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In this note we announce results on extending holomorphic maps into 
compact complex manifolds that satisfy certain curvature conditions. These re­
sults are analogous to theorems on extending holomorphic maps into manifolds 
with holomorphic sectional curvatures < 0 obtained by the author [5] and in­
dependently by Griffiths [3]. A similar type of result on meromorphic exten­
sion of equidimensional maps has been given by Griffiths [2, Theorem D]. 

Let E be a hermitian holomorphic vector bundle on a complex manifold M. 
Let R(v, w, s, t ) denote the curvature tensor for the hermitian connection on E, 
where v, w G E, s, t G T = holomorphic tangent bundle of M. (Our sign conven­
tion is chosen so that if E = T, then R(s, Y, s, s~) is the usual holomorphic sec­
tional curvature of a unit tangent vector s.) Let f\kT denote the bundle of 
holomorphic /̂ -vectors on M (A XT = T) and suppose A kT is given a hermitian 
metric. For a simple vector v G A kTx (x G M), we let 1>V denote the A:-dimen­
sional subspace of Tx associated with v, and we consider the hermitian form Rv 

on Xv given by 

Rv(sf 7) = R(v, v, s, 7) for s, t G 2„. 

We say that a complex manifold M has property Hk if A kT carries a hermitian 
metric such that for all simple ^-vectors v, Rv has at least one nonpositive eigen­
value. Note that M has property Hx if and only if Af has a hermitian metric with 
holomorphic sectional curvatures <0. 

THEOREM 1. Let 1 < ƒ < k < n, and let M be a compact complex mani­
fold that has properties Hj and Hk. Let D be a domain with smooth boundary 
in Cn. Let p G dD, and suppose D is strictly (n - k)-pseudoconcave at p (i.e., 
ifD = {u<0}, then the Levi form of u restricted to the "holomorphic" tangent 
space of dD at p has at least k negative eigenvalues). Then every holomorphic 
map f:D —> M extends holomorphically to a neighborhood of p. 

The analogous result for k — 1 is given in [5, Lemma 3] where M is allowed 
to be complete instead of compact (see also [3] ). 
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COROLLARY 1. Let M be as in Theorem 1, and let K be a compact sub­
set of a domain D in Cn where n> k. Then every holomorphic map f:D-K 
—• M has a holomorphic extension to D. 

We let Am denote the unit polydisk in Cm. We consider the Hartogs do­
main Hk consisting of all points z = ( z 1 , . . . , z n ) G A " such that 

maxOzjl, . . . , \zk\)> 1 - e or max(lzfc+1l, . . . , l z j ) < e 

(where 0 < e < 1). 

COROLLARY 2. Every holomorphic map f:H£—+M, where M is as in 
Theorem 1, extends holomorphically to An. 

EXAMPLE 1. Let D be a bounded symmetric domain, and let T be a dis­
crete group acting holomorphically and without fixed points on D such that 
D/T is compact (see [6, Chapter XI] ). Give D/T the Kâhler metric induced 
from the Bergman metric on D, which has holomorphic sectional curvatures <0 
and holomorphic bisectional curvatures <0. Let M0 C D/T x Y, where Y is an 
arbitrary (k - l)-dimensional compact hermitian manifold. It follows that Af0 

has property Hq for k < q < dim Af0. If Af is a small deformation of Af0, then 
M also has property Hq for k < q < dim Af. 

The proof of Theorem 1 uses the following lemma, which is similar to the 
disk theorem in [5, Theorem 2]. 

LEMMA 1. Let fm: Ak —• Af, for m = 1, 2, . . . , be a sequence of holo­
morphic maps, where M is a compact complex manifold satisfying property Hfc. 
Suppose {fm} converges uniformly on compact subsets of Ak - {0} to a holo­
morphic map f0: Ak - {0} —> Af. Then f0 is meromorphic (in the sense of 
Remmert) at 0. 

The proof of Lemma 1 uses the techniques of [5] together with results of 
Stoll [8], Bishop [1], and the author [4] on recognizing analytic sets. 

To prove Theorem 1, we consider a sequence of fc-disks in D converging 
to a fc-disk A in D U {p} with center at p. Lemma 1 tells us that ƒ1 A is mero­
morphic at p. Let A' be a (/ "f l)-disk in A with center at p. The conclusion 
of the theorem then follows from the result below, which shows that ƒ I A' is 
holomorphic at p. 

THEOREM 2. Let f be a meromorphic map from Ak into a complex mani­
fold M that satisfies Hk_v If f is holomorphic on Ak - { 0}, then f is holo­
morphic on Ak. 

The method of proof of Theorem 2 is as follows: Let h be the metric on 
/\k-iT that satisfies Hk^x. Suppose ƒ is not holomorphic at 0. Let G denote 
the normalization of the graph of/, let n: G —• Ak be the natural projection, 
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and let S = TT (0). Then S has pure dimension k - 1, by a result of Grauert 
and Remmert. We construct a nontrivial section $ G T(S0, 0(£/\k-iTsf))9 

where S0 is a smooth, affine algebraic, Zariski-open subset of S, and q is a posi­
tive integer. Let u = <(T*/I)«, 3><8> $> G C°°(50), where r: S0 —• M is the 
natural projection. The section $ is constructed so that w vanishes at infinity. 
The curvative condition implies that the Levi form of u has at least one nonnega-
tive eigenvalue at each point of S0, contradicting the fact that u attains its maxi­
mum on S0. 

COROLLARY 3. Let f be a meromorphic map from a domain D C C " into 

a complex manifold M that satisfies Hk__v If the indeterminacy locus of f has 

codimension > k, then f is holomorphic. 

Combining Corollary 3 with a result of Siu [7] on extending meromorphic 
maps, one has the following result. 

COROLLARY 4. Let D be a domain in Cn and let A be an analytic set in 

D of codimension > k, where k>2. Let M be a compact Kahler manifold that 

satisfies Hk_v Then every holomorphic map f.D-A —* M has a holomorphic 

extension to D. 

It is well known that any meromorphic map from a domain D into a pro­
jective algebraic manifold extends meromorphically to the envelope of holomor-
phy of Z>. This fact together with Corollary 3 yields the following result. 

THEOREM 3. Let D, p be as in Theorem 1. Let M be a projective algebraic 

manifold (or a Moishezon manifold) that satisfies Hk. Then every holomorphic 

map f.D —> M extends holomorphically to a neighborhood of p. 

Corollaries 1 and 2 are also valid if M satisfies the hypotheses of Theorem 

3. It is not known if the condition H;- in Theorem 1 is necessary for general M. 

EXAMPLE 2. Let M be a /^-dimensional projective algebraic manifold whose 

canonical bundle KM carries a metric with positive semidefinite curvature form. 

For example, let M be a smooth hypersurface of degree >k + 2 in ?k+ x. (If 

degree M = k + 2, then KM is trivial.) Then M satisfies Hk and the extension 

result of Theorem 3 is valid for maps into M. 
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