Bayesian Analysis (2017) 12, Number 2, pp. 407-433

A Hierarchical Bayesian Setting for an Inverse
Problem in Linear Parabolic PDEs
with Noisy Boundary Conditions

Fabrizio Ruggeri*, Zaid Sawlan, Marco Scavino®¥, and Raul Tempone

Abstract. In this work we develop a Bayesian setting to infer unknown param-
eters in initial-boundary value problems related to linear parabolic partial differ-
ential equations. We realistically assume that the boundary data are noisy, for
a given prescribed initial condition. We show how to derive the joint likelihood
function for the forward problem, given some measurements of the solution field
subject to Gaussian noise. Given Gaussian priors for the time-dependent Dirichlet
boundary values, we analytically marginalize the joint likelihood using the linear-
ity of the equation. Our hierarchical Bayesian approach is fully implemented in an
example that involves the heat equation. In this example, the thermal diffusivity
is the unknown parameter. We assume that the thermal diffusivity parameter can
be modeled a priori through a lognormal random variable or by means of a space-
dependent stationary lognormal random field. Synthetic data are used to test the
inference. We exploit the behavior of the non-normalized log posterior distribution
of the thermal diffusivity. Then, we use the Laplace method to obtain an approx-
imated Gaussian posterior and therefore avoid costly Markov Chain Monte Carlo
computations. Expected information gains and predictive posterior densities for
observable quantities are numerically estimated using Laplace approximation for
different experimental setups.

Keywords: linear parabolic PDEs, noisy boundary parameters, Bayesian
inference, heat equation, thermal diffusivity.

1 Introduction

Parabolic partial differential equations model various important physical phenomena
such as diffusion and heat transport. The solution of such equations propagates forward
in time from an initial condition given boundary conditions and equation coefficients.
In applications, some equation coefficients can be unknown quantities that need to
be estimated. In addition, exact initial and boundary conditions might not be known.
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One possible approach to estimate these unknowns is to solve the inverse problem
given some information about the solution. Classical inversion methods for parabolic
partial differential equations are introduced by Samarskii and Vabishchevich (2007) in
Chapter 8 of their book.

Several approaches on parameter estimation for PDE models are available in the lit-
erature. For example, Bér et al. (1999) have modeled the unknown PDEs as multivariate
polynomials of the independent variables, then choose the best fit by computation of
the nullclines of the fitted PDEs. Miiller and Timmer (2002) have applied a two-stage
generalization of the multiple shooting method to deal with the parameter estimation
for nonlinear PDEs with noisy and partially observed data. A generalized smoothing
approach for a system of nonlinear ordinary differential equations has been provided
by Ramsay et al. (2007). Recently, Xun et al. (2013) have developed two methods to
estimate parameters in PDE models: a parameter cascading method and a Bayesian
method. In both approaches, the unknown dynamic process is represented by a linear
combination of B-spline basis functions that, in the Bayesian approach, is estimated by
the Bayesian P-spline method. Markov Chain Monte Carlo procedures have been used
to sample from the posterior distributions of the PDE parameters and the B-spline coef-
ficients. It is worth mentioning that most of such works address problems with nonlinear
PDEs. These works do not exploit the linear structure for the efficient treatment of noisy
initial and boundary conditions. Motivated by this fact, our goal in this work is to de-
velop an efficient parameter estimation method that exploits the particular structure of
linear time dependent PDEs. This extremely important class of PDEs includes, among
others, the heat equation, the wave equation and the transport equation. Moreover,
this class is broad enough to cover many crucial engineering applications and therefore
deserves its own very efficient computational approach.

In this work, we consider a Bayesian inversion problem to determine the coefficients
of linear parabolic partial differential equations, as an example of linear time dependent
PDESs, under the assumption that noisy measurements are available in the interior of
a domain of interest and for the unknown boundary conditions. A main novelty of
our approach to solve the inverse problem relies on the assumption that the boundary
parameters are unknown and modeled by means of adequate probability distributions.
Subsequently, the contribution of the boundary parameters is marginalized out from
the joint law with the unknown equation coefficients we want to infer, allowing the
characterization of their posterior distribution. There are many advantages to a Bayesian
approach. For example, it provides a solution along with a comprehensive measure of
uncertainty given by the posterior distribution. Moreover, the prior available information
can be easily incorporated in terms of elicited prior distributions (Ghosh et al., 2006). An
important issue in this work is that Bayesian inversion is posed as a hierarchical process.
Boundary conditions can therefore be treated as unknown parameters (Kaipio and Fox,
2011). Since we are only interested in estimating the equation coefficients, we eliminate
those extra parameters by analytic marginalization. We show how to perform such
analytical marginalization for a linear parabolic PDE in Section 4. This marginalization
step allows us to compute the marginal likelihood very efficiently, yielding thus via
numerical optimization posterior estimates of our unknown parameters, such as the
maximum a posteriori estimate. We note in passing that for the case of nonlinear PDEs,
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our analytic marginalization does not apply and more costly simulation-based schemes
such as MCMC will be needed, as described in Xun et al. (2013).

Bayesian inversion techniques for the heat equation have been discussed and imple-
mented in some previous works. Kaipio and Fox (2011) provided a general Bayesian
framework for inverse problems in heat transfer, classified according to the dominant
mode in heat transfer. The authors address many issues regarding forward problems
and their statistical analysis. The prior modeling is extensively discussed, as well as
how to deal, in particular, with different sources of uncertainties. Heat flux reconstruc-
tion problems have been studied by Wang and Zabaras (2005, 2004). When referring to
the problem of parameter estimation in inverse heat conduction problems, Wang and
Zabaras showed how to infer the thermal conductivity using a hierarchical Bayesian
framework, on the basis of temperature readings within a conducting solid, assuming
that the heat flux on the boundary and the heat source are known. They also explored
the high dimensional posterior state space by means of Markov Chain Monte Carlo
simulation. Lanzarone et al. (2014) estimated the thermal conductivity of a polymer,
transforming the heat equation into a stochastic differential equation and considering the
Euler—-Maruyama approximation to get the likelihood, introducing latent observations
in space and then using a relatively cumbersome Markov Chain Monte Carlo method.
Fudym et al. (2008) and Massard et al. (2010) addressed the estimation problem of
the thermal diffusivity, as in the present work, which is a parameter that describes
thermophysical property of materials. In their works a large number of temperature
measurements is made by an infrared camera, with fine spatial resolution and high
frequency. They solved one and two-dimensional forward problems for transient heat
conduction, with spatially varying thermal conductivity and volumetric heat capacity,
by finite differences, according to a nodal strategy. The parameter vector at each node
is then estimated either by minimizing an a posteriori objective function when prior
Gaussian distributions are assumed for the parameters, or by means of Markov Chain
Monte Carlo methods for different prior distributions.

This work is organized as follows. In Section 2, we introduce the statistical setting
and we derive the explicit form of the joint law of the unknown equation coefficients and
the boundary parameters. In Section 3, we use a finite element scheme in order to write
the solution of the forward problem as a linear function of the boundary conditions.
We demonstrate in Section 4 that, under certain conditions, an exact marginalization
can be carried out, yielding a closed formula for the marginal likelihood of the equation
coefficients. In Section 5, we apply our marginalization technique to estimating ther-
mal diffusivity in the one-dimensional heat equation in two cases given temperature
simulated data. Numerical results are obtained for the non-normalized log posterior
distribution of the thermal diffusivity. We model prior knowledge about the thermal
diffusivity first as a lognormal random variable and then using a lognormal random
field with a squared exponential (SE) covariance function (Rasmussen and Williams,
2006). In the first case, we use the Laplace method to provide an approximated Gaus-
sian posterior distribution for the thermal diffusivity. Such method is then applied to
obtain fast estimations of the information gain and the expected information gain under
three experimental setups, and the predictive posterior mean of the temperature is also
derived using the inferred thermal diffusivity. In the second case, where the thermal
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diffusivity is allowed to depend on the spatial variable, the Laplace approximation is
used to obtain the posterior distribution of the hyperparameters that characterize the
prior distribution for the thermal diffusivity.

2 Statistical setting and preliminary results

In this section we introduce the statistical model associated to the forward initial-
boundary value problems for linear parabolic partial differential equations. We then
derive, under mild assumptions, the exact expression for the joint likelihood function of
the unknown parameters in the parabolic equation and the unknown boundary param-
eters.

Consider the deterministic one-dimensional parabolic initial-boundary value prob-
lem:
0:T + LT =0, .%‘E(CL‘L,,%R),O<ﬁ<tN<OO

T(.ﬁL,t) = TL(t), te [O,tN}
T(.CER,t) = TR(t), te [O,tN}
T(z,0) = g(x), x € (zr,zR),

(1)

where Lg is a linear second-order partial differential operator that takes the form
LoT = —0,(a(x)0,T) + b(x)0, T + ()T,

0(z) = (a(x),b(x),c(z))!", and the partial differential operator 9; + Lg is parabolic,
because (Evans (1998), p. 372) there exists € such that a(x) > e > 0 for all z € (z1,zR).
We also assume that

P1 a,b and ¢ are bounded functions.
P2 T;,Tr and g are square integrable functions.
P3 The initial condition, g, is consistent with the boundary functions, namely g(z) =

TL(O) and g(l‘R) = TR(O)

Then, under the assumptions P1-P3, there exists a unique weak solution of (1) (Evans
(1998), pp. 375-377).
Our main objective is to provide a Bayesian solution to an inverse problem for 6,
where we assume that
i 0 is unknown, while the initial condition g in the initial-boundary value problem
is known;
ii @ is allowed to vary with the spatial variable x.

Remark 1. In our Bayesian approach, we will assume later that the coefficient a(x)
is a lognormal random wvariable or lognormal random field. Therefore, a(x) will not be
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bounded as assumed in P1. Howewver, it can be proved that there exists a unique solution
of the stochastic parabolic initial-boundary value problem in the space L*(Q, H'). Such
proof can be found in Charrier (2012) for elliptic boundary value problems but it can be
also extended to parabolic initial-boundary value problems.

Given noisy readings of the function T'(x,t) at the I 4 1 spatial locations, including
the boundaries, x; = xg,z1,22,...,27_1,T7 = TR, at each of the N times t1,1s,...,tnN,
we want to infer 8 using a Bayesian approach. To determine the posterior distribution
for @, we need first to obtain the likelihood function of 8. The remainder of this section
derives the joint likelihood function of 8 and the boundary parameters. Let us introduce
some convenient notation and assumptions: let Yy, = (Yo, .. 7Y1’n)” denote the
vector of observed readings at time ¢,,, and assume a statistical model with an additive
Gaussian experimental noise €,; that is:

TL(tn)

T(l’l,tn)
Yn = + €n, (2)
I+1)x1
(o T(xr-1,tn)

TR(tn)

where €, L N(Opiq, 0?1 7+1) for some measurement error variance o2 > 0. The covari-
ance matrix of €, is assumed equal to o2 I, for simplicity, a general covariance matrix
Ye,, could be used as well provided that the boundary measurement errors are indepen-
dent from the interior measurement errors. Also denote by Yf] = Yin,... ,H_l,n)tr
the vector of observed data at the interior locations z1,zs,...,z;_1 and let YE =
(YL,n, Yrn)" be the vector of observed data at the boundary locations zg,x; at time
tn. The density of YL is derived as it follows. First consider the time local problem,
defined between consecutive measurement times, i.e.

atT‘ + LT = 07 (:EL7:L'R)3 tho1 <t < iy,
T(xp,t) =TL(t), t € [tn—1,tnl,
(3)
T(ZL’R,t)— /g) te[n 17 ]7
T(x7t’n—1) T( TL 1) (mL7xR)a

whose exact solution, denoted by f(, t,,), depends only on 0, f(, t,—1) and the bound-
ary values {T(t), Tr(t)}+e(t, . ,t.)- Finally, use the form of the statistical model (2) to
obtain the form of the density of YL.

Lemma 2. Given the model (2), the probability density function of Y is expressed as

~ 1 1
1 _ 2
PRI T .t L), TrO e ) = 7o o (g IRa i ) ()

where Ry, = (T(ml, tn)—Yin, ... T(.TI 1,tn) —Yr—1.0)"" denotes the data residual
(I-1)x1
vector at time t = t,,.
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For illustration purposes and without loss of generality, assume now that the Dirich-
let boundary condition functions, T7,(-) and Tr(-), are well approximated by piecewise
linear continuous functions in the time partition {t, }n=1,. ~.

In this way, only 2N parameters, say 11, (t,) = Trn, Tr(tn) = Trpn,n=1,2,...,N
suffice to determine the boundary conditions that are, in principle, infinite dimensional
parameters. Let LBC),, denote the time nodes that determine the local boundary con-
ditions {Tr n—1,T0.ns TR n—1, TRn}. Other interpolation schemes may be used as well.

)

Remark 3. Given the discretized Dirichlet boundary conditions introduced above, we
can say that T(-,t,) depends only on 0,T(-,t,—1) and the boundary parameters LBC,,.
Similarly, f(-,tn_l) depends on 6,T(-,t,—2) and the boundary parameters LBCy_1.
From this recursion, we can obtain

p(Y0l0,9{LBCs},_; ) = p(YRl0,T(ta1), LBCy). (5)
Since the initial condition, g, is assumed to be known, it will be omitted in the rest of
the paper.

Lemma 4. Given the model (2) and Lemma 2, the joint likelihood function of 6 and
the boundary parameters {LBCy}n=1,... N 1S given by

N
1 1
A1 INOALBC ) = T s o0 (g IR )

n=1

1 1 2 1 1 9
x O exp <_ﬁ (TL’n N YL’”) ) % €Xp <_ﬁ (TR,n - YR,n) ) . (6)

Proof. Observe that YL, YB are conditionally independent given H,T(-,tn,l),LBCn.
Thus, we have

p(Yn|0’f(’t"_1)7LBC”) = p(YIIl’YI]?|07f(atn—1)7LBCTL)7
'O(Y111|0’ j:’(’ tn—l), LBO") X P(Yfﬂe, f(7 tn—l)a LBCn)a
p(YL10, T (- tn_1), LBC,) x p(YB|LBC,)

since YB|LBC,, does not depend on either 8 nor T'(-, t,_1).
The joint likelihood function can then be written as
p(Y1,.., YN0, {LBC}, _;  N)
=p(Yn|0,{LBCy},_y N ¥YN-1,.--, Y1) X p(Y1,..., YN-1[0,{LBCy},_;  n_1)
(since YN|0,{LBCy,}n=1,.. n is independent from Yq,...,YN_1)
= p(Yn16, {LBCn}n:L.U,N) xp(Y1,...,YN-1]6, {LBCn}n:L...A,Nfl)

(using equation (5))

= p(YNI0,T( tn-1), LBCN) x p(Y1,...., YN-1|0,{LBCy},_;  n_1)
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(iterating the previous arguments)

N N
= [ p(Yal6,T( tn-1), LBCy) = [] p(YRI6,T (-, tn-1), LBCy) x p(YR|LBC,)
n=1 n=1
and finally, using (4), the expression (6) is obtained. O

Remark 5. A generalization of the joint likelihood can be obtained given serial corre-
lations, that is, {€, }N_, are time correlated.

USiIlg the notation TL = (TL,17 ey TL,N)tT7 TR = (TR,la ey TR,N)tT7 YL =
(Yoi, ..., Yon)" and Yg = (Yra, ..., YR N)', the joint likelihood function (6) can
be written as

N
1
p(Y1,...,YN|0, T, Tp) = (V2ro) VU exp<—2—22||Rtn||§z>
g n=1

1
X exp <_F [||TL ~ Y|} + ITr — YR||§2D 7 (7)

which is a suitable expression to derive later the marginal likelihood of . The prior
distributions for 8 and the boundary parameters T, Tr can be specified in different
ways. Generally speaking, the prior distribution for 8 should be proposed according to
the physical properties described by the unknown parameters and taking into account
available prior knowledge about the observed phenomena. As an example, it is known
that the thermal conductivity of polymethyl methacrylate (plexiglas) is in the range
0.167-0.25 W/(mK). A uniform prior distribution for the thermal conductivity could
be chosen if there is no preference among the values of the interval.

As per the boundary parameters, we assume independent Gaussian models 17, ,, ~

N(ML,TL7O-12))7 TR,n ~ N(N/R,naag)7 n = 1a .. '7Na with means K = (/'(’L,la .. '7:U/L,N)“.7
Nx1

tr = (LR, ur.N)', and variance 012) > 0. The mean vectors p; and pp can be
Nx1
either known beforehand or constructed from a subsample of the boundary data Y,

and Y i. In the latter case, the likelihood function (7) should be modified accordingly.
For simplicity, hereafter we assume that p; and p; are known beforehand.

We claim that the data residual vector R, can be written as a linear function of T,
and Tg. The next section is devoted to the proof of this basic result. This proof allows
for the exact marginalization of the contribution of the nuisance boundary parameters
from the joint likelihood function (7).

3 Numerical approximation

In this section, our goal is to approximate the residual vector R;, as a linear function
of the boundary conditions. After reformulating the main problem (1), as described in
the next lemma, we will introduce its weak form and finite element method will be then
applied to provide a numerical approximation of the solution of the weak problem.
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Lemma 6. The solution of (1) can be written in the form

TR — X Tr— Iy
T(x,t) =TL(t) —— + Tr(t) —— t 8
(Jf, ) L( )xR_xL + R( )xR — a7 +U,(.’I3, )7 ( )

where u solves a new initial-boundary value problem with homogeneous Dirichlet bound-
ary conditions:

Ou+ Lou = f(x,t), z€ (xp,zRr),0 <t <ty < o0

u(xp,t) =0, t €1[0,tn] (©)
u(:cR,t) =0, te [O,tN]
’LL(.’E,O) = go(x)v T e (vaxR)
and - .
f(z,t) = — (0 + Le)TL(t)x;fo — (0 + Le)TR(t)ﬁ ,
o) = glr) = To(0) T~ Tr(0) =

We now introduce the weak formulation of problem (9).

Find u(t) € V = H(zp,zR), t € (0,tx) such that:
{f;?jatu t)vdr + B (u( szf (t)vdz,Yv € V, t € (0,tn), (10)

U(O) = g ’ (IvaR)v

where B(u,v) = f;f [a(2)0,u0,v+b(x)0puv+c(x)uv] dr and HE(zr, zR) is the closure
of the space C}(xr,xR) of continuously differentiable functions with compact support
on (zr,rr) with respect to the H'-norm (Johnson (1987), p. 149).

Given a mesh z;, = 9 < ... < kAx =z, < ... < IAx = x; = xr of the spatial
domain (xp,zg), we apply the finite element method with piecewise linear functions
(hat functions) {¢x}1_; to approximate the weak solution u(z,t) of (9) as linear com-
binations of the basis functions:

u(z,t) = upg(x,t) = Zuk Yop(z), 0<t<tn

and we get

Zatuk / ¢k¢3dx+2uk (6, 95) / F()6ida,j=1,... 11, te (0,tx).
(1)

Let u(t) = (u1(t),...,ur—1(t))'", then we can write the linear system of ODEs (11)
in a matrix form as:

Madyu(t) + Seu(t) = £(t), 0<t<ty, (12)

where M is the mass matrix, Sg is the stiffness matrix and f(¢) is the load vector.
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We consider now a uniform time discretization of (0,¢x) such that t¢ =0 < ... <
nAt = t, < ... < NAt = ty and denote u(t,) = u, and f(t,) = f,,. We apply the
backward Euler method on equation (12) to obtain the fully discrete analogue of (10)
that takes the form

(M 4+ AtSp) upt1 = Mu, + Atf,11,n=0,...,N — 1,
(13)
Mug = g07
where g° = (ffLR ¢ ddx, ..., ;LR g pr_1dz)t".

Theorem 7. The approzimation of the weak solution of (9) can be written as a linear
function of the initial and boundary conditions:

u, = An(e)llo + AL,TL(O)TL + AR,n (O)TRv (14)

where uy, = (Wi, ur-10)", Tr = (Tpa,-- To,n)", Tr = (Tra, - TrN)" S
and the matrices Ap(0), Ar n(0) and Ar,(0) are explicitly constructed in the proof.

Proof. See Appendix A of the Supplementary Material (Ruggeri et al., 2016). O

Theorem 8. The approzimation of the weak solution of (1) can be written as a linear
function of the initial and boundary conditions:

T, =B"Ty + AL}n(G)TL + AR,n(H)TR. (15)

where Ty, is defined similarly to w, and the matrices B, Ar, ,(0) and Ag,(0) are ex-
plicitly constructed in the proof.

Proof. See Appendix B of the Supplementary Material. O

Remark 9. The weak solution of two-dimensional and higher dimensional linear para-
bolic PDEs can be written in a similar form of equation (15) (see Johnson (1987),
pp. 149-156).

~

Corollary 10. The data residual vector Ry, = (f(ml,tn) —Yin, oo, T(zr_1,ty) —
Yr_1.)" is approzimated by

Rtn = (BnTo — Yi) + AL’n(e)TL + AR’n(G)TR. (16)

4 The marginal likelihood of 6

Given the observations Y7q,..., YN, we showed, in Section 2, how to obtain the joint
likelihood function of 8 and the boundary parameters T, Tg.

In the present section, we derive a convenient expression for the marginal likelihood
of 8, under the assumption that the prior distributions for T, and T g are independent
Gaussian:

Tr ~N(py,0pIn), Tr~N(pg, 07In), (17)
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Then, using (7), the marginal likelihood of 6 is given by:

N
1
p(Y1,....YN|0) = (vV2ro)~NU+D x (V2r0,)~2N / / exp <_2—QZI|R%”?2>
TrJTL g n=1

1
< exp(— s (T~ Y1) (Ty — Yy)

1
- T‘Q(TR —Yg)"(Tgr — YR)>
1
X exp(— 2—2(TL — )" (T — pp)
UP
1
_F(TR_NR)”(TR_NR))dTLd TR. (18)
p

To provide the exact expression of the marginal likelihood of the linear parabolic
equation coefficients @, which has been implemented in the computational examples
presented in Section 5, it is convenient to introduce the following notation:

AL —ZALn ALn ) AR —ZARn ARn( )

NxN NXxXN
N N
Ao = Apn(0)"(YL—B"T,), Agr=) Apn(6)" (YL —B"Ty),
Nx1 n=1 Nx1 n=1
1 1
App = ZAM "Apn(0), Dy2 = =In, Dyz = =lIy.
NxN NxN O NxN  Tp

Theorem 11. The marginal likelihood of 0 is given by:
P(Y1,..., Yn|0) = (VZro) VD (Vara,) 72 (2m) V2] Ao |2 (2m) /2], /2

1
X exp —F

YtLTYL + Y%YR

N
n T n 1
+ > (Y5 = B"T0)" (Y}, = B"To) | — 551" by + 1" i)
i=1 P
1
+ §(NL“”D(,5 + Y D24, A D,2)
X AQ(Dgglu,L + D, Y + DU2A2,L)
1
5 [t oA tr 2 + 267 s Artr s + b5 s Atn ) } (19)

where Ao, A1,tr 2 and tr s are independent of T, and Tr.
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Proof. First, we observe that (18) can be written as:

1 s ‘s
(V2ro) NI x (V2ra,) 2 Xexp{ 5oz [ 1+ 1" g
p

}

N
1 X X .
- 202 [YQYL +YUYR+ > (YR —B"To)" (Y} — B"Ty)

n=1

1
/ / exp { |:TtT(D0.2 + D(,g + —QAL)T
TrJTL g

2
= 2" Doy + Y§ D2 4+ DY Dp2) Ty + — TH AT T,

1
+ Tg(Daz + Dgg + ;AR)TR — 2([I,Rtng2 + Y Daz + AQ RDU2)TR:| }dTLdTR

To marginalize Ty and Tpg, we assume that they are independent Gaussian ran-
dom vectors. We can then use the following standard result: if X ~ N,(u,X), then
E(exp(t'"X)) = exp(t""p + 1t!"3t).

Therefore, by integrating first with respect to T, the marginal likelihood of 8 and
TR is proportional to the product of a factor that is independent of T, and the following
term

1 1
/ exp {——TtE (Dgz + D,z + —2AL> TL} exp(ttLr_lTL)dTL,
TL 2 o /

where )
fj{}\l] = (H’L”Dog + YETDOZ + AZLDU2) - pTgAtLTR

It is now convenient to define Ay 1 = (Dg2+ D, 2+ 23 L Ar). The marginal likelihood

of 8 and Tg is proportional to the product of a factor that is independent of T, and
the term (27)"/2|Ag|'/2 exp{3ti"; AotL,1}.

Therefore, the marginal likelihood of @ can be explicitly written as

(Vara) N0 s (Vara,) 72N x (2m) N2 Ao [M/2 x exp {‘ (12"t + MR i)

1
20]%

N
1 1
~53 {YtLTYL +YRYR+ > (YL —B"To)" (Y] - BnTO)} } x /T exp {itgletL,l
R

i=1
}dTR.

The entire last expression is equal to the product of a term that is independent of
T g and the following term:

1 1
2 T%(DUQ + Dag + ;AR)TR - Q(HRtTDU% + YgDUQ + AZRD(Q)TR
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1
/ exp{ —= Tg Tr
Th 2
where

X exp {tg,lTR} dTR s
t%,l = (l"’R”DUZ + Y%Daz + Ag’:RDgz) —(/,l,Ltrl)o.f7 =+ YETDgz + AéTLDo'z)AOALR .

2
1 1
(Doz + Doz + —5AR) — (;) ALrMoALR

tho thHs
If we now define Afl = (Dgz+ DJZ + J—EAR) — (0—12)2AtL””RA0ALR and integrate with
respect to TR, we have

1, § 1.,
/ exp {_iTgAl 1TR} exp(t’};z’lTR)dTR = (27T)N/2\A1\1/2 exp {gttRJAltRJ}
Tr

1
= 0 exp {5 (6 + i) (b2 + tra) |

after evaluating the integral. We finally obtain (19). O

Remark 12. If the initial condition is unknown, our approach allows the incorporation
of its random modeling and the corresponding marginalization step.

Remark 13. The marginal likelihood (19) is actually valid for any linear evolution
model given by (15). In fact, this framework can be extended to time dependent linear
PDFEs and the marginalization procedure is independent from the dimension of the PDE.

5 A Bayesian inference for thermal diffusivity

In this section, we implement our Bayesian approach to infer the thermal diffusivity 6,
an unknown parameter that appears in the heat equation and measures the rapidity of
the heat propagation through a material (dos Santos et al., 2005).

Synthetic data are used to simulate as close as possible the experimental measure-
ments of heat conduction properties by Lanzarone et al. (2014) that, although un-
available for public use, have inspired the present work. Those authors considered the
thermal properties of a polymethyl methacrylate specimen when submitted to heating
and cooling cycles in a range of temperatures between 25 and 90 °C, measured by ther-
mocouples in 5 inner, equispaced points and 2 outer ones. In particular, comparison of
our Figure 1 with the cooling phase of Experiment B in Figure 4 of Lanzarone et al.
(2014) presents a similar behavior.

Consider the heat equation (one-dimensional diffusion equation for T'(z,t)):
T — 0, (0(2)0,T) =0, x€ (zp,zR), 0 <t<ty <0
T(Ov t) = TL(t)ﬂ te [07 tN]
T(]-vt) :TR(t)v le [OatN]
T(z,0) = g(x), x € (zL,xR).
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We want to infer the thermal diffusivity, 6(x), using a Bayesian approach when
the temperature is measured at I + 1 locations, x¢ = xp,x1,%2,...,T7_1,L] = TR,
at each of the N times, t1,ts,...,ty. Clearly, this problem is a special case of (1)
where Lg = —0,(0(z)0,T) and 6(x) > 0. We can therefore immediately obtain the
non-normalized posterior distribution of § using the marginal likelihood (19).

The prior distributions for 6 can be specified in different ways. In this section we
will consider two cases, when 6 is a lognormal random variable and when 6 depends on
the space variable z and is modeled by means of a lognormal random field. We focus on
the second case in Subsection 5.3. We start by discussing the case where the thermal
diffusivity prior is independent of x.

If we consider a lognormal prior log ~ N (v, 7), where v € R and 7 > 0, then the
non-normalized posterior distribution of 6 is given by

1 o (log 6 — v)?
V2mlT P 272

The posterior distribution of 6 can be approximated by Laplace’s method (Ghosh et al.
(2006), Chapter 4) to obtain a Gaussian posterior

pur(OY1,.... YN) ~ ; exp {—%(9 —0)"H(@O) (0 - é)}
27| H(0)]

pur(0]Y1, ... Yn) >p(Y1,...,YN|0). (21)

where 6 is the maximum a posteriori (MAP) probability estimate of 8 and H(f) is the
inverse Hessian matrix of the negative log posterior evaluated at 6.

To assess the behavior of our method, we introduce a synthetic dataset generated
with constant 6. Let us assume, without loss of generality, that the interval time [0, ¢ ]
is equal to [0,1], z, =0 and zg = 1.

Dataset A

In order to generate data, we solve the initial-boundary value problem for the heat
equation with Robin boundary conditions:

0. T(xp,t) = %(T(mL,t) —Tout) , t€1]0,1],
0. T(xzpg,t) = %(Tout —T(zg,t)), te€]0,1],

and the initial condition T'(z,0) = Ty, = € (0,1), where §(x) = 1 x 10=7m?2 /s, h is the
convective heat transfer coeflicient, £ denotes the thermal conductivity, % = 1(1/m),
Tour =20°C and Ty = 100°C (see Figure 1).

A synthetic dataset (hereafter named dataset A) is generated, with a measurement
standard error noise of o4 = 0.56.

Before presenting the implementation of our novel technique, we will show how
the Bayesian method works, using the joint likelihood (7), under the very restrictive
assumption that the temperature values at the boundaries are exactly known.
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Temperature

04 06

time 0.8 O

Figure 1: Exact solution of the initial-boundary value problem for the heat equation,
0=1x10""m?/s.

5.1 Example 1

Suppose that the thermal diffusivity, €, is a random variable with a lognormal prior,
log 8 ~ N (v, 7). In this case, the non-normalized posterior density for 6 is given by

(0 ) 1 . (logg—u)2 . 1 ol I ”2
vr(0Y1, ..., Y X —F——exXp| ———5——— | & —— R R
P, 1 N el P 972 p 2231 tr |12

where Ry, is used here because the boundary data are known exactly.

Given that 6 is a lognormal random variable with v = 7 = 0.1, the resulting posterior
will depend on ¢ and the number of observations IV that are used to compute the log-
likelihood. Figure 2 shows the behavior of the log-likelihood and the log-posterior for ¢
using different values for o and N.

We then use the Laplace approximation to derive the Gaussian posterior approxi-
mated density for 6. The prior and posterior densities for 6 are presented in Figure 3,
where it can be appreciated that we obtained a Gaussian posterior, with mean 1.0025
and standard deviation 0.0044, which is concentrated around the true value of the pa-
rameter, 0, despite having a very broad prior. We are now in the position to extend our
implementation to embrace the case where the temperature values at the boundaries
are unknown parameters as well.

5.2 Example 2

In this example, we consider again 6 as a random variable with a lognormal prior,
logf ~ N(v,7). Unlike Example 1, we assume noisy boundary measurements and a
Gaussian prior distribution for the boundary parameters as in (17). Therefore, the non-
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Figure 2: Example 1: Comparison between log-likelihoods (on the left) and log-posteriors
(on the right) for 6 using different numbers of observations, IV, and different values of o.

8ol Prior
Posterior
60
40+
i /:l"L |
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0.8 0.9 1 11 1.2 1.3 1.4

Thermal diffusivity 8 (1 x 107 m*/s)

Figure 3: Example 1: Lognormal prior and approximated Gaussian posterior densities
for 0, where 0, = 0 = 0.5 and N = 60.

normalized posterior density for 8 is given by

1 (log 6 — v)?
—_— ——— ) p(Y1,..., YN0
> V2mlT exp< 272 (Yoo, Xnl6),

where p(Y1,...,YnN]|6) is the marginal likelihood of 8 defined in Theorem 11.

pV,T(e‘Ylv s 7YN)

Remark 14. Since 6(x) is supposed to be constant, we can obtain equation (15) al-
ternatively by solving the heat equation using finite differences (see Appendiz C of the
Supplementary Material).

Numerical results are now presented using the synthetic dataset A and assuming
that 6 is a lognormal random variable with v = 7 = 0.1. Figure 4 shows the behavior of
the log-likelihood and the log-posterior for 8 using different values of NV and o. Clearly,
the accuracy of the estimated 6 depends on the size of the dataset, N, and the reliability
of measurement devices, o.
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Figure 4: Example 2: Comparison between log-likelihoods (on the left) and log-posteriors
(on the right) for 6 using different numbers of observations, IV, and different values of o.
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Figure 5: Example 2: Comparison between log-likelihoods (on the left) and log-posteriors
(on the right) for 6 using different values of o and o,, with N = 60.

Figure 5 shows the relationship between the prior distribution of the boundary con-
ditions and their measurements. Although we notice different behaviors of the log-
likelihood and the log-posterior, these functions exhibit the same argument of the max-
imum which is close to the true value of 6.

Again, the Laplace approximation is used to derive the Gaussian posterior approx-
imated density for 6. The prior and posterior densities for 6 are presented in Figure 6
in which the Gaussian posterior, with mean 0.9955 and standard deviation 0.0047, is
concentrated around the true value of # unlike the very broad prior.

Convergence of MAP estimates

When using numerical methods to approximate the dynamic process, it is important
to control the discretization error because it produces a bias error in the statistical
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Figure 6: Example 2: Lognormal prior and approximated Gaussian posterior densities
for 0 where 0, = 0 = 0.5 and N = 60.

inference. Many methods are developed to assess the impact of the discretization error
when PDEs are used in a statistical framework. In particular, very recently, Conrad
et al. (2015) have introduced probability measures over the numerical solutions by
randomizing the deterministic solvers.

Here, we show that MAP estimates have the same convergence rate as the numer-
ical solver used to obtain the marginal likelihood (19). For this purpose, we present
the results from basic convergence tests with respect to discretization space size, Az,
and discretization time step, At, to ensure that the discretization error is negligible in
comparison with the statistical error.

The numerical solver is based on finite element method with piecewise linear func-
tions to approximate the solution in space and backward Euler discretization in time
(see Section 3). Equivalently, we can use centered difference in space and backward
difference in time (see Appendix C of the Supplementary Material). Therefore, the con-
vergence rate of our solver is quadratic in space and linear in time. MAP estimates are
obtained by means of the MATLAB function fmincon, which is suitable to minimize the
negative log-posterior with a prescribed tolerance equal to 1 x 10716,

Figures 7 and 8 show that the MAP estimates of 6 converge quadratically with Az
and linearly with At, which is consistent with the chosen solver. The above criteria aim
to check that the discretization error is smaller than the statistical error, and they apply
when the thermal diffusivity is modeled as a random field.

Information divergence and expected information gain

In the Bayesian setting that we adopted to infer the thermal diffusivity, 8, the util-
ity of the performed experiment, given an experimental setup &, can be conveniently
measured by the so-called information divergence (or discrimination information as
Kullback (1987) called it), which is here defined as the Kullback-Leibler divergence
(Kullback and Leibler (1951)) between the prior density function p(#) and the posterior
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Figure 7: Example 2: Convergence of

: ; Figure 8: Example 2: Convergence of MAP
MAP estimates of § with respect to Ax.

estimates of # with respect to At.

density function of 8, p(0|Y1,..., YN, &):

p(0Y1, ..., YN, &)
p(0)

DKL(Yl,...,YN,f) = /elog( ) p((9|Y1, .,YN,f)dH. (22)

The quantity in (22) is always non-negative; it is equal to zero when the prior
and the posterior coincide; it provides a quantification of the relative discrimination
between the prior and the posterior; and it depends on the observations Yq,..., YN.
Therefore, given the synthetic dataset, A, we may introduce different experimental
setups of interest by varying the interval time during which the temperature is measured.
By choosing some specific thermocouples,we may evaluate the information divergence
for any experimental setup. Moreover, under the same generating process used for the
dataset A, we may obtain as many synthetic datasets as needed to explore the properties
of the proposed simulated experiment. The utility of such computer-based experiments
can be adequately summarized by the so-called expected information gain (Long et al.
(2013)), which is defined as the marginalization of Dk, over all possible simulated data:

o o pOY1,.... YN, §) AN AN
1€ i= [ [ tos (MR S0 ) oy Y (Y [V

(23)
This quantity (23) provides a criterion to determine which features of the setup, &, are,
on average, most informative when inferring 6. A larger value of I(£) when, say, £ € A,
suggests that, given the proposed statistical model, the inference on the unknown pa-
rameter will be more efficient, on average, when the features of the designed experiment
take value in the set A.

Let us label as TC1, ..., TC7 the thermocouples from the left boundary to the right
boundary, respectively.

The numerical estimations of the information divergence for the synthetic dataset
A and of the expected information gain, by using (21) to compute the approximated
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posterior in Example 1, are shown in Figures 9, 10 and 11, which refer to the following
three experimental setups (es’s):

esl) £ consists of three non-overlapping time intervals, with the same length, which
cover the entire observational period [0, 1] ;

es2) £ consists of the five inner thermocouples;

es3) £ is the combination of the two previous experimental setups, esl and es2.

3 2.55
297 o 25 Ry,
» o, . ()
K “‘.'“.'.‘ “".» 'a"
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27k +* %, L * *.-...
. et ., 24 et % T,
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'.* 22 %,
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First Time Interval Second Time Interval Third Time Interval TC2 TC3 TC4 TC5 TCé

Figure 9: Example 2: The expected in-
formation gain compared with the in-
formation divergence for dataset A, for
the three time intervals experimental
setup (esl).

Figure 10: Example 2: The expected
information gain compared with the
information divergence for dataset A,
for the five inner thermocouples exper-
imental setup (es2).

From the values in Figure 9, which depicts the results from an experimental setup
in which the temperature measurements are collected at different time intervals, we
may conclude, by virtue of the interpretation of the expected information gain, that the
second time interval is the most informative time interval from which to draw inferences
on the thermal diffusivity, whereas the last time interval is the least informative one.

Figure 10 summarizes how the expected information gain behaves for the five in-
ner thermocouples experimental setup (es2). Given the synthetic dataset A, the sixth
thermocouple (TC6) is the one where the information divergence takes the smallest
value. However, when we look at the expected information gain, we may appreciate the
nearly symmetric informative content of the thermocouples with respect to the central
thermocouple (T'C4) and how the expected gain about the thermal diffusivity becomes
larger near the central thermocouple.

Finally, we look for the best combination of the two previous experimental setups,
and the corresponding results are displayed in Figure 11. We observe that the highest
expected information gain is attained at the middle thermocouple (T'C4) by using the
information collected during the second time interval. Any indication provided by the
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numerical estimation of the expected information gain is very valuable to an experi-
mentalist, since it suggests the most relevant features to be considered to build up an
efficient experiment to infer the unknown parameters of the assumed statistical model.
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Figure 11: Example 2: The expected
information gain for the combination
(es3) of the three time intervals and the
five inner thermocouples experimental
setups.

Temperature

Figure 12: Example 2: The predic-
tive posterior densities of the observ-
able temperatures for the thermocou-
ples TC2, TC3,TC4 at time t = 0.52.

Predictive posterior distribution

In this section, we examine the possibility of predicting the observable temperature at
future time intervals after estimating the thermal diffusivity, 8. More specifically, assume
we have inferred # using temperature measurements up to time ¢,. Then, we want to
predict the temperature in the next time step, t,41. Given our Bayesian model, it is
necessary to assume the knowledge of the boundary temperature at time ¢,,11. A typical
situation could be given by an experiment in which there is interest in temperature
values at inner points for different boundary values.

The predictive posterior distribution, p(Ynt1|{Yx}?_1, T2 nt+1: TRn+1), is given by

/@ p(Yn+1| {Yk}zzl ;TL,n+17 TR,n+1> 0>p(9| {Yk}Z:l) do ) (24)

and it is estimated by averaging

M

1 n
M Z p(Yn+1| {Yk}k:1 5 TL,n+17 TR,n+1a 91) )
i=1

where the 60;’s are sampled from the posterior distribution of 6.
Figure 12 shows the one-step-ahead predictive posterior densities at three different
inner thermocouples based on the observations until time ¢ = 0.5, when the observed

temperature at thermocouples TC2, TC3 and TC4 were 53.98,55.53 and 57.84°C re-
spectively.
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We emphasize that this methodology allows us to obtain the k-step ahead predictive
posterior density for any inner thermocouple, assuming boundary conditions subject to
uncertainty that are adequate for the experiment.

5.3 Example 3

In this example, we consider the case where the thermal diffusivity depends on the space
variable, z. The finite element method used to solve the heat equation under such an
assumption was presented in Section 3.

Prior distribution of 0(x)

Assume that the prior distribution of §(z) is a lognormal random field with a squared
exponential (SE) covariance function. Then, the prior distribution of logé(z) can be
expressed using the joint multivariate Gaussian distribution:

(log(0(21)), . . ., log(0(5))) ~ N (., K) , (25)

_ |xi_x7|2

where M= (/-1/7M7 s a:u)trv Kij = COU(IOg(G(w’L))7IOg(e(x]))) = 772 eXp( T) 7i7j =
1,...,s, n is the magnitude, and ¢ denotes the length scale.

Figure 13: Example 3: Joint prior density for the hyperparameters p and 7, with pu ~
N(0.1,0.1) and n ~ half-Cauchy(0.1).

We assume the following priors for the hyperparameters p, 7 and £ (the prior density
of 11 and 7 is displayed in Figure 13):

w~N(0.1,0.1), n~half-Cauchy(0.1), ¢~U(0.5,5).

In this example, we choose a Gaussian prior for p and uninformative uniform prior
for ¢. The half-Cauchy prior for n was chosen because it is a practical prior for scale
parameters in hierarchical models (Polson and Scott, 2012) (Gelman, 2006).



428 Bayesian Inference for Linear Parabolic PDEs

Joint posterior distribution of the hyperparameters u,n, ¢

Given 0 := (0(x1),...,0(xs))'", let us consider the joint posterior density of the hyper-
parameters (p, 7, £) that characterize the distribution of log 6(x)

p(M)naaYla"'aYN) O(p(:u7n)€)/6)p(0|u7777£)p(Y177YN|0)d0

Let us introduce the auxiliary variable z = (z1,...,2s) ~ N4(0,C = 77%[() and consider
the change of variables transformation: log(6;) = p + nz; where 0; := 0(x;), z; := z(x;),
i=1,...,s. Then, the prior density of 8 is given by

(n2m)"3|C|"2 ( (logf — )" C(log6 — p)
000y---0, O 202

__(em)EcE L oir 1
_nsesu+n(z1+...+zs) exp _§Z C 'z

p(z|¢)
Copsestn(zit e

p(Op,m, L) =

The posterior density of the hyperparameters can be therefore written as

p(z|{)
Pl ol Y ol o) [ LB

) |J| p(Yla s 7YN|M7n7Z)dZ>

where J is the Jacobian matrix of the transformation.

By considering ¢ as a nuisance parameter, we obtain

(Y1, Ynr) o (i) /E o(0) / (oY1, Ynlun 2)dzdl  (26)

after ¢ is marginalized.

To evaluate the posterior distribution of the hyperparameters, we need to com-
pute the s+ 1 dimensional integral in formula (26). Alternatively, Monte Carlo method
can be used to approximate these integrals. First, we sample ¢ from its prior distri-
bution, p(¢). Then, given ¢ we can sample z and evaluate the joint likelihood function,
p(Y1,...,YN|p,n,z), for any pair (u,n). Therefore, we approximate the non-normalized
posterior distribution using a double sum as follows:

M,

1
2O [ el Xn.ayiait = 525 [ ptalt)p(¥a.. Yl 2)da
=1

1 1 MZ Mz
QEM ZZP(Y17~~>YN|H77%ZJ')7
?i=1 j=1

where z; ~ p(z|¢;).

Figure 14 shows that the non-normalized posterior of the hyperparameters p and
7 has a unique mode at (—0.05,0.025). We use then Laplace’s method to obtain a
Gaussian posterior, using the synthetic dataset A, as shown in Figure 15.

A new dataset is now introduced to test our method when 6 depends on x.
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Figure 14: Example 3: Non-normalized Figure 15: Example 3: Laplace’s approxi-

joint posterior density of the hyperpa- mation of the posterior density of the hy-
rameters p and 7). perparameters g and 7).
Dataset B

To analyze the performance of our inferential technique in the case where the thermal
diffusivity parameter depends on the space variable, x, we consider another synthetic
dataset (hereafter named dataset B) that is generated similarly to the dataset A, except
for the fact that 6(z) is sampled randomly from the new prior (25) where p = 0,7 = 0.1
and £ = 5.

Again, we approximate the posterior distribution of the hyperparameters u and n
using Laplace’s approximation given the following priors for the hyperparameters p,n
and £ (the prior density of p and 7 is displayed in Figure 16):

p~N(0,0.25), n~ half-Cauchy (0.5), ¢~ U (4,6),

where we assume broad priors for ; and 1 with a more informative uniform prior for £.

From Figure 17, we find that the maximum a posteriori probability (MAP) estimate
is (0.05,0.025) and Laplace’s approximation can be used. By comparing the prior and
posterior densities for p and 1 in Figures 16 and 18, we can say that the experiment is
informative since the posterior concentrates around (0.05,0.025) which is close to the
true value.

6 Conclusion

In this work, we developed a general Bayesian approach for one-dimensional linear
parabolic partial differential equations with noisy boundary conditions. First, we de-
rived the joint likelihood of the thermal diffusivity 6 and the boundary parameters.
Second, we approximated the solution of the forward problem, by showing that such
solution can be written as a linear function of the boundary conditions. After that,
we marginalized out the boundary parameters, under the assumptions that they are
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Figure 16: Example 3: Joint prior density for the hyperparameters p and 7, with @ ~
N(0,0.25) and 7 ~ half-Cauchy(0.5).

Figure 17: Example 3: Non-normalized Figure 18: Example 3: Laplace’s approx-
joint posterior density of the hyperpa- imation for the posterior density of the
rameters p and 7). hyperparameters p and 7.

well approximated by piecewise linear functions and that they are independent Gaus-
sian random vectors. This approach can be generalized to any well-posed linear partial
differential equation.

On the implementation side, we computed the log-posterior of the thermal dif-
fusivity in different cases. Besides, we used the Laplace approximation to obtain a
Gaussian posterior. In the first example, we used directly the joint likelihood of the
thermal diffusivity # and the boundary parameters, assuming that the boundary con-
ditions were known. In the second example, we used the marginalized likelihood of
f, assuming that 6 is a lognormal random variable and, as in the previous example,
we obtained an approximated Gaussian posterior distribution, showing that the un-
known value of the thermal diffusivity is recovered almost exactly. Moreover, we ex-
plored two important advantages of using the Bayesian approach, by providing the
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estimation of the expected information gain for different experimental setups and the
predictive posterior distribution of the temperature. We noticed that the temperature
measurements from the middle thermocouple at the second time interval are, in general,
the most informative measurements. Finally, assuming that 6 is a lognormal random
field with squared exponential covariance function, we evaluated the joint posterior
distribution for the covariance hyperparameters by applying hierarchical Bayesian tech-
niques.

Supplementary Material

Supplementary material for “A hierarchical Bayesian setting for an inverse problem in
linear parabolic PDEs with noisy boundary conditions” (DOI: 10.1214/16-BA1007SUPP;
.pdf). Supplementary material includes proofs of Theorem 7, Theorem 8 and Remark 14.
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