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We provide global adaptive wavelet-type density estimates. Our procedures illustrate the refinement
which can be obtained by replacing the Fourier basis by the wavelet basis in estimation methods. The
main argument consists in observing that the estimated total energy of the details of a specified level j
will be smaller or greater than some known threshold if precisely j is above or below the theoretical
optimal level calculated with the a priori knowledge of the regularity of the density. This balancing
effect leads directly to an adaptation procedure, and some natural extensions. We investigate the
minimax properties of these procedures and explain their evolution for different global error
measures.
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1. Introduction

This paper investigates the problem of global adaptation using particular threshold
wavelet-type estimates in the context of probability density estimation, that is, the problem
of estimating a density function on the basis of Xj,..., X, independent and identically
distributed drawn from f.

Various methods can be used in nonparametric estimation, such as kernel estimation,
orthogonal projection estimation, smoothing splines, wavelets. An overview of traditional
methods and of a part of the vast literature on density estimation is given in Devroye
(1985), Silverman (1986) and Scott (1992). The performances of all these procedures depend
strongly on the choice of a smoothing parameter or bandwidth. This choice is in fact by no
means an easy task. Different approaches have been considered, generally corresponding to
some optimal solution of some well-posed problem (see, for example, Bretagnolle and
Carol-Huber 1979; Pinsker 1980; Efromovich and Pinsker 1982; Ibragimov and
Has’minskii 1982; Stone 1982; Birgé 1983; Nussbaum 1985). As an example, if the
regularity class of the estimated function is assumed to be known, then it is possible to
choose the bandwidth so that the estimate attains the minimax rate. Of course, from a
practical point of view, this is not entirely satisfactory since it requires some extra
knowledge. Various attempts have also been investigated to reduce this knowledge.

*To whom correspondence should be addressed.

1350-7265 © 1996 Chapman & Hall



230 G. Kerkyacharian, D. Picard and K. Tribouley

Among these, the recent appearance of explicit orthonormal bases based on multiresolution
analysis has given different opportunities to solve this problem. Indeed, unlike traditional
Fourier bases, wavelet bases, since they have localization properties in space as well as in
frequency, enable expansions of a function into coefficients which are reliable indicators of
its regularity.

If we now focus on the problem where we do not know the regularity of the function, one
possible approach is to start from the evaluation of the risk of a procedure. In almost every
case, this risk can be decomposed by means of the well-known formula
E||f —f ||% ~ C; (nh)fl + C,h* into a sum of a stochastic term whose behaviour is not
affected by the regularity and a bias term which depends strongly on this parameter s. The
optimal choice for the bandwidth consists in balancing these two contributions. See for
instance Kerkyacharian and Picard (1992), where it can be found as well as an introduction
to Besov spaces in this framework.

However, some nice phenomena appear in the wavelet framework. Let us suppose
that the wavelet basis is derived from ¢;;(x) = 2/2¢(2/x — k), k € Z, and Yi(x) =
2-7/2w(2jx— k), k €Z, j € Z, where ¢ and 1 are the scaling function and the mother
wavelet, respectively. The probability density has formal expansion

fx) = Z v dor (x) + Z z Bixtjx(x). (1)
%

j>0 k

In this context, the bandwidth selection corresponds to choosing the level parameter j, at
which to stop the sum in (1). Of course, when one wants to stop at some level j, — 1, a
natural investigation consists in looking at the next layer of ‘details’

> Btk (). (2)

However, the striking fact is that the ‘energy’ of (2) (the p-power of the Lp-norm) is of order
27 /6F12=1Pp  whereas this quantity can be estimated (roughly) with an error less than
200 A consequence is that the level at which the error becomes more important than the
estimated quantity is of the same order as the optimal ‘bandwidth’ 2/ ~ n'/+2)  This
balancing effect leads directly to a strategy of adaptation by thresholding, and to some
natural variations around this strategy. The aim of this paper is to investigate the properties
of these procedures.

Our results are the following. We take as a global error measure for estimating the whole
density the L, error

Ri(7 ) =By S I =E 1o —f " dx.
We consider the case co > p > 2. We look at the worst performance over a variety of
functional spaces: . .
R,(f:F) = sup E|l fu =/ 15,
€

where F will be a subset of density functions, compactly supported with fixed (but
unknown) support bounded in the norm of the Besov space By,,. Let

Fpg(M, B) = { f density, supp (f) C [=B, B, || f [y < M}.
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A density estimate /™ will be called adaptive for a class {C(a), a € A} if there exists some
constant C such that

Va € A, R,(f*;C(e)) < Cinf; R, (f;C(0)).
We will show that our procedures are adaptive for the class
Fpq(M, B), I/p<s<r4+1,1<g<o0, 0 <M< o0, 0<B< +00.

The problem of adaptivity has been widely investigated in the recent statistical literature:
among other papers, the following have especially inspired the spirit of our work: the
problem of adaptive estimation in the L,-norm for the class {F (M, B),s, M} was stated
in Stone (1982) and solved by Héardle and Marron (1985) in the nonparametric regression
scheme, and by Efromovich (1985) in the density problem; in the L,-norm for the class
{Fso000(M, B),s, M} for the white noise model by Lepskii (1990; 1991); in the L, -norm for
the class {F,,(M, B),s,p,q, B} by Donoho and Johnstone (1993; 1995) and Donoho et al.
(1995a; 1996b).

The comparison between our procedures and those investigated in Efromovich (1985)
provides an explicit illustration of the refinement that can be obtained by replacing the
Fourier basis by the wavelet basis. Indeed, if the estimates are close enough, the wavelet
tools give at the same time a better understanding of the packets 7; of Fourier coefficients,
and the opportunity of solving the problem for norms different from the L,-norm.

As will be explained later on, our first estimate is quite close to that obtained by Lepskii’s
procedure; a main advantage is its extreme computational simplicity.

The main difference between our method and other adaptive wavelet procedures is
essentially its global aspect: instead of thresholding each coefficient, we consider the global
level j. This different point of view has advantages as well as drawbacks: the classes of
adaptation in both cases are essentially different. The local adaptation allows us to solve the
difficult problem of finding one single procedure achieving nearly optimal performance
over a variety of global error measures and over a variety of function spaces, but provides
an extra logarithmic factor, and requires knowledge of the radius M of the balls; the global
procedure, on the other hand, can be performed without knowledge of M and enjoys exact
convergence rates. A practical aspect of this comparison seems also to be that, like cross-
validation procedures, this one does a good job for a reasonable amount of data.

2. Main results

2.1. SUMMARY

We begin in Section 2.2 by describing elements of the basic theory of wavelet methods
and Besov spaces. In Section 2.3 we introduce the wavelet-based estimates, present the
different estimation procedures and discuss the importance of reducing the bias by using
U-estimates. Our main results are given there. Section 2.4 gives a summary of the essential
material used in the proofs which are collected in Section 3.
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2.2. WAVELETS AND BESOV SPACES

The key ingredients of our analysis are described in much greater detail in Peetre (1976),
Bergh and Lofstrom (1976), Meyer (1990), Daubechies (1992) and Triebel (1992).

We first review the very basic features of the multiresolution analysis of Meyer (1990).
One can construct a real function ¢ (the scaling function) such that:

(1) the sequence {¢g x = ¢(. — k)|k € Z} is an orthonormal family of L,(R). Let us call
V, the subspace spanned by this sequence

(2) if V; denotes the subspace spanned by the sequence {¢; ; = =2/2¢27. — k)|k € Z},
then {V}/€ z 1s an increasing sequence of nested spaces such that N;c,V; = {0} and,
if f ¢) = 1 ] ez V Lz

It is possible to require in addition that ¢ is of class C" with a compact support
(Daubechies wavelets). In the sequel, we will work with such a scaling function ¢. We
define the space W; by the following: V.| = V; ® W;. There also exists a function ¥ (the
wavelet) such that:

(1) 4 is of class C" with a compact support;
(2) {20,k = (. — k)|k € Z} is an orthonormal basis of W);
Q) {Y = 2’/2w(2’ —k)|k € Z, j € Z} is an orthonormal basis of L,.

For j, € Z, the following decomposition is also true:
erLz, f Z k¢jok+225] /cw] ks
kelZ JZ kel

where

oy = jf‘<x>¢>_,,k<x> dv, fu= ka'(xw,,,((x) dx. (3)

The following lemma will be of some importance. It provides explicit expansions of the
L,norms of the details ) ;cz 0 (¢, at level j and of the low-frequency part
> kez Q. kPj,,k in terms of the wavelet coefficients:

Lemma 1 (Meyer). Let g be either ¢ or v with the conditions above; let 6(x) = 0,(x) =

Skezlg(x—k)l, and ||6]], = (Jo [0(x)|"dx)"?. Let f(x) = Spez M2 2/x—k). If
1 < p <o and p; satisfies 1 /p+ 1/p; = 1, then

1 R
2./(1
1
1611y (6]

1, < 100,27 2P 4)

Let us now define Besov spaces in terms of wavelet coefficients. For the classical
definitions, in terms for example of the modulus of continuity, we refer to Peetre (1976),
Bergh and Lofstrom (1976) and Triebel (1992). The following definition is especially
convenient for statistical purposes as it gives a description of the space in terms of a
sequence of coefficients, see Meyer (1990). Besov spaces depend on three parameters s > 0,
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1 <p<+ocand 1 < ¢ < +oo and are denoted By,,. Let s be smaller than r (see (2)), let ¢
and 1 be subject to the conditions above, and let o, 3; be defined as in (3). We say that
f € By, if and only if

1/q
15 g = Nl ]l + <Z<2f<”‘/21/P>||@||,,>"> < o0 (5)

Jj=0

(we have set [Ju; ||, = O« |uj,c|")1/p), the necessary condition is true up to s < r+ 1.
Because of classical results on [[u ||, the following inequalities are true and will be
essential later in this paper:

L/p
ve<p ) I8l < (Z Iﬁjk|”> (card E)1~4/P), (6)

keE keE

fp
Vi>p Z 1Bl < (Z |5jk|p> : (™)

keE keE

Let us now denote

0, =Y 18l (8)
k

In this sum, only a finite number of 3;; are non-zero as soon as f is compacted supported.
This number is less than 2/ 4B ™" where 2B, 24 are the respective length of the supports of

Jf and .

2.3. ESTIMATES AND RESULTS

Now let (X,...,X,) be n independent and identically distributed variables according to a
distribution P. We assume that P is absolutely continuous with respect to Lebesgue
measure: let £ : R — R™ be the unknown density of P. Furthermore, we suppose that

J € Fpy(M.B) = {f € By [ £ =172 0,500 () € BB 1 < M},

where s — 1/p > 0. Let us consider the following weighted linear estimate:
Ji
S= 2 G+ 35 D B
k J=Jo k
where

. 1<
Gjok = ;Z Dok (X3),

i=1

Bjk = %Z ¢jk(Xi)'

i=1
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The first sum is an estimate of the low-frequency part of f. The level j, = 0 can be chosen
arbitrarily here so that the ‘variance term’ will not significantly contribute to the error. In
the same spirit, the level j; (n) = log,(n) can also be chosen so that the bias term will never
contribute for 1/p <'s < r+ 1. The important task now is to determine 7;.

Efromovich (1985) has demonstrated the virtue, in the context of Fourier series and L,
error, of choosing 7; as a ‘soft thresholding’ based on the two following principles:

(1) Let us denote by j,, the optimal ‘bandwidth’ selection: 2/ = n'/ (429 if the regularity s
was known. We have the following inequalities:

’ —j(s+1/2-1
f € By, = 6, < C2dt2=1np

2]

i< i —j(s+1/2=1/p)p
J<ise2 Z

Thus, if {©; > 2/ '/n?/?} this means that j < j,. Conversely, if j < j; of course it can occur
that {©; < 27/n??}, but in this case it is actually interesting to threshold the level j since it
can only give a better performance than the linear estimate — which would give a global
error of order 2/ /n? /2 (see (4)). Then it turns out to be reasonable that a level j should be
kept if and only if
27

(2) ©; has to be estimated carefully: a natural candidate could be > |6/ «|?, as in
Efromov1ch (1985). Unfortunately, it happens that this estimate has too large a bias
especially for large values of j and p > 2. The effect is an undersmoothing (i.e. choosing too
small a bandwidth). The solution to this drawback is provided by choosing the associated
U-estimate in the case where p is an even integer and to interpolate in the other cases. For
p €2N

0,(p) = (ch)™ Z ijk(Xi]) (X)), )
(iy, ..., 0) €S, k
where S, is the set of p-dimensional vectors of {1,...,n}” such that all the coordinates are
different. For p = ap; + (1 — a)p,, where a € |0, 1], p1, p, € 2N:
;= (8;(p))"(&;(p2))' . (10)

Many kinds of thresholding are available. We present the results in the two following
different settings:

775{ = Lig) 520 /mry (hard thresholding) (11)
(Z)A _9J p/2
ﬁf = % 146),> 27 /mr2) (soft thresholding). (12)

J

Soft thresholding provides a generalization in L, of Efromovich’s (1985) procedure,
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whereas hard thresholding is very close to Lepskii (1990). Indeed, because of Lemma 1,
2-/(”/2—1)(9_,. is, up to some constant, ||Projy, , f — Projy, f1|}.

Theorem 1. Let p > 2. Let

f= Z QG Piok + Zm Zﬁju/}]k,

J=o

where j, = 0, j; = log,(n) and 7; is either ﬁj or ﬁ,. Then, for s € |1/p,r+ 1], g € [1,4+0],
there exists a constant C such that

; - — 1+ 2
sup E/' ||~f./tlhj] _f HZ < Cn v/ Y)’
fEFx/u/(M B)

i.e. f is adaptive in the class {Fypy(M,B),s,q,M,B}.

_ Another way to un_derstangi this result is as follows: if, for s known, we denote by
fL =Dk i Djok + Zj';j(] >k Bjk¥jk the best linear estimator, we have:

sup Byl £y, —/ellh < Cn7?/(0F2),
feFqu<M,B)

2.4. BASIC INGREDIENTS OF THE PROOFS

We shall first give two lemmas describing the behaviour of the moments of the estimate éj.
As can be seen later on in the proof, the first one will essentially be used in proving that
when the statistic éj is large, the associated level j has a small enough ‘energy’ to be omitted
with high probability. The second one concerns the centred moment and will be useful in
the opposite situation when the problem is to prove that if the statistic is too small to
threshold the level j, then it is significant with high probability. Lemma 4 establishes the
behaviour of the linear estimates of Proj w, f or ProjV/, f. Its proof uses the Rosenthal
inequality. It will be given in the Appendix.
Let us begin with some notation:

E(éj)m _ Cp —m Z Z . Z E H H ?/J,m

k(@ ies, G ahes, I=1h=1

Let us investigate, for the sake of simplicity, the case where the wavelet « yields to the Haar
basis and has support [0, 1] (of course, it is not the case if the wavelet has regularity greater
than 1, but the reader may be convinced that the argument is not very different when the
support is of finite size). Let us consider one term m the sum above. A useful remark should
be made immediately: as soon as two indices i;, i are equal (for two different indices s and
s'), because of the property of the support of v, the two indices k; and ky have to be equal
(otherwise the term is zero). (Here is the main difference with a ¢ of arbitrary compact
support, where there is more than one non-zero term when i. = i’.) Let ); denote the
number of times a product E(¢);, (X 4))" of size i appears in the term of the sum under
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consideration. Of course mp = 3 i\;. Associated with (ilj, cee, ij,f) €S, leta; = {il', .. ,il-,f}
and let us introduce the following equivalence relationship: «; ~«o; if 1,1, #0.
The equivalence classes are R;,...,R,. For each class R,, we define A=

card {(D> 0 er 1o,)” "({i})}. So we have \; = S20_ 1 X, p(card R,) = 27, iAf. Now let &
denote the number of classes R, such that A\] < p — 1. We have the following lemma:

Lemma 2. For all m € 2N and with X\, ..., \,,, k as defined previously, we have:
mp/272 A+A/2)
A\ —i(s+1/2=1/p)Ai~ jK
E(©)" < C Z Z ST 2 27", (13)
Moreover,
Z i + 2>, (14)
,\ _
— + k—m< —K. (15)
p
Z)\ >_— then m—m>% (16)

Lemma 3. For all m € 2N, we have, if j > 0,2/ < n,
P Im/ 2] Im/p
m m/p
B(6,~6)" <€ (©) (23)

Lemma 4. Let g : R — R have compact support (supp g C [— A, +A]) such that ||g||, < +o0.
Let

k= Jf(x>2f/2g<2"x — k) dx,

Y == Zz//z 27X, — k).

1—1

If m>2, f has compact support (supp f C [~B,+B]) and is such that | f ||, < +oo;
furthermore, if 27 < n, then
mr r 2J
> (Bl —yl™)' < €=,
!
keZ

where C is a constant depending on A, B, ||g]lcs || f lloo-

Lemma 5. Forp > 1

il:Zﬁ " ! {zjlep/z Z/l(; 27| Y Bkl if € >0,
IKVIk|| =) 4 e . .
Jo K o 2P S Bl if e < 0.
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This last result is a simple consequence of the inclusion B, , ,» C L? for p > 1 (see Triebel
1992) and of the Holder inequality.

3. Proofs

3.1. PROOF OF LEMMA 2

Inequality (14) is easily obtained by the following remark: mp = > i\, > A\ +2> 01 A
Turning to inequality (15), if x represents the number of classes R, such that \] < p — 1,
then for such a class R; we have card(R,) > 2. Moreover,
p+1< (card(Ry) — )p+ 1 =card(R,)p — (p— 1) < card(R,)p — \].

Hence

k(p+1)< Z f:i/\fgmp—/\l.

s/A <p-—1 i=2

As for inequality (16), it is enough to prove that if > \; < 3mp/4 then m — my > m/8,
where my is the number of equivalence classes. Put my = vm. If v < %, then the result is
obvious. If v > 1, then it is clear that (2v — 1)m equivalence classes are reduced to one
element, and for those classes, A\] = p. Then A\; > (2v — 1)mp. But from A < 3mp/4, we
obtain (2v — 1)mp < 3mp/4.

Finally, inequality (13) is obtained just by counting the number of times that a fixed
configuration Ay, ..., A, occurs and using the definition of Besov spaces, (6) and (7):

for/>1 ZE(WM(X:')V) < /U2,
k

and
> (E@up(X)) < €2/ s+ 1/2=1p)l+ (1= (min(l,p) /)]
k

which concludes the proof of lemma 2.

3.2. PROOF OF LEMMA 3

Let us denote Ax; = x; — 3. Then:

P

p /
Hxi_ﬁp =2 3 law

=1 1</ <. <j<pi=1

If « is a subset of length p = || of {1,...,n}, let us denote 7/);3,‘{"()(“) =[lica ¥ir(X;).

Moreover, ©;, —0; =Y (CH)™' S, ‘a‘:,,(zpﬁp(Xa) — Bf,)- Hence, using the previous
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formula, we obtain:

0~ = Z > Z LY Aw

alo]=p I= vCay|=!
where Ay () = V() — Bjk. Now, reversmg the order of integration, we obtain:

6-0,- T3 Gl ¥ sl

Now let m be an ever integer. Then

p—I\"
E(é/ -V m m IZ< g/wpl> Z (‘/Bjkl .- '/Bjk,,,|)pil Z
k

1ok Voo Vs il =1

E[[avi(x,)

i

If we denote

Qm,/ = Z E{A ( ) ijk( "/1)} ) (17)
Yo oo s Yo il =1
we shall prove that

Qm,l < Cnml/Z. (18)

Indeed, let us look at the set of subsets of integers {7i,..., v}, if it is not the case that
> 1, > 21, then E{Ay}; ( ) A "(x, ,)} = 0. Hence, only the family of subsets
{71,y } verifying > 1% Z, 27145 where A; are disjoint sets of integers of size (say)
A, has to be taken into account. We then have ml = Y= jA;. For such a configuration, we
have as in the proof of Lemma 2: !

[E{AGR(X,,) . AR (X, )} < C2/Q0m =282,

The number of such terms may be bounded by Ccn®N | but, since Ay = 0, certainly
ml/2 =3 A\ > 0. So due to the fact that 2/ < n, we get n&N /022X < ymi/2 The
result follows using inequality (6).

3.3. PROOF OF THEOREM 1 IN THE CASE OF HARD THRESHOLDING

In what follows C will denote a positive constant which may change from place to place.
Let us first investigate the basic case of hard thresholding when p € 2N. Let f € F,,,(M, B)
and let j, be such that 2% = n'/0 %29 As

Z (djok Qjoke ¢Jok

k

Z Zﬁ;/ﬂ/&k

Ji1<J

E|lf—fIIF <3 '|E

Z Z n]ﬁjk ﬂjk 'll)]k

Jo<J<h

p

b
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we are going to prove that each of the three terms on the right-hand side is bounded by
Cn~*"/1+29 n the following inequalities, we have emboldened certain terms which give the
required rate of convergence.

For the linear stochastic term, using Lemmas 1 and 4, we have:

2Jo(p/2=1) Z |dj0k _ aj0k|p1
k

Jo

. 2
w/2-1) —sp/(1429)
< C,20 WSCpn R4 5)

P
<C,E
p

E Z(djok - O{fok)(b.fok

k

For the bias term we apply the definition of Besov spaces in terms of wavelet coefficients:

Z Zﬁ/kwjk < Z Zﬂ/kd)jk

< <)

<) 27y

Nn<J

1/q
< 2—hs ( Z 5;1) < Mnfs/(1+2s).

I <J

Finally, we decompose the nonlinear stochastic term into four terms:

Z Z njﬂj/c ﬂ]k wjk

Jo<J<ii
p
<47 'E Z anﬁlk ﬁik)wjkl{o <2f/n”/2}
Jo<Ji<Js k
P
+E Z Z(f}jﬂjk_ﬂj/c)¢jkl{é/§2.//nxf/2}
J<i<h k )
P
+E Z Zmﬁ/k /@k)¢1k1{@ <2//,1p/2}
Js<J<Js k
P
+E Z Z n]ﬁ]k /Bjk)wjkl{() <2//n”/2}
<i<h k

ST+ T+ T3+ Ty

Using Lemma 5, for some € > 0, and Lemma 4, we bound the first term:

T, <C, 0 Jsep/2 Z 2/(P/2=1)5 _W/zzEW/k ﬂ/k| 1 (6, 220w} (19)

Jo<J<Js
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) . ) 27
< sz./.vfl’/z Z 2/(/7/2—1)2—.1617/2W < Cpn_S”/(l’Lz‘y). (20)

Jo<J<Js

In the same way as for the bias term, we can derive the same upper bound for 7;:

( 5 [

Js<J<h

Now the thresholding comes into play. To study 73, we will use Lemma 2; as for Ty,
we will use Lemma 3. In both cases, the main point will be to observe that @ is not far from
©;, but in the first case there is no need to consider the centred moment since there ©; is
small

Let us now study 73. Using Lemma 5, for some € < 0, the Chebyshev inequality for some
m € 2N, Lemma 4 and the Hélder inequality for 1/m’ + 1/m" = 1, we obtain the following
chain of inequalities:

Ty < C25/ > o2/ (r/2=1)3 jép/zZE 1Bk = Bixl” 6,527 /]

Js<I<h

) MPZ*]}XP < Cnf‘\'p/(lJrZS).

| | i 1/m
< 2Rl N pile2my ’EP/ZZEW«—@/JW)I/M (ef>np/2>

]xS]S}l
_ l/m”
< C2j‘\6p/2 Z 2](11/2 1)2 ]517/2 2 ((.:)) 2] (21)
B 5 <i<j n?/2 n?/2 .
s>/ =/1

We will now apply Lemma 2. Let us denote:

r— {)\:()\1,...,)\,,11,7/1)/ 3 i)\l-:mp} —T,UT,UT;

1<i<mp

where

{)\EF/ ZA,-ZO},
:{)\EF/——Z/\ }
{)\GF/——<——Z)\ <0}

Let us remark that the number of elements of these sets is independent of n. For all three
sets, we give a bound for .

In the cases I'; and I';, we have m — k > m/8 (see Lemma 2). Otherwise, we will only use
m—r > 0.
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Coming back to the proof, we have:

2/ (mp/2—-X N;)

. -\ p/2 1/m"
. J1 2] P . . e
Ty < cz-fvl’/zz<7> 2 JP/22+Z+Z R s = 1/p)\1 p=jm = r)
.j,&'

<01+ Q>+ 0s.

First, let us study Q. Let us choose €, m, m” such that m/8 > (1 — e)m""p/2. As 2/ /n < 1
we have

j A\ P/2
0, < C2/P/? Zl (2_]> n—jer/? Z(zfj@* I/P))‘lzfj(m*’{))l/mﬂ
- - n
J\'

N

2js [)/2
el 25 = 1/ i (m =)y
<) 5 )

I

i\ P/2
< n <

To evaluate Q,, we just need to observe that mp/4 > m/8 > (1 — €)m"p/2 so 2/ has a
negative power. Then, using inequalities (15) and (14) of Lemma 2:

. 5= 1/p i 2j p/2 2 mp/2—-X\;)/m" " o )
< C2_/,;Ep 2‘./.»- s—=1/p)Ar/m - - 2_/ —m+K)/m —ep
Q< ; Z n ( n )

Js

i\ P/2
< C<2_JS> Z 2j\,(mp/27m72)\,-+/\|/2)/m”27_/\,(s+1/2—1/p))\l/m”2_/},&/;71"”7(17117/2+E)\,-)/m”

n T,

i\ P/2
<C 2_" 2 :n(72s/(1+23‘)(mp/27Z)\,-+/\1/2)/m”)n71/(1+25)(mf/ff/\1/p)/m”
o n

I
i\ P/2
< C(ﬁ) < O/ (142s)
< n <

For the last term Q;, we just observe that 2/ has a negative power and we then use the
same argument as in the previous case.
Finally, we have to look at the last term 75. Using Lemma 5, for some € > 0, we write:

T2 < sz./}EP/Z Z 2f(17/2— ])Zf/EP/ZE(@_/l{é, <24 /npl2) 1{(_), <27 /nrl2}

Jo<Ji<Js

+ @ll{(:), §2//11"/2}1{®,- >27/nrl?}

, ; ; 2
< szjxep/Z Z 2/(17/271)27.1617/2 — 46, p(|@ Q) >1 ){o S 220 /ry} | -

Jo<J<Js
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Using now the Chebyshev inequality for m = p and Lemma 3 we get:

Tz < Cn—sl’/(H—Zs) + Cp2_l}ep/2 Z 2j(p/2_l>2_j€p/2@j®j_mE(é/‘ B Qj)ml{®/22(2//np/2)}

Jo<J<s

< Cnis‘n/(lJrZS) + szjyep/Z Z 2](}7/271)2ii617/2@j®]?m

Jo<J<Js

P iy oY Im/p
x Y (6" ”(m) Lo, 2224 juof2y)

=1

. f 1) 2 o\
< Cn~ p/(1+25) JrC 0 Jsep/2 Z 24(p/2=1)y jI’/Z@ Z( p/2 > 1{@/22(2//,1[7/2)}

Jo<J<Js

< CulUF2) 4 cpiel S gitn- Nyl 2 ),
n?/?
Jo<J<Js

Let us now investigate the case where p is not an even integer: let p = ap; + (1 — a)p»,
where « € |0, 1{ and py, p, € 2N. In this case, we replace the U-estimate by the interpolated
estimate (see (10)).

Only the factors T, and 73 have to be investigated separately. For T3, the task is not
difficult since it is enough to bound in (21) E((:)j)m by (E@,(pl)'")Q(Eéj(pz)’”)l ~“and then
to use the same arguments as those following inequality (21):

. . . 2j . 2j —m~ 1/m
Jsep/2 (p1/2—1)n—jep/2 m
T; < C25% Z [21 P pJer pry;) {E(@j(l’l)) <_n1’1/2) } ]

Js<J<ji

. . e 1—
] ' i . i —m~ 1/m
J(p2/2=1)»—jep2/2 ‘ m
X [2 2 27Jp> v [E(@j(Pz)) <n1’2/2> ] ]

Now, we have By,, C By, , as the functions have common impact support and By,, C B, ,
with s —1/p = s, — 1/p,. This implies that ©;(p,) < C2 ~eF12=1/mn and @, i(p2) <
C27/H1/2=1/pIr> 1t remains then just to extend the later proof for Tj Wlth these
bounds. This does not present any difficulty.

For T,, let us formulate the proof, for the sake of simplicity, when p, — p; = 2. Let

Po < p < po, Po = po + 2. We have to replace Lemma 3 by the following result.
Lemma 6. For all m € 2N, we have, if j > 0,27 < n,

E[ @ (pO) m < CZ _ m 7lm/2.

Proof. For proving this Lemma 6, we follow the same scheme as we used for proving
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Lemma 3. Keeping the same notation, we have

/
’

R ) 1 Po B
~'0,(po) — ©,(ph) = ZW Z Zﬁjp/f :

k" alal=py =1

DR (SETTRD SR AlES

yCa =1 YCay=I-1
1
+- Z Aw/k ( "/) )

yCalyl=1-2

with the convention that
!
> AYR(x) = and > Aygl(x,) =o.
YCa,ly|=0 YCa,l|y|=1<0

Now, again reversing the order of summation, we obtain:

1 m / le Qm,lfl Qm,/72
E[n~'0,(po) ~ <CZ Z HW//V}O ( i T =17 T =)

=lky, o ky 1=

N—

Using inequality (18), we obtain the result. O

Returning to the behaviour of 7,, we only have to look at the factor:

isep/2 i(p/2—1)~—jep/2
T‘2 S szl\ [7/ Z 2_/(17/ )2 jep/ E(le{efgz(z/‘/npﬂ)} + Qfl{é)/gz//I/I”/Z}l{@/22(2f/l’l['/2)})

Jo<J<lJs

<C, 9 Jsep/2 Z 2i(p/2=1)9 1617/2[@ 1{()j§2(2,/nﬁ/z)}

Jo<J<Js
+ 056,00 <210y ey 22wy T g ) oy Loy <2021 )]
But we have
2/ , 2/
6; > 2@ C 196;(po) = 2W (22)
Therefore,

Ty < Caiv Y 2l il {2 Lol

T40,(py) 22027 /n"0)}
Jo<J<s 0

(PSS - €501 = 8,120+ 2|1 6,0) - €500

> 6,)/) )]
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Using Chebyshev inequality, Lemmas 3 and 6 and inequality (6), we get for m € 2N, m > p:
T, < CM N7 ol iyl

Jo<J<Js
I’o 12 1—
ITI —m m
. p/z + ; ©i(po - O;(rh) Loy 2200
< szj.vﬁp/22 Z 2 i(p/2=1)y—jep/2

2/ Z *m1/2@( )p mi) /1'0211 p/po+m//po)1

/2 + (6,(py) =227 /n"0/)}

ml
Jep/2 Jp2=1)oips2 | 2 umi? 2 NPT ot ity
< G207 Z 2 2 p/2+z — 2
Jo<J<Js =1 nw

< Cpnﬁvp/(l +2S).

3.4. PROOF OF THEOREM 1 IN THE CASE OF SOFT THRESHOLDING

The proof for the case of soft thresholding is exactly similar to the proof for the hard
thresholding case. The bias term and the stochastic term are the same. For the nonlinear
stochastic term, let us denote by Ry, R,, R3, R4 the quantities associated with T, Ty, T3, Tj.
R; and Ry are identical to T, and Ty (for @ < 27/n”’?); R, and Rj are bounded as T} (see
(19)) and T; (see (21)) (for @ > 2]/n1’/2) Indeed, using Lemma 5 once again for some
€; > 0 and some ¢, < 0:

p Js

< C2./&61/’/222j(ﬁ/2—1)2./F|P/2

P Jo

27N\
[EZWM—@U Lo, >zz/nn/’}+E<np/z) O pl{(:),->2f/n"/2}‘|

Z Z njﬂ]k - /gjk)wjkl{@ >2//nrl?}

Jo<J<Js

< Cn —sp/(1+2s)

j
<C2W/222’<P/2‘1 ""’”[EZWM Bixl” **

Z Z n;ﬂ/k /B/k)@bjkl{@ 520 /e < Cz/mpﬂzzl(P/Z—l D jer/2

JsSI<h k

p

R 27\ . -
X lE 2 1B = Bl o 2 01wy + E(W) O; P1{(;)j>2,/n,,/2}1
k
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<C21\€21’/2221 p/2=1)5 jean/2

I

. Ji . . ~ / / N 2 J l/m” N " 2J 1—m"
s€2p/2 (p/2=1)9 jep/2 1/
<C2heP ;2”’ 279° lz]:(Eﬁjk_ﬁjklpm) mP<9 nl’/z) +E(6))" (m)
2 k
A Zj —m 1/m" R ” 2j —1m"
(Ee(25) ) +e0r(2s) ]

where m, m’, m" are chosen as for the study of 75 and m"” € 2N.

E2|ﬁ/k _ﬂ/k‘ 1{@ >2//,,17/2 +Eé/1{@f22f/np/2}]

2/

Ji
Jsep/2 J(p/2=1)n jeap/2
<C2/PY ") 2

¥

SCI/ISP/(I +25) )

Appendix: Proof of Lemma 4

For r > 1, we have, using the Rosenthal inequality, see Rosenthal (1972):

(Z(Elﬁ/k - ’ijw)l/’)
k

(j 1P (x = k) f (x/27) dx) @27y
S Z(Cm)]/r nmrfl

k

nmr /2

+

)m72/r2j/2(mf2/r)

< (' 3 ([letts -0 (3)ar) LS 22

s (J lgl*(x — ki ,:/ Exm dxjm
k

Z(J l*(x — (x/) dx>m/2§ n’i/z Zk: J P k) £ (g) i

k
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by the Jensen inequality and m/2 > 1

> lglP(e — k)
k

For the second term, noticing that in the sum all the terms but B —A<k<B2 -4
are zero and the rest are bounded, we have:

1/r 4
Z(J gl —001(35) dx) < llgll3" 1l £ 1228,
k

27

LHS < nm/Z

[ rm2e ax

oo

So:

1/r m—=2/r~ (j/2)(m—2/r)
2 x Cliglle)™" "2 )
So(J b= 07 (5) ax) o

k
5 itm/2=1/1)

2j mAm—2/r
< ZBW”g”ocz gy

As 2/ < n, the lemma is proved. The proof for r = 1 is in the same spirit and in fact easier.
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