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Abstract

We study hereditary properties of the class of countable groups admitting
an amenable, transitive and faithful action on a countable set. We consider
mainly the case of amalgamated free products, and we show in particular
that the double of amenable groups and the amalgamated free products of
two amenable groups over a finite subgroup admit such actions.

1 Introduction

Let G be a countable group acting on a countable set X.

Definition 1.1. The action of G on X is amenable if there exists a G-invariant mean
on X, i.e. a map µ : 2X = P(X) → [0, 1] such that µ(X) = 1, µ(A ∪ B) =
µ(A) + µ(B) for every pair of disjoint subsets A, B of X, and µ(gA) = µ(A),
∀g ∈ G, ∀A ⊆ X.

A group is amenable if the action on itself by left multiplication is amenable.

The above definition is equivalent to the existence of a Følner sequence, i.e., a
sequence {An}n≥1 of finite non-empty subsets of X such that for every g ∈ G,
one has

lim
n→∞

|An △ g · An|

|An|
= 0.

The class A of countable groups admitting an amenable, transitive and faith-
ful action on a countable set is introduced by Glasner and Monod in [2]. Whilst
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the class A is closed under direct products, free products and extension of co-
amenable subgroups † (Proposition 1.7. in [2]), it is not closed under amalga-
mated free products even if two factors are amenable groups. Indeed, viewing
the group SL2(Z) as an amalgamated free product

SL2(Z) ≃ (Z/6Z) ∗(Z/2Z) (Z/4Z),

one can see the group SL2(Z)⋉ Z
2 as the amalgamated free product G ∗A H of

G = Z/4Z ⋉ Z
2 and H = Z/6Z ⋉ Z

2 along A = Z/2Z ⋉ Z
2. Notice that the

three groups G, H and A are in A since they are amenable, but the amalgamated
free product is not in A since the pair (SL2(Z) ⋉ Z

2, Z
2) has relative Property

(T) and Z
2 does not have finite exponent (it follow from Lemma 4.3. in [2] that if

G ∈ A and the pair (G, H) has relative Property (T), then H has finite exponent,
i.e. there is an integer n such that for every h ∈ H, hn = 1).

The purpose of this paper is to investigate some hereditary properties of the
class A in case of amalgamated free products. Our first result is (see Proposition
3):

Theorem 1. Let G be a group such that G surjects onto an amenable group H. If A is
a common subgroup of G and H such that π|A is injective and [H : A] ≥ 2, then the
amalgamated free product G ∗A H is in A. In particular, if G is amenable, the double of
G over A is in A, for every subgroup A of G.

In case of double of free groups on two generators over a cyclic subgroup
F2 ∗Z F2, it was proven in [4] that any finite index subgroup of such group is in
A. Let us mention that this result was generalized to amalgamated free products
of any free groups over a cyclic subgroup (called cyclically pinched one-relator
groups) Fn ∗Z Fm, ∀n, m ≥ 2 in [3].

Our second theorem concerns amalgamated free products over a finite sub-
group (see Proposition 4). In particular we show:

Theorem 2. Let G and H be countable groups and A be a common finite subgroup of G
and H. If G is an infinite amenable group and there is a H-set Y such that the H-action
is amenable and the action of A on Y is free, then G ∗A H is in A.

As corollaries, the amalgamated free product of an infinite amenable group
and a residually finite group over a finite subgroup (for instance SL3(Z) ∗A G
with any infinite amenable group G and a common finite subgroup A) is in A
(Corollary 8); and the amalgamated free product of two amenable groups over a
finite subgroup is also contained in A (Corollary 9).

Acknowledgement. I would like to thank Nicolas Monod for useful discussions
and Alain Valette for his valuable comments on a previous version of this paper.

†A subgroup H < G is co-amenable in G if the G-action on G/H is amenable.
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2 Hereditary properties of A

2.1 Double of amenable groups

An amalgamated free product G ∗A H is called double of G over A if H is isomor-
phic to G and the amalgamated subgroup of H is given by the isomorphism. Such
a group has a presentation 〈G, φ(G)|a = φ(a), ∀a ∈ A〉 where φ : G → H is an
isomorphism. As mentioned above, in general the amalgamated free product is
not in A even if the factors are amenable groups. But it is true if the amalgam is
a double; or more generally, if one factor surjects onto the other factor which is
amenable with some extra condition (Theorem 1):

Proposition 3. Let H be an amenable group and let π : G ։ H be a group epimorphism
and let A < G be a subgroup such that π|A is injective and [H : π(A)] ≥ 2. Then the
amalgamated free product G ∗A H given by π, i.e.

G ∗A H = 〈G, H|π(a) = a, ∀a ∈ A〉

is in A. In particular, if G is amenable, the double of G over A is in A.

Proof. Let ψ : G ∗A H → H be a homomorphism defined by ψ(g) = π(g), and
ψ(h) = h for all g ∈ G and h ∈ H. Let Ker(ψ) = N. Let X be the Bass-Serre tree
of G ∗A H and Y = N \ X be the quotient graph. Since N intersects A trivially, by
the theory of Bass-Serre, N is isomorphic to the free product

N ≃ K ∗ (∗i Hi),

where K is a free group isomorphic to the fundamental group π1(Y, T) of the
graph Y relatively to the maximal tree T which is generated by gy with y ∈ O − T
where O is an orientation of Y, and Hi is the intersection of N with a conjugate
of some factor of G ∗A H (cf. Remarque in p. 61 in [7]). Thus in order to have
K 6= {1}, it suffices that the quotient graph Y = N \ X is not a tree. If there exist
x ∈ G and h ∈ N such that hH = xH and hA 6= xA (see Figure 1), then the
quotient graph Y will have a circuit of length 2.



290 S. Moon

Thus, it is sufficient to find x ∈ G and h ∈ N such that x ∈ G \ A and x−1h ∈
H \ A.

By assumption on the index of π(A) in H, there exists z ∈ H \ π(A) so that
z−1 ∈ H \ π(A). Let x ∈ G \ A such that π(x) = z. Let h = xπ(x−1). Then
ψ(h) = ψ(x)ψ(π(x−1)) = π(x)π(x−1) = 1, so h ∈ N, and we have

x−1h = x−1xπ(x−1) = π(x−1) = z−1 ∈ H \ A.

Therefore, the normal subgroup N is a free product K ∗ (∗i Hi) with K 6= {1},
and the quotient is the amenable group H. Recall that a non-trivial free product
G1 ∗G2, where Gi is a free group for some i ∈ {1, 2}, is always in A from Theorem
1.5 in [2]. Recall also that the class A is closed under extension of co-amenable
subgroups. It follows that N is co-amenable in G ∗A H and is in A, thus G ∗A H
is in A. For the second statement, take π = IdG.

2.2 Amalgamated free products over a finite subgroup

Definition 2.1. Let G, H be two countable groups and let A be a common finite
subgroup of G and H. We say that the triple (G, H, A) is in the class A′ if there
exist a G-action on X and a H-action on Y such that

(i) the action G y X is transitive;

(ii) for every element g of G \ A, and h of H \ A, the sets

suppA(g) = {x ∈ X|Ax ∩ gAx = ∅}

suppA(h) = {x ∈ Y|Ax ∩ hAx = ∅}

are infinite;

(iii) there exist Følner sequences {Cn}n≥1 of G y X and {Dn}n≥1 of H y Y
such that

(iii)-1. |Cn| = |Dn|, ∀n ≥ 1;

(iii)-2. the sets {A · Cn}n≥1, {A · Dn}n≥1 are pairwise disjoint;

(iv) the action of A on X and Y are free.

Note that if (G, H, A) ∈ A′ then G ∈ A.

Proposition 4. If (G, H, A) ∈ A′ then G ∗A H ∈ A.

Proof. Let X be a countable set carrying actions of G and H as in the definition.
Since A acts freely in the two actions, conjugating we may assume that the G-
action and the H-action coincide on A.

First of all, let us recall that the group Sym(X) of permutations of X endowed
with the topology of pointwise convergence ‡ is a Baire space. Recall that a sub-
set Y ⊂ Sym(X) is meagre if it is a union of countably many closed subsets with

‡A sequence αn ∈ Sym(X) converges to α ∈ Sym(X) if for all finite subset F of X, there exists
n0 such that αn|F = α|F, for all n ≥ n0.
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empty interior; and generic or dense Gδ if its complement Sym(X) \ Y is meagre.
Baire’s theorem states that in a complete metric space, the intersection of count-
ably many dense open subsets is dense, in particular not empty. Thus in order
to find a permutation α of X having the properties {Pi}i≥1, it is enough to prove
that the set

Ui = {α ∈ Sym(X)|α satisfies the property Pi}

is generic in Sym(X) and take α ∈ ∩i≥1Ui.

Now let {Cn}n≥1 (respectively {Dn}n≥1) be the Følner sequence for G (re-
spectively for H) satisfying the condition (iii) as in Definition 2.1. Set Z = {σ ∈
Sym(X) |σa = aσ, ∀a ∈ A}; this is a closed subset in Sym(X) so it is a Baire space.
For σ ∈ Z, denote by Hσ = σ−1Hσ. By universality, the amalgamated free prod-
uct G ∗A Hσ acts on X by g · x = gx and h · x = σ−1hσx for all g ∈ G and h ∈ H.
We shall prove that the sets

O1 = {σ ∈ Z| the action G ∗A Hσ on X is faithful },

and

O2 = {σ ∈ Z| there is a subsequence {nk} of n such that σ(Cnk
) = Dnk

}

are generic in Z.
Indeed, for the genericity of O1, we shall prove that for every non-trivial word

w ∈ G ∗A H, the set
Vw = {σ ∈ Z|wσ = IdX}

is closed and of empty interior. It is clear that the set Vw is closed. To prove that
the set Vw is of empty interior, let us consider the case where w = agnhn · · · g1h1

with a ∈ A, gi ∈ G \ A and hi ∈ H \ A (the other three cases are similar). The
corresponding element of Sym(X) given by the action is wσ = agnσ−1hnσ · · ·
g1σ−1h1σ. Let σ ∈ Vw. Let F ⊂ X be a finite subset. Choose x0 /∈ F ∪ σ(F) such
that Ax0 ∩ (F ∪ σ(F)) = ∅. Inductively on 1 ≤ i ≤ n, we choose a new point
x4i−3 ∈ suppA(hi) such that Ax4i−3 and hi Ax4i−3 are outside of the finite set of all
points defined before (this is possible by (ii) in Definition 2.1). Then we define

σ′(ax4i−4) := ax4i−3 and σ′(aσ−1(x4i−3)) := aσ(x4i−4),

for all a ∈ A. Then set x4i−2 := hix4i−3. We choose again a new point x4i−1 ∈
suppA(gi) such that Ax4i−1 and gi Ax4i−1 are outside of the finite set of all points
considered so far. We then define

σ′(ax4i−1) := ax4i−2 and σ′(aσ−1(x4i−2)) := aσ(x4i−1),

for all a ∈ A. Then set x4i := gix4i−1.
Every point v on which σ′ is defined verifies σ′a(v) = aσ′(v), ∀a ∈ A. Indeed,

let a, a′ ∈ A. Then,

· σ′a(a′x4i−4) = σ′(aa′x4i−4) = aa′x4i−3 = a(a′x4i−3) = aσ′(a′x4i−4);

· σ′a(a′σ−1(x4i−3)) = σ′(aa′σ−1(x4i−3)) = aa′σ(x4i−4) = a(a′σ(x4i−4)) =
aσ′(a′σ−1(x4i−3));
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· σ′a(a′x4i−1) = σ′(aa′x4i−1) = aa′x4i−2 = a(a′x4i−2) = aσ′(a′x4i−1);

· σ′a(a′σ−1(x4i−2)) = σ′(aa′σ−1(x4i−2)) = aa′σ(x4i−1) = a(a′σ(x4i−1)) =
aσ′(a′σ−1(x4i−2)).

By construction, the 4n + 1 points obtained by the right subwords of wσ′
are

all distinct and in particular wσ′
x0 6= x0. We then define σ′ to be σ on every points

except these finite points, so that σ′ ∈ Z \ Vw satisfies σ′|F = σ|F. This concludes
the genericity of O1.

About the genericity of O2, let us write O2 =
⋂

N∈N{σ ∈ Sym(X)| there exists
m ≥ N such that σ(Cm) = Dm}. We shall show that for every N ∈ N, the set
VN = {σ ∈ Sym(X)|∀m ≥ N, σ(Cm) 6= Dm} is of empty interior (the closedness
is clear). Let F ⊂ X be a finite subset and σ ∈ VN. Let m ≥ N large enough such
that A · xi ∩ (F ∪ σ(F)) = ∅ and A · yi ∩ (F ∪ σ(F)) = ∅, for every xi ∈ Cm and
yi ∈ Dm, ∀i; this is possible by (iii)-2. of Definition 2.1. By (iv) of Definition 2.1,
we have |A · xi| = |A · yi|, ∀i. We then define

σ′(axi) := ayi and σ′(aσ−1(yi)) := aσ(xi),

for every 1 ≤ i ≤ |Cm| = |Dm| and a ∈ A. For all other points, we define σ′ to be
equal to σ so that σ′ ∈ Z \ VN and σ′|F = σ|F.

Let σ ∈ O1 ∩ O2. Let {Cnk
}k≥1 be the subsequence of {Cn}n≥1 such that

σ(Cnk
) = Dnk

, ∀k ≥ 1. The sequence {Cnk
}k≥1 is a Følner sequence for G, and

for every h ∈ H, we have

lim
k→∞

|Cnk
△ h · Cnk

|

|Cnk
|

= lim
k→∞

|Cnk
△ σ−1hσCnk

|

|Cnk
|

= lim
k→∞

|σCnk
△ hσCnk

|

|Cnk
|

= lim
k→∞

|Dnk
△ hDnk

|

|Dnk
|

= 0.

Thus the sequence {Cnk
}k≥1 is a Følner sequence for G ∗A Hσ, and therefore G ∗A

Hσ is in A.

Remark 2.1. 1. The condition (ii) in Definition 2.1 is trivially satisfied if the
G-action on X is free (which implies that G is amenable).

2. About (iv) in Definition 2.1, this condition is used in the proof of the gener-
icity of O1 and O2 where, given any two points x and y, we needed to have
|Ax| = |Ay| in order to define σ′ such that σ′(Ax) = Ay.

The following lemma shows that given two infinite amenable groups, one can
always find Følner sequences having the same cardinality. Precisely, we have:

Lemma 5. Let G, H be infinite amenable groups. Then there exist Følner sequences
{Cn}n≥1 of G and {Dn}n≥1 of H such that |Cn| = |Dn|, ∀n ≥ 1.
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Proof. We shall show that for any ε > 0, any finite subset F ⊂ G and any finite
subset E ⊂ H, there exist a finite subset C′ ⊂ G and a finite subset D′ ⊂ H such
that C′ is (ε, F)-Følner and D′ is (ε, E)-Følner verifying |C′| = |D′|.

Recall that a finite subset A ⊂ G is (ε, F)-Følner if

|A △ gA| < ε|A|, ∀g ∈ F.

By amenability of G, there is a finite subset C0 ⊂ G which is (ε, F)-Følner. Let
{Dn}n≥1 be a Følner sequence of H. Let n ≫ 1 large enough such that

(1) Dn is (ε/4, E)-Følner;

(2) |Dn| > λ|C0|, where λ = max {8/ε, 2}.

By Euclidean division, there exist d, r ∈ N such that |Dn| = d|C0|+ r with r <

|C0|. Let g1, . . . , gd ∈ G such that {C0gi}i are pairwise disjoint. We put C′ :=
⊔d

i=1 C0gi. Then C′ is (ε, F)-Følner and |C′| = d|C0|.
Now let D′ := Dn − {x1, . . . , xr} be a subset of Dn obtained from Dn by delet-

ing any r elements of Dn. Then |D′| = |Dn| − r = d|C0| = |C′|. We claim that D′

is (ε, E)-Følner. Indeed, we have

|Dn|

|D′|
=

|Dn|

d|C0|
=

d|C0|+ r

d|C0|
= 1 +

r

d|C0|
< 1 +

1

d
≤ 2,

since r < |C0| and |Dn| = d|C0|+ r > λ|C0| so d > λ − 1 ≥ 1 by definition of λ.
In addition, we have

|D′
△ Dn|

|Dn|
=

r

|Dn|
<

r

λ|C0|
<

1

λ
≤

ε

8
.

Therefore,

|D′
△ hD′|

|D′|
≤

|Dn|

|D′|

( |D′
△ Dn|

|Dn|
+

|Dn △ hDn|

|Dn|
+

|hDn △ hD′|

|Dn|

)

< 2
( ε

8
+

ε

4
+

ε

8

)

= ε,

for every h ∈ E.

Lemma 6. If there exist amenable actions of G and H, then there exist G-action and
H-action such that the actions admit Følner sequences {Cn}n≥1 for the G-action and
{Dn}n≥1 for the H-action with |Cn| = |Dn|, ∀n ≥ 1.

Proof. If G y X amenably, we replace X by a disjoint union of infinitely many
copies of X and use the same idea as in the proof of Lemma 5; if C0 ∈ X is (ε, F)-
Følner, we put C′ to be d copies of C0 in d disjoint copies of X.

Now we are ready to prove Theorem 2:

Corollary 7. Let G and H be countable groups and A be a common finite subgroup of G
and H. If G is an infinite amenable group and there is a H-set Y such that the H-action
is amenable and the action of A on Y is free, then (G, H, A) ∈ A′.
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Proof. Let {Cn}n≥1 be a Følner sequence of G. First of all, we can suppose that the
sequence {A ·Cn}n≥1 is pairwise disjoint. Indeed, if {Cn}n≥1 is a Følner sequence
of G, we define {C′

n}n≥1 inductively on n; let C′
1 := C1 and for every n ≥ 1, we

choose hn ∈ G such that ACn+1hn ∩ (∪n
i=1AC′

i ) = ∅, and we set C′
n+1 := Cn+1hn.

Moreover, if {Dn}n≥1 ⊂ Y is a Følner sequence for H-action, we can also suppose
that the sequence {A · Dn}n≥1 is pairwise disjoint. Indeed, let Y0 = ⊔i≥1Yi where
Yi = Y, ∀i ≥ 1 be a disjoint union of infinitely many copies of Y. Then the H-
action on Y0 is amenable with a Følner sequence Dn ⊂ Yn, ∀n ≥ 1 such that
{A · Dn}n≥1 is pairwise disjoint. In addition, by Lemma 6 we can suppose that
|Cn| = |Dn|, ∀n ≥ 1, so that the condition (iii) in Definition 2.1 is verified.

Now we consider the H-action on Y′ := H ⊔ Y0. The action satisfies the con-
dition (ii) of Definition 2.1 (for the H-action) since the H-action on itself is free,
and the action of A on Y′ is free (since the A-action on H is clearly free and the
A-action on Y0 is free by assumption). Finally let G = X. The G-action on itself is
transitive and free. Thus the triple (G, H, A) is in A′.

Corollary 8. If G is infinite amenable group and H contains a finite index normal sub-
group N with N ∩ A = {1}, then (G, H, A) ∈ A′.

It follows from Corollary 7 by taking Y = H/N. So for example if H is resid-
ually finite, applying Proposition 4 we see that G ∗A H is in A for every finite
subgroup A of G and H. Besides, with A = {1}, we find a particular case of the
result of Glasner-Monod; if G is amenable, then G ∗ H ∈ A for every countable
group H.

Corollary 9. Let G, H be amenable groups and let A be a common finite subgroup of G
and H. Then the amalgamated free product G ∗A H is in A.

Proof. The cases where G or H is infinite follow from Corollary 7 and Proposition
4. So let G and H be finite groups. From a result of Baumslag [1], if G and
H are finite groups, then the amalgamated free product G ∗A H contains a free
subgroup of finite index. So G ∗A H is in A since A is closed under the extension
of co-amenable subgroup.

Remark 2.2. When G is a finitely generated group with polynomial growth, Lem-
ma 5 can be strengthened. Indeed, in this case G admits Følner sequences of any
prescribed size. More precisely, let {an}n≥1 be a strictly ascending sequence of
positive integers. Let G be an infinite finitely generated group with polynomial
growth. Then G has a Følner sequence {Fn}n≥1 such that |Fn| = an, ∀n ≥ 1.

Proof. Let S be a finite symmetric generating set of G. Denote B(k) the ball of
radius k centered at 1 in the Cayley graph G(G, S). Let kn such that |B(kn)| ≤
an < |B(kn + 1)|. We choose a finite subset Kn such that Kn ∩ B(kn) = ∅ and
|Kn| = an − |B(kn)|, and set Fn := B(kn) ∪ Kn, ∀n ≥ 1. Recall that the boundary
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∂A of A is the set of edges (s, t) such that s ∈ A and t /∈ A. We have

|∂Fn|

|Fn|
≤

|∂B(kn)|

|Fn|
+

|∂Kn|

|Fn|
≤

|∂B(kn)|

|B(kn)|
+

|∂Kn|

|B(kn)|

≤
|∂B(kn)|

|B(kn)|
+ |S|

|Kn|

|B(kn)|
≤

|∂B(kn)|

|B(kn)|
+ |S|

|B(kn + 1)| − |B(kn)|

|B(kn)|

≤
|∂B(kn)|

|B(kn)|
+ |S|

|∂B(kn)|

|B(kn)|
≤ (1 + |S|)

|∂B(kn)|

|B(kn)|
.

By a result of Pansu [6], a group with polynomial growth with degree d satisfies
|B(k)|

kd −−−→
k→∞

C, for some C > 0. Thus in such a group, the sequence of all balls is a

Følner sequence. This applies to our case and thus |∂Fn|/|Fn | −−−→
k→∞

0.

2.3 Central extensions

From the idea of Lemma 7.3.1 in [5], we have:

Lemma 10. Let 1 → Z → G
p
−→ Q → 1 be a central extension. Suppose that there is

a co-amenable subgroup H < Q such that H ∈ A (so Q is also in A) and the central

extension splits over H (i.e. the central extension 1 → Z → p−1(H)
p
−→ H → 1 splits).

Then G ∈ A.

Proof. Since the extension splits over H, the group p−1(H) is a semi-direct prod-
uct of Z and H, but Z is central so p−1(H) is indeed isomorphic to the direct
product Z × H. Since Z ∈ A (Z is amenable) and H ∈ A by assumption,
the group p−1(H) is in A. Moreover, the map G/p−1(H) → Q/H defined by
gp−1(H) 7→ p(g)H is G-equivariant and bijective, so the co-amenability of H in
Q implies the co-amenability of p−1(H) in G, thus G ∈ A.

Example 2.1. (Example 7.3.4. in [5]) For p, q ≥ 2, a Torus knot group Γp,q is the
group with the presentation Γp,q = 〈x, y|xp = yq〉. There is a central extension

0 → Z → Γp,q → Z/pZ ∗ Z/qZ → 1,

where Z ≃ 〈xp = yq〉, Z/pZ ≃ 〈x|xp = 1〉 and Z/qZ ≃ 〈y|yq = 1〉.
The free product Z/pZ ∗Z/qZ has a finite index free subgroup F over which

the central extension splits. Thus the group Γp,q is in A by Lemma 10.

Example 2.2. Let M be a 3-manifold which is constructed as a fiber bundle over
a closed orientable surface with fiber a circle. Such a 3-manifold is an orientable
Seifert fibred space. There is a central extension

0 → Z → π1(M)
p
−→ Γg → 1,

where Γg is the fundamental group of the closed orientable surface of genus g ≥
2. The derived subgroup Γ′

g is co-amenable in Γg and Γ′
g ∈ A since Γ′

g is free

(since [Γg : Γ′
g] is infinite). Thus we have a central extension that splits:

1 → Z → p−1(Γ′
g)

p
−→ Γ

′
g → 1.

Therefore π1(M) is in A by Lemma 10.



296 S. Moon

References

[1] G. Baumslag, On the residual finiteness of generalised free products of nilpotent
groups, Bull. Amer. Math. Soc. 75 (1969), 305–316.

[2] Y. Glasner and N. Monod, Amenable actions, free products and a fixed point prop-
erty, Bull. Lond. Math. Soc. 39 (2007), no. 1, 138–150.

[3] S. Moon, Amenable actions of cyclically pinched one-relator group and generic prop-
erty, Preprint 2009, arXiv:0909.2824.

[4] , Amenable actions of amalgamated free products, Groups, Geom. Dyn. 4
(2010), no. 2, 309–332.

[5] P-A. Cherix, M. Cowling, P. Jolissaint, P. Julg and A. Valette, Groups with the
Haagerup Property : Gromov’s a-T-menability, Progress in Mathematics, vol. 197,
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symétriques de rang un, Ann. of Math. 129 (1989), 1–60.

[7] J.-P. Serre, Arbres, amalgames, SL2, vol. astésisque 46, Société Mathématique de
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