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Abstract

We prove the local well-posedness for the nonlinear fourth-order Schrö-
dinger equation (NL4S) in Sobolev spaces. We also study the regularity of
local solutions in the sub-critical case. A direct consequence of this regular-
ity is the global well-posedness above mass and energy spaces under some
assumptions. Finally, we show the ill-posedness for (NL4S) in some cases of
the super-critical range.

1 Introduction

We consider the Cauchy problem for the fourth-order Schrödinger equation posed
on Rd, d ≥ 1, namely

{

i∂tu(t, x) + ∆2u(t, x) = −µ|u|ν−1u(t, x), (t, x) ∈ R × Rd,

u(0, x) = u0(x), x ∈ R
d.

(NL4S)

where ν > 1 and µ ∈ {±1}. The number µ = 1 (resp. µ = −1) corresponds to
the defocusing case (resp. focusing case).

The fourth-order Schrödinger equation was introduced by Karpman [Kar96]
and Karpman and Shagalov [KS00] taking into account the role of small fourth-
order dispersion terms in the propagation of intense laser beams in a bulk medium
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with Kerr nonlinearity. The study of nonlinear fourth-order Schrödinger equation
has been attracted a lot of interest in a past decade (see [Pau1], [Pau2], [PS10],
[HHW06], [HHW07], [HJ05], [Din2] and references cited therein).

It is worth noticing that if we set for λ > 0,

uλ(t, x) = λ− 4
ν−1 u(λ−4t, λ−1x), (1.1)

then (NL4S) is invariant under this scaling. An easy computation shows

‖uλ(0)‖Ḣγ = λ
d
2− 4

ν−1−γ‖u0‖Ḣγ ,

where Ḣγ is the homogeneous Sobolev space. From this, we define the critical
regularity exponent for (NL4S) by

γc =
d

2
− 4

ν − 1
. (1.2)

One said that Hγ is sub-critical (critical, super-critical) if γ > γc (γ = γc, γ < γc)
respectively. Another important property of (NL4S) is that the mass and energy
are formally conserved under the flow of the equation,

M(u(t)) =
∫

|u(t, x)|2dx, E(u(t)) =
∫

1

2
|∆u(t, x)|2 + µ

ν + 1
|u(t, x)|ν+1dx.

The main purpose of this note is to study the well-posedness and ill-posedness
results for (NL4S) in Sobolev spaces. In [Din1], the local well-posedness for the
nonlinear fractional Schrödinger equation including the fourth-order Schrödinger
equation in both sub-critical and critical cases are showed. We shall review the
local well-posedness for the nonlinear fourth-order Schrödinger equation below.
These results are very similar to the nonlinear Schrödinger equation given in
[CW90]. We also give the local well-posedness in the critical Sobolev space Hd/2.
The global well-posedness in L2 is then a direct consequence of the local existence
and the conservation of mass. We also recall (see e.g. [Pau1] or [Din1]) the global
well-posedness in the energy space H2 under some assumptions. We next show
the regularity of local solutions in the sub-critical case. As a consequence of this
regularity, we obtain the global well-posedness above the mass and energy spaces
for (NL4S) under some assumptions. The second part of this note is devoted to
the ill-posedness of (NL4S). It is easy to see (e.g [LS95]) that (NL4S) is ill-posed
in Ḣγ for γ < γc. Indeed if u solves (NL4S) with initial data u0 ∈ Ḣγ, then the
norm ‖uλ(0)‖Ḣγ and the lifespan of uλ go to zero as λ → 0. Using the technique
of Christ-Colliander-Tao given in [CCT03], we are able to prove the ill-posedness
for (NL4S) in Hγ with

{

γ ∈ (−∞,−d/2] ∪ [0, γc) when γc > 0,
γ ∈ (−∞,−d/2] ∩ (−∞, γc) otherwise.

(1.3)

This ill-posed result is similar to the nonlinear semi-relativistic equation given in
[Din3]. Note that for the nonlinear Schrödinger equation, the ill-posedness holds
in Hγ for γ < max{0, γc} (see [CCT03]). The main difference is that the non-
linear Schrödinger equation has the Galilean invariance while (NL4S) does not
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share this property. The Galilean invariance plays a crucial role in the proof of the
ill-posedness in the range γ ∈ (−d/2, 0). Recently, Hong and Sire in [HS15] used
the pseudo-Galilean transformation to show the ill-posedness for the nonlinear
fractional Schrödinger equation in Sobolev spaces of negative exponent. Unfor-
tunately, it seems to be difficult to control the error of the pseudo-Galilean trans-
formation in high Sobolev norms, and their result (see [HS15, Theorem 1.5]) only
holds in one dimension. We finally note that the well-posedness, regularity for
(NL4S) given in this note can be applied for the nonlinear fractional Schrödinger
equation of order greater than or equal to 2 without any difficulty. Moreover, the
ill-posedness argument can be adapted for the nonlinear fractional Schrödinger
equation of any order.

Before stating our results, let us introduce some notations (see e.g. [GV85, Ap-
pendix], [Tri83, Chapter 5] or [BL76, Chapter 6]). Given γ ∈ R and 1 ≤ q ≤ ∞,
the generalized Sobolev space is defined by

H
γ
q :=

{

u ∈ S
′ | ‖u‖H

γ
q

:= ‖ 〈Λ〉γ u‖Lq < ∞
}

, Λ =
√
−∆,

where 〈x〉 =
√

1 + |x|2 is the Japanese bracket and S ′ is the space of tempered
distributions. The generalized homogeneous Sobolev space is defined by

Ḣ
γ
q :=

{

u ∈ S
′

0 | ‖u‖Ḣ
γ
q

:= ‖Λγu‖Lq < ∞
}

,

where S0 is a subspace of the Schwartz space S consisting of functions φ satis-
fying Dαφ̂(0) = 0 for all α ∈ Nd with ·̂ the Fourier transform on S , and S ′

0 is its
topology dual space. One can see S ′

0 as S ′/P where P is the set of all polyno-

mials on Rd. Under these settings, H
γ
q and Ḣ

γ
q equipped with the norms ‖u‖H

γ
q

and ‖u‖Ḣ
γ
q

are Banach spaces. In the sequel, we shall use Hγ := H
γ
2 , Ḣγ := Ḣ

γ
2 .

We also have for γ > 0, H
γ
q = Lq ∩ Ḣ

γ
q .

Throughout this note, a pair (p, q) is said to be admissible if

(p, q) ∈ [2, ∞]2, (p, q, d) 6= (2, ∞, 2),
2

p
+

d

q
≤ d

2
.

We also denote for (p, q) ∈ [1, ∞]2,

γp,q =
d

2
− d

q
− 4

p
. (1.4)

Since we are working in spaces of fractional order γ or β, we need the nonlin-
earity F(z) = −µ|z|ν−1z to have enough regularity. When ν is an odd integer,
F ∈ C∞(C, C) (in the real sense). When ν is not an odd integer, we need the
following assumption

⌈γ⌉ or ⌈β⌉ ≤ ν, (1.5)

where ⌈γ⌉ is the smallest integer greater than or equal to γ, similarly for β. Our
first result concerns the local well-posedness of (NL4S) in both sub-critical and
critical cases.
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Theorem 1.1. Let γ ∈ [0, d/2) be such that γ ≥ γc, and also, if ν > 1 is not an odd
integer, (1.5). Let

p =
8(ν + 1)

(ν − 1)(d − 2γ)
, q =

d(ν + 1)

d + (ν − 1)γ
. (1.6)

Then for all u0 ∈ Hγ, there exist T∗ ∈ (0, ∞] and a unique solution to (NL4S) satisfying

u ∈ C([0, T∗), Hγ) ∩ L
p
loc([0, T∗), H

γ
q ).

Moreover, the following properties hold:

(i) u ∈ La
loc([0, T∗), H

γ
b ) for any admissible pair (a, b) with b < ∞ and γa,b = 0.

(ii) M(u(t)) = M(u0) for any t ∈ [0, T∗).

(iii) If γ ≥ 2, E(u(t)) = E(u0) for any t ∈ [0, T∗).

(iv) If γ > γc and T∗
< ∞, then ‖u(t)‖Ḣγ → ∞ as t → T∗.

(v) If γ = γc and T∗
< ∞, then ‖u‖Lp([0,T∗),Hγc

q ) = ∞.

(vi) u depends continuously on u0 in the following sense. There exists 0 < T < T∗

such that if u0,n → u0 in Hγ and if un denotes the solution of (NL4S) with initial
data u0,n, then 0 < T < T∗(u0,n) for all n sufficiently large and un is bounded in
La([0, T], H

γ
b ) for any admissible pair (a, b) with γa,b = 0 and b < ∞. Moreover,

un → u in La([0, T], Lb) as n → ∞. In particular, un → u in C([0, T], Hγ−ǫ) for
all 0 < ǫ < γ.

(vii) If γ = γc and ‖u0‖Ḣγc < ε for some ε > 0 small enough, then T∗ = ∞ and the
solution is scattering in Hγc, i.e. there exists u+

0 ∈ Hγc such that

lim
t→+∞

‖u(t) − eit∆2
u+

0 ‖Hγc = 0.

We also have the following local well-posedness in the critical Sobolev space
Hd/2.

Theorem 1.2. Let γ = d/2 be such that if ν > 1 is not an odd integer, (1.5). Then for
all u0 ∈ Hd/2, there exists T∗ ∈ (0, ∞] and a unique solution to (NL4S) satisfying

u ∈ C([0, T∗), Hd/2) ∩ L
p
loc([0, T∗), L∞),

for some p > max(ν − 1, 4) when d = 1 and some p > max(ν − 1, 2) when d ≥ 2.
Moreover, the following properties hold:

(i) u ∈ La
loc([0, T∗), Hd/2

b ) for any admissible pair (a, b) with b < ∞ and γa,b = 0.

(ii) If T∗
< ∞, then ‖u(t)‖Hd/2 → ∞ as t → T∗.

(iii) u depends continuously on u0 in the sense of Theorem 1.1
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The continuous dependence can be improved (see Remark 2.8) if we assume
that ν > 1 is an odd integer or ⌈d/2⌉ ≤ ν − 1 otherwise. Concerning the well-
posedness of the nonlinear Schrödinger equation in this critical space, we refer
to [Kat95] and [NO98]. Note that in [NO98], the global well-posedness with
small data is proved with exponential-type nonlinearity but not the local well-
posedness without size restriction on the initial data.

It is well-known that (see [Caz03, Chapter 4], [Kat95] or [Tao06, Chapter 3])
that for γ > d/2, the nonlinear Schrödinger equation is locally well-posed pro-
vided the nonlinearity has enough regularity. It is not a problem to extend this
result for the nonlinear fourth-order Schrödinger equation. For the sake of com-
pleteness, we state (without proof) the local well-posedness for (NL4S) in this
range.

Theorem 1.3. Let γ > d/2 be such that if ν > 1 is not an odd integer, (1.5). Then
for all u0 ∈ Hγ, there exist T∗ ∈ (0, ∞] and a unique solution u ∈ C([0, T∗), Hγ) to
(NL4S). Moreover, the following properties hold:

(i) u ∈ La
loc([0, T∗), H

γ
b ) for any admissible pair (a, b) with b < ∞ and γa,b = 0.

(ii) If T∗
< ∞, then ‖u(t)‖Hγ → ∞ and lim sup ‖u(t)‖L∞ → ∞ as t → T∗.

(iii) u depends continuously on u0 in the following sense. There exists 0 < T < T∗

such that if u0,n → u0 in Hγ and if un is the solution of (NL4S) with the initial
data u0,n, then un → u in C([0, T], Hγ).

Corollary 1.4. Let ν ∈ (1, 1 + 8/d). Then for all u0 ∈ L2, there exists a unique global
solution to (NL4S) satisfying u ∈ C(R, L2) ∩ L

p
loc(R, Lq), where (p, q) given in (1.6).

In the energy space H2, we have the following global well-posedness result.

Proposition 1.5 ([Pau1] or [Din1]). Let ν ∈ (1, 1 + 8/(d − 4)) for d ≥ 5 and ν > 1
for d ≤ 4. Then for any u0 ∈ H2, the solution to (NL4S) given in Theorem 1.1,
Theorem 1.2 and Theorem 1.3 can be extended to the whole R if one of the following is
satisfied:

(i) µ = 1.

(ii) µ = −1, ν < 1 + 8/d.

(iii) µ = −1, ν = 1 + 8/d and ‖u0‖L2 is small.

(iv) µ = −1 and ‖u0‖H2 is small.

Our next result concerns with the regularity of solutions of (NL4S) in the
sub-critical case.

Theorem 1.6. Let β > γ ≥ 0 be such that γ > γc, and also, if ν > 1 is not an odd
integer, (1.5). Let u0 ∈ Hγ and u be the corresponding Hγ solution of (NL4S) given in
Theorem 1.1, Theorem 1.2, Theorem 1.3. If u0 ∈ Hβ, then u ∈ C([0, T∗), Hβ).

The following result is a direct consequence of Theorem 1.6 and the global
well-posedness in Corollary 1.4 and Proposition 1.5.
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Corollary 1.7. (i) Let γ ≥ 0 and ν ∈ (1, 1 + 8/d) be such that if ν is not an odd
integer, (1.5). Then (NL4S) is globally well-posed in Hγ.

(ii) Let γ ≥ 2, ν ∈ [1 + 8/d, 1 + 8/(d − 4)) for d ≥ 5 and ν ∈ [1 + 8/d, ∞)
for d ≤ 4 be such that if ν is not an odd integer, (1.5). Then (NL4S) is globally
well-posed in Hγ provided one of conditions (i), (iii), (iv) in Proposition 1.5 is
satisfied.

In [PS10], the authors proved the global existence for the L2-critical (NL4S)
in higher dimensions d ≥ 5. More precisely, they proved that the equation is
globally well-posed in L2

• for any initial data in L2 in the defocusing case,

• for initial data in L2 satisfying ‖u0‖L2 < ‖Q‖L2 in the focusing case, where
Q is the solution to the elliptic equation

∆2Q + Q = |Q| 8
d Q. (1.7)

Moreover, in both cases, the following uniform bound holds true

‖u‖
L

2+ 8
d (R,L

2+ 8
d )

≤ C(‖u0‖L2).

With this uniform bound, we have the following global existence for the
L2-critical (NL4S) in dimensions d ≥ 5.

Proposition 1.8. Let d ≥ 5, ν = 1 + 8/d and β > 0. Let u0 ∈ Hβ be such that
if µ = −1, ‖u0‖L2 < ‖Q‖L2 , where Q is the solution to (1.7). Then the L2-critical
(NL4S) is globally well-posed in Hβ.

Our final result is the following ill-posedness for (NL4S).

Theorem 1.9. Let ν > 1 be such that if ν is not an odd integer, ν ≥ k + 1 for some
integer k > d/2. Then (NL4S) is ill-posed in Hγ with γ satisfying (1.3). More precisely,
if γ ∈ (−∞,−d/2] ∪ (0, γc) when γc > 0 or γ ∈ (−∞,−d/2] ∩ (−∞, γc) otherwise,
then for any t > 0 the solution map S ∋ u(0) 7→ u(t) of (NL4S) fails to be continuous
at 0 in the Hγ topology. Moreover, if γc > 0, the solution map fails to be uniformly
continuous on L2.

The proof of Theorem 1.9 is based on the small dispersion analysis given in
[CCT03]. Note that when ν = 3 and µ = 1 corresponding to the defocusing cubic
nonlinearity, Pausader in [Pau2] proved the ill-posedness for (NL4S) in H2(Rd)
with d ≥ 9.

This note is organized as follows. In Section 2, we recall Strichartz estimates
for the inhomogeneous fourth-order Schrödinger equation and the nonlinear frac-
tional derivatives. We end Section 2 with the proof of local well-posedness given
in Theorem 1.1 and Theorem 1.2. In Section 3, we give the proofs of the regularity
for solutions of (NL4S) in Theorem 1.6 and Proposition 1.8. Finally, the proof of
the ill-posedness result is given in Section 4.
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2 Well-posedness

In this section, we will give the proofs of local well-posedness in Theorem 1.1 and
Theorem 1.2. Our proofs are based on the standard contraction mapping argu-
ment using Strichartz estimates and nonlinear fractional derivatives (see Subsec-
tion 2.2).

2.1 Strichartz estimate

In this subsection, we recall Strichartz estimates for the fourth-order Schrödinger
equation.

Proposition 2.1 ([COX11]). Let u be a (weak) solution to the inhomogeneous fourth-
order Schrödinger equation, namely

u(t) = eit∆2
u0 +

∫ t

0
ei(t−s)∆2

F(s)ds,

for some data u0, F. Then for all (p, q) and (a, b) admissible with q < ∞ and b < ∞,

‖u‖Lp(R,Lq) . ‖u0‖Ḣγp,q + ‖F‖
La′ (R,Lb′), (2.1)

provided that

γp,q = γa′,b′ + 4. (2.2)

Here (a, a′) is a conjugate pair and similarly for (b, b′).

Remark 2.2. The estimate (2.1) is exactly the one given in [Pau1] or [Pau2] where
the author considered (p, q) and (a, b) are Schrödinger admissible, i.e.

p, q ∈ [2, ∞]2, (p, q, d) 6= (2, ∞, 2),
2

p
+

d

q
=

d

2
.

We refer to [COX11] (see also [Din1]) for the proof of Proposition 2.1. Note
that rather than using directly a dedicate dispersive estimate of [BKS00] for the
fundamental solution of the homogeneous fourth-order Schrödinger equation,
one uses the scaling technique which is similar to those of wave equation (see
e.g. [KT98]).

We also have the following local Strichartz estimates (see again [Din1]).

Corollary 2.3. Let γ ≥ 0 and I be a bounded interval. If u is a weak solution to the
linear fourth-order Schrödinger equation for some data u0, F, then for all (p, q) admissible
satisfying q < ∞,

‖u‖
Lp(I,H

γ−γp,q
q )

. ‖u0‖Hγ + ‖F‖L1(I,Hγ). (2.3)



422 V. D. Dinh

2.2 Nonlinear fractional derivatives

In this subsection, we recall some nonlinear fractional derivatives estimates
related to our purpose. Let us start with the following fractional Leibniz rule
(or Kato-Ponce inequality). We refer to [Gra14] for the proof of a more general
result.

Proposition 2.4. Let γ ≥ 0, 1 < r < ∞ and 1 < p1, p2, q1, q2 ≤ ∞ satisfying

1

r
=

1

p1
+

1

q1
=

1

p2
+

1

q2
.

Then there exists C = C(d, γ, r, p1, q1, p2, q2) > 0 such that for all u, v ∈ S ,

‖Λγ(uv)‖Lr ≤ C
(

‖Λγu‖Lp1‖v‖Lq1 + ‖u‖Lp2‖Λγv‖Lq2

)

.

We also have the following fractional chain rule (see [CW91] or [Sta95]).

Proposition 2.5. Let F ∈ C1(C, C) and G ∈ C(C, R+) such that F(0) = 0 and

|F′(θz + (1 − θ)ζ)| ≤ µ(θ)(G(z) + G(ζ)), z, ζ ∈ C, 0 ≤ θ ≤ 1,

where µ ∈ L1((0, 1)). Then for γ ∈ (0, 1) and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying

1

r
=

1

p
+

1

q
,

there exists C = C(d, µ, γ, r, p, q) > 0 such that for all u ∈ S ,

‖ΛγF(u)‖Lr ≤ C‖F′(u)‖Lq‖Λγu‖Lp .

Combining the fractional Leibniz rule and the fractional chain rule, one has
the following result (see [Kat95, Appendix]).

Lemma 2.6. Let F ∈ Ck(C, C), k ∈ N\{0}. Assume that there is ν ≥ k such that

|DiF(z)| ≤ C|z|ν−i, z ∈ C, i = 1, 2, ...., k.

Then for γ ∈ [0, k] and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1
r = 1

p +
ν−1

q , there exists

C = C(d, ν, γ, r, p, q) > 0 such that for all u ∈ S ,

‖ΛγF(u)‖Lr ≤ C‖u‖ν−1
Lq ‖Λγu‖Lp . (2.4)

Moreover, if F is a homogeneous polynomial in u and u, then (2.4) holds true for any
γ ≥ 0.

Remark 2.7. By Lemma 2.6, we see that the condition (1.5) ensures the nonlin-
earity to have enough regularity in order to apply the fractional derivatives.
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2.3 Proof of Theorem 1.1

We are now able to prove Theorem 1.1. Let us firstly comment about the choice
of (p, q) given in (1.6). It is easy to see that (p, q) is admissible and γp,q = 0 =
γp′,q′ + 4. This allows us to use Strichartz estimate (2.1) for (p, q). Moreover, we
choose (m, n) so that

1

p′
=

1

m
+

ν − 1

p
,

1

q′
=

1

q
+

ν − 1

n
. (2.5)

Thanks to this choice of n, we have the Sobolev embedding Ḣ
γ
q →֒ Ln since

q ≤ n =
dq

d − γq
.

Step 1. Existence. Let us consider

X :=
{

u ∈ Lp(I, H
γ
q ) | ‖u‖Lp(I,Ḣ

γ
q )

≤ M
}

,

equipped with the distance

d(u, v) = ‖u − v‖Lp(I,Lq),

where I = [0, T] and M, T > 0 to be chosen later. It is easy to verify (see e.g.
[CW90] or [Caz03, Chapter 4]) that (X, d) is a complete metric space. By the
Duhamel formula, it suffices to prove that the functional

Φ(u)(t) = eit∆2
u0 + iµ

∫ t

0
ei(t−s)∆2|u(s)|ν−1u(s)ds =: uhom(t) + uinh(t) (2.6)

is a contraction on (X, d).
Let us firstly consider the case γ > γc. In this case, we have 1 < m < p and

1

m
− 1

p
= 1 − (ν − 1)(d − 2γ)

8
=: θ > 0. (2.7)

Using Strichartz estimate (2.1), we obtain

‖Φ(u)‖Lp(I,Ḣ
γ
q )

. ‖u0‖Ḣγ + ‖F(u)‖
Lp′ (I,Ḣ

γ

q′ )
,

‖Φ(u) − Φ(v)‖Lp(I,Lq) . ‖F(u) − F(v)‖
Lp′ (I,Lq′),

where F(u) = |u|ν−1u and similarly for F(v). It then follows from Lemma 2.6,
(2.5), Sobolev embedding and (2.7) that

‖F(u)‖
Lp′ (I,Ḣ

γ

q′)
. Tθ‖u‖ν

Lp(I,Ḣ
γ
q )

, (2.8)

‖F(u) − F(v)‖
Lp′ (I,Lq′) . Tθ

(

‖u‖ν−1
Lp(I,Ḣ

γ
q )
+ ‖v‖ν−1

Lp(I,Ḣ
γ
q )

)

‖u − v‖Lp(I,Lq). (2.9)
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This shows that for all u, v ∈ X, there exists C > 0 independent of T and u0 ∈ Hγ

such that

‖Φ(u)‖Lp(I,Ḣ
γ
q )

≤ C‖u0‖Ḣγ + CTθ Mν,

d(Φ(u), Φ(v)) ≤ CTθ Mν−1d(u, v).

If we set M = 2C‖u0‖Ḣγ and choose T > 0 so that

CTθ Mν−1 ≤ 1

2
,

then Φ is a strict contraction on (X, d).
We now turn to the case γ = γc. We have from Strichartz estimate (2.1) that

‖uhom‖Lp(I,Ḣ
γc
q ) . ‖u0‖Ḣγc .

This shows that ‖uhom‖Lp(I,Ḣ
γc
q ) ≤ ε for some ε > 0 small enough provided that T

is small or ‖u0‖Ḣγc is small. We also have from (2.1) that

‖uinh‖Lp(I,Ḣ
γc
q ) . ‖F(u)‖

Lp′ (I,Ḣ
γc
q′ )

.

Lemma (2.6), (2.5) and Sobolev embedding (note that in this case m = p) then
yield that

‖F(u)‖
Lp′ (I,Ḣ

γc
q′ )

. ‖u‖ν
Lp(I,Ḣ

γc
q )

, (2.10)

‖F(u) − F(v)‖
Lp′ (I,Lq′) .

(

‖u‖ν−1
Lp(I,Ḣ

γc
q )

+ ‖v‖ν−1
Lp(I,Ḣ

γc
q )

)

‖u − v‖Lp(I,Lq). (2.11)

This implies that for all u, v ∈ X, there exists C > 0 independent of T and
u0 ∈ Hγc such that

‖Φ(u)‖Lp (I,Ḣ
γc
q ) ≤ ε + CMν,

d(Φ(u), Φ(v)) ≤ CMν−1d(u, v).

If we choose ε and M small so that

CMν−1 ≤ 1

2
, ε +

M

2
≤ M,

then Φ is a contraction on (X, d).
Therefore, in both sub-critical and critical cases, Φ has a unique fixed point in

X. Moreover, since u0 ∈ Hγ and u ∈ Lp(I, H
γ
q ), the Strichartz estimate shows that

u ∈ C(I, Hγ) (see e.g. [CW90] or [Caz03, Chapter 4]). This shows the existence
of solution u ∈ C(I, Hγ) ∩ Lp(I, H

γ
q ) to (NL4S). Note that in the case γ = γc, if

‖u0‖Ḣγc is small enough, then we can take T = ∞.
Step 2. Uniqueness. It follows easily from (2.9) and (2.11) using the fact that
‖u‖Lp(I,Ḣ

γ
q )

can be small if T is small.

Step 3. Item (i). Let u ∈ C(I, Hγ) ∩ Lp(I, H
γ
q ) be a solution to (NLFS) where
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I = [0, T] and (a, b) an admissible pair with b < ∞ and γa,b = 0. Then Strichartz
estimate (2.1) implies

‖u‖La(I,Lb) . ‖u0‖L2 + ‖F(u)‖
Lp′ (I,Lq′), (2.12)

‖u‖La(I,Ḣ
γ
b )

. ‖u0‖Ḣγ + ‖F(u)‖
Lp′ (I,Ḣ

γ

q′)
. (2.13)

It then follows from (2.8) and (2.10) that u ∈ La(I, H
γ
b ).

Step 4. Item (ii) and (iii). The conservation of mass and energy follows similarly
as for the Schrödinger equation (see e.g. [CW90], [Caz03, Chapter 4] or [Gin98,
Chapter 5]).
Step 5. Item (iv). The blowup alternative in sub-critical case is easy since the time
of existence depends only on ‖u0‖Ḣγ .
Step 6. Item (v). It also follows from a standard argument (see e.g. [CW90]).
Indeed, if T∗

< ∞ and ‖u‖Lp([0,T∗),Hγc
q ) < ∞, then Strichartz estimate (2.1) implies

that u ∈ C([0, T∗], Hγc). Thus, one can extend the solution to (NL4S) beyond T∗.
It leads to a contradiction with the maximality of T∗.
Step 7. Item (vi). We use the argument given in [CW90]. From Step 1, in the sub-
critical case, we can choose T and M so that the fixed point argument can be car-
ried out on X for any initial data with Ḣγ norm less than 2‖u0‖Ḣγ . In the critical
case, there exist T, M and an Ḣγc neighborhood U of u0 such that the fixed point
argument can be carried out on X for all initial data in U. Now let u0,n → u0 in Hγ.
In both sub-critical and critical cases, we see that
T < T∗(u0), ‖u‖Lp([0,T],Ḣ

γ
q )

≤ M, and that for sufficiently large n, T < T∗(u0,n)

and ‖un‖Lp([0,T],Ḣγ
q )

≤ M. Thus, (2.12) and (2.13) together with (2.8) and (2.10)

yield that un is bounded in La([0, T], H
γ
b ) for any admissible pair (a, b) with b < ∞

and γa,b = 0. We also have from (2.9), (2.11) and the choice of T that

d(un, u) ≤ C‖u0,n − u0‖L2 +
1

2
d(un, u) or d(un, u) ≤ 2C‖u0,n − u0‖L2 .

This shows that un → u in Lp([0, T], Lq). Again (2.13) together with (2.9) and
(2.11) implies that un → u in La([0, T], Lb) for any admissible pair (a, b) with b <

∞ and γa,b = 0. The convergence in C(I, Hγ−ǫ) follows from the boundedness in

L∞(I, Hγ) and the convergence in L∞(I, L2) and that ‖u‖Hγ−ǫ ≤ ‖u‖1− ǫ
γ

Hγ ‖u‖
ǫ
γ

L2 .

Step 8. Item (vii). As mentioned in Step 1, when ‖u0‖Ḣγc is small, we can take
T∗ = ∞. It remains to prove the scattering property. To do so, we make use of
the adjoint estimate to the homogeneous Strichartz estimate, namely L2 ∋ u0 7→
eit∆2

u0 ∈ Lp(R, Lq) to obtain

‖e−it2∆2
u(t2)− e−it1∆2

u(t1)‖Ḣγc =
∥

∥

∥
iµ

∫ t2

t1

e−is∆2
F(u)(s)ds

∥

∥

∥

Ḣγc

=
∥

∥

∥
iµ

∫ t2

t1

Λγce−is∆2
(1[t1,t2]F(u))(s)ds

∥

∥

∥

L2

. ‖F(u)‖
Lp′ ([t1,t2],Ḣ

γc
q′ )

. (2.14)
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Similarly,

‖e−it2∆2
u(t2)− e−it1∆2

u(t1)‖L2 . ‖F(u)‖
Lp′ ([t1,t2],Lq′). (2.15)

Thanks to (2.10) and (2.11), we get

‖e−it2∆2
u(t2)− e−it1∆2

u(t1)‖Hγc → 0,

as t1, t2 → +∞. This implies that the limit

u+
0 := lim

t→+∞
e−it∆2

u(t)

exists in Hγc. Moreover,

u(t) − eit∆2
u+

0 = −iµ
∫ +∞

t
ei(t−s)∆2

F(u(s))ds.

Using again (2.14) and (2.15) together with (2.10) and (2.11), we have

lim
t→+∞

‖u(t) − eit∆2
u+

0 ‖Hγc = 0.

This completes the proof of Theorem 1.1.

2.4 Proof of Theorem 1.2

We now turn to the proof of the local well-posedness in Hd/2. To do so, we firstly
choose p > max(ν − 1, 4) when d = 1 and p > max(ν − 1, 2) when d ≥ 2 and
then choose q ∈ [2, ∞) such that

2

p
+

d

q
≤ d

2
.

Step 1. Existence. We will show that Φ defined in (2.6) is a contraction on

X :=
{

u ∈ L∞(I, Hd/2)∩ Lp(I, H
d/2−γp,q
q ) | ‖u‖L∞(I,Hd/2)+ ‖u‖

Lp(I,H
d/2−γp,q
q )

≤ M
}

,

equipped with the distance

d(u, v) := ‖u − v‖L∞(I,L2) + ‖u − v‖Lp(I,H−γp,q),

where I = [0, T] and M, T > 0 to be determined. The local Strichartz estimate
(2.3) gives

‖Φ(u)‖L∞ (I,Hd/2) + ‖Φ(u)‖
Lp (I,H

d/2−γp,q
q )

. ‖u0‖Hd/2 + ‖F(u)‖L1 (I,Hd/2),

‖Φ(u) − Φ(v)‖L∞(I,L2) + ‖Φ(u) − Φ(v)‖
Lp(I,H

−γp,q
q )

. ‖F(u) − F(v)‖L1(I,L2).
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Thanks to the assumptions on ν, Lemma 2.6 implies

‖F(u)‖L1(I,Hd/2) . ‖u‖ν−1
Lν−1(I,L∞)

‖u‖L∞(I,Hd/2) . Tθ‖u‖ν−1
Lp(I,L∞)

‖u‖L∞(I,Hd/2),

(2.16)

‖F(u) − F(v)‖L1(I,L2) .
(

‖u‖ν−1
Lν−1(I,L∞)

+ ‖v‖ν−1
Lν−1(I,L∞)

)

‖u − v‖L∞(I,L2)

. Tθ
(

‖u‖ν−1
Lp(I,L∞)

+ ‖v‖ν−1
Lp(I,L∞)

)

‖u − v‖L∞(I,L2), (2.17)

where θ = 1 − ν−1
p > 0. Using the fact that d/2 − γp,q > d/q, the Sobolev

embedding implies H
d/2−γp,q
q →֒ L∞. Thus,

‖Φ(u)‖L∞ (I,Hd/2) + ‖Φ(v)‖
Lp(I,H

d/2−γp,q
q )

. ‖u0‖Hd/2 + Tθ‖u‖ν−1

Lp(I,H
d/2−γp,q
q )

‖u‖L∞(I,Hd/2),

d(Φ(u), Φ(v)) . Tθ
(

‖u‖ν−1

Lp(I,H
d/2−γp,q
q )

+ ‖v‖ν−1

Lp(I,H
d/2−γp,q
q )

)

d(u, v).

Thus for all u, v ∈ X, there exists C > 0 independent of u0 ∈ Hd/2 such that

‖Φ(u)‖L∞ (I,Hd/2) + ‖Φ(v)‖
Lp(I,H

d/2−γp,q
q )

≤ C‖u0‖Hd/2 + CTθ Mν,

d(Φ(u), Φ(v)) ≤ CTθ Mν−1d(u, v).

If we set M = 2C‖u0‖Hd/2 and choose T > 0 small enough so that CTθ Mν−1 ≤ 1
2 ,

then Φ is a contraction on X.
Step 2. Uniqueness. It is easy using (2.17) since ‖u‖Lp(I,L∞) is small if T is small.

Step 3. Item (i). It follows easily from Step 1 and Strichartz estimate (2.3) that for
any admissible pair (a, b) with b < ∞ and γa,b = 0,

‖u‖
La(I,Hd/2

b )
. ‖u0‖Hd/2 + ‖F(u)‖L1(I,Hd/2).

Step 4. Item (ii). The blowup alternative is obvious since the time of existence
depends only on ‖u0‖Hd/2 .
Step 5. Item (iii). The continuous dependence is similar to Step 7 of the proof of
Theorem 1.1 using (2.17).

Remark 2.8. If we assume that ν > 1 is an odd integer or ⌈d/2⌉ ≤ ν− 1 otherwise,
then the continuous dependence holds in C(I, Hd/2). Indeed, we consider X as
above equipped with the following metric

d(u, v) := ‖u − v‖L∞(I,Hd/2) + ‖u − v‖
Lp(I,H

d/2−γp,q
q )

.

Thanks to the assumptions on ν, we are able to apply the fractional derivatives
estimates (see e.g. [Kat95, Appendix] or [Din1, Corollary 3.5]) to have

‖F(u) − F(v)‖L1(I,Hd/2) . (‖u‖ν−1
Lν−1(I,L∞)

+ ‖v‖ν−1
Lν−1(I,L∞)

)‖u − v‖L∞(I,Hd/2)

+ (‖u‖ν−2
Lν−1(I,L∞)

+ ‖v‖ν−2
Lν−1(I,L∞)

)(‖u‖L∞(I,Hd/2) + ‖v‖L∞(I,Hd/2))‖u − v‖Lν−1(I,L∞).
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The Sobolev embedding then implies that for all u, v ∈ X,

d(Φ(u), Φ(v)) . Tθ Mν−1d(u, v).

The continuous dependence in C(I, Hd/2) follows as Step 7 of the proof of
Theorem 1.1.

3 Regularity

The main purpose of this section is to prove the regularity of solutions of (NL4S)
given in Theorem 1.6 and Proposition 1.8.

3.1 Proof of Theorem 1.6.

We follow the argument given in [Caz03, Chapter 5]. To do so, we will split γ into
three cases γ ∈ [0, d/2), γ = d/2 and γ > d/2.

The case γ ∈ [0, d/2) Let β > γ. If u0 ∈ Hβ, then Theorem 1.1 or Theorem 1.2
or Theorem 1.3 shows that there exists a maximal solution to (NL4S) satisfying

u ∈ C([0, T), Hβ) ∩ La
loc([0, T), H

β
b ) for any admissible pair (a, b) with b < ∞

and γa,b = 0. Since Hβ-solution is in particular an Hγ-solution, the uniqueness
implies that T ≤ T∗. We will show that T is actually equal to T∗. Suppose that
T < T∗, then the blowup alternative implies

‖u(t)‖Hβ → ∞ as t → T. (3.1)

Moreover, since T < T∗, we have

‖u‖Lp((0,T),H
γ
q )
+ sup

0≤t≤T

‖u(t)‖Hγ < ∞,

where (p, q) given in (1.6). Using Strichartz estimate (2.1), we have for any
interval I ⊂ (0, T),

‖u‖L∞(I,L2) + ‖u‖Lp(I,Lq) . ‖u0‖L2 + ‖F(u)‖
Lp′ (I,Lq′),

‖u‖L∞(I,Ḣβ) + ‖u‖
Lp(I,Ḣ

β
q )

. ‖u0‖Ḣβ + ‖F(u)‖
Lp′ (I,Ḣ

β

q′)
.

Now, let (m, n) be as in (2.5). Lemma 2.6, (2.5) and Sobolev embedding then give

‖F(u)‖
Lp′ (I,Lq′) . ‖u‖ν−1

Lp(I,Ln)
‖u‖Lm(I,Lq) . ‖u‖ν−1

Lp(I,Ḣ
γ
q )
‖u‖Lm(I,Lq) . ‖u‖Lm(I,Lq),

‖F(u)‖
Lp′ (I,Ḣ

β

q′)
. ‖u‖ν−1

Lp(I,Ln)
‖u‖

Lm(I,Ḣ
β
q )

. ‖u‖ν−1
Lp(I,Ḣ

γ
q )
‖u‖

Lm(I,Ḣ
β
q )

. ‖u‖
Lm(I,Ḣ

β
q )

.

Here we use the fact that ‖u‖Lp((0,T),H
γ
q )

is bounded. This shows that

‖u‖L∞(I,Hβ) + ‖u‖
Lp(I,H

β
q )

. ‖u0‖Hβ + ‖u‖
Lm(I,H

β
q )

,
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for every interval I ⊂ (0, T). Now let 0 < ǫ < T and consider I = (0, τ) with
ǫ < τ < T. We have

‖u‖
Lm(I,H

β
q )

≤ ‖u‖
Lm((0,τ−ǫ),H

β
q )
+ ‖u‖

Lm((τ−ǫ,τ),H
β
q )

≤ Cǫ + ǫθ‖u‖
Lp(I,H

β
q )

,

where θ given in (2.7). Here we also use the fact that u ∈ L
p
loc([0, T), H

β
q ) since

γp,q = 0. Thus,

‖u‖L∞(I,Hβ) + ‖u‖
Lp(I,H

β
q )

≤ C + Cǫ + ǫθC‖u‖
Lp(I,H

β
q )

,

where the various constants are independent of τ < T. By choosing ǫ small
enough, we have

‖u‖L∞(I,Hβ) + ‖u‖
Lp(I,H

β
q )

≤ C,

where C is independent of τ < T. Let τ → T, we get a contradiction with (3.1).

The case γ = d/2 Since u0 ∈ Hd/2, Theorem 1.2 shows that there exists a
unique, maximal solution to (NL4S) satisfying u ∈ C([0, T∗), Hd/2)∩ L

p
loc([0, T∗),

L∞) for some p > max(ν − 1, 4) when d = 1 and p > max(ν − 1, 2) when d ≥ 2.
This implies in particular that

u ∈ Lν−1
loc ([0, T∗), L∞). (3.2)

Now let β > γ. If u0 ∈ Hβ, then we know that u is an Hβ solution defined
on some maximal interval [0, T) with T ≤ T∗. Suppose that T < T∗. Then the

unitary property of eit∆2
and Lemma 2.6 imply that

‖u(t)‖Hβ ≤ ‖u0‖Hβ +
∫ t

0
‖F(u)(s)‖Hβ ds ≤ ‖u0‖Hβ + C

∫ t

0
‖u(s)‖ν−1

L∞ ‖u(s)‖Hβ ds,

for all 0 ≤ t < T. The Gronwall’s inequality then yields

‖u(t)‖Hβ ≤ ‖u0‖Hβ exp
(

C
∫ t

0
‖u(s)‖ν−1

L∞ ds
)

for all 0 ≤ t < T. Using (3.2), we see that lim sup ‖u(t)‖Hβ < ∞ as t → T. This is

a contradiction with the blowup alternative in Hβ.

The case γ > d/2 Let β > γ. If u0 ∈ Hβ, then Theorem 1.3 shows that there
is a unique maximal solution u ∈ C([0, T), Hβ) to (NL4S). By the uniqueness, we
have T ≤ T∗. Suppose T < T∗. Then

sup
0≤t≤T

‖u(t)‖Hβ < ∞,

and hence
sup

0≤t≤T

‖u(t)‖L∞ < ∞.

This is a contradiction with the fact that lim sup ‖u(t)‖L∞ = ∞ as t → T. The
proof of Theorem 1.6 is now complete.
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3.2 Proof of Proposition 1.8

Let us now give the proof of Proposition 1.8. Let β > 0 and u0 ∈ Hβ be such that
if µ = −1, ‖u0‖L2 < ‖Q‖L2 , where Q is the solution to (1.7). We learn from the
result of Pausader-Shao [PS10] that the L2-critical (NL4S) is globally well-posed
in L2. Moreover, the unique solution enjoys the uniform bound

‖u‖
L

2+ 8
d (R,L

2+ 8
d )

≤ C(‖u0‖L2).

Since u0 ∈ Hβ, we have from Theorem 1.1, Theorem 1.2 and Theorem 1.3 that
there exists a maximal solution to the L2-critical (NL4S) satisfying C([0, T), Hβ)∩
La

loc([0, T), H
β
b ) for any admissible pair (a, b) with b < ∞ and γa,b = 0. By

the blowup alternative, it suffices to show that ‖u‖L∞((0,T),Hβ) < ∞. Let p =

2 + 8/d. It is easy to see that (p, p) is a admissible pair with γp,p = 0. Since
‖u‖Lp((0,T),Lp) < ∞, we decompose (0, T) into a finite number of subintervals Ik

so that ‖u‖Lp(Ik,Lp) < ǫ for some ǫ > 0 to be chosen later. By Strichartz estimates,

‖u‖L∞(Ik,Hβ) + ‖u‖
Lp(Ik,H

β
p )
. ‖u0‖Hβ + ‖F(u)‖

Lp′ (Ik,H
β

p′ )

. ‖u0‖Hβ + ‖u‖
8
d

Lp(Ik,Lp)
‖u‖

Lp(Ik,H
β
p )

. ‖u0‖Hβ + ǫ
8
d ‖u‖

Lp(Ik,H
β
p )

.

By choosing ǫ > 0 small enough, we get ‖u‖L∞(Ik,Hβ) ≤ C for some constant C in-

dependent of Ik. By summing over all subintervals Ik, we obtain ‖u‖L∞((0,T),Hβ) <

∞. The proof is complete.

4 Ill-posedness

In this section, we will give the proof of Theorem 1.9 using the technique of
[CCT03]. We follow closely the argument of [Din3]. Let us start with the small
dispersion analysis.

4.1 Small dispersion analysis

Let us consider for 0 < δ ≪ 1 the following equation

{

i∂tφ(t, x) + δ4∆2φ(t, x) = −µ|φ|ν−1φ(t, x), (t, x) ∈ R × Rd,

φ(0, x) = φ0(x), x ∈ Rd.
(4.1)

Note that (4.1) can be transformed back to (NL4S) by using

u(t, x) := φ(t, δx). (4.2)

Lemma 4.1. Let k > d/2 be an integer. If ν is not an odd integer, then we assume also
the additional regularity condition ν ≥ k + 1. Let φ0 be a Schwartz function. Then there
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exists C, c > 0 such that if 0 < δ ≤ c sufficiently small, then there exists a unique

solution φ(δ) ∈ C([−T, T], Hk) of (4.1) with T = c| log δ|c satisfying

‖φ(δ)(t)− φ(0)(t)‖Hk ≤ Cδ3, (4.3)

for all |t| ≤ c| log δ|c, where

φ(0)(t, x) := φ0(x) exp(−iµt|φ0(x)|ν−1) (4.4)

is the solution of (4.1) with δ = 0.

Proof. The proof of Lemma 4.1 is essentially given in [Pau2, Lemma 4.1] where
the author treated the cubic fourth-order Schrödinger equation. The extension
to the general power-type nonlinearity here is completely similar. Note that Hk

with k > d/2 is an algebra.

Remark 4.2. By the same argument as in [CCT03], we can get the following better
estimate

‖φ(δ)(t)− φ(0)(t)‖Hk,k ≤ Cδ3, (4.5)

for all |t| ≤ c| log δ|c, where Hk,k is the weighted Sobolev space

‖φ‖Hk,k :=
k

∑
|α|=0

‖ 〈x〉k−|α| Dαφ‖L2 .

Now let λ > 0 and set

u(δ,λ)(t, x) := λ− 4
ν−1 φ(δ)(λ−4t, λ−1δx). (4.6)

It is easy to see that u(δ,λ) is a solution of (NL4S) with initial data u(δ,λ)(0) =

λ− 4
ν−1 φ0(λ

−1δx). We have the following estimate of the initial data u(δ,λ)(0).

Lemma 4.3. Let γ ∈ R and 0 < λ ≤ δ ≪ 1. Let φ0 ∈ S be such that if γ ≤ −d/2,

φ̂0(ξ) = O(|ξ|κ) as ξ → 0,

for some κ > −γ − d/2, where ·̂ is the Fourier transform. Then there exists C > 0 such
that

‖u(δ,λ)(0)‖Hγ ≤ Cλγc−γδγ−d/2. (4.7)

The proof of this result follows the same lines as in [CCT03, Section 4] for
the nonlinear Schrödinger equation. We also refer to [Din3, Lemma 3.3] for the
nonlinear half-wave context.
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4.2 Proof of Theorem 1.9

We now give the proof of Theorem 1.9. We only consider the case t ≥ 0, the one
for t < 0 is similar. Let ǫ ∈ (0, 1] be fixed and set

λγc−γδγ−d/2 =: ǫ, (4.8)

equivalently

λ ∼ δθ , where θ =
d/2 − γ

γc − γ
> 1,

hence 0 < λ ≤ δ ≪ 1. We note that we are considering the super-critical range,
i.e. γ < γc. We will split the proof into several cases.

The case 0 < γ < γc. We firstly have from Lemma 4.3 and (4.8) that

‖u(δ,λ)(0)‖Hγ ≤ Cǫ.

Since the support of φ(0)(t, x) is independent of t (see (4.4)), we see that for t large
enough, depending on γ,

‖φ(0)(t)‖Hγ ∼ tγ,

whenever γ ≥ 0 provided either ν > 1 is an odd integer or γ ≤ ν − 1 otherwise.
Thus for δ ≪ 1 and 1 ≪ t ≤ c| log δ|c, (4.3) implies

‖φ(δ)(t)‖Hγ ∼ tγ. (4.9)

Next, using

[u(δ,λ)(λ4t)]ˆ(ξ) = λ− 4
ν−1 (λδ−1)d[φ(δ)(t)]ˆ(λδ−1ξ),

we have

‖u(δ,λ)(λ4t)‖2
Hγ =

∫

(1 + |ξ|2)γ|[u(δ,λ)(λ4t)]ˆ(ξ)|2dξ

= λ− 8
ν−1 (λδ−1)d

∫

(1 + |λ−1δξ|2)γ|[φ(δ)(t)]ˆ(ξ)|2dξ

≥ λ− 8
ν−1 (λδ−1)d−2γ

∫

|ξ|≥1
|ξ|2γ|[φ(δ)(t)]ˆ(ξ)|2dξ

≥ λ− 8
ν−1 (λδ−1)d−2γ

(

c‖φ(δ)(t)‖2
Hγ − C‖φ(δ)(t)‖2

L2

)

.

We also have from (4.9) that ‖φ(δ)(t)‖L2 ≪ ‖φ(δ)(t)‖Hγ for t ≫ 1. This yields that

‖u(δ,λ)(λ4t)‖Hγ ≥ cλ− 4
ν−1 (λδ−1)d/2−γ‖φ(δ)(t)‖Hγ ≥ cǫtγ,

for 1 ≪ t ≤ c| log δ|c. We now choose t = c| log δ|c and pick δ > 0 small enough
so that

ǫtγ
> ǫ−1, λ4t < ǫ.

Therefore, for any ε > 0, there exists a solution of (NL4S) satisfying

‖u(0)‖Hγ < ε, ‖u(t)‖Hγ > ε−1

for some t ∈ (0, ε). Thus for any t > 0, the solution map S ∋ u(0) 7→ u(t) for the
Cauchy problem (NL4S) fails to be continuous at 0 in the Hγ-topology.
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The case γ ≤ −d/2 and γ < γc. Using again Lemma 4.3 and (4.8), we have

‖u(δ,λ)(0)‖Hγ ≤ Cǫ,

provided 0 < λ ≤ δ ≪ 1 and φ0 ∈ S satisfying

φ̂0(ξ) = O(|ξ|κ) as ξ → 0,

for some κ > −γ − d/2. We recall that

φ(0)(t, x) = φ0(x) exp(−iµt|φ0(x)|ν−1).

It is clear that we can choose φ0 so that

∣

∣

∣

∫

φ(0)(1, x)dx
∣

∣

∣
≥ c or |[φ(0)(1)]ˆ(0)| ≥ c,

for some constant c > 0. Since φ(0)(1) is rapidly decreasing, the continuity
implies that

|[φ(0)(1)]ˆ(ξ)| ≥ c,

for |ξ| ≤ c with 0 < c ≪ 1. Since Hk,k controls L1 when k > d/2, (4.5) implies

|[φ(δ)(1)]ˆ(ξ) − [φ(0)(1)]ˆ(ξ)| ≤ Cδ3,

and then

|[φ(δ)(1)]ˆ(ξ)| ≥ c, (4.10)

for |ξ| ≤ c provided δ is taken small enough. We now have from (4.6) that

u(δ,λ)(λ4, x) = λ− 4
ν−1 φ(δ)(1, λ−1δx),

and

[u(δ,λ)(λ4)]ˆ(ξ) = λ− 4
ν−1 (λδ−1)d[φ(δ)(1)]ˆ(λδ−1ξ).

The estimate (4.10) then yields

[u(δ,λ)(λ4)]ˆ(ξ) ≥ cλ− 4
ν−1 (λδ−1)d,

for |ξ| ≤ cλ−1δ.
In the case γ < −d/2, we have from (4.8) that

‖u(δ,λ)(λ4)‖Hγ ≥ cλ− 4
ν−1 (λδ−1)d = cǫ(λδ−1)γ+d/2.

Here 0 < λ ≤ δ ≪ 1, thus (λδ−1)γ+d/2 → +∞. We can choose δ small enough so
that λ → 0 and (λδ−1)γ+d/2 ≥ ǫ−2 or

‖u(δ,λ)(λ4)‖Hγ ≥ ǫ−1.
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In the case γ = −d/2, we have

‖u(δ,λ)(λ4)‖H−d/2 ≥ cλ− 4
ν−1 (λδ−1)d

(

∫

|ξ|≤cλ−1δ
(1 + |ξ|)−ddξ

)1/2

= cλ− 4
ν−1 (λδ−1)d(log(cλ−1δ))1/2

= cǫ(log(cλ−1δ))1/2.

By choosing δ small enough so that λ → 0 and log(cλ−1δ) ≥ ǫ−4, we see that

‖u(δ,λ)(λ4)‖H−d/2 ≥ ǫ−1.

Combining both cases, we see that the solution map fails to be continuous at 0 in
Hγ-topology.

The case γ = 0 < γc. Let a, a′ ∈ [1/2, 2]. Let φ(a,δ) be the solution to (4.1) with
initial data

φ(a,δ)(0) = aφ0.

Then, Lemma 4.1 gives

‖φ(a,δ)(t)− φ(a,0)(t)‖Hk ≤ Cδ3, (4.11)

for all |t| ≤ c| log δ|c, where

φ(a,0)(t, x) = aφ0(x) exp(−iµaν−1t|φ0(x)|ν−1) (4.12)

is the solution of (4.1) with δ = 0 and the same initial data as φ(a,δ). Note that
the constant C, c above can be taken to be independent of a since a belongs to a
compact set. We next define

u(a,δ,λ)(t, x) := λ− 4
ν−1 φ(a,δ)(λ−4t, λ−1δx). (4.13)

Thanks to (4.2) and the scaling (1.1), we see that u(a,δ,λ) is also a solution of
(NL4S). On the other hand, using (4.12), a direct computation shows that

‖φ(a,0)(t)− φ(a′,0)(t)‖L2 ≥ c > 0,

for some time t satisfying |a − a′|−1 ≤ t ≤ c| log δ|c provided that δ is small
enough so that c| log δ|c ≥ |a − a′|−1. This estimate and (4.11) yield

‖φ(a,δ)(t)− φ(a′,δ)(t)‖L2 ≥ c,

for all |a − a′|−1 ≤ t ≤ c| log δ|c. Now, let ǫ be as in (4.8), i.e.

λ− 4
ν−1 (λδ−1)d/2 =: ǫ, (4.14)

or λ = δθ with θ = d/2
γc

> 1. Moreover, using the fact

[u(a,δ,λ)(λ4t)]ˆ(ξ) = λ− 4
ν−1 (λδ−1)d[φ(a,δ)(t)]ˆ(λδ−1ξ),



Well-posedness, regularity, ill-posedness fourth-order Schrödinger 435

we obtain

‖u(a,δ,λ)(λ4t)− u(a′,δ,λ)(λ4t)‖L2 = λ− 4
ν−1 (λδ−1)d/2‖φ(a,δ)(t)− φ(a′,δ)(t)‖L2 ≥ cǫ.

Similarly, using

[u(a,δ,λ)(0)]ˆ(ξ) = aλ− 4
ν−1 (λδ−1)dφ̂0(λδ−1ξ),

the choice of ǫ in (4.14) gives

‖u(a,δ,λ)(0)‖L2 , ‖u(a′,δ,λ)(0)‖L2 ≤ Cǫ,

and
‖u(a,δ,λ)(0)− u(a′,δ,λ)(0)‖L2 ≤ Cǫ|a − a′|.

Since |a − a′| can be arbitrarily small, this shows that for any 0 < ǫ, σ < 1 and for
any t > 0, there exist u1, u2 solutions of (NL4S) with initial data u1(0), u2(0) ∈ S

such that

‖u1(0)‖L2 , ‖u2(0)‖L2 ≤ Cǫ, ‖u1(0)− u2(0)‖L2 ≤ Cσ, ‖u1(t)− u2(t)‖L2 ≥ cǫ.

This shows that the solution map fails to be uniformly continuous on L2. This
completes the proof of Theorem 1.9.
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Université Toulouse CNRS,
31062 Toulouse Cedex 9, France
email: dinhvan.duong@math.univ-toulouse.fr


