition (2.2) but, in Lemmas 2.8 and 3.9, we give a sharp condition under which it
verifies (2.1). In this section, we first prove that a Wasserstein contraction as in Assumption 1.3
implies the existence of a Lyapunov-type function as in Assumption 1.6. Then, we will prove
that Assumption 1.6 implies the existence of a Lyapunov function for X.

Lemma 2.2 (Wasserstein contraction implies the existence of a Lyapunov-type function).
Let (Pt )t≥0 be the semigroup of a Markov process, on a Polish space (X,dX), such that there
exists λ ∈R

∗ verifying

WdX
(δxPt , δyPt ) ≤ e−λtdX(x, y), (2.3)

for every x, y ∈ X and t ≥ 0. If there exist x0 ∈ X and tx0 > 0 such that the function Vx0 :x �→
d(x, x0) verifies

sup
t∈[0,tx0 ]

PtVx0(x0) < +∞, (2.4)

then there exist C1,C2 > 0 such that

PtVx0(x) ≤ e−λt
(
Vx0(x) + C1

) + C2, (2.5)

for every x ∈ X and t ≥ 0.

Proof. Note first that the bound (2.3) is equivalent to the bound

WdX
(μPt , νPt ) ≤ e−λtWdX

(μ, ν), (2.6)
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for every probability measure μ and ν, as a consequence of the bound WdX
(μPt , νPt ) ≤∫

WdX
(δxPt , δyPt )π(dx,dy) which follows immediately from the definitions and is true for any

measure π with marginals μ and ν.
For any t ≥ tx0 and n ≥ 0, it then follows from (2.6) that

PtVx0(x0) = WdX
(δx0Pt , δx0) ≤

n−1∑
k=0

WdX
(δx0P(k+1)t/n, δx0Pkt/n)

≤
n−1∑
k=0

e−λkt/nWdX
(δx0Pt/n, δx0) ≤ e−λt − 1

e−λt/n − 1
Pt/nVx0(x0).

Taking n = �t/tx0� + 1, where �λ� denotes the integer part of λ, we conclude that

PtVx0(x0) ≤ (
e−λt + 1

)
C′, C′ = sup

u∈[tx0/2,tx0 ]
PuVx0(x0)

|e−λu − 1| ,

which is finite by (2.4). Finally, for every x ∈ X and t ≥ 0, we have

PtVx0(x) = WdX
(δxPt , δx0) ≤ WdX

(δxPt , δx0Pt) +WdX
(δx0Pt , δx0)

≤ e−λtVx0(x) + (
e−λt + 1

)
C′,

thus concluding the proof. �

Remark 2.3. The point of this lemma is to also allow for negative values of λ. When λ > 0, then
it is immediate that Pt admits a unique invariant measure and exhibits geometric ergodicity.

Remark 2.4. If Vx0 is in the domain of the generator L of (Pt )t≥0, then we have

∀t ≥ 0, PtVx0(x0) ≤ e−λt − 1

e−λt/n − 1
Pt/nVx0(x0),

for some n ≥ 1. Now, taking the limit n → +∞, we deduce the following bound:

WdX
(δx0Pt , δx0) ≤ e−λt − 1

−λ
LV (x0).

Finally, for every x ∈ X, we have

PtV (x) = WdX
(δxPt , δx0) ≤ WdX

(δxPt , δx0Pt) +WdX
(δx0Pt , δx0)

≤ e−λtV (x) + e−λt − 1

−λ
LV (x0).

However, Vx0 does not belong to the domain of the generator in general, as can be seen already
in the example of simple Brownian motion.
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Remark 2.5 (The special case λ = 0). The assumption λ 	= 0 is required for our conclusion to
hold. Indeed, if (Bt )t≥0 is a Brownian motion then

lim
t→+∞E

[|Bt |
] = +∞,

and inequality (2.5) does not hold. Instead, it is straightforward to follow the argument of the
proof to show that if λ = 0 in Lemma 2.2, then one has the bound

PtVx0(x) ≤ Vx0(x) + Ct,

for some fixed constant C > 0, every x ∈ E, and every t ≥ 0.

Remark 2.6. By Lemma 2.2, Assumption 1.3 implies Assumption 1.6 with λ = ρ and V = Vx0

as long as one has ρ(i) 	= 0 for every i. In general, without any assumption on ρ, it does of course
imply Assumption 1.6 for any function λ with λ(i) < ρ(i), which is sufficient for our needs.

We now show that if Assumption 1.6 holds and the mean of (λ(i))i∈F is positive, then X
admits a Lyapunov function. As in [5], this result is obtained as a consequence of the following
lemma:

Lemma 2.7. Let (Kt )t≥0 be a continuous-time Markov chain on a finite set S, and assume that
it is irreducible and positive recurrent with invariant measure νK . If α :S → R is a function
verifying ∑

n∈S

νK(n)α(n) > 0,

then there exist C,c, η > 0 and p ∈ (0,1] such that

ce−ηt ≤ E
[
e− ∫ t

0 pα(Ks)ds
] ≤ Ce−ηt ,

for any initial condition K0 and every t ≥ 0.

Proof. It is a consequence of Perron–Frobenius theorem and the study of eigenvalues. See [3],
Proposition 4.1, and [3], Proposition 4.2, for further details. �

Now we are able to prove that P possesses a Lyapunov function in the case where the switching
rates do not depend on the location of the process.

Lemma 2.8. Under Assumptions 1.1, 1.2 and 1.6, if a(x, i, j) does not depend on x and I has
an invariant measure ν satisfying ∑

i∈F

λ(i)ν(i) > 0,

then there exist CV ,KV ,λV > 0 and q ∈ (0,1] such that

∀t ≥ 0,∀x ∈ E, PtV
q(x, i) ≤ CV e−λV tV q(x) + KV .
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In the previous lemma, we used a slight abuse of notation. Indeed, if f is a function defined
on E, we also denote by f the mapping (x, i) �→ f (x) on E.

Proof. First, Jensen’s inequality gives this weaker form of (1.5):

P
(i)
t

(
V q

)
(x) ≤ e−qλ(i)tV q(x) + Kq,

for every q ∈ (0,1]. Now, for all t ≥ 0 and (x, i) ∈ E, a straightforward recurrence gives

PtV
q(x, i) = E

[
P

(ITNt
)

t−TNt
◦ P

(ITNt
−1)

TNt −TNt −1
◦ · · · ◦ P

(I0)
T1−T0

(
V q

)
(x)

]
≤ E

[
e− ∫ t

0 qλ(Is )ds
]
V q(x) + Kq

∑
n≥0

E
[
e−q

∫ Tn
0 λ(Is )ds

]
,

where (Tk)k≥0 is the sequence of jump times of I , with T0 = 0, and Nt the number of jumps
before t . By Lemma 2.7, there exist C > 0, η > 0 and q ∈ (0,1] such that

E
[
e− ∫ t

0 qλ(Is )ds
] ≤ Ce−ηt .

Furthermore, one can show that Tn is of order n and that

KV = Kq
∑
n≥0

E
[
e−q

∫ Tn
0 λ(Is)ds

]
� Kq

∑
n≥0

e−εn < +∞,

for some ε > 0. We do not detail this argument now, but we will prove it in the slightly more
difficult context of non-constant rate a in Lemma 3.9. This concludes the proof. �

Remark 2.9 (On the assumption that F is finite). It is natural to extend our results to the case
where F is countably infinite. Obviously, we then have to add the assumption that I is positive
recurrent, but this is not enough. Indeed, if for each i ∈ F , C1(i) and C2(i) denote the constants
C1,C2, appearing in Lemma 2.2 applied on Z(i), then we should furthermore assume that

sup
i∈F

(
C1(i) + C2(i)

)
< +∞,

for the argument to go through.

2.2. Proof of Theorem 1.4

The proof of this result is obtained by a coupling construction. We first give a description of this
construction and we then turn to the proof itself. Throughout this section, we make the standing
assumption that the hypotheses of Theorem 1.4 hold. In particular, I is an ergodic finite-state
Markov chain.

Let x = (x, i) and y = (y, j) be two points of E, we will build a coupling (X,Y), starting
from (x,y), such that each component is an instance of the Markov process generated by L,
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and such that the distance d(Xt ,Yt ) decreases to 0 at exponential rate. From now on, we fix the
starting points of our coupling x = (x, i), y = (y, j). The processes (Xt )t≥0 = (Xt , It )t≥0 and
(Yt )t≥0 = (Yt , Jt )t≥0 are then constructed as follows:

• First, we run both processes independently until the first hitting time Tc = inf{t ≥ 0|It = Jt }
of the two components I and J . In case we start with an initial condition such that i = j ,
then we simply set Tc = 0.

• For times s ≥ Tc, we set Is = Js and we couple X and Y in such a way that

∀k ≥ 0, E
[
d(XSk

, YSk
)|FSk−1

] ≤ e−ρ(ISk−1 )(Sk−Sk−1)d(XSk−1, YSk−1),

where (Tk)k≥0 is the sequence of jumps times of I , Sk = Tk ∧ t and (Fs)s≥0 is the natural
filtration associated to (X,Y).

The existence of a coupling satisfying the second point is an immediate consequence of Assump-
tion 1.3.

Proof of Theorem 1.4. Recall first that if I and J are two independent finite-state Markov chains
with transition rate a as in the statement of Theorem 1.4, then there exist constants Cc, θc > 0
such that

∀t ≥ 0, P(Tc > t) ≤ Cce−θct , (2.7)

for any two initial conditions I0 and J0.
If i = j , then by Jensen’s inequality and iteration, we have similarly to before

E
[
d(Xt , Yt )

q
] ≤ E

[
e−q

∫ t
0 ρ(Is)ds

]
d(x, y)q,

where q ∈ (0,1]. By Lemma 2.7, there exist C,η > 0 and q ∈ (0,1] such that

E
[
d(Xt , Yt )

q
] ≤ Ce−ηtd(x, y)q .

Now, for general i and j , we have

E
[
d(Xt ,Yt )

] ≤ E
[√

1Tc≥t/2
(
1 + V q(Xt ) + V q(Yt )

)]
+E

[√
1Tc≤t/2d(Xt , Yt )q

(
1 + V q(Xt ) + V q(Yt )

)]
,

where V (x) = d(x, x0). Now, Cauchy–Schwarz inequality, Equation (2.7), Lemma 2.2 and
Lemma 2.8 give

E
[√

1Tc≥t/2
(
1 + V q(Xt ) + V q(Yt )

)] ≤ P(Tc ≥ t/2)1/2
E

[
1 + V q(Xt ) + V q(Yt )

]1/2

≤ Cce−θct/4(1 + CV e−λV t
(
V q(x) + V q(y)

) + 2KV

)1/2
.
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In the other hand, one has the bound

E
[√

1Tc≤t/2d(Xt , Yt )q
(
1 + V q(Xt ) + V q(Yt )

)]
(2.8)

≤ E
[
1Tc≤t/2d(Xt , Yt )

q
]1/2

E
[
1 + V q(Xt ) + V q(Yt )

]1/2
.

As a consequence of Lemmas 2.2 and 2.8, we also have the bound

E
[
1Tc≤t/2d(Xt , Yt )

q
]1/2 ≤ Ce−ηt/2

E
[
d(XTc , YTc )

q1Tc≤t/2
]1/2

≤ Ce−ηt/2
E

[(
V (XTc)

q + V (YTc )
q
)
1Tc≤t/2

]1/2

≤ Ce−ηt/2[CV V q(x0) + CV V q(y0) + 2KV

]1/2
.

Assembling these inequalities and using again Lemma 2.8 to bound the second factor in (2.8),
we find that there exist constants C > 0 and λ > 0 such that

E
[
d(Xt ,Yt )

] ≤ Ce−λt
(
1 + V (x) + V (y)

)
,

for every t ≥ 0 and x, y ∈ E. (Recall that x and y denote the E-components of the initial condi-
tions.) As a consequence of this bound and the definition of the Wasserstein distance, we deduce
that

Wd(μPt ,νPt ) ≤ Ce−λt

(
1 +

∑
i∈F

∫
E

(
V (x)ν(dx, i) + V (x)μ(dx, i)

))
, (2.9)

for any two probability measures μ and ν. Now, mimicking the proof of [23], Corollary 4.10, we
can prove the existence of an invariant measure. More precisely, fix a probability measure μ and
note that (2.9) implies that (μPn)n≥0 is a Cauchy sequence with respect to the distance Wd. We
deduce that it converges to a measure μ∞ verifying

μ∞P1 = μ∞.

It immediately follows that π = ∫ 1
0 μ∞Pu du is invariant, just like in the classical proof of the

Krylov–Bogolioubov criterion. �

2.3. Proof of Theorem 1.7

Before we start the proof proper, we recall a version of Harris’ theorem (also called Foster,
Lyapunov, Meyn-Tweedie, Doeblin in the literature) that is suitable for our needs. This theorem
yields exponential convergence to stationarity for a process which does not “escape to infinity”
and verifies furthermore a Doeblin-type condition. More precisely, we use the following notion
of a small set:
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Definition 2.10. A set A ⊂ X is small for the semigroup (Pt )t≥0 over a Polish space (X,dX), if
there exists a time t > 0 and a constant ε > 0 such that

dTV(δxPt , δyPt ) ≤ 1 − ε

for every x, y ∈ A.

The classical Harris theorem [23,28] then states that

Theorem 2.11 (Harris). Let (Pt )t≥0 be a Markov semigroup over a Polish space (X,dX) such
that there exists a Lyapunov function V with the additional property that the sublevel sets {x ∈
X|V (x) ≤ C} are small for every C > 0. Then (Pt )t≥0 has a unique invariant measure π and

dTV(δxPt ,π) ≤ Ce−γ∗t(1 + V (x)
)
,

for some positive constants C and γ∗.

Note that one does not really need that all sublevel sets are small and one can have a slightly
stronger conclusion by using a total variation distance weighted by V , see, for example, [23],
Theorem 1.3.

Proof of Theorem 1.7. By Lemma 2.8, P admits V as Lyapunov function so, by Harris’ theo-
rem, it only remains to show that {V ≤ C} is small for P, for every C > 0. Since V is a Lyapunov
function, there exists t

(1)∗ > 0 and K > KV (with KV as in Lemma 2.8) such that

∀t ≥ t (1)∗ , E
[
V (Xt)

] ≤ K,

uniformly over all x ∈ E such that V (x) ≤ C. Therefore, if X is a process generated by L, it
follows from Markov’s inequality that

P
(
V (Xt ) ≤ 2K

) ≥ 1
2 ,

uniformly over t ≥ t
(1)∗ .

Let now i0 ∈ F be as in the statement. Since A = {V ≤ 2K} is small for P (i0), we obtain some
t0 > 0 and ε > 0, such that for all x, y ∈ A there exists a coupling (Z

i0,x
t ,Z

i0,y
t ) verifying

P
(
Z

i0,x
t = Z

i0,y
t

) ≥ ε, t ≥ t0, (2.10)

and Z
i0,x
t , Z

i0,y
t have respective law δxP

(i0)
t , δyP

(i0)
t .

By the irreducibility of the process I , one can find t∗ > t
(1)∗ and δ > 0 such that P(Is = i0,∀s ∈

[t∗, t∗ + t0]) > δ, uniformly over the starting distributions. Let now (Xt ,Yt ) be the following
coupling:

• the Markov chains I and J are independent over t ∈ [0, t∗ + t0];
• the processes X and Y are independent over t ∈ [0, t∗];
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• conditionally on the set

B = {
V (Xt∗) ≤ 2K,V (Yt∗) ≤ 2K,Is = Js = i0,∀s ∈ [t∗, t∗ + t0]

}
,

the processes X and Y are coupled in such a way to verify (2.10), over t ∈ [t∗, t∗ + t0];
• conditionally on Bc, they are coupled independently from each other.

The Markov property gives

P
(
V (Xt∗) ≤ 2K,Is = i0,∀s ∈ [t∗, t∗ + t0]

) ≥ δ

2
, (2.11)

and so P(B) ≥ δ2/4. Combining this inequality with (2.10), we conclude that P(Xt∗+t0 =
Yt∗+t0) ≥ δ2ε/4, uniformly over all initial conditions x and y with V (x) ≤ C and V (y) ≤ C,
as required. �

3. Non-constant jump rates

In all of this section, we now assume that a depends non-trivially on its first component, so that
I by itself is not a Markov process anymore. We want to use again Lemma 2.7 to show that X
converges, but this time we cannot use it directly on I . The idea is to consider an auxiliary process
which does not depend to X and which will bound (ρ(It ))t≥0 or (λ(It ))t≥0. More precisely, we
will assume the following assumption.

Assumption 3.1 (Birth–death type criterion in the non constant case). There exist n̄ ∈N and a
partition (Fn)0≤n≤n̄ of F such that

∀n ≤ n̄,∀i ∈ Fn,∀j /∈ Fn−1 ∪ Fn ∪ Fn+1,∀x ∈ E, a(x, i, j) = 0,

where we have set F−1 = Fn̄+1 = ∅. Let (Lt )t≥0 be the continuous-time Markov chain on
{0, . . . , n̄} with generator

Gf (n) = b(n)
(
f (n + 1) − f (n)

) + d(n)
(
f (n − 1) − f (n)

)
, (3.1)

for every n ≤ n̄, where d(0) = b(n̄) = 0,

b(n) = inf
x∈E

inf
i∈Fn

∑
j∈Fn+1

a(x, i, j) > 0,

for n < n̄ and

d(n) = sup
x∈E

sup
i∈Fn

∑
j∈Fn−1

a(x, i, j) > 0,

for n > 0.
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Remark 3.2. The process with generator G is irreducible, non-explosive and positive recurrent.
We will henceforth denote its invariant measure by ν.

If Assumption 3.1 holds then, for every i ∈ F , we denote by ni the only n ≤ n̄ verifying i ∈ Fn.
Let us recall that, for every n ≤ n̄, the invariant measure ν is given by

ν(n) = ν(0)

n∏
k=1

b(k − 1)

d(k)
and ν(0) = (1 + �)−1,

where

� =
n̄∑

n=1

b(0) · · ·b(n − 1)

d(1) · · ·d(n)
.

Now we can state two slight generalisations of Theorems 1.5 and 1.8. The first one is

Theorem 3.3 (Wasserstein exponential ergodicity). Suppose that Assumptions 1.1, 1.2, 1.3,
and 3.1 hold. If

n̄∑
n=0

ν(n)α(n) > 0,

where (α(n))n≥0 is an increasing sequence verifying α(n) ≤ infi∈Fn ρ(i), then there exist a prob-
ability measure π and some constants C,λ, t0 > 0 and q ∈ (0,1] such that

∀t ≥ t0, Wd(δy0 Pt ,π) ≤ Ce−λt

(
1 +

∑
i∈F

∫
E

d(y0, x)qπ(dx, i)

)
,

for every y0 = (y0, j0) ∈ E. Here, the distance d on E was defined in (1.4).

If Assumption 3.1 holds with n̄ = 0 then all contraction parameters are positive and we recover
[5], Theorem 1.15. If it holds with n̄ = 1, then we have the on–off criterion which was given in
introduction. We can also state the analogous result in the setting of Theorem 1.8:

Theorem 3.4 (Exponential ergodicity). Suppose that Assumptions 1.1, 1.2, 1.3 and 3.1 hold
and there exist i0 ∈ F and t0 ≥ 0 such that the sublevel sets of V are small for P

(i0)
t , for every

t ≥ t0. If

n̄∑
n=0

ν(n)α(n) > 0,

where (α(n))n≥0 is an increasing sequence verifying α(n) ≤ infi∈Fn λ(i), then there exist a prob-
ability measure π and two constants C,λ > 0 such that

∀t ≥ 0, dTV(δxPt ,π) ≤ Ce−λt
(
1 + V (x)

)
for every x = (x, i) ∈ E.
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We do not give the proofs of Theorem 1.8 and Theorem 3.4, as their proofs are very similar
to the proof of Theorem 1.7, combined with the argument of Lemma 3.9 below. To prove The-
orem 3.3 however, we cannot use classical Harris’ Theorem. Its proof follows the same idea as
the proof of Theorem 1.4, but there is no direct equivalent to the meeting time. Instead, we use
a weak version of Harris’ Theorem which yields geometric ergodicity under the existence of a
Lyapunov function and a modified “small set” condition. This theorem was previously applied
to the stochastic Navier–Stokes equation [22], stochastic delay differential equations [24], and
linear response theory [21]. It is an extension of the classic Harris’ Theorem which allows to deal
with some degenerate examples like the one given in (1.1).

3.1. Weak form of Harris’ Theorem

As already mentioned earlier, there are situations in which we cannot expect convergence in total
variation. The problem here is that bounded sets may not be small sets. We will therefore replace
the notion of small set by the following notion of “closedness” between transition probabilities
introduced in [24], which takes into account the topology of the underlying space X.

Definition 3.5 (d-small set). Let P be a Markov operator over a Polish space X endowed with
a distance dX :X × X �→ [0,1]. A set A ⊂ X is said to be dX-small if there exists a constant ε

such that

WdX
(δxP, δyP ) ≤ 1 − ε,

for every x, y ∈ A.

This notion is a generalisation of the notion of small set, since small sets are d-small for the
trivial distance. This definition can also be extended to situations when d is not a distance [24].
As remarked in that paper, having a Lyapunov function V with d-small sublevel sets cannot be
sufficient to imply the ergodicity of a Markov semigroup. To obtain some convergence result, we
further impose that d is contracting for our semigroup:

Definition 3.6 (d-contracting operator). Let P be a Markov operator over a Polish space X

endowed with a distance dX :X × X �→ [0,1]. The distance dX is said to be contracting for P if
there exists α < 1 such that the bound

WdX
(δxP, δyP ) ≤ αdX(x, y)

holds for every x, y ∈ X verifying d(x, y) < 1.

Note that this condition alone is not sufficient to guarantee the convergence of transition proba-
bilities toward a unique invariant measure since we only impose a contraction when d(x, y) < 1.
In typical situations, “most” pairs (x, y) may satisfy d(x, y) = 1, as would be the case for the
total variation distance. However, when combined with the existence of a Lyapunov function V

that has d-small sublevel sets, it gives geometrical ergodicity ([24], Theorem 4.7):
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Theorem 3.7 (Weak form of Harris’ Theorem). Let (Pt )t≥0 be a Markov semigroup over a
Polish space X admitting a continuous Lyapunov function V . Assume furthermore that there
exist t∗ > t∗ > 0 and a distance dX :X × X �→ [0,1] which is contracting for Pt and such that
the sublevel set {x ∈ X|V (x) ≤ 4KV } is dX-small for Pt , for every t ∈ [t∗, t∗]. Here KV is as in
Definition 2.1. Then, (Pt )t≥0 has an invariant probability measure π . Furthermore, defining

δX(x, y) =
√

dX(x, y)
(
1 + V (x) + V (y)

)
,

there exist r > 0 and t0 > 0 such that

∀t ≥ t0, WδX
(μPt , νPt ) ≤ e−rtWδX

(μ, ν),

for all of probability measures μ,ν on X.

Remark 3.8 (On the contracting distances). The main difficulty when applying the previous
theorem is to find a contracting distance. The construction of this distance represents the main
part of our paper. In [21], there is a general way to build a contracting distance of a Markov
operator P over a Banach space (B,‖ · ‖), based on a gradient estimate for P and the existence
of a super-Lyapunov function. This technique was efficient in [21,22].

3.2. Construction of a Lyapunov function

As in the constant case, we first show that if each underlying Markov process verifies a weaker
form of the drift condition (2.2) then X possesses a Lyapunov function:

Lemma 3.9 (Construction of a Lyapunov function). Suppose that Assumptions 1.1, 1.2, 1.6
and 3.1 hold, if ∑

n≥0

ν(n)α(n) > 0,

where (α(n))n≥0 is an increasing sequence verifying α(n) ≤ infi∈Fn λ(i), then there exist
CV ,KV ,λV > 0 and q ∈ (0,1) such that, for all t ≥ 0 and all (x, i) ∈ E, the bound

PtV
q(x, i) ≤ CV e−λV tV q(x) + KV (3.2)

holds.

Proof. Recall again that Jensen’s inequality gives this weaker form of (1.5):(
P

(i)
t V q

)
(x) ≤ e−qα(i)tV q(x) + Kq,

for every x ∈ E and q ∈ (0,1]. Note also that, as a consequence of the Markov property, (3.2)
follows if we are able to find some T > 0 and constants C,K > 0 and q ∈ (0,1] such that

PT V q(x, i) ≤ 1
2V q(x) + K, (3.3)
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and such that

PtV
q(x, i) ≤ CV q(x) + K, (3.4)

for all t ∈ [0, T ]. In order to find such a time T , we will build a process which couples a copy of X
with the birth and death process L of Assumption 3.1. We define a generator G on E ×{0, . . . , n̄}
by

Gf (x, i, l) = L(i)f (x, i, l) +
∑
j∈F

a(x, i, j)
(
f (x, j, l) − f (x, i, l)

)
+ b(l)

(
f (x, i, l + 1) − f (x, i, l)

) + d(l)
(
f (x, i, l − 1) − f (x, i, l)

)
for l 	= ni . For l = ni on the other hand, we set

Gf (x, i, l) = L(i)f (x, i, l) +
∑

j∈Fl−1

a(x, i, j)
(
f (x, j, l − 1) − f (x, j, l)

)
+

(
d(l) −

∑
j∈Fl−1

a(x, i, j)

)(
f (x, i, l − 1) − f (x, j, l)

)
+

∑
j∈Fl

a(x, i, j)
(
f (x, j, l) − f (x, i, l)

)
+ b(l)∑

k∈Fl+1
a(x, i, k)

∑
j∈Fl+1

a(x, i, j)
(
f (x, j, l + 1) − f (x, j, l)

)

+
∑

k∈Fl+1
a(x, i, k) − b(l)∑

k∈Fl+1
a(x, i, k)

∑
j∈Fl+1

a(x, i, j)
(
f (x, j, l) − f (x, j, l)

)
.

In words, as long as L 	= nI , L and X move independently from each other until the time where
nI and L agree. After that time, the coupling is designed in such a way that one always has
nI ≥ L. If we start the process with an initial condition (x, i, l) such that ni ≥ l, this construction
ensures in particular that, for all times, one has

α(It ) ≥ α(Lt ).

We now denote by {τn}n≥1 the times at which the process It jumps and by Nt the number of such
jumps before time t .

With these notations at hand, we then have

PtV
q(x) = E

[
P

(IτNt
)

t−τNt
V q(XτNt

)
] ≤ E

[
e−α(IτNt

)(t−τNt )V q(XτNt
) + Kq

]
≤ E

[
e
− ∫ t

τNt
α(Ls)ds

V q(XτNt
)
] + Kq (3.5)
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= E
[
e
− ∫ t

τNt
α(Ls)ds

P
(IτNt −1 )

τNt −τNt −1
V q(XτNt −1)

] + Kq

≤ · · · ≤ E
[
e− ∫ t

0 qα(Ls)ds
]
V q(x) + Kq

E

[ ∑
n≤Nt

e−q
∫ t
τn

α(Ls)ds

]
.

Now, using Lemma 2.7, there exist C,η > 0 and q ∈ (0,1] such that

E
[
e− ∫ t

0 qα(Ls)ds
] ≤ Ce−ηt . (3.6)

Hence, in view of (3.3) and (3.4), it only remains to prove that, for any fixed time T , one has the
bound

sup
t≤T

E

[ ∑
n≤Nt

e−q
∫ t
τn

α(Ls)ds

]
< +∞.

Since the function α is bounded from below and the function t �→ Nt is increasing, this boils
down to the bound ENT < ∞, which is a simple consequence of the fact that by Assumption 1.1
the jump rates are also bounded from above. �

3.3. The contracting distance

This section is divided in three parts. We introduce the distance d̃ that we will use in Theorem 3.7,
we build our coupling in such a way that d̃ will be contracting for it, and we finally prove that it
is indeed contracting.

3.3.1. Definition of d̃

Here, we build a distance d̃ : (E × F) × (E × F) → [0,1] such that there exist t∗ > 0 and α ∈
(0,1) verifying

d̃(x,y) < 1 ⇒ ∀t ≥ t∗, W
d̃
(δxPt , δyPt) ≤ αd̃(x,y). (3.7)

where x = (x, i) and y = (y, j) belong to E × F . Since we can say nothing when i 	= j , we will
take d̃(x,y) constant equal to 1 in this case. When i = j we want to use Assumption 1.3 to prove
a decay. But it is more useful to “decrease the contraction” of the underlying Markov semigroup.
More precisely, by Jensen inequality, Assumption 1.3 gives

Wdq

(
μP

(i)
t , νP

(i)
t

) ≤ e−qρ(i)tWdq (μ, ν),

for all t ≥ 0, q ∈ (0,1] and every probability measures μ,ν. Finally, we define d̃ by

d̃(x,y) = 1i 	=j + 1i=j

(
δ−1dq(x, y) ∧ 1

)
,

where δ > 0 will be determined later. Now, if a realisation of the coupling (Xt ,Yt )t≥0 =
((Xt , It ), (Yt , Jt ))t≥0 starting from (x,y), verifies d̃(x,y) < 1, then I0 = J0 = i = j . So, we
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will try to build our coupling in such a way that I and J remain equal for as long as possible.
More precisely, if we set

T = inf{s ≥ 0|Is 	= Js}, (3.8)

then we will prove that there exists K > 0 and a choice of coupling such that

P(T < ∞) ≤ Kd(x, y).

3.3.2. Construction of our coupling

Here, we fix x = (x, i), y = (y, j) in E and we let t > 0. Let r ≥ 0 and (Nt )t≥0 be a Poisson
process of intensity r with Nt = ∑

n≥0 1{τn≤t} and τn = ∑n
k=1 Ek for a family (Ek)k≥0 of i.i.d.

exponential variables and τ0 = 0. We assume that r ≥ 2ā, that is r is larger than the jump rates
of I or J . As in the proof of Theorem 1.4, we give the construction of our coupling (X,Y) at the
jump times of N . Let n ∈ {0, . . . ,Nt }, we consider the following dynamics:

• If Iτn 	= Jτn , then Xs and Ys evolve independently for every s ∈ [τn, τn+1 ∧ t).
• If Iτn = Jτn , then by Assumption 1.3, we can couple X and Y in such a way that

E
[
d(Xτn+1∧t , Yτn+1∧t )|Gτn

] ≤ e−ρ(Iτn )(τn+1∧t−τn)d(Xτn, Yτn),

where Gn = σ {(Xτn ,Yτn), (τk)k≥0}.
At the jump times of N the situation is different since I or J may jump. We will optimise
the chance that I and J jump simultaneously. For each n ∈ N

∗, we cut [0,1] in four parts
In

0 , I n
1 , I n

2 , I n
3 in such a way that

λ
(
In

0

) = 1

r

∑
j∈F

(
a(Xτn−, Iτn , j) − a(Yτn−, Iτn, j)

)
+,

λ
(
In

1

) = 1

r

∑
j∈F

(
a(Yτn−, Iτn, j) − a(Xτn−, Iτn, j)

)
+,

λ
(
In

2

) = 1

r

∑
j∈F

a(Xτn−, Iτn, j) ∧ a(Yτn−, Iτn , j),

λ
(
In

3

) = 1 − 1

r

∑
j∈F

a(Xτn−, Iτn, j) ∨
∑
j∈F

a(Yτn−, Iτn , j),

where λ is the Lebesgue measure and (x)+ = max(x,0). Let (Un)n≥0 be a sequence of i.i.d.
random variables uniformly distributed on [0,1], we couple I and J at the jump times as follows:

• For Un ∈ In
0 , I jumps, but J does not jump.

• For Un ∈ In
1 , J jumps, but I does not jump.

• For Un ∈ In
2 , I and J both jump simultaneously to the same location.

• For Un ∈ In
3 , I and J both stay in place.
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The second components, X and Y , do not jump. Finally, we also couple X and Y with a contin-
uous Markov chain L which only depend to U and N and which verifies

∀t ≥ 0, ρ(It ) ≥ α(Lt ).

This Markov chain L is constructed as in the proof of Lemma 3.9.

Remark 3.10. This coupling is not quite Markovian since, between times τn and τn+1, it already
uses information about the pair (Xt , Yt ) at time τn+1. However, in many situations to which our
results apply there exists a Markovian coupling with generator L(i) which yields a good coupling
for each of the underlying processes. In this case, we can make our coupling Markovian with
generator

Lf (x,y, n) = L
(i)f (x,y, n) +

∑
k∈F

(
a(x, i, k) − a(y, j, k)

)
+f

(
(x, k),y, n + 1

)
+

∑
k∈F

(
a(y, j, k) − a(x, i, k)

)
+f

(
x, (y, k), n + 1

)
+

∑
k∈F

a(x, i, k) ∧ a(y, j, k)f
(
(x, k), (y, k), n + 1

)
+

(
r −

∑
k∈F

a(x, i, k) ∨ a(y, j, k)

)
f (x,y, n + 1) − rf (x,y, n).

3.3.3. The distance d̃ is contracting for P

In this subsection, we show that the distance d̃ defined above is indeed contracting for the cou-
pling constructed in the previous subsection. This is formulated in the following result.

Lemma 3.11. Let (Xt ,Yt )t≥0 be the coupling of the previous section. Under the assumptions of
Theorem 3.3, we can choose r and δ in such a way that

∀t ≥ t∗, E
[
d̃(Xt ,Yt )

] ≤ γ d̃(x,y),

for some γ ∈ (0,1) and t∗ > 0, and all x,y ∈ E × F verifying d̃(x,y) < 1.

Proof. Recall that since d̃(x,y) < 1 one has I0 = J0 and that T , defined in (3.8), denotes the
first time of separation of I and J . Using Lemma 2.7, there exist q ∈ (0,1] and C,η > 0 such
that

E
[
d̃(Xt ,Yt )

] ≤ E

[
1{T =∞}

1

δ
dq(Xt , Yt ) + 1{T <+∞}

]
≤ 1

δ
E

[
e− ∫ t

0 qα(Ls)ds
]
E

[
dq(x, y)

] + P(T < +∞)

≤ Ce−ηt d̃(x,y) + P(T < +∞).
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Here, we have used the fact that

E
[
1{T =∞}dq(Xt , Yt )

] ≤ E
[
1{T ≥τNt }e

−qα(LτNt
)(t−τNt )dq(XτNt

, YτNt
)
]

≤ E
[
1{T ≥τNt }e

−qα(LτNt
)(t−τNt )E

[
dq(XτNt

, YτNt
)|Gn

]]
≤ E

[
1{T ≥τNt −1}e

− ∫ t
τNt −1

qα(Ls)ds
dq(XτNt −1 , YτNt −1)

]
≤ E

[
e− ∫ t

0 qα(Ls)ds
]
E

[
dq(x, y)

]
.

It remains to obtain a bound on P(T < +∞). Since I and J can only jump when N jumps, T

can be finite only if it is one of the jump times of N . So, we set

An = {T = τn} = {T ≥ τn and Iτn 	= Jτn}.

By Assumption 1.1, we have

P(An) = P
({

Un ∈ In
0 ∪ In

1 ∪ In
3

} ∩ {T ≥ τn}
)

≤ E

[21{T ≥τn}
∑

j∈F |a(Xτn−, Iτn−, j) − a(Yτn−, Iτn−, j)|
r

]

≤ E

[(21{T ≥τn}
∑

j∈F |a(Xτn−, Iτn−, j) − a(Yτn−, Iτn−, j)|
r

)q]
≤ 2qκq

rq
E

[
d(Xτn−, Yτn−)q

] ≤ 2qκq

rq
E

[
e−q

∫ τn
0 α(Ls)ds

]
d(x, y)q .

Hence,

P(T < ∞) =
∑
n≥1

P(An) ≤ 2qκq

rq
d(x, y)q

∑
n≥1

E
[
e−q

∫ τn
0 α(Ls)ds

]
.

Now, similarly to the proof of Lemma 3.9, provided that r is sufficiently large, there exist C′ > 0
and ε > 0 verifying ∑

n≥1

E
[
e−q

∫ τn
0 α(Ls)ds

] ≤
∑
n≥1

C′e−εn =: C̃ < +∞.

Combining these bounds, we obtain the estimate

E
[
d̃(Xt ,Yt )

] ≤
(

Ce−ηt + (2κ)qC̃

rq
δ

)
d̃(x,y).

First making δ sufficiently small and then taking t large enough, we thus obtain the announced
result. �
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3.4. Bounded sets are ˜d-small

Here, we prove that if a set is bounded then it is d̃-small.

Lemma 3.12. Under the assumptions of Theorem 3.3, if S ⊂ E × F is of bounded diameter in
the sense that

R = sup
{
d(x, y)|x,y ∈ S

}
< +∞,

then there exist t∗, t∗ > 0 such that S is d̃-small for Pt , for all t ∈ [t∗, t∗].

Proof. Let x = (x, i) and y = (y, j) be two different points of S. By the assumptions of The-
orem 3.3, there exists i0 ∈ F such that ρ(i0) > 0. Let (Xt )t≥0 and (Yt )t≥0 be two independent
processes generated by (1.2) and starting respectively from x and y. Let us denote

τin = inf{t ≥ 0|It = Jt = i0} and τout = inf{t ≥ τin|It 	= i0 or Jt 	= i0}.
For every b, c > 0 such that b > c, we define

pc,b(x,y) = P(τin < c, τout > b).

By Assumptions 1.1 and 1.2, we have pc,b(x,y) > 0. Using the fact that a is bounded, a coupling
argument shows that pc,b is lower bounded by a positive quantity which only depends on i and j .
We then obtain the bound

E
[
d̃(Xt ,Yt )

] ≤ E
[
1{τin<c,τout>b}d̃(Xt ,Yt )

] + 1 − pc,b(x,y)

≤ 1 − pc,b(x,y)
(
1 − δ−1e�ce−ρ(i0)t d(x, y)

)
≤ 1 − pc,b(x,y)

(
1 − δ−1e�ce−ρ(i0)tR

)
,

where � is given by

� = −min
{
qα(k)|k ∈ F

}
.

There exist c > 0 and t∗ > c such that 1 − δ−1e�ce−ρ(i0)t∗R > 0. Since F is finite, we can
furthermore bound pc,b from below by the minimum over all i, j ∈ F , and the result follows for
any b > t∗ and t∗ ∈ (t∗, b). �

Remark 3.13. One can see from this proof that it is not necessary that the jump rates are lower
bounded, as in Assumption 1.2. Indeed, we need that, for each i, j ∈ F , the jump times of I are
stochastically smaller than a variable which does not depend of the dynamics of X.

3.5. Proofs of Theorem 1.5 and Theorem 3.3

Recall that Lemmata 2.2 and 3.9 yield the existence of a Lyapunov function V = Vx0 , for some
x0 ∈ E, Lemma 3.11 shows that d̃ is contracting for P, and Lemma 3.12 proves that sublevel sets
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of V are d̃-small. So we can use Theorem 3.7 to deduce that there exist a probability measure π
and some constants C,λ, t0 > 0 such that, for all t ≥ t0,

Wd̃(μPt ,π) ≤ Ce−λtWd̃(μ,π),

for every probability measure μ on E. In this expression, d̃ is defined by

d̃(x,y) =
√(

1i 	=j + 1i=j

(
1 ∧ dq(x, y)

))(
1 + dq(x, x0) + dq(y, x0)

)
,

where x = (x, i), y = (y, j) belong to E, x0 is as in Assumption 1.3 and q ∈ (0,1]. Noting that
d ≤ d̃ we conclude that for t ≥ t0 one has

Wd(δy0 Pt ,π) ≤ Ce−λt

(
1 +

∑
i∈F

∫
E

d(y0, x)qπ(dx, i)

)
.

Since furthermore

Wd(δy0 Pt ,π) ≤ 1,

for all t ≤ t0, this ends the proof.

4. Two special cases

Here, we give some sufficient conditions allowing to verify our main assumptions in situations
where the underlying processes are deterministic or diffusive. Note that we can find sufficient
conditions in [9] for stochastically monotone processes, in [8] for birth–death processes and in
[15] for diffusion processes.

4.1. The case of diffusion processes

Let us recall that a diffusion process on R
d , d ∈N

∗, is a process generated by

∀x ∈ R
d, Lf (x) =

d∑
i=1

bi(x) ∂if (x) +
d∑

i,j=1

(
σ(x)σ (x)t

)
i,j

∂i,j f (x), (4.1)

where f is a smooth enough function and b,σ are regular enough, say

∀x, y ∈ R
d,

∥∥σ(x) − σ(y)
∥∥ + ∥∥b(x) − b(y)

∥∥ ≤ K‖x − y‖ (4.2)

for some K > 0. In the previous expression, ‖ · ‖ denotes both the Euclidean norm and the
subordinate norm.

Lemma 4.1. Let (Pt )t≥0 be the Markov semigroup generated by (4.1). If σ is constant and

∀x, y ∈R
d ,

〈
b(x) − b(y), x − y

〉 ≤ −α‖x − y‖2, (4.3)
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for some α ∈ R, then

∀t ≥ 0, W‖·‖(μPt , νPt ) ≤ e−αtW‖·‖(μ, ν),

for any probability measures μ and ν.

Proof. This is an immediate consequence of (4.3). One can see this by using the same Brownian
motion for two different solutions of the SDE starting with different initial measures. �

If σ is not constant, then one can also use [2], Proposition 6.1, which essentially requires
the Lipschitz constant of σ to be sufficiently small compared to the rate of contraction α, see
also [15,34]. The “small level sets” assumption of Theorem 1.7 or Theorem 1.8 is satisfied if
one of the underlying diffusions verifies Hörmander’s hypoellipticity assumption and satisfies
furthermore a natural controllability assumption. See, for instance, [20] for an introduction on
this subject.

Remark 4.2 (Exponential convergence for an infinite dimensional process). The previous re-
sult gives also the convergence for switching Fokker–Planck processes. Indeed, we can consider
that each underlying Markov process (Z

(i)
t )t≥0 is deterministic, belongs to the space of smooth

density functions, and verifies

∂tZ
(i)
t (x) =

d∑
k=1

−∂k

(
bkZ

(i)
t

)
(x) +

d∑
k,l=1

∂k,l

(
σk,lZ

(i)
t

)
(x)

for all x ∈R
d , and t ≥ 0. The previous lemma gives a contraction as in Assumption 1.3, for each

underlying process, where d is the Wasserstein metric.

4.2. Case of piecewise deterministic Markov processes

Let us assume that each one of the underlying Markov processes is actually deterministic. More
precisely, we consider that E is an open of Rd , d ∈ N

∗ and L(i)f = G(i) · ∇f , for every i ∈ F ,
where (G(i))i∈F is a family of vector fields such that the ordinary differential equations x′ =
G(i)(x) have a unique and global solution for any initial condition, for every i ∈ F . Lemma 4.1
gives the assumption in order to apply Theorem 1.4 and Theorem 1.5. In general, we cannot
apply Theorem 1.7 or Theorem 3.4 but [1,4] give a sufficient condition ensuring that X generates
densities:

Assumption 4.3 (Hörmander-type bracket conditions). Let G0 = {G(i) − G(j), i 	= j} and for
all k ≥ 0,

Gk+1 = {[
G(i),G

]|i ∈ F,G ∈ Gk

}
,

where [·, ·] designs the Lie bracket. We have Gk(x) = {G(x)|G ∈ Gk} =R
d , for every x ∈ E.
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In this case our main result gives the following theorem.

Theorem 4.4. Let us suppose that Assumptions 1.1, 1.2 and 4.3 hold. If one of the two following
assumptions is satisfied:

• a(x, i, j) does not depend to x and I is ergodic with an invariant measure ν satisfying∑
i∈F

ν(i)λ(i) > 0;

• Assumption 3.1 holds and ∑
i∈F

ν(i)α(i) > 0,

for some increasing sequence α satisfying α(n) ≤ mini∈Fn λ(i), for all n ≤ n̄

then there exist a probability measure π and three constants C,λ, t0 > 0 such that

∀t ≥ t0, dTV(δxPt ,π) ≤ Ce−λt
(
1 + V (x)

)
,

for every x = (x, i) ∈ E.

Proof. Using [4], Theorem 6.6, we see that compact sets are small for X. Using Lemma 2.8 in
the first case and Lemma 3.9 in the second case, we see that we can apply Theorem 2.11. �

5. Examples

Here, we give three simple examples to illustrate our results.

5.1. The most elementary example

Let us consider the example where X belongs to R and verifies

∀t ≥ 0, ∂tXt = ItXt ,

where (It )t≥0 is the continuous time Markov chain, on {−1,1}, which jumps from 1 to −1 with
rate a1 > 0 and from −1 to 1 with rate a−1 > 0. If a1 > a−1 then Theorems 1.4 and 1.5 give the
exponential ergodicity of X in the Wasserstein distance. Here, the invariant law is

δ0 ⊗ 1

a−1 + a1
(a1δ−1 + a−1δ1),

and there is clearly no convergence in total variation. Thus, classical Harris’ theorem does not
work here. Furthermore, the classical law of large number gives

lim
t→+∞Xt =

{
0 a.s., if a1 > a−1,
+∞ a.s., if a1 < a−1.
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In particular, there is no convergence when a1 < a−1.

Remark 5.1. In our main theorems, we use a Wasserstein distance associated to a distance
comparable to dq rather than d . We choose this distance because, in general, moments of X
can explode even though X converges in law. For instance, in the above example, one has
limt→∞ EXt = ∞ as soon as a1 < 1. See also [3] for comments on the optimal choice of the
parameter q .

5.2. Wasserstein contraction of some switching dynamical systems

Let us consider a slight generalisation of the previous example; that is X belongs to R and verifies

∀t ≥ 0, ∂tXt = −a(It )Xt , (5.1)

where (It )t≥0 is a recurrent continuous time Markov chain on a finite state space F and a a func-
tion from F to R. Theorem 1.4 gives the exponential–Wasserstein ergodicity under the condition
that ∑

i∈F

a(i)ν(i) > 0, (5.2)

where ν is a invariant measure of I . This simple example satisfies a bound like in Assumption 1.3.
Indeed we have the following lemma.

Lemma 5.2. If (5.1) and (5.2) are satisfied then there is a distance δ on E such that the Wasser-
stein curvature of the semigroup of X is positive, that is, there exists λ > 0 such that

∀t ≥ 0, Wδ(δxPt , δyPt ) ≤ e−λtδ(x,y),

for all x,y ∈ E.

Proof. First, let us give a complement on the conclusion of Lemma 2.7. The Markov chain I

satisfies its assumptions and using the results of [3], there exist a function ψ on F , ρ > 0 and
p ∈ (0,1) verifying

∀t ≥ 0, E
[
ψ(It )e

− ∫ t
0 pa(Is)ds

] = e−ρt
E

[
ψ(I0)

]
.

Now let δ be the distance, on E, defined by

∀x,y ∈ E, δ(x,y) = 1{i=j}ψ(i)|x − y|p + 1{i 	=j}
ψ

ψ

(
ψ(i)|x|p + ψ(j)|y|p + 1

)
,

where

ψ = max
k∈F

ψ(k) and ψ = min
k∈F

ψ(k).
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Now, using the fact that for all t > 0 one has

Xt = X0e− ∫ t
0 a(Is )ds ,

the proof is straightforward. �

5.3. Surprising blow-up under exponential ergodicity assumptions

Here we give some comments on [6], Example 1.4, which also illustrate the sharpness of our
criteria. Let us consider E =R

2, F = {0,1}, L(i)f = Ai · ∇f where

A0 =
( −1 3

−1/3 −1

)
and A1 =

(−1 −1/3
3 −1

)
,

a(x,0,0) = a(x,1,1) = 0, and a(x,1,0) = a(x,0,1) = a > 0, for all x ∈ R
2. In short, X is

generated, for all x ∈ R
2 and i ∈ {0,1}, by

Lf (x, i) = Ai · ∇f (x, i) + a
(
f (x,1 − i) − f (x, i)

)
. (5.3)

Since a does not depend on its first component, I is a Markov process and it converges exponen-
tially to

ν = 1
2δ0 + 1

2δ1.

For each i ∈ {0,1}, we have ∂tZ
(i)
t = AiZ

(i)
t and thus we easily prove that∥∥Z

(i)
t

∥∥
i
≤ e−t

∥∥Z
(i)
0

∥∥
i

and
∥∥Z

(i)
t

∥∥
1−i

≤ 3e−t
∥∥Z

(i)
0

∥∥
1−i

, (5.4)

for every t ≥ 0, where the norms ‖ · ‖0 and ‖ · ‖1 are defined by

∀u = (u1, u2) ∈ R
2, ‖u‖0 =

√
(u1/3)2 + u2

2 and ‖u‖1 =
√

u2
1 + (u2/3)2.

Thus each flow i ∈ {0,1} contracts, with the norm ‖ · ‖i , and converges geometrically, with the
norm ‖ · ‖1−i , to the same limit. Nevertheless, if a is large enough then [6], Example 1.4, shows
that

lim
t→+∞‖Xt‖ = +∞.

In particular, the conclusion of Theorem 1.4 is not satisfied. This illustrates the fact that assuming
that each underlying dynamics converges geometrically is not sufficient in general to guarantee
the convergence of X. Moreover, this shows that it is essential in Theorem 1.4 to measure the
constants ρ(i) with respect to the same distance for every i. Note that the Wasserstein curvature
of Z(i), with respect to ‖ · ‖1−i , is negative and given by −37/3.
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5.4. Non-convergence when I is recurrent but not positive recurrent

A last example is the following: the process X verifies

∀t ≥ 0, dXt = −(Xt − aIt )dt,

where (an)n≥0 is a bounded real sequence and I is an irreducible and recurrent continuous time
Markov chain which is not positive recurrent. It is easy to see that the sequence of laws of (Xt )t≥0
is tight and we can hope that there exists a probability measure π verifying

lim
t→+∞E

[
f (Xt )

] =
∫

f dπ,

for every continuous and bounded function f and any starting distribution. But in general, this
is false. To illustrate it, let us consider the case when I is the classical continuous-time random
walk on N reflected at 0. Namely, I is generated by

Jf (i) = 1
2f (i + 1) + 1

2f (i − 1) − f (i),

if i 	= 0 and

Jf (0) = f (1) − f (0).

The sequence a on the other hand is defined recursively by:

an+1 =
{

an if n /∈ {
2k|k ∈N

}
,

−an if n ∈ {
2k|k ∈N

}
.

In this case, the central limit theorem gives that It ≈ √
t and so, for very large times, I and a

do not switch on the same time scale. As a matter of fact, the process aIt stays constant during
longer and longer stretches of time. It is then possible to find two sequences of deterministic
times (tn)n≥0 and (sn)n≥0, both converging to infinity, and such that

lim
n→+∞E

[
f (Xtn)

] = f (0) and lim
n→+∞E

[
f (Xsn)

] = f (1).

Thus this process exhibits ageing and is not exponentially stable, even though there exists C > 0,
such that for any two starting points x = (x, i) and y = (y, j), we have

∀t ≥ 0, Wd0(δxPt , δyPt ) ≤ C√
t
|i − j |,

where d0(x,y) = 1i=j‖x − y‖ ∧ 1 + 1i 	=j .
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