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Statistical inference for extremes has been a subject of intensive research over the past couple of

decades. One approach is based on modelling exceedances of a random variable over a high threshold

with the generalized Pareto (GP) distribution. This has proved to be an important way to apply

extreme value theory in practice and is widely used. We introduce a multivariate analogue of the GP

distribution and show that it is characterized by each of following two properties: first, exceedances

asymptotically have a multivariate GP distribution if and only if maxima asymptotically are extreme

value distributed; and second, the multivariate GP distribution is the only one which is preserved

under change of exceedance levels. We also discuss a bivariate example and lower-dimensional

marginal distributions.
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1. Introduction

Statistical modeling of extreme values has developed extensively over recent decades. This

is witnessed by several recent books (Coles 2001; Embrechts et al. 1997; Kotz and

Nadarajah 2000; Kowaka 1994; Beirlant et al. 2004; Reiss and Thomas 2005) and a large

journal literature which includes both theoretical and applied papers, the latter concerned

with a wide range of important problems such as extreme wind speeds, waveheights, floods,

insurance claims, price fluctuations, . . . : For references to some of this literature, see Kotz

and Nadarajah (2000) and Beirlant et al. (2004).

The main emphasis has been on univariate extremes, and so far the univariate results are

the most complete and the most directly usable. Two main sets of methods, the block

maxima method and the peaks-over-threshold method, have been developed (Coles 2001).

Here we only consider independent and identically distributed variables. However, the

methods are also widely useful for dependent and non-stationary situations.

In the block maxima method one is supposed to have observed the maximum values of

some quantities over a number of ‘blocks’, a typical example being that a block is a year

and the observed quantities may be some environmental quantity such as the wind speed at

a specific location. In this method, the block maxima are modelled by an extreme value

(EV) distribution with distribution function (d.f.)

G(x) ¼ exp � 1 þ ª
x � �

�

� ��1=ª

þ

� �
:
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This choice of distribution is motivated by the fact that the EV distributions are the only ones

which can appear as the limit of linearly normalized maxima, and that they are the only ones

which are ‘max-stable’, that is, such that a change of block size only leads to a change of

location and scale parameter in the distribution.

In the peaks-over-threshold method, on the other hand, one is supposed to have observed

all values which are larger than some suitable threshold, for example all wind speeds in

excess of 20 m/s. These values are then assumed to follow the generalized Pareto (GP)

distribution with d.f.

H(x) ¼ 1 � 1 þ ª
x

�

� ��1=ª

þ
:

This choice of distributions is motivated by characterizations due to Balkema and de Haan

(1974) and Pickands (1975). One characterization is that the distribution of a scale-

normalized exceedance over a threshold asymptotically (as the threshold tends to the right-

hand endpoint of the distribution) converges to a GP distribution if and only if the

distribution of block maxima converges (as the block length tends to infinity) to an EV

distribution. The other one is that the GP distributions are the only ‘stable’ ones, that is, the

only ones for which the conditional distribution of an exceedance is a scale transformation of

the original distribution. Pickands gives the full statement of this, although we believe there

is a small gap in his proof. Balkema and de Haan only consider the infinite-endpoint case, but

give a complete proof. Some basic papers on the peaks-over-threshold method are Smith

(1985, 1987), Smith et al. (1990, 1997) and Davidson and Smith (1990). Ledford and Tawn

(1996) develop threshold-based models for joint tail regions of multivariate extreme for

asymptotically independent cases. Since the peaks-over-threshold method uses more of the

data it can sometimes result in better estimation precision than the block maxima method. As

an aside, there are several other variants of the (one-dimensional) Pareto distribution; see, for

example, Arnold (1983).

Multivariate EV distributions arise in connection with extremes of a random sample from

a multivariate distribution. They are extensively discussed by Resnick (1987), Kotz and

Nadarajah (2000) and Beirlant et al. (2004) and in the review by Fougères (2004). Several

recent papers (e.g. Joe et al. 1992; Coles and Tawn 1991; Tawn 1988, 1990; Smith et al.

1990) have explored their statistical application.

There are several possibilities for ordering multivariate data; see the review by Barnett

(1976). For extreme values the most widely used method is the marginal or M-ordering

where the maximum is defined by taking componentwise maxima. Then, for a series of

vectors fXi, i > 1g ¼ f(X
(1)
i , . . . , X

(d)
i ), i > 1g, the maximum, Mn, is defined by

Mn ¼ (M (1)
n , . . . , M (d)

n ) ¼ (
Wn

i¼1 X
(1)
i , . . . ,

Wn
i¼1 X

(d)
i ), where

W
denotes maximum. Under

rather general conditions, the distribution of the linearly normalized Mn converges to a

multivariate EV distribution. In applications Mn is often the vector of annual maxima, and

block maxima methods can be applied similarly to when the observations are one-

dimensional. However, as in the univariate case it is also of interest to study methods which

utilize more of the data and which can contribute to better estimation of parameters. For

multivariate observations a further reason to study such methods is that block maxima hide
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the ‘time structure’ since they do not show if the component maxima have occurred

simultaneously or not.

The aim of this paper is to define the multivariate GP distributions and to prove that this

definition indeed is the right one. The multivariate GP distribution should (a) be the natural

distribution for exceedances of high thresholds by multivariate random vectors, and (b)

describe what happens to the other components when one or more of the components

exceed their thresholds. In complete analogy with the one-dimensional case we interpret (a)

to mean that the multivariate GP distribution should be characterized by each of the

following two properties:

• exceedances (of suitably coordinated levels) asymptotically have a multivariate GP

distribution if and only if componentwise maxima asymptotically are EV distributed;

• the multivariate GP distribution is the only one which is preserved under (a suitably

coordinated) change of exceedance levels.

In the next section we prove that this indeed is the case for the definition given in this paper.

The section also explains the caveat ‘suitably coordinated levels’. Further, requirement (b) is

taken care of by the choice of support for the GP distribution.

There is a close connection between the multivariate GP distribution and the multivariate

point process methods used in Coles and Tawn (1991) and Joe et al. (1992); see Section 2.

In Section 3 we show how an ‘explicit’ formula for the multivariate EV distributions

directly leads to a corresponding expression for the multivariate GP distributions and also

give a few concrete examples. Lower-dimensional ‘marginals’ of multivariate GP

distributions may be thought of in different ways. This is discussed in Section 4. Proofs

are given in Section 5.

This paper is a further development of the results in Tajvidi (1996). A set of related work

is Falk and Reiss (2001, 2002, 2003a, 2003b, 2005) which introduced a class of

distributions named bivariate GP distributions with uniform margins and suggested a

canonical parameterization for the distributions. The papers also discussed estimation and

asymptotic normality. To the best of our knowledge no multivariate generalization of these

distributions has been discussed by these authors.

2. Multivariate generalized Pareto distributions

In this section we give the formal definition of the multivariate GP distribution and

reformulate the motivating characterizations in mathematical terms. Proofs of the

characterizations are given in Section 5. However, we begin with some preliminaries.

Suppose fXi, i > 1g ¼ f(X
(1)
i , . . . , X

(d)
i ), i > 1g are independent and identically dis-

tributed d-dimensional random vectors with d.f. F. As before, let Mn be the vector of

componentwise maxima,

Mn ¼ (M (1)
n , . . . , M (d)

n ) ¼
_n

i¼1

X
(1)
i , . . . ,

_n

i¼1

X
(d)
i

 !
:
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Assume that there exist normalizing constants � (i)
n . 0, u(i)

n 2 R, 1 < i < d, n > 1, such

that as n ! 1,

P[(M (i)
n � u(i)

n )=� (i)
n < x(i), 1 < i < d] ¼ F n(� (1)

n x(1) þ u(1)
n , . . . , � (d)

n x(d) þ u(d)
n ) ! G(x)

(1)

with the limit distribution G such that each marginal Gi, i ¼ 1, . . . , d, is non-degenerate. If

(1) holds, F is said to be in the domain of attraction of G, and we write F 2 D(G), and G is

said to be a multivariate extreme value distribution.

By setting all x except x(i) to þ1 it is seen that each marginal Gi of G must be an EV

d.f., so that

Gi(x) ¼ exp � 1 þ ªi

x � �i

� i

� ��1=ªi

þ

 !
:

Here �i is a location parameter, � i . 0 is a scale parameter, ªi is a shape parameter, and the

‘+’ signifies that if the expression in parentheses is negative then it should be replaced by 0.

For ªi ¼ 0 the expression for the d.f. should be interpreted to mean exp(�exp(�(x � �i)=� i).

As in the univariate case, a multivariate convergence of types argument shows that the

class of limit d.f.s for (1) is the class of max-stable distributions, where a d.f. G in Rd is

max-stable if, for i ¼ 1, . . . , d and every t . 0, there exist functions Æ(i)(t) . 0, �(i)(t)

such that

Gt(x) ¼ G(Æ(1)(t)x(1) þ �(1)(t), . . . , Æ(d)(t)x(d) þ �(d)(t)):

It is convenient to have a convention to handle vectors occurring in the same expression

but not all of the same length. We use the convention that the value of the expression is a

vector with the same length as that of the longest vector occurring in the expression.

Shorter vectors are recycled as often as need be, perhaps fractionally, until they match the

length of the longest vector. In particular, a single number is repeated the appropriate

number of times. All operations on vectors are performed element by element. For example,

if x and y are bivariate vectors and Æ is a scalar, then we have

Æx ¼ (Æx1, Æx2), Æþ x ¼ (Æþ x1, Æþ x2)

and

xy ¼ (x1 y1, x2 y2), xþ y ¼ (x1 þ y1, x2 þ y2):

This convention also applies when we take the supremum or infimum of a set, so that, for

example, a coordinate of the supremum of a set is the supremum of all the values this

coordinate takes in the set. Thus, for un ¼ (u(1)
n , . . . u(d)

n ), � n ¼ (� (1)
n , . . . � (d)

n ), we can write

(1) as

P((Mn � un)=� n < x) ! G(x):

For the definition we also use the convention that 0=0 ¼ 1. The definition has also

independently been noticed by Beirlant et al. (2004: Chapter 9).
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Definition 2.1. A distribution function H is a multivariate generalized Pareto distribution if

H(x) ¼ 1

�logG(0)
log

G(x)

G(x ^ 0)
(2)

for some extreme value distribution G with non-degenerate margins and with 0 , G(0) , 1.

In particular, H(x) ¼ 0 for x , 0 and H(x) ¼ 1 � logG(x)=logG(0) for x . 0.

Perhaps more elegantly, the class of multivariate GP distributions could alternatively be

taken to be all distributions of the form

H(x) ¼ log
G(x)

G(x ^ 0)
,

for G an EV distribution with G(0) ¼ e�1. This is not less general than (2) since if we let

t ¼ 1=(�logG(0)) then the H in (2) is of the form log(G(x) t=G(x ^ 0) t), and by max-

stability Gt is again an EV distribution, with G(0) t ¼ exp(�logG(0)=logG(0)) ¼ e�1.

However, for statistical applications one would want to parameterize G, and then the form (2)

is more convenient.

As mentioned in the Introduction, there is a strong connection between this multivariate

GP distribution and the point process approach of Coles and Tawn (1991) and Joe et al.

(1992). The major difference is that (2) holds for all values x 6, 0 whereas in the point

process approach only values x . 0 are modelled parametrically. This might prove to be an

improvement for statistical analysis of extremes, since then negative xis also contribute to

making inference on the distribution.

Our first motivation for this definition is the following theorem. It shows that exceedances

(of suitably coordinated levels) asymptotically have a multivariate GP distribution if and

only if maxima are asymptotically EV distributed. To state the theorem, let X be a d-

dimensional random vector with d.f. F and write F ¼ 1 � F for the tail function of a

distribution F. Further, let fu(t) j t 2 [1, 1)g be a d-dimensional curve starting at u(1) ¼ 0,

let �(u) ¼ �(u(t)) . 0 be a function with values in Rd , and let

Xu ¼ X� u

�(u)

be the vector of normalized exceedances of the levels u. In the characterizations we consider

exceedances of d levels which ‘tend to infinity’ (interpreted to mean that the levels move

further and further out into the tails of F). However, asymptotic distributions can differ for

different relations between the levels. The components of the curve fu(t)g give these levels

and the curve specifies how the levels increase ‘in a suitably coordinated way’.

Theorem 2.1. (i) Suppose G is a d-dimensional EV distribution with 0 , G(0) , 1. If

F 2 D(G) then there exists an increasing continuous curve u with F(u(t)) ! 1 as t ! 1,

and a function � (u) . 0 such that

P(Xu < xjXu 6< 0) ! 1

�logG(0)
log

G(x)

G(x ^ 0)
(3)
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as t ! 1, for all x.

(ii) Suppose there exists an increasing continuous curve u with F(u(t)) ! 1 as t ! 1,

and a function � (u) . 0 such that

P(Xu < xjXu 6< 0) ! H(x), (4)

for some function H, as t ! 1, for x . 0, where the marginals of H on Rþ are non-

degenerate. Then the left-hand side of (4) converges to a limit H(x) for all x and there is a

unique multivariate extreme value distribution G with G(0) ¼ e�1 such that

H(x) ¼ log
G(x)

G(x ^ 0)
: (5)

This G satisfies G(x) ¼ e�H(x) for x . 0, and F 2 D(G).

The next motivation for Definition 2.1 is that distribution (2) is the only one which is

preserved under (a suitably coordinated) change of exceedance levels.

Theorem 2.2. (i) Suppose X has a multivariate generalized Pareto distribution. Then there

exists an increasing continuous curve u with P(X < u(t)) ! 1 as t ! 1, and a function

�(u) . 0 such that

P(Xu < xjXu 6< 0) ¼ P(X < x), (6)

for t 2 [1, 1) and all x.

(ii) If there exists an increasing continuous curve u with P(X < u(t)) ! 1 as t ! 1,

and a function �(u) . 0 such that (6) holds for x . 0, and X has non-degenerate margins,

then X has a multivariate generalized Pareto distribution.

A useful tool in extreme value theory is the convergence of the point process of large

values; see Resnick (1987). The close relation between the previous results and point

process convergence is the content of the next result. In it we use the rather standard

notation of Resnick (1987), and let X1, X2, . . . be independent and indentically distributed

with d.f. F.

Theorem 2.3. (i) Suppose one of the conditions of Theorem 2.1 holds. Write S for the support

of G, so that S ¼ fx : G(x) 2 (0, 1)g and let � be the measure on S which is determined by

�(�1, x]c ¼ �logG(x). Then there exist d-dimensional vectors of constants un and � n . 0

such that

Xn

i¼1

�(1=n,(Xi�un)=� n) ) PRM(dt 3 d�) on S: (7)

(ii) Suppose (7) holds on x > 0 for some measure � with �(�1, 0]c 2 (0, 1) and where

the function �(�1, x]c has non-degenerate marginals. Then the conditions of Theorem 2.1

hold, and hence also (i) above is satisfied.
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3. A representation and a bivariate example

In this section we exhibit a general expression for the multivariate GP distributions and give

one specific bivariate example: the bivariate logistic distribution.

Several authors, among them Resnick (1987) and Pickands (1981), have given equivalent

characterizations of multivariate EV distributions, assuming different marginal distributions.

For example, according to Proposition 5.11 in Resnick (1987), all max-stable distributions

with the unit Fréchet EV distribution �1(x) ¼ exp(�x�1), x . 0, as marginal distribution

can be written as

G�(x) ¼ expf���[0, x]cg, x > 0, (8)

with

��[0, x]c ¼
ð
@

_d
i¼1

a(i)

x(i)

� �
S(da): (9)

Here S is a finite measure on @ ¼ fy 2 d : kyk ¼ 1g, which below is assumed to satisfyÐ
@ a(i)S(da) ¼ 1, 1 < i < d, where k � k is an arbitrary norm in Rd , and �� is called the

exponent measure.

This leads to the description of the multivariate EV distribution G with arbitrary

marginals as all distributions of the form

G(x) ¼ G� 1þ ª x� �ð Þ
�

� �1=ª
 !

:

Here �, � and ª are d-dimensional vectors with potentially different entries. By Definition

2.1 this in turn gives the following expression for the multivariate GP distributions.

Proposition 3.1. H(x) is a multivariate GP distribution if there exists a finite measure S,

normalized as described above, such that for x 6< 0,

H(x)¼

ð
@

_d
i¼1

(a(i)(1þª(i)(x(i) ^0� �(i))=� (i))�1=ª(i)

)S(da)�
ð
@

_d
i¼1

(a(i)(1þª(i)(x(i) � �(i))=� (i))�1=ª(i)

)S(da)

ð
@

_d
i¼1

(a(i)(1�ª(i)�(i)=� (i))�1=ª(i)

)S(da)

¼ ��([0, (1þª(x^0� �)=� )1=ª]c)� ��([0, (1þª(x� �)=� )1=ª]c)

��([0, (1�ª�=� )1=ª]c)
:

The parameters �, ª, and � . 0 have to satisfy �(i) , � (i)=ª(i) if ª(i) . 0 and �(i) . � (i)=ª(i)

for ª(i) , 0, for i ¼ 1, . . . , n (to make 0 , G(0) , 1).

Example 3.1. The symmetric logistic model has exponent measure
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��([0, (x, y)]c) ¼ (x�r þ y�r)1=r, r > 1:

The independent case corresponds to r ¼ 1 and for r ¼ þ1 we obtain complete dependence,

which is the only situation without density.

By transforming marginals to an arbitrary EV distribution we obtain the following

bivariate GP distribution:

H(x, y) ¼

((1 þ ªx(x ^ 0 � �x)=� x)
�r=ªx

þ þ (1 þ ª y(y ^ 0 � � y)=� y)
�r=ª y

þ )1=r

�((1 þ ªx(x � �x)=� x)
�r=ªx

þ þ (1 þ ª y(y � � y)=� y)
�r=ª y

þ )1=r

((1 � ªx�x=� x) �r=ªx þ (1 � ª y� y=� y)�r=ª y )1=r
:

As above we assume that the parameterization is such that it ensures 0 , G(0, 0) , 1:
For (x, y) . (0, 0) this corresponds to

H(x, y) ¼ 1 � ((1 þ ªx(x � �x)=� x)
�r=ªx

þ þ (1 þ ª y(y � � y)=� y)
�r=ª y

þ )1=r

((1 � ªx�x=� x)�r=ªx þ (1 � ª y� y=� y)�r=ª y )1=r
,

while for x , 0, y . 0 we have

H(x, y) ¼

((1 þ ªx(x � �x)=� x)
�r=ªx

þ þ (1 � ª y � y=� y)�r=ª y )1=r

�((1 þ ªx(x � �x)=� x)
�r=ªx

þ þ (1 þ ª y(y � � y)=� y)
�r=ª y

þ )1=r

((1 � ªx�x=� x)�r=ªx þ (1 � ª y� y=� y)�r=ª y )1=r
:

For the independent case, r ¼ 1, this simplifies to

H(x, y) ¼ (1 � ª y � y=� y) �1=ª y � (1 þ ª y(y � � y)=� y)
�1=ªx

þ
(1 � ªx�x=� x)�1=ªx þ (1 � ª y� y=� y)�1=ª y

:

Now, still considering the independent case, assume ªx, ª y . 0 and let X1 and Y1 be

independent random variables where X1 has the GP d.f.

1 � 1 þ ªx x

� x

� ��1=ªx

þ
for x . 0,

and Y1 is defined similarly. Further, let

p ¼ 1 � ªx �x=� xð Þ�1=ªx

1 � ªx�x=� xð Þ�1=ªx þ 1 � ª y� y=� y

� ��1=ª y
:

Then H is the distribution function of a bivariate random variable which equals

(X1, � y � � y=ª y) with probability p and (�x � � x=ªx, Y1) with probability q ¼ 1 � p.

Thus, in either case one of the components is degenerate at the lower bound of the

distribution while the other is a GP random variable. The same holds also when the ªs are

non-positive, but then the lower bound is �1.

This completely agrees with intuition. Suppose the the distribution of the exceedances of
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a bivariate vector after normalization converges as the levels increase. Then, for

independent components the event that one of the component exceeds its level does not

influence the value of the other one. Hence asymptotically, as the levels tend to infinity the

normalization will force the this component down to its lower bound. The roles of the

components can of course be interchanged in this argument.

4. Lower-dimensional marginal distributions

Interpreted in the usual way, lower-dimensional marginal distributions of multivariate GP

distributions are not GP distributions. For example, if H(x, y) is the bivariate GP

distribution from Example 3.1 and H1(x) is the marginal distribution of the first component,

then

H1(x) ¼ H(x, 1)

¼ ((1 þ ªx(x ^ 0 � �x)=� x)
�r=ªx

þ þ (1 � ª y � y=� y)�r=ª y )1=r � (1 þ ªx(x � �x)=� x)
�1=ªx

þ
((1 � ªx�x=� x)�r=ªx þ (1 � ª y� y=� y)�r=ª y )1=r

:

This is not a one-dimensional GP distribution. However, if X 1 has distribution H1 then the

conditional distribution of X1jX 1 . 0 is GP. This property holds for all marginal distributions

regardless of the dimension of the original problem.

The reason is that H1 is the asymptotic conditional distribution of the first component of

the random vector given that either the first or the second component is large. In contrast, a

one-dimensional GP distribution is the asymptotic conditional distribution of a random

variable, given that it is large. In general, a (standard) lower-dimensional marginal

distribution of a multivariate GP distribution is the asymptotic conditional distribution of a

subset of random variables given that at least one of a bigger set of variables is large.

Sometimes these may be the appropriate lower-dimensional marginals of multivariate GP

distributions. However, the following concept may also be useful.

Let H be a d-dimensional multivariate GP distribution with representation

H(y) ¼ 1

�logG(0)
log

G(y)

G(y ^ 0)
(10)

in terms of a multivariate EV distribution G. For a (d � 1)-dimensional vector x ¼
(x1, . . . xd�1), let G(i)(x) ¼ G((x1, . . . xi�1, 1, xi, . . . xd�1)) be the (d � 1)-dimensional

marginal distribution of G, with the ith component removed. The (d � 1)-dimensional

generalized Pareto marginal distribution HGP
(i) of H is defined to be

HGP
(i) (x) ¼ 1

�logG(i)(0)
log

G(i)(x)

G(i)(x ^ 0)
: (11)

Since G(i) is an EV distribution it follows directly that HGP
(i) is a GP distribution.

The interpretation is that if H is the asymptotic conditional distribution of a d-

dimensional random vector (X1, . . . X d) given that at least one of its components is large,
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then HGP
(i) is the asymptotic conditional distribution of (X 1, . . . X i�1, X iþ1, . . . X d) given

that at least one of the components of (X1, . . . X i�1, X iþ1, . . . X d) is large.

Expression (11) is implicit since it involves G. However, the GP marginal distribution

can also be expressed directly in terms of the parent GP distribution H . For x a (d � 1)-

dimensional vector x, write x(i) for the d-dimensional vector which is obtained from x by

inserting an 1 at position i, that is, x(i) ¼ (x1, . . . xi�1, 1, xi, . . . xd�1). Then

HGP
(i) (x) ¼ H(x, 1) � H(x ^ 0, 1)

1 � H(x ^ 0, 1)
: (12)

We have formally only discussed (d � 1)-dimensional marginal distributions of d-

dimensional GP distributions. However, of course, for both definitions of marginal

distributions, (d � k)-dimensional marginal distributions can be obtained by repeating the

above procedure k times, and it is obvious that the resulting (d � k)-dimensional

distributions do not depend on the order in which one steps down in dimension.

5. Proofs

Proof of Theorem 2.1. (i) If F 2 D(G) then there exist � n . 0, un in Rd such that

F n(� nxþ un) ! G(x) (13)

for all x, since G is continuous. The components of the norming constants � n . 0, un may

be chosen as in the univariate case, where we may choose each component of un to be non-

decreasing (see Leadbetter et al. 1983: 18). Further, making a suitably small pertubation of

the un we may, and will in what follows, assume un to be strictly increasing.

By (13) also F n(� nþ1xþ unþ1) ! G(x) and by the convergence of types theorem

(Leadbetter et al. 1983: 7) applied to each marginal, it follows that

� nþ1=� n ! 1 and (unþ1 � un)=� n ! 0: (14)

Taking logarithms, it will be seen that (13) is equivalent to

nF(� nxþ un) ! �logG(x): (15)

Now, define u by u(t) ¼ un for t ¼ n and by linear interpolation for n , t , n þ 1, and

set �(u(t)) ¼ � n for n < t , n þ 1. It then follows from (14) and (15) that

tF(�(u(t))xþ u(t)) ! �logG(x): (16)

By straightforward argument,

P(Xu < xjXu 6< 0) ¼ P(Xu 6< x ^ 0) � P(Xu 6< x)

P(Xu 6< 0)
, (17)

for x 6< 0. Since P(Xu 6< x) ¼ F(�uxþ u), (3) now follows from (16).

(ii) Suppose that (4) holds. Since u(t) is strictly increasing we may reparameterize so that

t ¼ inffs : F(u(s)) < 1=tg for large t. Then, tF(u(t�)) > 1 > tF(u(t)). Further, for any

continuity point � . 0 of H , since � . 0,

926 H. Rootzén and N. Tajvidi



lim sup
t!1

F(u(t�)

F(u(t)
< lim sup t!1

F(u(t))

F(u(t) þ �(u(t))�)
¼ 1

H(�)
:

Since H(x) is a limit of distribution functions it is right continuous, and H(0) ¼ 1, so letting

� ! 0 through continuity points of H gives that F(u(t�)=F(u(t) ! 1, and hence

tF(u(t)) ! 1:

It follows from (4) and (17) that, for x . 0,

lim
t!1

tF(u(t) þ �(u(t))x) ¼ lim
t!1

F(u(t) þ �(u(t))x)

F(u(t)
(18)

¼ lim
t!1

P(Xu 6< x)

P(Xu 6< 0)
¼ H(x):

We next show that (18) also holds when x is not positive. From (18) it follows that

F(u(t) þ �(t)x) t ! e�H(x) for x . 0. Further, tF(u(˜t) þ �(u(˜t))x) ! H(x)=˜ for ˜ . 0

and hence

F(u(˜t) þ �(˜t)) t ! e�H(x)=˜:

By the extremal types theorem (Leadbetter et al. 1983: 7) there exist c˜ . 0, x˜ such that

�(˜t)

�(t)
! c˜,

u(˜t) � u(t)

�(t)
! x˜:

Thus, for any x > �x˜=c˜,

˜tF(u(˜t) þ �(˜t)x) ¼ ˜tF u(t) þ �(t)
�(˜t)

�(t)
xþ u(˜t) � u(t)

�(t)

� �� �

! ˜H(c˜xþ x˜):

This may be rephrased as

tF(u(t) þ �(t)x) ! ˜H(c˜xþ x˜):

Hence the limit does not depend on the choice of ˜, and we may uniquely define �logG(x)

as ˜H(cxþ x˜) for any x > inf˜>1x˜=c˜ to obtain that, for such x,

tF(u(t) þ �(t)x) ! �logG(x): (19)

Suppose that one coordinate in x is less than the corresponding coordinate of

inf˜>1x˜=c˜. Then if we let x1 be the vector which has all other components set to 1,

and x10 the vector were all other components are set to 1 and this coordinate is set to 0,

we have that

lim inf
t!1

tF(u(t) þ �(t)x) > lim inf
t!1

tF(u(t) þ �(t)x1) > ˜H(x10 ),

for any ˜ . 1. Hence tF(u(t) þ �(t)x) ! 1 for such x, and thus if we define

�logG(x) ¼ 1 for x which are not greater than inf˜>1x˜=c˜ then (19) holds for all x. Thus,
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F(u(t) þ �(t)x) t ! G(x), for all x,

and hence G(x) is a multivariate EV distribution, and it follows from the first part of the

theorem that (5) holds, since G(0) ¼ e�H(0) ¼ e�1: h

Proof of Theorem 2.2. (i) Let X have distribution H . By definition, H is of the form (2) for

some EV distribution G, so that

P(X 6< x) ¼ 1 � 1

�logG(0)
log

G(x)

G(x ^ 0)
(20)

¼ 1

logG(0)
log

G(x)G(0)

G(x ^ 0)
:

Since G is max-stable, there exist continuous curves �(t) . 0, u(t) with �(1) ¼ 1, u(1) ¼ 0

and u(t) strictly increasing, such that G(u(t) þ �(t)x) t ¼ G(x). In particular,

G(u(t)) ¼ G(0)1= t. Further, by (17) and (20),

P(Xu < xjXu 6< 0) ¼ 1

�logG(u(t))
log

G(u(t) þ �(t)x)G(u(t) þ �(t)(x ^ 0) ^ 0)

G(u(t) þ �(t)x ^ 0)G((u(t) þ �(t)x ^ 0)
:

Since (x ^ 0) ^ 0 ¼ x ^ 0, it follows that

P(Xu < xjXu 6< 0) ¼ t

�logG(0)
log

G(u(t) þ �(t)x)

G(u(t) þ �(t)x ^ 0)

¼ 1

�logG(0)
log

G(u(t) þ �(t)x) t

G(u(t) þ �(t)x ^ 0) t

¼ 1

�logG(0)
log

G(x)

G(x ^ 0)
¼ P(X < x):

(ii) This is an easy consequence of Theorem 2.1 (ii). h

Proof of Theorem 2.3. (i) By Theorem 2.1 we have that F 2 D(G), and hence there are

constants un, � n such that nP((Xi � un)=� n 6> x) ! �logG(x) on S. The conclusion of (i)

then follows from Theorem 3.21 of Resnick (1987).

(ii) Again by Theorem 3.21 of Resnick (1987), it follows that

nP((Xi � un)=� n 6< x) ! �((�1, x]c) for x . 0. However, this is just a different way of

writing (4) of Theorem 2.1, and hence condition (ii) of the theorem is satisfied, and the

result follows. h
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