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Prediction of an unobserved random variable is considered from a frequentist viewpoint. After a brief

review of previous work, a number of examples in which an exact solution is possible are given, partly

for their intrinsic interest and partly to illustrate general results. A new form of predictive density is

derived accurate to the third order of asymptotic theory under ordinary repeated sampling. The

formula is invariant under transformation of the observed and unobserved random variables and

under reparametrization. It respects the conditionality principle and may be based on the minimal

prediction su�cient statistic. Some open problems are noted.
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1. Introduction

In the formal theory of inference, it is useful to distinguish estimation from prediction, the

latter being concerned with the values of further random variables connected with the

probability model assumed to underlie the data. The present paper deals with prediction

from parametric models, giving ®rst some exact results and then, from Section 5 onwards,

concentrating on the role of asymptotic theory.

A fairly general formulation is as follows. A vector of observations y corresponds to a

random variableY having a density p�y; ��, where � is unknown. It is required to predict the

value of a further random variable Z having a density depending on �. Broadly speaking, y

is to be used to estimate �, leading to an inference about Z.

In general, Y and Z are dependent so that the model speci®cation requires the joint

density p�y; z; ��. An important special case hasY and Z independent, a further special case

of this arising when Y is a random sample from the same distribution as that of Z.

The latter part of the paper considers asymptotic theory in which the amount of

information about � contained in Y is large, whereas the dimension of Z is ®xed, and

indeed for the great majority of the discussion we take Z to be one-dimensional; this

includes the case where Z is a summary statistic from a second sample. Prediction problems

in which Z is multi-dimensional may often be best reformulated in terms of a number of

one-dimensional targets. Where this is not reasonable, there may be some arbitrariness

in the `shape' of the prediction region to be adopted, although the shape corresponding

to high predictive density with respect to some natural, even if ultimately arbitrary,

dominating measure may guide the choice. See Example 4.6.
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Two other asymptotic regimes are of interest but will not be considered in detail here. In

one the amounts of information about � in Y and Z are large and comparable, as in the

application to the superpopulation theory of sampling a ®nite population. In the second the

amount of information in Z increases to in®nity and the asymptotic theory of estimation is

recovered as a limit.

The paper is organized as follows. In Section 2 we brie¯y review a number of di�erent

approaches to prediction and we indicate the route we will be taking, which is via predictive

limits to a new type of predictive distribution, derived by asymptotic considerations.

Section 3 brie¯y reviews the concept of prediction su�ciency and notes other relevant

inference points. A number of examples that allow `exact' solutions are discussed, partly for

their intrinsic interest and partly as a means of assessing the performance of the asymptotic

predictive density (6.8), which constitutes the main result of this paper. Sections 5 and 6 and

the Appendix are devoted to the derivation of formula (6.8), and the formula is illustrated

by a number of examples in Section 7. The cases of many nuisance parameters and of

discrete predictands are discussed in Sections 8 and 9, respectively, and the concluding

Section 10 lists a variety of open problems.

2. Formulations of prediction

There are a number of possible formulations of prediction problems even in the special case

of one-dimensional Z.

Prediction may be by a point value. See, in particular, Aitchison and Dunsmore (1975)

for a detailed discussion largely from a Bayesian viewpoint. Formal analysis requires the

speci®cation of a loss function, such as squared error. In a fully Bayesian formulation, i.e.

one with a known prior over �, there is, formally at least, no di�culty in principle in

obtaining the posterior density of Z given Y � y and this supplies predictive limits. In this

approach y is ®xed and an ensemble of possible values of � is involved. Indeed, in Bayesian

theory the distinction between estimation and prediction disappears, at least so far as the

formalism is concerned. Geisser (1993) largely emphasizes the Bayesian approach to

predictive distributions. We shall not follow this route.

Other approaches ± Fisher (1956), Lauritzen (1974), Hinkley (1979) and Butler (1986;

1989), on the one hand, and Barndor�-Nielsen (1978; 1981) and Mathiasen (1979), on the

other ± de®ne a `predictive likelihood' for Z intended to have properties more or less

analogous to those of likelihood for a parameter. Bjùrnstad (1990) provides a valuable

review of these developments.

We shall use the term `predictive densities' for probability densities constructed from the

observed data y with the direct aim of approximating the true conditional density of Z

closely, in some speci®ed sense, and this is the approach adopted here. Bjùrnstad (1990) also

discusses work on predictive densities up to 1990. Recently Vidoni (1995) extends an

approach of Harris (1989), by use of the p
�

-formula. Komaki (1996) considers construction

of suitable predictive densities from the viewpoint of di�erential geometry and in the spirit

of Amari. Harris (1989), Basu and Harris (1994) and Vidoni (1995) all measure closeness of

the approximations by Kullback±Leibler distance.
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The predictive densities in these papers are, however, di�erent in nature from that to be

studied in the present paper.

We may look for predictive limits, i.e. a function c
�

�y� such that, exactly or

approximately,

PfZ < c
�

�Y �; �g � � �2:1�

for all �. A set of such limits for all � supplies a fairly complete speci®cation of knowledge

about Z derivable from y. In (2.1) the probability is taken over the joint distribution of Y

and Z. That is, the hypothetical frequency interpretation involves repetition of the data y,

as well as of the value to be predicted z. If there is an ancillary statistic a for � based on y, it

will be reasonable to condition on its observed value.

There are broadly three approaches to satisfying (2.1), two special and `exact' and the

third general and asymptotic.

The ®rst hinges on ®nding a pivotal function of Z and Y , typically of Z and the su�cient

statistic for � based on Y , the pivot having a distribution free of �. Subject to monotonicity,

a solution of (2.1) is obtained. The method yields well-known solutions to a number of

standard problems of scale and location form.

The second method (Guttman 1970) involves a notional testing problem in which Z is

governed by a parameter value �

�

, Y by �, and the prediction interval consists of all those z

for which the hypothesis � � �

�

would not be rejected at level �. This gives in particular a

simple solution to what Pearson (1920) christened the `Fundamental Problem of Applied

Statistics': given the number of successes in n Bernoulli trials, how many successes will

occur in a further m such trials. Fisher (1956, pp. 134±138) gave a closely related solution

based directly on likelihood. Fisher's predictive likelihood has, however, the undesirable

feature that it does not converge to parametric likelihood based on Y if the information in

Z increases to in®nity.

In the asymptotic approach, we argue initially as follows. Let z
�

�y; �� be the � quantile of

the conditional distribution of Z given Y � y. That is,

G�z
�

�y; ��; � jy� � P
�

fZ < z
�

�y; ��jY � yg � �; �2:2�

where G�z; � jy� is the distribution function of Z given Y � y; of course, if Z and Y are

independent the dependence on y can be suppressed. Then if ~� is an estimate of � based on y,

z
�

�y; ~�� provides an approximation to the required prediction limit. We shall generally take

~

� to be the maximum likelihood estimate

^

�. The objective of the asymptotic calculation is to

`improve' z
�

�y; ^�� so as to satisfy (2.1) to a close approximation. A ®rst approach to this

(Cox 1973; see also Barndor�-Nielsen and Cox 1994, pp. 217±219; and Atwood 1984, with

interesting examples) proceeds, in outline, as follows.

The starting-point is (2.2). When Z is independent of Y , we have, on replacing � by a
p

n-

consistent estimate

~

�, that

PfZ < z
�

�
~

��; �g � EfG�z
�

�
~

��; ��g � EfH
�

�
~

�; ��g;

where H
�

�
~

�; �� � G�z
�

�
~

��; �� and the expectation is over the distribution of Y , i.e. of ~

�. If

asymptotically the bias of

~

� is b���=n and the covariance matrix c���=n, Taylor expansion
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shows that, with accuracy O�n
ÿ3=2

�,

PfZ < z
�

�
~

��; �g � �� d���=n; �2:3�

where

d��� � �br
T

~

�

H
�

�
1

2

tr f~cr
~

�

r
T

~

�

H
�

g�
~

�! �

;

r denoting the gradient operator. When

~

� is the maximum likelihood estimate,

^

�, general

formulae are available for b and c, or, if ~� is available in explicit form, it may be simpler to

calculate its bias and covariance matrix directly.

Sometimes the correction term in (2.3) may be so small that further consideration is

unnecessary, but in general we aim to modify z
�

�
~

�� so as to get closer to the target

value �. This can be done in various ways. The most direct is to replace z
�

�
~

�� by z
�

1

�
~

��,

where

�

1

� �� d�~��=n: �2:4�

The second approach is to modify z
�

�
~

�� to z
�

�
~

�� � z
�

�

�
~

��=n and to choose z
�

�

�
~

��=n to

absorb the additional term in (2.3).

The third is to `guess' the form of the predictive density, typically a rather long-tailed

modi®cation of the distribution of Z, to expand this distribution with the distribution of Z

as leading term and then to calculate the prediction limit to match (2.1).

If Y and Z are not independent, but there is a low-dimensional statistic W , so that the

quantile is z
�

��;w�, the argument proceeds by ®rst conditioning on W . Typically, because

W is of low dimension, the asymptotic covariance of

^

� is una�ected by the conditioning but

the O�n
ÿ1

� bias of
^

� will be changed; in some of our examples the availability of simple

explicit forms for

^

� andW enable the conditional bias to be evaluated directly. We thereby

obtain prediction limits having the desired properties conditionally on W and therefore

also unconditionally.

While this method is direct, ¯exible, and elementary, the form of the answer is

unenlightening and there is typically some lack of invariance with respect to choice of

the parameter �, although not, at least in the form (2.3), with respect to transformation of

Z. Also we have not here taken the conditionality principle into account.

In the majority of cases, use of the maximum likelihood estimate

^

� is natural and Sections

5±7 of the paper are concerned with a solution based explicitly on the maximum likelihood

estimate, on invariant calculations with the likelihood function, and on the conditionality

principle.

It may be convenient to present the results of (2.1) via a formal predictive density for Z,

~g�zjy� say, integration of which will generate the predictive limits of (2.1). That is,

�
c
�

�y�

ÿ1

~g�u; y� du � �

for all �. In simple cases the form of ~g may be directly recognizable; in general, it can be

obtained via an expression of � as a function of c.

An important result of the present paper is an asymptotic expression for ~g, given as

formula (6.8).
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3. Prediction su�ciency and inference

From one point of view an important distinction is between problems in which �Y ;Z� are

or are not independent. From a more applied perspective, the dependent problems can be

separated into forecasting problems, in which Z is a future observation in a stochastic

system that generated Y , and those where Z is some latent feature of the model generating

Y , these being broadly of empirical Bayes type. In both dependent cases, a crucial aspect is

the form of p�z; � jy�, the conditional density of Z given Y � y. In some, although not all,

cases this involves y only via a low-dimensional component w, say, i.e.

p�z; � jy� � p�z; � jw�:

WhetherW is low-dimensional or not we callW transitive forZ, a terminology consistent

with Bahadur (1954). Note that w has no necessary connection with the estimation of �. In

general, the solution of a prediction problem will depend not only on the transitive statistic

w but also on some further part v of the data y. We shall say that �v;w� is prediction

su�cient with respect to the solution in question. The mathematical de®nition of prediction

su�ciency that we shall use, and which goes back to Kolmogorov (1942) and Bahadur

(1954), says in essence that a statistic T (a function of Y alone) is prediction su�cient for Z

provided it is transitive and su�cient for Y with respect to inference on �.

Under mild regularity conditions, T is (minimal) prediction su�cient for Z if and only if

T is (minimal) su�cient for the class of all conditional distributions of Y given Z, this class

considered as a parametric family with both � and z as parameters (Barndor�-Nielsen and

Skibinsky 1963; Skibinsky 1967, Theorem 2).

We use a prediction su�cient reduction wherever possible.

When the conditional distribution of z given y does, in fact, depend on � through  

only, it will usually be advisable in the calculations of predictive limits and predictive

densities to use not the likelihood function for � based on y but rather an adjusted pro®le

likelihood, and to condition on any ancillary statistic, a (Barndor�-Nielsen and Cox 1994;

Barndor�-Nielsen 1995).

Example 3.1. The relevance of conditioning on ancillaries is well illustrated by the case

where Y � �Y
1

; . . . ;Yn� with Y
1

; . . . ;Yn and Z independent and identically following the

uniform distribution on the interval ��; �� 1�. Here, denoting the order statistic of Y by

�Y
�1�
; . . . ;Y

�n��, we have thatW � �Y
�1�
;Y

�n�� is prediction su�cient and a � Y
�n� ÿ Y

�1�
is

ancillary, and the precision with which we are able to predictZ depends crucially on the size

of a, with high precision if a is close to 1 and low precision if a is close to 0.

4. Some touchstone examples

We now give examples which illustrate a number of types of prediction problem for which

formally `exact' solutions are available. In particular, it is important that the general

asymptotic procedure to be developed later reproduces exactly or very nearly these `exact'

results.
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Example 4.1 Problems with pivots. Let Y
1

; . . . ;Yn be a random sample from a normal

distribution of unknown mean � and unit variance and let Z be an independent future

observation from that distribution. Then Z ÿ
�Y is a pivot with a normal distribution of

zero mean and variance 1� n
ÿ1

, leading (Fisher 1935) to

c
�

�y� � �y� k
�

�1� n
ÿ1

�
1=2

;

where ��k
�

� � �. Note that z
�

��� � �� k
�

. The predictive density is normal with mean

�y and variance 1� n
ÿ1

; in the corresponding problem with unknown variance it follows

the Student t distribution with nÿ 1 degrees of freedom. Note that the predictive density

is not in the same family as the density of Z, but it is in a related family with in¯ated

dispersion.

A similar argument applies ifZ is exponentially distributed with mean �. Suppose that on

the basis of data Y , an unbiased estimate �̂ of � is constructed having a gamma distribution,

say, with degrees of freedom dn. Then, assuming thatY andZ are independent,Z=�̂ has the

standard F distribution with �2; dn� degrees of freedom from which predictive limits follow.

Again the prediction distribution is not a member of the family for Z.

If Y consists of a random sample of size n from the exponential distribution of mean �,

then �̂ is the sample mean and dn � 2n. Much more generally, however, �̂ might be

constructed via some kind of regression analysis with, typically, the e�ective degrees of

freedom dn obtained in some approximate way.

Suppose that Y
1

; . . . ;Yn are independent and identically distributed in the location

model f �yÿ ��, where f is known and � is unknown, and that Z is independent of

Y � �Y
1

; . . . ;Yn� and has density h�zÿ ��, a possibly di�erent location model with the

same �. Conditionally on the ancillary sample con®guration a � �y
1

ÿ
^

�; . . . ; yn ÿ
^

��, the

maximum likelihood estimator

^

� has a known distribution, obtained by normalizing the

likelihood function to integrate to 1. Thus the pivot Z ÿ
^

� has a known density found by

convolving h� � � with the likelihood function.

Example 4.2 Maximum of m normal observations. Suppose that f � � � is standard normal

and that Z is the largest of m future observations from the same distribution. Thus the

density of Z is

m'�zÿ ��f��zÿ ��g
mÿ1

;

and the density of the pivot, in this case Z ÿ
�Y , is

m
p

n

�
1

ÿ1

'�

p

n�xÿ u��'�u�f��u�g
mÿ1

du:

This, or the corresponding distribution function

m

�
1

ÿ1

��

p

n�xÿ u��'�u�f��u�g
mÿ1

du;

can be evaluated numerically. Asymptotic expansions can be made for large n or even for

large m, although it is known that the latter converges very slowly.
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More generally, provided f is standard normal, the density of the pivot Z ÿ
�Y is

p

n

�
�1

ÿ1

'�

p

n�xÿ u��h�u� du; �4:1�

where, as above, h denotes the density of Z ÿ �. Laplace's method for the asymptotic

evaluation of integrals shows that, to order O�n
ÿ2

�, the density (4.1) equals

h�x�f1�
1

2

n
ÿ1

h
00

�x�=h�x�g

and, letting k�x� � log h�x�, this in turn is asymptotically equivalent to

f1�
1

2

n
ÿ1

k
00

�x�gh�x�
1

2

n
ÿ1

k
0

�x��; �4:2�

a form which will tie in with later derivations.

Example 4.3 Autoregression with unknown mean. Let Y
1

; . . . ;Yn form a ®rst-order

Gaussian autoregression of known innovation variance �

2

and correlation parameter �,

and with unknown mean �, Y
1

having the stationary distribution of the process, i.e. being

normal with mean � and variance �

2

=�1ÿ �

2

�. Let Z be the next observation, Yn�1. The

argument can be trivially adapted for predicting Yn�s �s > 0�. Now, given Y � y,

E�Z jY � y� � �� ��yn ÿ ��; var �Z jY � y� � �

2

:

Thus

z
�

�y;�� � �� ��yn ÿ �� � k
�

�:

We have next to `remove' the parameter �. Now, the maximum likelihood estimate of � is

�̂ � fy
1

� �1ÿ ���y
2

� � � � � ynÿ1� � yng=�nÿ n�� 2��:

Then we consider the pivotZ ÿ �Yn ÿ �1ÿ ���̂which has mean zero. Its variance is most

easily calculated by expressing it as a function of Z, Yn and Y1

� �1ÿ ���Y
2

� � � � � Ynÿ1�

and noting that the ®rst and third random variable are conditionally independent given the

second. The result is that the variance of the pivot is

�

2

1�

1ÿ �

nÿ n�� 2�

� �
2

fnÿ 1� �1� ��
2

g

" #

� �

2

r
2

n���;

say, so that the prediction limit is

c
�

�y� � �̂� ��yn ÿ �̂� � k
�

�rn���:

Note that if � " 1 then c
�

�y� ! yn � k
�

�, as is clear from ®rst principles, and that for

� 2 �ÿ1; 1� and n large, r
2

n��� � 1� n
ÿ1

.

In the present example, yn is transitive and ��̂; yn� is prediction su�cient.

Example 4.4 Empirical Bayes with random e�ects model. Here we consider one of the

simplest problems of empirical Bayes form. Let Y
1

; . . . ;Yn be independently normally

distributed with variance �

2

w

and means �
1

; . . . ; �n; and let �
1

; . . . ; �n be independent and

normally distributed with mean � and variance �

2

b

. Thus the unconditional distribution of

325Prediction and asymptotics

55566666777778888899999111111111111111111111111111111111111111111111111112222222222222222222222222222222222222222222222222233333333333333333333333333333333333333333333333333444444444444444444444444444444444444444444444444445555555555555555555555555555555555555555555555555566666666666666666666666666666666666666666666666666777777777777777777777777777777777777777777777777778888888888888888888888888888888888888888888888888899



Yi is normal with mean � and variance �

2

w

� �

2

b

. Suppose we are interested in �
1

, so that

Z � �

1

. We regard �

2

w

and �

2

b

as known and � as unknown. Now given Y � y and

letting �

2

� ��
ÿ2

w

� �

ÿ2

b

�
ÿ1

, Z given y is normally distributed with E�Z jY � y� �

�

2

�y
1

=�

2

w

� �=�

2

b

�, var �Z jY � y� � �

2

, from which z
�

�y;�� follows directly. Note that

the transitive statistic w in the general formulation is y
1

which is nearly unconnected

with the e�cient estimation of �. The maximum likelihood estimate of � is �̂ �

�Y
1

� � � � � Yn�=n and the covariance matrix of �Z;Y
1

; �̂� is easily obtained, for example

cov ��̂;Y
1

� � ��
2

w

� �

2

b

�=n; cov �Z;Y
1

� � �

2

b

:

Thus we ®nd that

Z ÿ �

2

�Y
1

=�

2

w

� �̂=�

2

b

�

has mean zero and variance �

2

f1� ��
2

w

=�

2

b

�n
ÿ1

g, from which prediction limits are

obtained. Note that this gives simple answers directly obtained from ®rst principles in

the three special cases n � 1, �

2

w

! 0, �

2

b

! 0. Provided that �

2

w

=�

2

b

� n, the e�ect of having

to estimate � is small.

The pair ��̂; y
1

� constitutes a prediction su�cient statistic.

In applications, for each j there would typically be a number of independent observations

with the same �j; we then take Yj to be their mean. The variance �

2

w

will, if the number of

replicate observations is large, be estimated with a large number of degrees of freedom and

to regard it as known may be quite reasonable. Allowance for errors of estimation in �

2

b

is

typically needed.

Example 4.5 Random walk. Suppose that a random walk of unknown drift � is observed

with error and that it is required to estimate the `true' position of the process at the end of

the period of observation. That is, we observe

Yj � j�� �X
1

� � � � � Xj� �Uj

� j � 1; . . . ; n�, where fX
1

; . . . ;Xn;U1

; . . . ;Ung are independently normally distributed

with zero mean and variances respectively �

2

x, �
2

u, which initially we regard as known; let

Z � n�� �X
1

� � � � � Xn� be the value to be predicted. Note that this example is di�erent

from the above in that Z depends not only on unobserved random variables but also on the

unknown parameter.

Let en � �1; 2; . . . ; n� and � � �

2

u=�
2

x, write �
2

xCn for the covariance matrix of the random

walk Sj � X
1

� � � � � Xj, so that the covariance matrix of Y is �

2

x�Cn � �In� � �

2

xVn, say,

and note that the covariance of Z with the vector having components Sj is �
2

x en.

Then conditionally on Y � y, Z is normally distributed with mean

�̂z � n�� enV
ÿ1

n �yÿ �en�
T

:

To estimate � we take the maximum likelihood estimate

�̂ � �enV
ÿ1

n e
T

n �
ÿ1

enV
ÿ1

n y
T

;

leading to the consideration of

Z ÿ n�̂ÿ enV
ÿ1

n �yÿ �̂en�
T

� Z ÿ n�̂:
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Now

var �Z� � n�
2

x; cov �Z; �̂� � �

2

x; var ��̂� � �enV
ÿ1

n e
T

n �
ÿ1

�

2

x;

so that Z ÿ n�̂ has expectation zero and variance

n�
2

xfn�enV
ÿ1

n e
T

n �
ÿ1

ÿ 1g;

from which the required limits follow.

Thus �̂ is prediction su�cient for Z. If � were unknown there would be no exact

reduction by transitivity, because of the dependence of Vn on �.

Example 4.6 Bivariate normal predictands. Suppose that it is required to predict a pair of

future valuesZ � �Z
1

;Z
2

� from a normal distribution of mean �. In some contexts it would

be fruitful to specify the prediction in terms of

1

2

�Z
1

� Z
2

� and Z
1

ÿ Z
2

or in terms of

max �Z
1

;Z
2

� and min �Z
1

;Z
2

�, but in the absence of such special conditions, note that for

known � the regions of high density are discs centred on ��; ��. Such discs have the property

that points outside have lower probability density than those inside. The radius r
�

needed

to achieve a speci®ed coverage probability � is given via the exponential distribution of

�Z
1

ÿ ��
2

� �Z
2

ÿ ��
2

as r
�

� ÿ2 log�.

If, when � is unknown, we take a disc with centre ��̂; �̂� and radius r
0

a, the conditional

coverage probability is C
2

�r
0

a; k�ÿ �̂k�, derived from the non-central chi-square distri-

bution function C
2

with non-centrality parameter k�ÿ �̂k and two degrees of freedom.

The unconditional coverage probability is the expectation over the known semi-normal

distribution of k�ÿ �̂k and in principle an exact value of r
0

a can be computed.

Note that if the underlying distribution is exponential the corresponding prediction

region for a pair of values is a triangle.

5. Approximate predictive limits

So far we have distinguished between random variables and their observed values by upper-

and lower-case letters, but from here on it is convenient to drop this distinction and use

lower case for both.

Consistent with the discussion relating to formulae (2.1)±(2.4), for any given � 2 �0; 1�

we now seek an approximate solution q
�

� q
�

��� � q
�

��; a� to the equation

�

G�q
�

(\^\theta ,a);\theta {\kern 1}|{\kern 1}\^\theta , a)p(\^\theta ; \theta {\kern 1}|{\kern 1}a)\,

{\rm d}\^\theta = \alpha .\eqno (5.1)

In (5.1), G � G�z; � j ^�; a� is the conditional distribution function of z given �
^

�; a� and

p�^�; � ja� is the conditional density of

^

� given a. Furthermore, �
^

�; a� is supposed to be a

prediction su�cient reduction of y with a ancillary, either exactly or to the appropriate
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degrees of approximation. In applications �
^

�; a� may typically be obtained by ®rst

determining a minimal prediction su�cient statistic, by means of the characterization in

terms of minimal su�ciency mentioned in Section 3, followed by a smooth one-to-one

transformation. For an illustration, see Example 7.4 below.

The asymptotic solution to be discussed is invariant with respect to transformations of

the random variable Z to be predicted as well as to transformations of the parametrization

given by �, and it is generally correct to orderO�n
ÿ3=2

� when y constitutes a random sample

of order n.

To specify the solution we need the concept of mixed log-likelihood derivatives. Since

�
^

�; a� is assumed to be prediction su�cient it follows that it is su�cient, and we may

therefore consider the log-likelihood function l for � based on y as depending on y through

�
^

�; a� only, which we express by writing l � l��; ^�; a�. Our calculations will be conditional on

the ancillary a which may therefore be considered as a constant. Mixed log-likelihood

derivatives are now de®ned as the partial derivatives of any order with respect to

components of either � or

^

�. Denoting generic coordinates of � and

^

� by �

r
; �

s
; . . . and

^

�

r
;

^

�

s
; . . . ; with r; s; . . . running from 1 to d, the dimension of �, we use the notation

lrs; t � @

3

l=@ �
r
@ �

s
@

^

�

t
; lr; st � @

3

l=@ �
r
@

^

�

s
@

^

�

t
:

For a detailed discussion of properties and applications of mixed log-likelihood (or model)

derivatives, see Barndor�-Nielsen and Cox (1994, Section 6.2).

If q � q�^�; a; z; �� is any function of the data �^�; a�, the predictand z and the parameter �,

we write q for the quantity obtained from q by substituting � for ^

�, i.e. q � q��; a; z; ��.

For use below, we note the expression

lu; rs � lrsu � lru; s � lsu; r � 0; �5:2�

a special case of the balance relations for the observed likelihood yoke (cf. formula (5.13) of

Barndor�-Nielsen and Cox 1994, p. 148).

Since the value of the ancillary a is kept ®xed in our calculations, we shall often suppress a

in our notation, for instance writing q
�

�
^

�� rather than q
�

�
^

�; a� and G�q
�

���; � j�� rather

than G�q
�

��; a�; � j�; a�.

The derivation of the approximate solution to (5.1) is given in the Appendix, as a special

case of a somewhat more general problem. The resulting expression is de®ned indirectly as

the solution q
�

to the equation

G�q
�

���; � j�� � �ÿ R���: �5:3�

The solution q
�

approximates the solution of (5.1) to the appropriate order of

O�n
ÿ3=2

�. The correction term R���, which is of order O�n
ÿ1

� under repeated sampling,

is given by

R��� � Q�qo����; ��; �5:4�

where qo� � qo���� is the solution to the ®rst-order equation

G�qo����; � j�� � � �5:5�

and where, writing j
rs
for a generic element of the inverse j

ÿ1

of the observed information
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j � � jrs� � ÿ�lrs�,

Q�z; �� �
1

2

fHrs ÿHt lurs j
tu
g j

rs

�
1

2

fHrs ÿHt�lrsu � lru; s � lsu; r� j
tu
g j

rs
: �5:6�

Furthermore, the quantities Hr and Hrs are de®ned as follows. Let Hr and Hrs be

given by

Hr � ÿG
; r ; �5:7�

Hrs � g
ÿ1

�G
; r ; � G

;; r�g; s ;�2� ÿ G
; rs ; ÿ G

; r ; s�2�; �5:8�

where g denotes the conditional density of z given �^�; a� and where

g
; r ; � @ g�z; � j ^��=@ �

r
;

G
; r ; � @G�z; � j ^��=@ �

r
; G

; ; r � @G�z; � j ^��=@ ^

�

r
�5:9�

G
; r ; s � @

2

G�z; � j ^��=@ �
r
@

^

�

s
; G

; rs ; � @

2

G�z; � j ^��=@ ^

�

r
@

^

�

s
:

Moreover, [2] indicates the sum of two terms, obtained by permutation of the indices (r and

s) involved. The quantities Hr and Hrs entering (5.6) are then obtained from (5.7) and (5.8)

by substituting � for

^

�.

If y and z are independent, so that G does not depend on

^

� and a, then Hr and Hrs

simplify, in obvious notation, to

Hr � ÿG
; r Hrs � g

ÿ1

G
; r g; s�2� ÿ G

; r s:

Note, incidentally, that if both the future observation z and the parameter � are

one-dimensional then ÿG
; r is determined by substituting z by qo���� and y by �^�; a� in

ÿ@G�z; � jy�=@ �;

the latter being the `®ducial density' for � given z and conditional on y (cf., for instance,

Pedersen 1978).

Without changing the order of approximation in (5.3), the quantities j
rs
and lt; rs can be

replaced by their expected counterparts i
rs

and it; rs � ir; s; t , where it; rs � Eflt lrsg and

ir; s; t � Eflr ls ltg (cf. Barndor�-Nielsen and Cox 1994, p. 160). In that case the correction

term R��� changes to �R��� � �Q�qo����; ��, where

�Q�z; �� �
1

2

fHrs ÿHt�iu; rs � iu; r; s�i
tu
gi

rs
:

Like R���, the correction �R��� is invariant under reparametrizations. Note that if y and z

are independent then it is not necessary to specify the ancillary a in order to calculate
�Q.

6. Predictive distributions

Based on the prediction con®dence limits q
�

�
^

�� de®ned in Section 5, we now introduce

functions
~G�z jy� and ~g�z jy� which may be considered as a predictive distribution function
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and a predictive density, respectively, for the unobserved random variable z with distri-

bution function G � G�z; � jy� and density g�z; � jy�. The idea is to think, for prediction

purposes, of the unobserved random variable z as if it had a distribution function
~G�z jy�

satisfying the equation

~G�q
�

�
^

��jy� � �; �6:1�

which is to hold for all � 2 �0; 1�. In other words,
~G�c jy� is, for any real c, the prediction

con®dence with which we can state that z � c in the sense of (2.1). The predictive density~g is

then, in principle, de®ned as the derivative of
~G�z jy� with respect to z.

To express ~g explicitly, to the relevant asymptotic accuracy, we di�erentiate (6.1) with

respect to �, thus obtaining

~g�q
�

�
^

��jy� � fq
�

�
^

��
=�

g
ÿ1

:

We proceed to determine q
�

���
=�

via di�erentiation through qo����, the ®rst-order

approximation to q
�

���. Thus, rather than conceiving of q
�

��� as a function of � and �,

we think of it as a function of qo���� and �.

We have

q
�

���
=�

� q
�

���
=qo����

� qo����=�:

By de®nition, G�qo����; � j�� � �, and hence

qo����=� � g�qo����; � j��
ÿ1

:

Furthermore, by di�erentiation with respect to qo���� of the de®ning relation for q����, i.e.

G�q
�

���; � j�� � G�qo����; � j�� ÿQ�qo����; ��; �6:2�

we ®nd

q
�

���
=qo����

� g�q
�

���; � j��
ÿ1

fg�qo����; � j�� ÿ
_Q�qo����; ��g: �6:3�

Here and elsewhere, a dot above a function symbol means the derivative with respect to

the ®rst argument. We proceed to rewrite this expression by Taylor-expanding both

g�q
�

���; � j�� and G�q
�

���; � j�� about qo����, obtaining (to ®rst order)

g�q
�

���; � j�� � g�qo����; � j�� � �q
�

ÿ qo�� _g�qo����; � j�� �6:4�

and

G�q
�

���; � j�� � G�qo����; � j�� � �q
�

ÿ qo��g�qo����; � j��: �6:5�

In view of (6.2), the latter formula may be re-expressed as

q
�

ÿ qo� � ÿg
ÿ1

Q; �6:6�

where g and Q are short for g�qo����; � j�� and Q�qo����; ��. Using (6.6) to eliminate

q
�

ÿ qo� from (6.4) and inserting the resulting expression for g�q
�

���; � j�� in (6.3), we have

fq
�

���
=qo����

g
ÿ1

�

1ÿ g
ÿ1

Q _g=g

1ÿ gÿ1 _Q
:
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Hence, letting

r�z; � jy� � Q�z; ��=g�z; � jy�; �6:7�

using formula (6.6) again and dropping a term of orderO�n
ÿ3=2

�, the predictive density may

be expressed as

~g�z jy� � �1� r̂
=z�g�z� r̂; ^� jy�: �6:8�

Note, in particular, that the integral of~g�z jy� with respect to z is, as one would hope, equal

to 1.

It should also be noted that the above derivation of expression (6.8) for the predictive

density~g�z jy� does not rely on the explicit formula for Q given in Section 5. Essentially, all

we are using is that q
�

�
^

�� satis®es equation (6.1) approximately and that an equation of the

form (6.2) holds withQ�qo����; �� as a (relatively small) remainder term. Thus, conceivably,

the formula for~gmay be useful with other approximations of the prediction quantile q
�

���

than that considered in this paper.

7. Examples

In the following we denote the density of a normal distribution with mean � and variance �

2

by '� � ;�; �

2

�.

Example 7.1 Location models. Suppose that y and z are independent and that both follow

a one-dimensional location model with location parameter �. Further, let the density for y

be symmetric around �, in which case lt; rs � 0. Then r, as given by (6.7), is of the simple

form

r �
1

2

l
�

��; z�^j
ÿ1

;

i.e. minus the score for � based on z, and

~g�z jy� � f1�
1

2

l
��

��̂; z�^j
ÿ1

gg�zÿ �̂ÿ
1

2

l
�

��̂; z�^j
ÿ1

�: �7:1�

In particular, if y � N��; n
ÿ1

�

2

� and z � N��; �
2

�, with �
2

known, then

~g�z jy� � '�z; y; �
2

�1ÿ
1

2

n
ÿ1

�
ÿ2

�

which, to order O�n
ÿ1

�, agrees with the classical solution given by zÿ y �

N�0; �
2

�1� n
ÿ1

��; cf. Example 4.1.

Note further that if y � N��; n
ÿ1

�

2

� then (7.1) agrees to order O�n
ÿ2

� with the exact

density of zÿ �̂; cf. formula (4.2).

Example 7.2 Autoregression with unknown mean. Under the autoregression model

considered in Example 4.3, a � �y
1

ÿ �̂; . . . ; yn ÿ �̂� is ancillary and we have, writing

� � �1ÿ ���� ���̂� an�;
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that

G�z;� j �̂; a� � ���
ÿ1

�zÿ ���; g � ÿ�
ÿ1

'��
ÿ1

�zÿ ���

and

G
;� ;

� ÿ�1ÿ ��k; G
; ; �̂

� ÿ�k; g
;� ;

� �

ÿ2

�1ÿ ���zÿ ��k

G
;�� ;

� ÿ�
ÿ2

�1ÿ ��
2

�zÿ ��k; G
;� ; �̂

� �

ÿ2

��1ÿ ���zÿ ��k:

Furthermore,

j � �

ÿ1

�1ÿ ��f1� �� �nÿ 1��1ÿ ��g:

It follows that

r�z;�� � ÿ

1

2

nÿ 1�

1� �

1ÿ �

� �
ÿ1

�zÿ ��

and (6.8) takes the form

~g�z jy� � ' z; ^�; �
2

1ÿ

1

2

nÿ 1�

1� �

1ÿ �

� �
ÿ1

( )
ÿ2

 !

:

In other words, the predictive density for z is as if z given y followed the normal

distribution with mean �yn � �1ÿ ���̂ and variance

�

2

1ÿ

1

2

nÿ 1�

1� �

1ÿ �

� �
ÿ1

( )
ÿ2

� �

2

s
2

n���;

say. The mean is the same as that of the `exact' solution, considered in Example 4.3, while

the ratio of the variances, s
2

n���=r
2

n���, tends to 1 for � " 1 and behaves like 1�O�n
ÿ2

� for

n!1.

Example 7.3 Empirical Bayes with random e�ects model. In the situation of Example 4.4,

the maximum likelihood estimate is �̂ � �y and the vector a � �y
1

ÿ �̂; . . . ; yn ÿ �̂� is

ancillary and independent of �̂. Writing

�

2

� ��
ÿ2

w

� �

ÿ2

b

�
ÿ1

� � �

2

f��̂� a
1

�=�
2

w

� �=�

2

b

g

for the conditional variance and mean of �
1

given y, we have

G��
1

;� j �̂; a� � ���
ÿ1

��
1

ÿ ���

and hence g � �

ÿ1

'��
ÿ1

��
1

ÿ ��� and

G
;� ;

� ÿ�
2

�

ÿ2

b

g; G
; ; �̂

� ÿ�
2

�

ÿ2

w

g; g
;� ;

� ��
1

ÿ xx��ÿ2
b

g

G
;�� ;

� ÿ��
1

ÿ xx��2�ÿ4
b

g; G
;� ; �̂

� ÿ��
1

ÿ xx��2�ÿ2
b

�

ÿ2

w

g

(recall the convention for the use of bold letters introduced in Section 5).
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Noting also that the observed information on � is n��
2

w

� �

2

b

�
ÿ1

, we obtain

r��
1

;�� � ÿ
1

2

n
ÿ1

��
1

ÿ xx���2
w

=�

2

b

�:

It follows that the predictive density (6.8) is

~g��
1

jy� � '��
1

;

^

�; �

2

f1ÿ
1

2

��
2

w

=�

2

b

�n
ÿ1

g
ÿ2

�: �7:2�

This agrees, to order O�n
ÿ2

�, with the solution derived in Example 4.4.

It is noteworthy that, while the asymptotic arguments behind the derivation of the

general expression (6.8) for~g relate to n!1, the way that �

2

w

and �

2

b

enter formula (7.2) is

nicely in line with the exact solution in Example 4.4. In this connection, note that, on a

priori grounds it could be seen that the coe�cient of n
ÿ1

must be dimensionless and

therefore a function of �

2

w

=�

2

b

and, moreover, that it must reduce to zero if �

2

w

� 0 when the

leading term is exact.

As the ®nal example in this section we consider a case that does not admit an `exact'

solution.

Example 7.4 Autoregression with unknown regression coe�cient. Let y
0

; y
1

; . . . ; yn; . . . be

an autoregressive process with y
0

� 0 and yi jyiÿ1 � N��yiÿ1; �
2

�, the variance �

2

being

taken as known, for simplicity. Suppose that y � �y
1

; . . . ; yn� has been observed and that it

is desired to predict yn�1.

To determine the minimal prediction su�cient statistic we consider the conditional

model for y given yn�1 whose probability density function is of the form

A��; yn�1�B�y� exp f'��; yn�1� � t�y�g; �7:3�

with

'��; yn�1� � �

ÿ2

��; yn�1�;ÿ
1

2

�

2

� �7:4�

t�y� �

Xn

i�1

yiÿ1 yi ; yn;

Xn�1

i�1

y
2

iÿ1

 !

: �7:5�

Considering both � and yn�1 as parameters, we have that (7.3) constitutes a (3, 2)

exponential model with (7.5) as minimal su�cient statistic. Hence t�y� or, equivalently

u �

Xn

i�1

yiÿ1 yi;

Xn

i�1

y
2

iÿ1; yn

 !

�7:6�

is minimal prediction su�cient for yn�1. Note that (7.6) consists of the minimal su�cient

statistic v based on y, i.e. v �
ÿP

n

i�1 yiÿ1 yi;
P

n

i�1 y
2

iÿ1

�
, and the minimal transitive statistic

yn.

Next we transform u to ��̂; a
0

; a
1

� where a
0

is the score ancillary (or Efron±Hinkley

ancillary; cf. Barndor�-Nielsen and Cox 1994, Section 8.2) for the (2, 1) exponential model

determined by y and where

a
1

� ��yn; 0; �
2

�1ÿ �̂

2n
�=�1ÿ �̂

2

��: �7:7�
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In de®ning a
1

we have used the fact that the marginal distribution of yn is

N�0; �
2

�1ÿ �

2n
�=�1ÿ �

2

��, ensuring that a
1

is indeed asymptotically distribution constant.

The formula for a
0

is

a
0

� �
^j=^i ÿ 1�=̂ �7:8�

where j � �

ÿ2
P

n

i�1 y
2

iÿ1 is the observed information based on y, i the expected information

and 

2

the variance of j=i.

Writing

g � �2��
ÿ1=2

�

ÿ1

exp fÿ
1

2

�yn�1 ÿ �yn�
2

g;

the quantities (5.9) needed to calculate Q (cf. formulae (6.7), (6.8) and (5.6)) are

g
;� ;

� �

ÿ2

yn�yn�1 ÿ �yn�g; G
;� ;

� ÿyn g; G
; ; �̂

� ÿ�gyn=�̂;

G
;�� ;

� ÿ�
ÿ2

y
2

n�yn�1 ÿ �yn�g; G
;� ; �̂

� ÿf1� �

ÿ2

�yn�yn�1 ÿ �yn�ggyn=�̂:

Furthermore, we have to determine l
� ; �̂�̂

. For this we note that the score is given by

l
�

� �

ÿ2

Xn

i�1

yiÿ1�yi ÿ �yiÿ1� � ��ÿ �̂�
^j:

It follows that

l
� ; �̂�̂

� ÿ2
^j
=�̂

� ��ÿ �̂�
^j
=�̂�̂

and hence

^l
� ; �̂�̂

� ÿ2
^j
=�̂

:

Collecting terms, we ®nd

H
�

� yn g; H
��

� f2yn=�̂ ÿ �

ÿ2

y
2

n�yn�1 ÿ �yn�gg

and

r � ^j
ÿ1

fyn=�̂ ÿ
1

2

�

ÿ2

y
2

n�yn�1 ÿ �̂yn� ÿ
^j
=�̂

yng:

The derivatives yn=�̂ and
^j
=�̂

are for a
0

and a
1

held ®xed and are determined by

di�erentiation of (7.7) and (7.8). Writing �

2

� �

2

�1ÿ �

2n
�=�1ÿ �

2

�, we ®nd

yn=�̂ �
1

2

yn�̂
ÿ2

��̂
2

�
=�̂

and

^j
=�̂

�
^j^i
ÿ1

^i
=�̂

�
1

2

�
^j ÿ ^i �̂

ÿ2

�̂
2

�
=�̂

:

8. Many nuisance parameters

Models with a large number of nuisance parameters raise di�culties for all forms of

asymptotic statistical inference, although these di�culties are often best expressed via an
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empirical Bayes formulation. We consider brie¯y problems where this is not pertinent. Let

the observed random variable Y , of dimension n, have a distribution depending on

incidental parameters �
1

; . . . ; �mn
and a structural parameter  . In the cases of interest

here, as the dimension n ofY increases so doesmn and consistent estimation of  is possible,

whereas the same is not true in general for the components of � � ��
1

; . . . ; �mn
�.

There are two broad classes of prediction problems according as the random variable Z

to be predicted has a distribution depending only on  or one depending on some of the �s

as well as possibly on  . In the latter case there are di�culties in a general treatment,

especially when Z depends only on a small number of the components of � which may be

poorly estimated. Use of the best available estimates of the bias and variance of the

estimated �s will be needed if the route of Section 4 is followed. In one familiar instance

there is an exact solution.

Example 8.1 Normal-theory linear model. Let Y follow the normal-theory linear model

E�Y � � x�, where �, which corresponds to � in the general formulation, is of high

dimension, and where the error variance �

2

corresponds to  . If the predictand Z is a

future observation with E�Z � � x
0

�, where x
0

is a given covariate vector, then for known

��; �
2

�, the prediction limits for Z have the form x
0

� � ka�; whereas if � is known and �

unknown the limits are

x
0

� � k
�

�f1� x
T

0

�x
T

x�
ÿ1

x
0

g
1=2

;

and with � also unknown and replaced by the residual root mean square, k
�

is replaced in

`exact' theory by the Student t
�

. The two key issues, in terms of general theory, are that it is

entirely possible that the second term in the square root is as great as or greater than 1 and

that � is not estimated by ordinary maximum likelihood.

There are many generalizations for linear and nonlinear models inside and outside the

class of exponential families. We consider just one instance.

Example 8.2 Prediction of Weibull distributed failure times. Suppose that Yij �i � 1; . . . ;m;

j � 1; . . . ; r� have independent Weibull distributions with common index  and separate

rate parameters �
1

; . . . ; �m, i.e. Yij has the survivor function exp fÿ��i y�
 

g. Suppose that

Z, the value to be predicted, has the distribution with rate parameter �
1

. The most

challenging situation has r small and m large. Given the parameters, the upper � prediction

limit for Z is

z
�

��;  � � �

ÿ1

1

�ÿ log��
1= 

:

For known  we have a simple transformation of Example 4.2, with

�̂

ÿ1

1 

� �Y
 

i j
=r;

so that an initial approximation to the prediction limit is

f��Y
~

 

1 j
=r��ÿ log��g

1=

~

 

;

~

 being a suitable estimate of  .
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There are now a number of di�culties which we shall not address in detail. First,

especially if r is small compared with m, ~

 should be based on an adjusted log-likelihood

function and the quantities associated with that will be required. Even if we were to use

ordinary maximum likelihood to estimate  , some extensive calculations would be

required. A useful practical solution if r is small and m is large is to note that errors in

estimating  will be negligible compared with those in estimating �
1

. Hence we may apply

Example 4.2 as if  were known, i.e. use the estimate ��Y
~

 

1 j
=r�1=

~

 

multiplied by the upper �

point of the variance ratio distribution with �2; 2r� degrees of freedom.

9. Discrete predictands

There are some special considerations when the variable to be predicted is discrete, shown

in most extreme form by the prediction of a binary outcomeZ speci®ed by a model in which

P�Z � 1� � p���; P�Z � 0� � 1ÿ p���;

and based on observations of a random variable Y with log-likelihood l��� and maximum

likelihood estimate

^

�. We suppose that Y and Z are independent.

We can take two broad approaches to the prediction of Z. The ®rst and more cautious is

to provide upper and lower con®dence limits for the parametric function p���. The second,

which gives a simpler answer and which may be more satisfactory in a genuinely repetitive

situation, is to ®nd a function ~p�y� such that, exactly or approximately,

EfZ ÿ ~p�y�; �g � 0;

where the expectation is over Y and Z.

Thus we need an unbiased estimate of p���, and p�^�� is a natural ®rst approximation.

Sometimes an `exact' form can be obtained for ~p�y�, but for a general asymptotic discussion

we modify p�^��. This may be best done by writing

~p�y� � p�^�� �̂�;

where � is to be determined. Expansion similar to that leading to (2.3) gives

����r
T

p��� � ÿb���r
T

p��� ÿ
1

2

tr fv���rr
T

p���g;

where b and v denote the bias and variance of ^�. This is a scalar equation for what in general

is a vector ����. There are thus many solutions; often a convenient one will be obtained by

setting all the components of ���� except one equal to 0.

Example 9.1 Poisson process. Let Y have a Poisson distribution of large mean � � nt
0

�,

corresponding to the number of points in a Poisson process with a total `exposure' time nt
0

.

Suppose we are interested in the event that there are no points in a further independent

period t
0

, so that p��� � exp �ÿt
0

��. The crude estimate is p�^�� � e

ÿy=n
and the `exact'

solution, obtained by Rao±Blackwellization, is

~p�^�� � �1ÿ n
ÿ1

�
y
:
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The asymptotic solution is

exp ÿ

1

n
1�

1

2n

� �

y

� �

which agrees with ~p�^�� to order n
ÿ2

.

10. Some open problems

While the procedure for prediction given in this paper is in some sense very general,

nevertheless the illustrative examples discussed are all relatively simple. Quite a number of

further issues thus remain, some concerned with general principles and others with the

di�culties of handling speci®c problems.

Prominent among the former are prediction of quantities that depend not only on

unobserved random variables but also on all or part of the unknown parameters (a simple

case is considered in Example 4.5), and the need to handle situations in which an adjusted

pro®le likelihood is a basis for estimating unknown parameters, preferable to ordinary

likelihood. Expansions analogous to those of Section 5 and the Appendix are needed.

Further general issues relate to the approximate ancillary statistics required in the

general development and which, for some at least of the speci®c examples, need explicit

formulation. How critical is the precise formulation? (Not very, we surmise.)

Another point concerns the relation with a Bayesian approach. What is the Bayes prior,

if any, that would generate ~g�z jy� as posterior?

Among the more speci®c issues needing development are tractable methods for handling

problems with several unknown parameters, for example the ®rst-order autoregression with

all parameters unknown; the relation with calibration (cf., for instance, Brown 1993); the

relation with state-space modelling, of which Example 4.4 is a very special case; prediction

of variance changes (volatility) in the kind of nonlinear models (ARCH, GARCH, SV; . . .)

useful in mathematical ®nance (see the review paper by Shephard 1995); and the special

problems of prediction in spatial and spatial-temporal models, for example of rainfall

®elds.

A major extension would be required to deal with semi-parametric settings.

Appendix. Derivation of formulae (5.3)±(5.9)

By the technique of invariant Taylor series in terms of the observed likelihood yoke

(cf. Barndor�-Nielsen and Cox 1994, Section 5.6), a function f of � can be expanded as

f �^�� � f ��� � fr��� j
rs
ls��;

^

��

�
1

2

f frs��� ÿ ft��� j
tu
lu; rsg j

rv
j
sw
lv��;

^

��lw��;
^

�� � � � � : �A:1�

Here, as previously, we have suppressed the dependence on the ancillary in the notation,

and the quantities in bold are as de®ned in Section 5.
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A variety of problems in prediction and estimation can be formulated as follows. An

exact or approximate solution q is sought to the equation

�

K�q�^�; a�; �; ^� ja�p�^�; � ja� d^� � ����: �A:2�

Here K � K�; �; ^�� and � are known functions, q is a real-valued function of �, and

p�^�; � ja� is the conditional density of ^

� given a. That is, we require a conditionally (on a)

unbiased estimate of ����, the estimate to be a function of the maximum likelihood estimate

^

�. We shall derive an approximate solution to this problem. The solution is invariant with

respect to transformations of the parametrization given by � and is generally correct to

order O�n
ÿ3=2

� when y constitutes a random sample of order n. The solution presupposes

that K is a monotone function of its ®rst argument  (for which the function q has been

inserted above).

In the prediction context ���� will typically be constant, equal to a con®dence coe�cient

�, and K� � ; �;

^

� ja� will be of the form

K� � ; �;

^

� ja� � G� � ; � j
^

�; a�; �A:3�

where G� � ; � j
^

�; a� is the conditional distribution function of the random variable z to be

predicted, conditional on �
^

�; a� or, equivalently, on y. When y and z are independent (A.3)

takes the form K� � ; �� � G� � ; ��.

Applying (A.1) to K�q�^��; �; ^�� considered as a function of

^

� (and where, as before, we

have suppressed the dependence on the ancillary) and then taking the mean under p�^�; � ja�,

we obtain the approximation

���� � K�q���; �; �� �
1

2

fHrs ÿHt lu; rs j
tu
g j

rs
; �A:4�

where

Hr � kqr � K
; ; r �A:5�

Hrs �
_kqr qs � kqrs � k

; ; s qr�2� � K
; ; rs: �A:6�

In arriving at (A.4) we have used the fact that to ®rst order j � i, the latter being the

expected information on � determined by y. The notation employed is, moreover, as

follows:

k � @K�; �; ^��=@ ; _k � @k=@;

qr � @ q=@ �
r
; K

; ; r � @K�; �; ^��=@ ^

�

r
;

etc., with the further convention that in (A.4) the quantity q��� has been inserted for 

(while the bold symbols indicate that � has been substituted for

^

�; cf. Section 5).

In order to eliminate qr and qrs from (A.5) and (A.6), we note that to ®rst order (and we

only need accuracy to that order),

���� � K�q���; �; ��; �A:7�

so that

�r � kqr � K
; r ; � K

; ; r �A:8�
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and

�rs �
_kqr qs � k

; s ; qr�2� � k
; ; s qr�2� � kqrs � K

; rs ; � K
; r ; s�2� � K

; ; rs; �A:9�

where

�r � @ �=@ �

r
; �rs � @

2

�=@ �

r
�

s
;

k
; r ; � @k�; �; ^��=@ �

r
; k

; ; r � @k�; �; ^��=@ ^

�

r
; �A:10�

K
; r ; � @K�; �; ^��=@ �

r
; K

; ; rs � @

2

K�; �; ^��=@ ^

�

r
@

^

�

s
; etc:

Solving equations (A.8) and (A.9) for qr and qrs and inserting in (A.5) and (A.6), we

®nally obtain

Hr � �r ÿ K
; r ; �A:11�

Hrs � �rs ÿ k
ÿ1

�rk; s ;�2� � k
ÿ1

�K
; r ; � K

; ; r�k; s ;�2� ÿ K
; rs ; ÿ K

; r ; s�2�: �A:12�

The announced approximate solution to equation (A.2) is obtained by solving (A.4) for

q � q��� � q��; a�, with Hr and Hrs given by (A.11) and (A.12).

In applications to prediction the function � is usually constant, equal to an � in the

interval (0, 1), and K is of the form (A.3); then (A.11) and (A.12) become

Hr � ÿG
; r ; �A:13�

Hrs � g
ÿ1

�G
; r ; �G

; ; r�g; s ;�2� ÿG
; rs ; ÿG

; r ; s�2�: �A:14�

We then denote the solution to (A.4) by q
�

���where, again, we have suppressed the possible

dependence on a. The formulae (A.4) and (A.13)±(A.14) are reproduced as (5.3) and

(5.8)±(5.9) in Section 5.
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