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We provide global adaptive wavelet-type density estimates. Our procedures illustrate the re®nement

which can be obtained by replacing the Fourier basis by the wavelet basis in estimation methods. The

main argument consists in observing that the estimated total energy of the details of a speci®ed level j

will be smaller or greater than some known threshold if precisely j is above or below the theoretical

optimal level calculated with the a priori knowledge of the regularity of the density. This balancing

e�ect leads directly to an adaptation procedure, and some natural extensions. We investigate the

minimax properties of these procedures and explain their evolution for di�erent global error

measures.
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1. Introduction

This paper investigates the problem of global adaptation using particular threshold

wavelet-type estimates in the context of probability density estimation, that is, the problem

of estimating a density function on the basis of X1; . . . ;Xn independent and identically

distributed drawn from f .

Various methods can be used in nonparametric estimation, such as kernel estimation,

orthogonal projection estimation, smoothing splines, wavelets. An overview of traditional

methods and of a part of the vast literature on density estimation is given in Devroye

(1985), Silverman (1986) and Scott (1992). The performances of all these procedures depend

strongly on the choice of a smoothing parameter or bandwidth. This choice is in fact by no

means an easy task. Di�erent approaches have been considered, generally corresponding to

some optimal solution of some well-posed problem (see, for example, Bretagnolle and

Carol-Huber 1979; Pinsker 1980; Efromovich and Pinsker 1982; Ibragimov and

Has'minskii 1982; Stone 1982; BirgeÂ 1983; Nussbaum 1985). As an example, if the

regularity class of the estimated function is assumed to be known, then it is possible to

choose the bandwidth so that the estimate attains the minimax rate. Of course, from a

practical point of view, this is not entirely satisfactory since it requires some extra

knowledge. Various attempts have also been investigated to reduce this knowledge.
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Among these, the recent appearance of explicit orthonormal bases based on multiresolution

analysis has given di�erent opportunities to solve this problem. Indeed, unlike traditional

Fourier bases, wavelet bases, since they have localization properties in space as well as in

frequency, enable expansions of a function into coe�cients which are reliable indicators of

its regularity.

If we now focus on the problem where we do not know the regularity of the function, one

possible approach is to start from the evaluation of the risk of a procedure. In almost every

case, this risk can be decomposed by means of the well-known formula

Ek ^f ÿ f k22 � C1�nh�
ÿ1
� C2h

2s
into a sum of a stochastic term whose behaviour is not

a�ected by the regularity and a bias term which depends strongly on this parameter s. The

optimal choice for the bandwidth consists in balancing these two contributions. See for

instance Kerkyacharian and Picard (1992), where it can be found as well as an introduction

to Besov spaces in this framework.

However, some nice phenomena appear in the wavelet framework. Let us suppose

that the wavelet basis is derived from �j k�x� � 2
j=2
��2

jxÿ k�; k 2 Z, and  j k�x� �

2
j=2
 �2

jxÿ k�; k 2 Z; j 2 Z, where � and  are the scaling function and the mother

wavelet, respectively. The probability density has formal expansion

f �x� �
X

k

�k�0k�x� �
X

j� 0

X

k

�j k j k�x�: �1�

In this context, the bandwidth selection corresponds to choosing the level parameter j0 at

which to stop the sum in (1). Of course, when one wants to stop at some level j0 ÿ 1, a

natural investigation consists in looking at the next layer of `details'

X

�j0k
 j0k

�x�: �2�

However, the striking fact is that the `energy' of (2) (the p-power of the LP-norm) is of order

2
ÿj�s�1=2ÿ1=p�p

, whereas this quantity can be estimated (roughly) with an error less than

2
jnÿp=2. A consequence is that the level at which the error becomes more important than the

estimated quantity is of the same order as the optimal `bandwidth' 2
j0
� n1=�1�2s�

. This

balancing e�ect leads directly to a strategy of adaptation by thresholding, and to some

natural variations around this strategy. The aim of this paper is to investigate the properties

of these procedures.

Our results are the following. We take as a global error measure for estimating the whole

density the Lp error

Rn�
^f ; f � � Ek ^fn ÿ f kpp � E

�

j

^fn ÿ f jp dx:

We consider the case 1 > p � 2. We look at the worst performance over a variety of

functional spaces:

Rn�
^f ;F� � sup

f 2F

Ek ^fn ÿ f kpp;

where F will be a subset of density functions, compactly supported with ®xed (but

unknown) support bounded in the norm of the Besov space Bspq. Let

F spq�M;B� � f f density, supp � f � � �ÿB;B�; k f kspq �Mg:
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A density estimate f ? will be called adaptive for a class fC���; � 2 Ag if there exists some

constant C such that

8� 2 A; Rn� f
?

; C���� � C inf
^f
Rn�

^f ; C����:

We will show that our procedures are adaptive for the class

F spq�M;B�; 1=p < s < r� 1; 1 � q � 1; 0 <M <1; 0 < B < �1:

The problem of adaptivity has been widely investigated in the recent statistical literature:

among other papers, the following have especially inspired the spirit of our work: the

problem of adaptive estimation in the L2-norm for the class fF s22�M;B�; s;Mg was stated

in Stone (1982) and solved by HaÈ rdle and Marron (1985) in the nonparametric regression

scheme, and by Efromovich (1985) in the density problem; in the Lp-norm for the class

fF s11

�M;B�; s;Mg for the white noise model by Lepskii (1990; 1991); in the L
p
-norm for

the class fF spq�M;B�; s; p; q;Bg by Donoho and Johnstone (1993; 1995) and Donoho et al.

(1995a; 1996b).

The comparison between our procedures and those investigated in Efromovich (1985)

provides an explicit illustration of the re®nement that can be obtained by replacing the

Fourier basis by the wavelet basis. Indeed, if the estimates are close enough, the wavelet

tools give at the same time a better understanding of the packets Tj of Fourier coe�cients,

and the opportunity of solving the problem for norms di�erent from the L2-norm.

As will be explained later on, our ®rst estimate is quite close to that obtained by Lepskii's

procedure; a main advantage is its extreme computational simplicity.

The main di�erence between our method and other adaptive wavelet procedures is

essentially its global aspect: instead of thresholding each coe�cient, we consider the global

level j. This di�erent point of view has advantages as well as drawbacks: the classes of

adaptation in both cases are essentially di�erent. The local adaptation allows us to solve the

di�cult problem of ®nding one single procedure achieving nearly optimal performance

over a variety of global error measures and over a variety of function spaces, but provides

an extra logarithmic factor, and requires knowledge of the radiusM of the balls; the global

procedure, on the other hand, can be performed without knowledge ofM and enjoys exact

convergence rates. A practical aspect of this comparison seems also to be that, like cross-

validation procedures, this one does a good job for a reasonable amount of data.

2. Main results

2.1. SUMMARY

We begin in Section 2.2 by describing elements of the basic theory of wavelet methods

and Besov spaces. In Section 2.3 we introduce the wavelet-based estimates, present the

di�erent estimation procedures and discuss the importance of reducing the bias by using

U-estimates. Our main results are given there. Section 2.4 gives a summary of the essential

material used in the proofs which are collected in Section 3.
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2.2. WAVELETS AND BESOV SPACES

The key ingredients of our analysis are described in much greater detail in Peetre (1976),

Bergh and LoÈ fstroÈ m (1976), Meyer (1990), Daubechies (1992) and Triebel (1992).

We ®rst review the very basic features of the multiresolution analysis of Meyer (1990).

One can construct a real function � (the scaling function) such that:

(1) the sequence f�0; k � ��:ÿ k�jk 2 Zg is an orthonormal family of L2�R�. Let us call

V0 the subspace spanned by this sequence

(2) if Vj denotes the subspace spanned by the sequence f�j; k � 2
j=2
��2

j
:ÿ k�jk 2 Zg,

then fVjgj 2Z is an increasing sequence of nested spaces such that \j 2ZVj � f0g and,

if
�

� � 1, [j 2ZVj � L2.

It is possible to require in addition that � is of class C
r
with a compact support

(Daubechies wavelets). In the sequel, we will work with such a scaling function �. We

de®ne the space Wj by the following: Vj�1 � Vj �Wj . There also exists a function  (the

wavelet) such that:

(1)  is of class C
r
with a compact support;

(2) f 0; k �  �:ÿ k�jk 2 Zg is an orthonormal basis of W0;

(3) f j; k � 2
j=2
 �2

j
:ÿ k�jk 2 Z; j 2 Zg is an orthonormal basis of L2.

For j0 2 Z, the following decomposition is also true:

8 f 2 L2; f �
X

k2Z

�j0; k
�j0; k

�

X

j� j0

X

k2Z

�j; k j; k;

where

�j; k �

�

f �x��j; k�x� dx; �j; k �

�

f �x� j; k�x� dx: �3�

The following lemma will be of some importance. It provides explicit expansions of the

Lp-norms of the details
P

k2Z �j; k j; k at level j and of the low-frequency part
P

k2Z �j0; k
�j0; k

in terms of the wavelet coe�cients:

Lemma 1 (Meyer). Let g be either � or  with the conditions above; let ��x� � �g�x� �P

k2Z j g�xÿ k�j, and k�kp � �

�
1

0 j��x�j
p
dx�1=p. Let f �x� �

P

k2Z �k2
j=2g�2 jxÿ k�. If

1 � p � 1 and p1 satis®es 1=p� 1=p1 � 1, then

1

k�k
1=p1
1

k�k
1=p
1

2
j�1=2ÿ1=p�

k�klp
� k f kLp

� k�kp2
j�1=2ÿ1=p�

k�klp
: �4�

Let us now de®ne Besov spaces in terms of wavelet coe�cients. For the classical

de®nitions, in terms for example of the modulus of continuity, we refer to Peetre (1976),

Bergh and LoÈ fstroÈ m (1976) and Triebel (1992). The following de®nition is especially

convenient for statistical purposes as it gives a description of the space in terms of a

sequence of coe�cients, see Meyer (1990). Besov spaces depend on three parameters s > 0,
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1 � p � �1 and 1 � q � �1 and are denoted Bspq. Let s be smaller than r (see (2)), let �

and  be subject to the conditions above, and let �j k, �j k be de®ned as in (3). We say that

f 2 Bspq if and only if

k f kspq � k�0:kp �

X

j� 0

�2
j�s�1=2ÿ1=p�

k�j:kp�
q

 !
1=q

< �1 �5�

(we have set kuj:kp � �

P

k juj kj
p
�

1=p
�, the necessary condition is true up to s < r� 1.

Because of classical results on ku
:
kp the following inequalities are true and will be

essential later in this paper:

8` � p
X

k2E

j�j kj
`

�

X

k2E

j�j kj
p

 !̀
=p

�card E��1ÿ `=p�; �6�

8` � p
X

k2E

j�j kj
`

�

X

k2E

j�j kj
p

 !̀
=p

: �7�

Let us now denote

�j �

X

k

j�j kj
p
: �8�

In this sum, only a ®nite number of �j k are non-zero as soon as f is compacted supported.

This number is less than 2
jABÿ1

where 2B, 2A are the respective length of the supports of

f and  .

2.3. ESTIMATES AND RESULTS

Now let �X1; . . . ;Xn� be n independent and identically distributed variables according to a

distribution P. We assume that P is absolutely continuous with respect to Lebesgue

measure: let f : R! R
�

be the unknown density of P. Furthermore, we suppose that

f 2 Fspq�M;B� � f 2 Bspq;

�

f � 1; f � 0; supp � f � � �ÿB;B�; k f kspq �M

� �

;

where sÿ 1=p > 0. Let us consider the following weighted linear estimate:

^f �
X

k

�̂j0k
�j0k

�

Xj1

j� j0

�̂ j

X

k

^

�j k j k;

where

�̂j0k
�

1

n

Xn

i�1

�j0k
�Xi�;

^

�j k �
1

n

Xn

i�1

 j k�Xi�:
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The ®rst sum is an estimate of the low-frequency part of f . The level j0 � 0 can be chosen

arbitrarily here so that the `variance term' will not signi®cantly contribute to the error. In

the same spirit, the level j1�n� � log2�n� can also be chosen so that the bias term will never

contribute for 1=p < s < r� 1. The important task now is to determine �̂ j.

Efromovich (1985) has demonstrated the virtue, in the context of Fourier series and L2

error, of choosing �̂ j as a `soft thresholding' based on the two following principles:

(1) Let us denote by js, the optimal `bandwidth' selection: 2
js
� n1=�1�2s�

if the regularity s

was known. We have the following inequalities:

f 2 Bspq ) �j � C2ÿj�s�1=2ÿ1=p�p
;

j � js , 2
ÿj�s�1=2ÿ1=p�p

�

2
j

np=2
:

Thus, if f�j � 2
j
=np=2g this means that j � js. Conversely, if j � js of course it can occur

that f�j � 2
j
=np=2g, but in this case it is actually interesting to threshold the level j since it

can only give a better performance than the linear estimate ± which would give a global

error of order 2
j
=np=2 (see (4)). Then it turns out to be reasonable that a level j should be

kept if and only if

�j �
2
j

np=2
:

(2) �j has to be estimated carefully: a natural candidate could be
P

k j
^

�j kj
p
, as in

Efromovich (1985). Unfortunately, it happens that this estimate has too large a bias

especially for large values of j and p > 2. The e�ect is an undersmoothing (i.e. choosing too

small a bandwidth). The solution to this drawback is provided by choosing the associated

U-estimate in the case where p is an even integer and to interpolate in the other cases. For

p 2 2N

^

�j� p� � �Cp
n �

ÿ1
X

�i1; ... ; ip� 2Sp

X

k

 j k�Xi1
� . . . j k�Xip

�; �9�

where Sp is the set of p-dimensional vectors of f1; . . . ; ng
p
such that all the coordinates are

di�erent. For p � �p1 � �1ÿ ��p2, where � 2 �
^

�; 1�, p1; p2 2 2N:

^

�j � �
^

�j� p1��
�

�
^

�j� p2��
1ÿ�

: �10�

Many kinds of thresholding are available. We present the results in the two following

di�erent settings:

�̂
H

j � 1
f
^

��j � 2 j
=n p=2g

�hard thresholding� �11�

�̂
S

j �

^

�j ÿ 2
j
=np=2

^

�j

1
f
^

��j � 2 j
=n p=2g �soft thresholding�: �12�

Soft thresholding provides a generalization in Lp of Efromovich's (1985) procedure,
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whereas hard thresholding is very close to Lepskii (1990). Indeed, because of Lemma 1,

2
j� p=2ÿ1�

�j is, up to some constant, kProjWj � 1
f ÿ ProjWj

f kpp.

Theorem 1. Let p � 2. Let

^f �
X

k

�̂j0k
�j0k

�

Xj1

j� j0

�̂ j

X

k

^

�j k j k;

where j0 � 0, j1 � log2�n� and �̂ j is either �̂
H

j or �̂
S

j . Then, for s 2 �1=p; r� 1�, q 2 �1;�1�,

there exists a constant C such that

sup
f 2Fspq�M;B�

Ef k
^fj0; j1 ÿ f kpp � Cnÿsp=�1�2s�

;

i.e. ^f is adaptive in the class fF spq�M;B�; s; q;M;Bg.

Another way to understand this result is as follows: if, for s known, we denote by

^fL �
P

k �̂j0k
�j0k

�

P js
j� j0

P

k
^

�j k j k the best linear estimator, we have:

sup
f 2Fspq�M;B�

Ef k
^fj0; j1 ÿ

^fLk
p
p � Cnÿsp=�1�2s�

:

2.4. BASIC INGREDIENTS OF THE PROOFS

We shall ®rst give two lemmas describing the behaviour of the moments of the estimate ^

�j .

As can be seen later on in the proof, the ®rst one will essentially be used in proving that

when the statistic ^�j is large, the associated level j has a small enough `energy' to be omitted

with high probability. The second one concerns the centred moment and will be useful in

the opposite situation when the problem is to prove that if the statistic is too small to

threshold the level j, then it is signi®cant with high probability. Lemma 4 establishes the

behaviour of the linear estimates of ProjWj
f or ProjVj

f . Its proof uses the Rosenthal

inequality. It will be given in the Appendix.

Let us begin with some notation:

E�^�j�
m
� �Cp

n �
ÿm

X

k1; ... ; km

X

�i1
1
; ... ; i1p� 2Sp

� � �

X

�i m
1
; ... ; i mp � 2Sp

E

Yp

l�1

Ym

h�1

 j kh�Xi h
l
�:

Let us investigate, for the sake of simplicity, the case where the wavelet  yields to the Haar

basis and has support �0; 1� (of course, it is not the case if the wavelet has regularity greater

than 1, but the reader may be convinced that the argument is not very di�erent when the

support is of ®nite size). Let us consider one term in the sum above. A useful remark should

be made immediately: as soon as two indices i sr , i
s0

r0 are equal (for two di�erent indices s and

s0), because of the property of the support of  , the two indices ks and ks0 have to be equal

(otherwise the term is zero). (Here is the main di�erence with a  of arbitrary compact

support, where there is more than one non-zero term when i sr � i s
0

r0 .) Let �i denote the

number of times a product E� j k�Xh��
i
of size i appears in the term of the sum under
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consideration. Of coursemp �
P

i�i. Associated with �i
j
1
; . . . ; i jp � 2 Sp, let �j � fi

j
1
; . . . ; i jpg

and let us introduce the following equivalence relationship: �i � �j if 1
�i
1
�j
6� 0.

The equivalence classes are R1; . . . ;Rr. For each class Rs, we de®ne �
s
i �

card f�
P

�j 2Rs
1
�j
�

ÿ1
�fig�g. So we have �i �

Pr
s�1 �

s
i , p�cardRs� �

Pm
i�1 i�

s
i . Now let �

denote the number of classes Rs such that �
s
1 � pÿ 1. We have the following lemma:

Lemma 2. For all m 2 2N and with �1; . . . ; �m, � as de®ned previously, we have:

E�^�j�
m
� C

X

�1; ... ; �m

X

�

2
j�mp=2ÿ

P
�i��1=2�

nmpÿ
P

�i

2
ÿj�s�1=2ÿ1=p��12

j�
: �13�

Moreover,

mp

2
ÿ

X

�i �
�1

2
� 0; �14�

�1

p
� �ÿm �

ÿ�

p
: �15�

If
mp

2
ÿ

X

�i � ÿ

mp

4
then mÿ � �

m

8
: �16�

Lemma 3. For all m 2 2N, we have, if j � 0, 2
j
� n,

E�^�j ÿ�j�
m
� C

Xp

l�1

��j�
mÿ lm=p 2

j

np=2

� �lm=p

:

Lemma 4. Let g : R! R have compact support (supp g � �ÿA;�A�) such that kgk
1

< �1.

Let


j k �

�

f �x�2 j=2g�2 jxÿ k� dx;


̂j k �
1

n

Xn

i�1

2
j=2g�2 jXi ÿ k�:

If m � 2, f has compact support (supp f � �ÿB;�B�) and is such that k f k
1

< �1;

furthermore, if 2
j
� n, then

X

k2Z

�Ej
̂j k ÿ 
j kj
mr
�

1=r
� C

2
j

nm=2
;

where C is a constant depending on A;B; kgk
1

; k f k
1

.

Lemma 5. For p � 1

Xj1

j0

X

k

�j k j k























p

p

�

2
j1�p=2

P j1
j0
2
ÿj�p=2

k

P

k �j k j kk
p
p if � > 0,

2
j0�p=2

P j1
j0
2
ÿj�p=2

k

P

k �j k j kk
p
p if � < 0:

(
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This last result is a simple consequence of the inclusion B0; p; p^ 2 � Lp
for p � 1 (see Triebel

1992) and of the HoÈ lder inequality.

3. Proofs

3.1. PROOF OF LEMMA 2

Inequality (14) is easily obtained by the following remark: mp �
P

i�i � �1 � 2
P

i> 1 �i.

Turning to inequality (15), if � represents the number of classes Rs such that �
s
1 � pÿ 1,

then for such a class Rs we have card�Rs� � 2. Moreover,

p� 1 � �card�Rs� ÿ 1�p� 1 � card�Rs�pÿ � pÿ 1� � card�Rs�pÿ �
s
1:

Hence

�� p� 1� �

X

s=�s
1
� pÿ1

Xm

i�2

i�si � mpÿ �1:

As for inequality (16), it is enough to prove that if
P
�i � 3mp=4 then mÿm0 � m=8,

where m0 is the number of equivalence classes. Put m0 � �m. If � � 1

2
, then the result is

obvious. If � >
1

2
, then it is clear that �2� ÿ 1�m equivalence classes are reduced to one

element, and for those classes, �
s
1 � p. Then �1 � �2� ÿ 1�mp. But from �1 � 3mp=4, we

obtain �2� ÿ 1�mp � 3mp=4.

Finally, inequality (13) is obtained just by counting the number of times that a ®xed

con®guration �1; . . . ; �mp occurs and using the de®nition of Besov spaces, (6) and (7):

for l > 1

X

k

E�j j k�Xi�j
l
� � C2 j�l=2ÿ1�

;

and

X

k

�E� j k�Xi���
l
� C2 j�ÿ�s�1=2ÿ1=p�l��1ÿ�min�l; p��=p��

;

which concludes the proof of lemma 2.

3.2. PROOF OF LEMMA 3

Let us denote �xi � xi ÿ �. Then:

Yp

1

xi ÿ �
p
�

Xp

l�1

�
pÿ l

X

1� j1 < ...< jl � p

Yl

i�1

�xji :

If � is a subset of length p � j�j of f1; . . . ; ng, let us denote  

p
j k �X�

� �

Q

i2�  j k�Xi�.

Moreover, ^

�j ÿ�j �
P

k�C
p
n �

ÿ1
P

�; j�j�p� 

p
j k �X�

� ÿ �
p
j k�. Hence, using the previous
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formula, we obtain:

^

�j ÿ�j �

X

k

1

C
p
n

X

�; j�j�p

Xp

l�1

�
pÿ l
j k

X


��; j
j� l

� 

 l
j k �X


�;

where � j k� � �  j k� � ÿ �j k. Now, reversing the order of integration, we obtain:

^

�j ÿ�j �

X

k

Xp

l�1

C
pÿ l
nÿ l

C
p
n

�
pÿ l
j k

X


; j
j� l

� 

 l
j k �X


�:

Now let m be an ever integer. Then

E�^�j ÿ�j�
m
� pmÿ1

Xp

l�1

C
pÿ l
nÿ l

C
p
n

 !m
X

k1; ... ; km

�j�j k1
. . .�j km

j�

pÿ l
X


1; ... ; 
m; j
i j� l

E

Y

i

� 

 l
j k �X
i

�

�
�
�
�
�

�
�
�
�
�
:

If we denote

Qm; l �

X


1; ... ; 
m; j
i j� l

Ef� 

 l
j k �X
1

� . . . � 

 l
j k �X
l

�g

�
�
�
�
�
�

�
�
�
�
�
�

; �17�

we shall prove that

Qm; l � Cnml=2: �18�

Indeed, let us look at the set of subsets of integers f
1; . . . ; 
mg, if it is not the case thatP
1

i
� 21

[ 
i
, then Ef� 


 l
j k �X
1

� . . . � 

 l
j k �X
l

�g � 0. Hence, only the family of subsets

f
1; . . . ; 
mg verifying
P

1

i
�

Pm
j�2 j1Aj

, where Aj are disjoint sets of integers of size (say)

�j, has to be taken into account. We then haveml �
Pm

j�2 j�j . For such a con®guration, we

have, as in the proof of Lemma 2:

jEf� 

 l
j k �X
1

� . . . � 

 l
j k �X
l

�gj � C2 j�
Pm

i� 2
�iÿ2��i�=2

:

The number of such terms may be bounded by Cn���i�, but, since �1 � 0, certainly

ml=2ÿ
P
�i � 0. So due to the fact that 2

j
� n, we get n���i�2 j�ml=2ÿ��i�

� nml=2. The

result follows using inequality (6).

3.3. PROOF OF THEOREM 1 IN THE CASE OF HARD THRESHOLDING

In what follows C will denote a positive constant which may change from place to place.

Let us ®rst investigate the basic case of hard thresholding when p 2 2N. Let f 2 Fspq�M;B�

and let js be such that 2
js
� n1=�1�2s�

. As

Ek ^f ÿ f kpp � 3
pÿ1

E

X

k

��̂j0k
ÿ �j0k

��j0k























p

p

�E

X

j0 � j� j1

X

k

��̂ j
^

�j k ÿ �j k� j k























p

p

2

4

�

X

j1 � j

X

k

�j k j k























p

p

3

5
;
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we are going to prove that each of the three terms on the right-hand side is bounded by

Cnÿsp=�1�2s�
. In the following inequalities, we have emboldened certain terms which give the

required rate of convergence.

For the linear stochastic term, using Lemmas 1 and 4, we have:

E

X

k

��̂j0k
ÿ �j0k

��j0k























p

p

� Cp E 2
j0�p=2ÿ1�

X

k

j�̂j0k
ÿ �j0k

j

p

" #

� Cp 2
j0�p=2ÿ1� 2

j0

np=2
� Cpn

ÿsp=�1�2s�
:

For the bias term we apply the de®nition of Besov spaces in terms of wavelet coe�cients:

X

j1 � j

X

k

�j k j k























p

p

�

X

j1 � j

X

k

�j k j k






















p

�

X

j1 � j

2
ÿjs
"j

� 2
ÿj1s

X

j1 � j

"
q
j

 !
1=q

�Mnÿs=�1�2s�
:

Finally, we decompose the nonlinear stochastic term into four terms:

E

X

j0 � j� j1

X

k

��̂ j�j k ÿ �j k� j k























p

p

� 4
pÿ1

E

X

j0 � j� js

X

k

��̂ j
^

�j k ÿ �j k� j k1
f
^

�j � 2 j
=n p=2g























p

p

2

4

� E

X

j0 � j� j1

X

k

��̂ j
^

�j k ÿ �j k� j k1
f
^

�j � 2 j
=n p=2g























p

p

� E

X

js � j� js

X

k

��̂ j
^

�j k ÿ �j k� j k1
f
^

�j � 2 j
=n p=2g























p

p

� E

X

js � j� j1

X

k

��̂ j
^

�j k ÿ �j k� j k1
f
^

�j � 2 j
=n p=2g























p

p

3

5

� T1 � T2 � T3 � T4:

Using Lemma 5, for some � > 0, and Lemma 4, we bound the ®rst term:

T1 � Cp2
js�p=2

X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2

X

k

Ej ^�j k ÿ �j kj
p
1
f
^

�j � 2 j
=n p=2g

�19�
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� Cp2
js�p=2

X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2 2

j

np=2
� Cpn

ÿsp=�1�2s�
: �20�

In the same way as for the bias term, we can derive the same upper bound for T4:

T4 �

X

js � j� j1

X

k

�j k j k






















p

 !p

�Mp
2
ÿjssp

� Cnÿsp=�1�2s�
:

Now the thresholding comes into play. To study T3, we will use Lemma 2; as for T4,

we will use Lemma 3. In both cases, the main point will be to observe that ^�j is not far from

�j, but in the ®rst case there is no need to consider the centred moment since there �j is

small.

Let us now study T3. Using Lemma 5, for some � < 0, the Chebyshev inequality for some

m 2 2N, Lemma 4 and the HoÈ lder inequality for 1=m
0

� 1=m00

� 1, we obtain the following

chain of inequalities:

T3 � C2 js�p=2
X

js � j� j1

2
j� p=2ÿ1�

2
ÿj�p=2

X

k

E�j ^�j k ÿ �j kj
p
1
f
^

�j � 2 j
=n p=2g

�

� C2 js�p=2
X

js � j� j1

2
j� p=2ÿ1�

2
ÿj�p=2

X

k

Ej ^�j k ÿ �j kj
pm0

�

1=m0

P ^

�j �
2
j

np=2

� �1=m00

� C2 js�p=2
X

js � j� j1

2
j� p=2ÿ1�

2
ÿj�p=2 2

j

np=2
E�^�j�

m 2
j

np=2

� �
ÿm� �1=m00

: �21�

We will now apply Lemma 2. Let us denote:

ÿ � � � ��1; . . . ; �mp; ��

. X

1�i�mp

i�i � mp

( )

� ÿ1 [ ÿ2 [ ÿ3

where

ÿ1 � � 2 ÿ

.mp

2
ÿ

X

�i � 0

n o

;

ÿ2 � � 2 ÿ

.mp

2
ÿ

X

�i < ÿ

mp

4

n o

;

ÿ3 � � 2 ÿ

.

ÿ

mp

4
�

mp

2
ÿ

X

�i < 0

n o

:

Let us remark that the number of elements of these sets is independent of n. For all three

sets, we give a bound for �.

In the cases ÿ1 and ÿ3, we have mÿ � � m=8 (see Lemma 2). Otherwise, we will only use

mÿ � � 0.
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Coming back to the proof, we have:

T3 � C2 js�p=2
Xj1

js

2
j

n

 !
p=2

2
ÿj�p=2

X

ÿ1

�

X

ÿ2

�

X

ÿ3

2
j�mp=2ÿ��i�

nmp=2ÿ��i
2
ÿj�sÿ1=p��12

ÿj�mÿ��

 !
1=m00

� Q1 �Q2 �Q3:

First, let us study Q1. Let us choose �, m, m
00

such that m=8 � �1ÿ ��m00p=2. As 2 j
=n � 1

we have

Q1 � C2 js�p=2
Xj1

js

2
j

n

 !
p=2

2
ÿj�p=2

X

ÿ1

�2
ÿj�sÿ1=p��12

ÿj�mÿ��
�

1=m00

� C
2

js

n

 !
p=2
X

ÿ1

�2
ÿjs�sÿ1=p��12

ÿjs�mÿ��
�

1=m00

� C
2

js

n

 !
p=2

� Cnÿsp=�1�2s�
:

To evaluate Q2, we just need to observe that mp=4 � m=8 � �1ÿ ��m00p=2 so 2
j
has a

negative power. Then, using inequalities (15) and (14) of Lemma 2:

Q2 � C2 js�p=2
X

ÿ2

2
ÿjs�sÿ1=p��1=m

00

Xj1

js

2
j

n

 !
p=2

2
j

n

� �
�mp=2ÿ��i�=m

00

2
j��ÿm���=m00

ÿ �p=2�

� C
2

js

n

 !
p=2
X

ÿ2

2
js�mp=2ÿmÿ��i��1=2�=m

00

2
ÿjs�s�1=2ÿ1=p��1=m

00

2
js�=m

00

nÿ�mp=2���i�=m
00

� C
2

js

n

 !
p=2
X

ÿ2

n�ÿ2s=�1�2s��mp=2ÿ��i��1=2�=m
00

�nÿ1=�1�2s��mÿ�ÿ�1=p�=m
00

� C
2

js

n

 !
p=2

� Cnÿsp=�1�2s�

For the last term Q3, we just observe that 2
j
has a negative power and we then use the

same argument as in the previous case.

Finally, we have to look at the last term T2. Using Lemma 5, for some � > 0, we write:

T2 � Cp2
js�p=2

X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2

E��j1
f
^

�j � 2 j
=n p=2g

1
f�j � 2 j

=n p=2g

��j1
f
^

�j � 2 j
=n p=2g1f�j � 2 j

=n p=2g

� Cp2
js�p=2

X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2 2

j

np=2
��jP�j

^

�j ÿ�j j >
1

2
�j�f�j � 2�2 j

=n p=2�g

" #

:
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Using now the Chebyshev inequality for m � p and Lemma 3 we get:

T2 � Cnÿsp=�1�2s�
� Cp2

js�p=2
X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2

�j�
ÿm
j E�^�j ÿ�j�

m
1
f�j �2�2

j
=n p=2�g

� Cnÿsp=�1�2s�
� Cp2

js�p=2
X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2

�j�
ÿm
j

�

Xp

l�1

��j�
mÿ lm=p 2

j

np=2

� �lm=p

1
f�j �2�2

j
=n p=2�g

� Cnÿsp=�1�2s�
� Cp2

js�p=2
X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2

�j

Xp

l�1

2
j

np=2
�

ÿ1

j

� �lm=p

1
f�j �2�2

j
=n p=2�g

� Cnÿsp=�1�2s�
� Cp2

js�p=2
X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2 2

j

np=2
� Cnÿsp=�1�2s�

:

Let us now investigate the case where p is not an even integer: let p � �p1 � �1ÿ ��p2,

where � 2 �0; 1� and p1; p2 2 2N. In this case, we replace the U-estimate by the interpolated

estimate (see (10)).

Only the factors T2 and T3 have to be investigated separately. For T3, the task is not

di�cult since it is enough to bound in (21) E�^�j�
m
by �E^

�j� p1�
m
�

�

�E^�j� p2�
m
�

1ÿ�
and then

to use the same arguments as those following inequality (21):

T3 � C2 js�p=2
X

js � j� j1

2
j� p1=2ÿ1�

2
ÿj�p=2 2

j

np1=2
E�^�j� p1��

m 2
j

np1=2

� �
ÿm� �1=m00

" #
�

� 2
j� p2=2ÿ1�

2
ÿj�p2=2

2
j

np2=2
E�^�j� p2��

m 2
j

np2=2

� �
ÿm� �1=m00

" #1ÿ�

:

Now, we have Bspq � Bsp1q
as the functions have common impact support and Bspq � Bs2p2q

with sÿ 1=p � s2 ÿ 1=p2. This implies that �j� p1� � C2ÿj�s�1=2ÿ1=p1�p1 and �j� p2� �

C2ÿj�s2�1=2ÿ1=p2�p2 . It remains then just to extend the later proof for T3 with these

bounds. This does not present any di�culty.

For T2, let us formulate the proof, for the sake of simplicity, when p2 ÿ p1 � 2. Let

p0 � p � p00, p
0

0 � p0 � 2. We have to replace Lemma 3 by the following result.

Lemma 6. For all m 2 2N, we have, if j � 0; 2
j
� n,

E�nÿ1 ^�j� p0� ÿ�j� p
0

0��
m
� C

Xp
0

0

l�1

��j� p
0

0 ÿ l��mnÿlm=2:

Proof. For proving this Lemma 6, we follow the same scheme as we used for proving
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Lemma 3. Keeping the same notation, we have

nÿ1 ^�j� p0� ÿ�j� p
0

0� �

X

k

1

C
p0
n

X

�; j�j�p0

Xp
0

0

l�1

�
p0
0
ÿ l

j k

�

"
X


��; j
j� l

� 

 l
j k �X


� �

1

n1=2

X


��; j
j� lÿ1

� 

�lÿ1�

j k �X


�

�

1

n

X


��; j
j� lÿ2

� 

�lÿ2�

j k �X


�

#

;

with the convention that

X


��; j
j�0

� 

0

j k �X

� � 2 and

X


��; j
j� l<0

� 

 l
j k �X


� � 0:

Now, again reversing the order of summation, we obtain:

E�nÿ1 ^�j� p0� ÿ�j� p
0

0��
m
� C

Xp
0

0

l�1

X

k1; ... ; km

Ym

t�1

j�j kt
j

p0
0
ÿ l Qm; l

nml
�

Qm; lÿ1

nm�lÿ1=2�
�

Qm; lÿ2

nm�lÿ1�

� �

:

Using inequality (18), we obtain the result. h

Returning to the behaviour of T2, we only have to look at the factor:

T2 � Cp2
js�p=2

X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2

E��j1f�j � 2�2 j
=n p=2�g ��j1

f
^

�j � 2 j
=n p=2g1f�j � 2�2 j

=n p=2�g�

� Cp2
js�p=2

X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2

��j1
f�j � 2�2 j

=n p=2�g

��j�1
f
^

�j� p0�� 2 j
=n p0=2g

1
f�j � 2�2 j

=n p=2�g � 1
f
^

�j�p
0

0
�� 2 j

=n
p0
0
=2
g

1
f�j � 2�2 j

=n p=2�g��:

But we have

�j � 2
2
j

np=2

� �

� �j� p
0

0� � 2
2
j

np
0

0
=2

� �

�22�

Therefore,

T2 � Cp2
js�p=2

X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2 2

j

np=2
��j1

f�j� p
0

0
�� 2�2 j

=n
p0
0
=2
�g

�

� P�j^�j� p
0

0� ÿ�j� p
0

0�j � �j� p
0

0�=2� � P
1

n
^

�j� p0� ÿ�j� p
0

0�

�
�
�
�

�
�
�
�
� �j� p

0

0�=2�

� �� ��

:
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Using Chebyshev inequality, Lemmas 3 and 6 and inequality (6), we get form 2 2N,m > p:

T2 � Cp2
js�p=22

X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2

�

2
j

np=2
�

Xp
0

0

l�1

�j� p
0

0 ÿ l�mnÿml=2�j� p
0

0�
1ÿm

1
f�j� p

0

0
�� 2�2 j

=n
p0
0
=2
�g

2

4

3

5

� Cp2
js�p=22

X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2

�

2
j

np=2
�

Xp
0

0

l�1

nÿml=2�j� p
0

0�
�pÿml�=p0

02
j�1ÿp=p0

0
�ml=p0

0
�

1
f�j� p

0

0
�� 2�2 j

=n
p0
0
=2
�g

2

4

3

5

� Cp2
js�p=22

X

j0 � j� js

2
j� p=2ÿ1�

2
ÿj�p=2 2

j

np=2
�

Xp
0

0

l�1

nÿml=2
2
j

n
p0
0
=2

� �
� pÿml�=p0

0

2
j�1ÿp=p0

0
�ml=p0

0
�

2

4

3

5

� Cpn
ÿsp=�1�2s�

:

3.4. PROOF OF THEOREM 1 IN THE CASE OF SOFT THRESHOLDING

The proof for the case of soft thresholding is exactly similar to the proof for the hard

thresholding case. The bias term and the stochastic term are the same. For the nonlinear

stochastic term, let us denote by R1;R2;R3;R4 the quantities associated with T1, T2, T3, T4.

R2 and R4 are identical to T2 and T4 (for
^

�j � 2
j
=np=2�; R1 and R3 are bounded as T1 (see

(19)) and T3 (see (21)) (for
^

�j � 2
j
=np=2�. Indeed, using Lemma 5 once again for some

�1 > 0 and some �2 < 0:

R1 �

X

j0 � j� js

X

k

��̂ j
^

�j k ÿ �j k� j k1
f
^

�j � 2 j
=n p=2g























p

p

� C2 js�1p=2
Xjs

j0

2
j�p=2ÿ1�

2
j�1p=2

� E

X

k

j
^

�j k ÿ �j kj
p
1
f
^

�j � 2 j
=n p=2g

� E
2
j

np=2

� �p

^

�

1ÿp
j 1

f
^

�j � 2 j
=n p=2g

" #

� C2 js�1p=2
Xjs

j0

2
j�p=2ÿ1�

2
j�1p=2 E

X

k

j
^

�j k ÿ �j kj
p
�

2
j

np=2

" #

� Cnÿsp=�1�2s�
:
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X

js � j� j1

X

k

��̂ j
^

�j k ÿ �j k� j k1
f
^

�j � 2 j
=n p=2g























p

p

� C2 js�2p=2
Xj1

j2

2
j�p=2ÿ1�

2
j�2p=2

� E

X

k

j
^

�j k ÿ �j kj
p
1
f
^

�j � 2 j
=n p=2g

� E
2
j

np=2

� �p

^

�

1ÿp
j 1

f
^

�j � 2 j
=n p=2g

" #

244 G. Kerkyacharian, D. Picard and K. Tribouley



�C2 js�2p=2
Xj1

j2

2
j�p=2ÿ1�

2
j�2p=2 E

X

k

j
^

�j k ÿ �j kj
p
1
f
^

�j � 2 j
=n p=2g

� E^�j1
f
^

�j � 2 j
=n p=2g
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�C2 js�2p=2
Xj1

j2

2
j� p=2ÿ1�
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j�2p=2

X

k

�Ej ^�j k ÿ �j kj
pm0

�

1=m0
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�j �
2
j

np=2

� �1=m00
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m 2
j
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�E�^�j�
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j
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� �
ÿ1m000

" #

�Cnsp=�1�2s�
:

where m, m0

, m00

are chosen as for the study of T3 and m000

2 2N.

Appendix: Proof of Lemma 4

For r > 1, we have, using the Rosenthal inequality, see Rosenthal (1972):

X

k

�Ej
̂j k ÿ 
j kj
mr
�

1=r

 !

�

X
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�
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� dx

� �

�2kgk
1

2
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�
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nmrÿ1

2

6
6
4

�

�

jgj2�xÿ k� f �x=2 j
� dx

� �mr=2

nmr=2

3

7
7
7
5

1=r

� �Cm�
1=r

X

k

�

jgj2�xÿ k� f
x

2 j

� �

dx

� �
1=r
�2kgk

1

�

mÿ2=r
2
j=2�mÿ2=r�

nmÿ1=r

2

6
6
4

�

X

k

�

jgj2�xÿ k� f �x=2 j
� dx
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nm=2

3

7
7
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5
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1

nm=2

X
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� �

dx
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�
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X
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by the Jensen inequality and m=2 � 1

LHS �
2
j

nm=2

X

k

jgj2�� ÿ k�






















1

�

f m=2�x� dx:

For the second term, noticing that in the sum all the terms but ÿB2 j
ÿ A � k � B2 j

ÿ A

are zero and the rest are bounded, we have:

X

k

�

jgj2�xÿ k� f
x

2 j

� �

dx

� �
1=r

� jjgjj
2=r

2
k f k1=r

1

2
j
2B:

So:

X

k

�

jgj2�xÿ k� f
x

2 j

� �

dx

� �
1=r
�2kgk

1

�

mÿ2=r
2
�j=2��mÿ2=r�

�

nmÿ1=r

� 2B
2
j

nm=2
kgkm

1

2
mÿ2=r 2

j�m=2ÿ1=r�

nm=2ÿ1=r
:

As 2
j
� n, the lemma is proved. The proof for r � 1 is in the same spirit and in fact easier.
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