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Multiple-Shrinkage Multinomial Probit Models
with Applications to Simulating Geographies in

Public Use Data

Lane F. Burgette* and Jerome P. Reiter�

Abstract. Multinomial outcomes with many levels can be challenging to model.
Information typically accrues slowly with increasing sample size, yet the param-
eter space expands rapidly with additional covariates. Shrinking all regression
parameters towards zero, as often done in models of continuous or binary response
variables, is unsatisfactory, since setting parameters equal to zero in multinomial
models does not necessarily imply “no effect.” We propose an approach to mod-
eling multinomial outcomes with many levels based on a Bayesian multinomial
probit (MNP) model and a multiple shrinkage prior distribution for the regression
parameters. The prior distribution encourages the MNP regression parameters to
shrink toward a number of learned locations, thereby substantially reducing the
dimension of the parameter space. Using simulated data, we compare the pre-
dictive performance of this model against two other recently-proposed methods
for big multinomial models. The results suggest that the fully Bayesian, multiple
shrinkage approach can outperform these other methods. We apply the multiple
shrinkage MNP to simulating replacement values for areal identifiers, e.g., census
tract indicators, in order to protect data confidentiality in public use datasets.
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1 Introduction

In models of discrete choices, agents often choose from a large number of outcome
categories. For example, a researcher may conceptualize immigrants to the U.S. as
choosing to make one of several hundred metropolitan areas their new home. A marketer
may be interested in understanding which car models—among the dozens available—are
likely to interest a consumer with a given set of characteristics. Finally, as we motivate
further in Section 4, a statistical agency may seek to model associations between people’s
demographic variables and home census tract identifier, with the intention of releasing
simulated values of data subjects’ locations for release in public use datasets. This could
enable the agency to protect data subjects’ confidentiality while releasing datasets with
fine levels of areal geography.

Models of response variables with large numbers of outcome categories encounter
several difficulties. Foremost is the rate at which the model dimensions expand when
adding new covariates. If there are p categories, adding a covariate whose values are
specific to the decision-maker (as opposed to an outcome category-specific covariate)

*RAND Corporation, Arlington, VA, burgette@rand.org
�Department of Statistical Science, Duke University, Durham, NC, jerry@stat.duke.edu

© 2013 International Society for Bayesian Analysis DOI:10.1214/13-BA816

mailto:burgette@rand.org
mailto:jerry@stat.duke.edu


454 Multiple-shrinkage MNP

adds p−1 identifiable regression parameters to the model. On the other hand, each ad-
ditional observation typically carries a small amount of information relative to standard
models of continuous or ordered categorical outcomes. These issues combine to make
regularization—either through Bayesian approaches or penalties for the likelihood— an
essential aspect of modeling.

Regularization with unordered categorical outcomes introduces a distinct set of chal-
lenges from regularization with continuous or binary outcomes. First, in models of con-
tinuous or binary outcomes, regression parameters set equal to zero correspond to no
effect; hence, shrinkage towards zero carries special importance in these models. This is
not necessarily the case with unordered categorical outcomes: even when a regression
parameter for a particular covariate and outcome category equals zero, changing that
covariate’s value can impact the probability of selecting the category. This is because
other categories may have non-zero regression parameters for that covariate that cause
their probabilities to change, which in turn can impact the probabilities of the cate-
gories with null regression parameters. Consequently, zeros in the vector of multinomial
regression parameters do not have the same importance that they do in models of con-
tinuous or binary outcomes, and global shrinkage toward zero may not be a reasonable
regularization strategy.

A second, related issue is that in standard formulations of the multinomial logit
(MNL) and multinomial probit (MNP) models, the analyst chooses a base category to
identify the model. The choice of a base category can interact with the prior distri-
bution in unpredictable and undesirable ways (Lenk and Orme 2009). For example,
Krishnapuram et al. (2005) and Sha et al. (2004) proposed multinomial models (each
with a base category) that encourage regression parameters to equal zero. This can
imply a strong dependence on the base category. Such a penalty should work well when
there is a single main group of categories whose regression parameters are nearly equal
and the base category is in that group. However, a log odds of zero may mean very
different things when the base category is changed from one value to another.

In this manuscript, we propose a novel strategy for Bayesian multinomial regres-
sion modeling with large numbers of outcome levels. In particular, we break from the
“shrink toward zero” approach that has dominated previous regularization strategies for
multinomial models in favor of a strategy that shrinks toward multiple values; that is,
we identify groups of regression parameters that are indistinguishable from one another.
Arguably, with multinomial outcomes it is more important to identify such groups than
to identify coefficients that are indistinguishable from zero. For example, in a model
of immigrants’ choices of location, we may find that those with high education lev-
els are more likely than their less educated peers to select Seattle, San Francisco, or
Raleigh and relatively less likely to move to Phoenix, Detroit, or Atlanta. However,
within these groups of cities, the ratios of selection probabilities may be insensitive to
education levels.

To implement this strategy, we use Bayesian MNP models with a modified version of
the multiple-shrinkage prior distribution of MacLehose and Dunson (2010). This prior
distribution was designed with a different purpose in mind—namely, strongly shrinking
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parameters in binary logistic regression that appear to be unimportant, while minimizing
shrinkage of larger effects—but we adapt it to achieve the within-group shrinkage for
multinomial models. The prior distribution is constructed using a Dirichlet process (DP)
(Ferguson 1973; Blackwell and MacQueen 1973), so that the coefficients cluster around
a small number of learned locations without the analyst having to specify the number in
advance. To avoid the base category problems, we use a symmetric multinomial model,
which enforces a sum-to-zero identification rule for the latent utilities (Burgette and
Hahn 2010). This treats each outcome category equitably in the prior distribution and
removes the worry that the regularization properties depend on the choice of a base
category.

We propose models based on both normal and Laplace distributions in the DP
mixture. The normal kernel offers easier computation, but the Laplace kernel tends
to result in tighter within-component distributions of coefficients near the component
means, which we expect to better achieve the objective of regularization by grouping
coefficients. We note that Laplace distributions sometimes are used for robustness
because of their heavier-than-normal tails. That is not our motivation here, as we
expect the mixture formulation of the prior distribution to supplant the robustness of
using Laplace tails.

The DP has been employed previously in multinomial applications, but the focus
has been on increasing flexibility of the model in applications with modest numbers of
outcome categories, clustering over observations rather than outcome categories. For
example, Kim et al. (2004) and Burda et al. (2008) suggest DP-based models that
allow for household-level heterogeneity in regression parameters, though they apply their
methods to analyses with four and five outcome categories, respectively. Shahbaba and
Neal (2009) present a DP mixture of multinomial logit (MNL) models, which allows
for nonlinear relationships. De Blasi et al. (2010) investigate consistency properties
of nonparametric mixed MNL models, and consider a simulation with p = 3 outcome
categories. In contrast to these applications, we use the DP as a means to regularize
multinomial models with much larger p.

The closest work to our own is the L1-penalized MNL model of Friedman et al.
(2010; FHT), which corresponds to maximum a posteriori (MAP) estimates under a
Laplace (or double exponential) prior on the regression parameters. This model avoids
specifying a base category via the penalty, since for two parameter configurations that
imply the same fitted probabilities, one will be preferred by the penalty. Cawley et al.
(2007) also takes this general approach. Our framework differs from this work in two key
ways. First, FHT focus on MAP or penalized maximum likelihood estimates, whereas
our approach offers full Bayesian inference. Second, the FHT model shrinks only to zero
rather than the multiple shrinkage we advocate.

Another closely related work is the model of Taddy (2012; MT), who describes an
inverse regression approach to sentiment modeling that can, for example, be used to
model diners’ restaurant experiences based on text in written reviews. An MNL model
for large covariate spaces is embedded in this work. Like FHT, MT uses Laplace-
type regularization. However, instead of choosing a global tuning parameter via cross-
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validation, MT introduces separate gamma-distributed hyperpriors that regulate the
Laplace shrinkage for each of the non-intercept regression parameters. After specifying
this hierarchical structure for the regression parameters, MT uses cyclic coordinate
descent to produce MAP estimates.

In addition to these two approaches, several researchers have developed models for
large multinomial outcomes in the field of discrete choice models. This includes the
early work of McFadden (1978), which can be used to skirt the estimation of numerous
nuisance parameters that arise in models of residential moves; see also Duncombe et al.
(2001). Large multinomial responses also naturally occur in the field of topic modeling
(Blei et al. 2003). These models include multinomial responses with large numbers of
categories, but they are buried in the model. Since interest focuses on a much lower
dimensional quantity, the modeling goals are distinct from those considered here. Thus,
when evaluating the MNP models that we develop, we compare their performance to
those of the FHT and MT models, which we consider to be the closest competitors.

The remainder of the article is arranged as follows. In Section 2, we formally describe
the models and their estimation. In Section 3, we present results of simulation studies
and compare our methods with the FHT and MT models. In Section 4, we describe a
motivating application for the development of these models, which is to predict areal
indicators of individuals’ homes (i.e., census tracts) from their demographic character-
istics for the purpose of releasing simulated indicators in public use datasets. To our
knowledge, no one has proposed releasing simulated aggregated geography as a means
of protecting confidentiality. In Section 5, we conclude with a discussion and suggested
directions for future research.

2 The Multiple-Shrinkage Multinomial Probit

In contexts where the number of parameters grows with the sample size, Bayesian semi-
parametric and nonparametric approaches use the shrinking or regularizing properties
of the prior distribution to make the model tractable. For the large multinomial out-
come setting considered here, we seek to fit a model with a number of parameters that
is both fixed and smaller than the sample size. Even so, each observation offers little in-
formation to estimate the model, so we use ideas from the literature on semiparametric
Bayesian modeling to shrink strongly yet flexibly. In particular, we use a collection of
truncated Dirichlet process (DP) priors and a modified version of the multiple-shrinkage
prior distribution of MacLehose and Dunson (2010) to shrink the regression parameters
toward a small number of learned locations. We begin our description of the model with
a review of the DP and further discussion of the multiple-shrinkage prior distribution.

The DP is the workhorse of many Bayesian semiparametric models. Sethuraman
(1994) demonstrated the “stick-breaking” formulation of the DP, which gives intuition
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into its behavior. If D ∼ DP(α,D0), we have the following almost-sure representation:

vj
iid∼ Beta(1, α)

πj = vj

j−1∏
k=1

(1− vk)

zj
iid∼ D0

Pr(D = d) =

∞∑
j=1

πj1(d = zj).

The term “stick-breaking” comes from the analogy of breaking a piece of size v1 from a
unit length stick, after which we set π1 = v1. Then, from the remaining stick with length
(1 − v1), break off a proportion v2, and set π2 = v2(1 − v1). Repeating this infinitely
provides the weights for the DP. These discrete masses are at the locations zj , which are
assumed to have been drawn independently from the base measure D0. In our model,
the zj are pairs of shrinkage locations and scales. A key feature of the distribution is
the stochastic decay of the πj , which means that E(πj − πk) > 0 for j > k. When the
DP is used as a mixing distribution, this encourages many observations to be assigned
to the same mixture components.

With a continuous or binary outcome variable, recent research has shown that it
can be desirable to strongly shrink variables that have small estimated effects while
minimally shrinking those that have stronger apparent effects; for example, see the
“horseshoe” estimator of Carvalho et al. (2010). The multiple shrinkage prior distribu-
tion of MacLehose and Dunson (2010) does just this: effects that appear to correspond
to noise variables are drawn toward a shrinkage location fixed at zero, and those with
larger apparent effects should be drawn toward a non-zero shrinkage location. In the
case of multinomial models, a different goal guides our selection of this prior distribu-
tion: we wish to find groups of parameters that appear to be nearly equal to each other,
and shrink within the groupings.

The multiple-shrinkage prior distribution encourages the regression parameters to
cluster; however, it does not demand it. We truncate the DPs at the pth term, i.e.,
we set each vp = 1. This allows each of the p regression parameters for a particular
covariate to be assigned to its own cluster. However, the prior distribution disfavors
such allocations.

With this background in mind, we now define the MNP models formally. We work
with a formulation of the MNP that assumes a latent vector of Gaussian utilities, Wi =
{wij : j = 1, . . . , p}, for every observation i = 1, . . . , n. If there are q covariates
including the intercept, xi = (1, xi1, . . . , xi,q−1)′, that vary by decision-maker (rather
than outcome category), let Xi = (Ip, xi1Ip, . . . , xi,q−1Ip). Let µk, τk, λk and βk each
be columns of p×q matrices, and let β = (β′0, . . . ,β

′
q−1)′. We propose two MNP models,

one based on Laplace kernels (shown first) and another based on normal kernels. The



458 Multiple-shrinkage MNP

model based on Laplace kernels is

D0k ≡ normal(ck, dk)× gamma(ak, bk) (1)

(µjk, τjk)
ind∼ truncated-DP(α,D0k; p) (2)

λjk
ind∼ exponential(2/τjk) (3)

βjk
ind∼ normal(µjk, λjk) (4)

p(Wi) ∝ ϕ(Wi;Xiβ, I)1{
∑
j wij = 0} (5)

yi = arg max
j
wij . (6)

For the model based on normal kernels, we replace (3) with

λjk = 1/(16τjk). (7)

The above distributions are parametrized such that the expectation of a gamma(a, b)
variate is ab; the expectation of an exponential(2/τ) variate is 2/τ ; and, the normal is
parametrized by its variance. We use ϕ to denote the normal density.

In these models, D0k is the base measure related to the kth covariate, and (µ, τ) pairs
are drawn from a truncated DP for each outcome category and each covariate. Using (3)
mixes the variances over the exponential(2/τ) distribution, resulting in a Laplace dis-
tribution that has a MAP estimate corresponding to a lasso (or L1-penalized) estimate
(Park and Casella 2008; Hans 2009). However, since these Laplace distributions are not
merely centered at zero, the prior distribution results in the type of multiple shrinkage
described earlier. Forcing the Wi utilities to sum to zero allows us to define this model
symmetrically with respect to the category labels, i.e., without a base category. Finally,
assuming that the ith decision-maker chooses the category with the highest wij value
completes the probit model specification. We note that the model can accommodate a
single shrinkage location, which results in a model that is similar to a Bayesian version
of the FHT model (although in the probit rather than logit framework).

For the Laplace version of the model, we specify default hyperparameters following
the advice of MacLehose and Dunson (2010). They note that ak = bk = 6.5 results in
unit width prior 95% credible regions — conditional on a shrinkage location — for the
Laplace distributions, and they found that this provides meaningful shrinkage without
requiring a proliferation of shrinkage locations. Our experience is in accord with this
claim. We also specify α = 1, ck = 0, and

√
dk = 1.5, which allows for the existence of

strong effects without letting β estimates drift off to −∞ if certain covariate/outcome
patterns are not observed in the data. For the normal version of the model, we use
the same prior distributions except with hyperparameters ak = 1/bk = 15, resulting in
marginal kernels with approximate unit prior credible width (as is the case with the
Laplace kernels) and nearly normal marginal distributions (t30).

Since each βk can take on at most p unique values, we truncate the underlying
DPs at the pth component without making the model less general. Therefore, we are
able to use the blocked Gibbs sampler described by Ishwaran and James (2002) that is
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simpler than corresponding samplers for the full DP, while displaying favorable mixing
properties. The details of the estimation algorithm are given in the Appendix.

We note that these models are not likelihood identified. For instance, if each βk is
identically equal to a constant Ck, then Pr(yi) = p−1, regardless of the Ck values. In
many cases predictions or fitted selection probabilities (rather than parameter estimates)
are of primary importance, so we would argue that this is not particularly worrisome.
It would be possible to identify the model by requiring that each βk sums to zero (as in
Burgette and Hahn (2010)), but this would seriously complicate the model estimation.
Even so, this is still an example of a symmetric MNP model, as the prior is invariant
to relabeling the values that yi can take on. If marginal estimates of β parameters
are of primary interest, one could consider post-processing the drawn values into an
identifiable scale, in a style similar to that of the McCulloch and Rossi (1994) MNP
model. However, we find in practice that the βk blocks nearly do sum to zero merely
by the requirement

∑
j wij = 0 for each i. This means that the marginal distributions

of β parameters can be interpreted as though they were from a formally identified scale;
we provide an example of this in Section 4.

3 Simulation Studies

In this section, we present two sets of simulation results. The first set demonstrates
how the prior distributions used in Section 2 can engender multiple shrinkage and mo-
tivates potential advantages of using the Laplace versus normal kernels. The second set
compares the performances of both the Laplace and normal kernel multiple shrinkage
MNPs with two other approaches, as well as with each other.

3.1 Studies of the MNP prior distributions

We begin with a visualization of how the Laplace kernel hyperprior for β allows for
multiple shrinkage. Figure 1 displays one simulated realization from this distribution
using the default hyperparameters. The DP is truncated at 50 terms, though only three
clear peaks are visible. The remaining 47 are close to zero and minimally impact the
distribution. If the MNP parameters were drawn from this distribution, we could make
the rough interpretation of there being three groups: low, medium-high, and high.
As we increase the related covariate, probabilities of the categories that were drawn
from the “low” mixture component would become less popular, with mass moving to
categories whose parameters were chosen from the “medium-high” and especially the
“high” mixture components. Within groups of categories whose parameters were drawn
from a particular mixture component, changes to the covariate would result in small
changes in relative probabilities.

Similar distributions can be generated from the normal kernel but with a notable dif-
ference. The Laplace density produces component distributions that are peaked tightly
around their means. As a result, the mixture of Laplace kernels favors posterior distri-
butions for β with many components that are tightly clustered relative to the posterior
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Figure 1: Realization of the prior for regression parameters in the multiple shrinkage
MNP.

corresponding to the mixture of normals. To demonstrate this feature of the Laplace
kernels, we consider a case with only one true component and where strong shrinkage
is obviously desirable. We uniformly draw n = 500 outcome variables y from a set of
p = 25 outcome categories, so that each category has probability .04. We then gener-
ate n independent draws of a standard normal covariate x, and regress y on x using
a multinomial logit model. Since x is unrelated to y, the true model corresponds to
regression coefficients for x, β = {βj : j = 1, . . . , 50}, equal to zero. Figure 2 displays
the fitted probabilities at x ∈ {0, 1} based on posterior means from (1) – (7), as well
as those based on maximum likelihood (ML) estimates of β. The Laplace kernel tends
to shrink the predicted probabilities closer to each other, and to .04, than the normal
kernel does. We note that both methods offer greater shrinkage than the ML estimates,
as expected.

3.2 Comparisons of methods

We next compare the performance of the Laplace and normal kernel multiple-shrinkage
MNPs to the MNL models of FHT and MT via repeated sampling studies. For each
repetition, we simulate n = 2500 records with q − 1 = 2 covariates, x1 and x2, drawn
uniformly from [0, 1] and one outcome, y, with p = 50 levels. This (n, p) is motivated
by the dimensions of the application in Section 4. We generate each yi, where i =
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Figure 2: Fitted probabilities where the truth for all categories is 0.04. “ML” is maxi-
mum likelihood; “Normal” refers to the multiple shrinkage prior, except with a DP mix-
ture of normals rather than Laplace distributions; “Laplace” is our preferred multiple-
shrinkage prior, consisting of a DP mixture of Laplace distributions. Note the stronger
shrinkage conferred by the mixture of Laplaces.

1, . . . , 2500, using

yi
ind∼ multinomial(1, q1(x), . . . , qp(x)) (8)

qj(x) ∝ exp(β0j + xi1β1j + xi2β2j), where j = 1, . . . , p. (9)

We note that generating from multinomial logit likelihoods results in a mismatch with
the MNP models. Any bias induced by the differing likelihoods will work against the
relative performance of the MNP models.

We consider three scenarios for generating each (β0j , β1j , β2j), the details of which
are summarized in Box 1. Scenario 1 and Scenario 2 are designed so that neither β1j nor
β2j are equal across j; thus, the data generators do not a priori favor setting groups of
regression parameters equal to one another. In Scenario 1, we draw each (β1j , β2j) from
homoscedastic Laplace distributions, for which the lasso-type estimates coincide with
Bayesian MAP estimators. Hence, the lasso penalty in FHT and MT is, in a sense, the
right one to use. In Scenario 2, we draw each (β1j , β2j) from asymmetric distributions,
so that the flexibility of prior distributions based on mixture models is desirable. Sce-
nario 3 is designed to favor procedures that set groups of regression parameters equal
to one another. To implement this, we draw the regression parameters from distribu-
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Box 1: Simulation specifications.

Simulation model:

yi
ind∼ multinomial(1, q1(x), . . . , qp(x))

qj(x) ∝ exp(β0j + xi1β1j + xi2β2j), where j = 1, . . . , p.

Scenario 1: Unequal coefficients generated from Laplace

β0j
iid∼ .2 normal(0, 1)

β1j
iid∼ .4 Laplace(0, 1)

β2j
iid∼ .4 Laplace(0, 1)

Scenario 2: Unequal coefficients generated asymmetrically

β0j = 0

β1j
iid∼ 3 beta(5, 1)

β2j
iid∼ 3 beta(1, 5)

Scenario 3: Mixtures of equal coefficients, varying importance

β0j
iid∼ .5 normal(0, 1)

P (β1j = C1) = .9, P (β1j = 0) = .1

P (β2j = C2) = .1, P (β2j = 0) = .9

For Low information, C1 = C2 = 1.
For Medium information, C1 = C2 = 2.
For High information, C1 = C2 = 3.
For Mixed information, C1 = 1 and C2 = 3.
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Figure 3: Simulation results. We display average percent total variation from true
selection probabilities for FHT, MT and multiple-shrinkage MNP with Laplace kernels
and normal kernels. See Box 1 for a description of the data generation. Results based
on 100 simulated datasets for each scenario.
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tions with two point masses, altering the distances in those masses to reflect differing
amounts of predictive power in the covariates. We specify four distinct cases represent-
ing differing predictive power in the covariates. These include low, medium, and high
signal strengths, and a mixed condition where one set of β parameters corresponds to
the “low” signal strength, and the other corresponds to the “high” condition.

To assess performance, we compare the model-based fitted probabilities against the
true multinomial probabilities for particular covariate arrangements. We make this
comparison via the total variation norm, which is defined to be

TVxi
(PT , PE) = .5

p∑
j=1

|PT (yi = j|xi)− PE(yi = j|xi)|, (10)

where PT and PE are the true and estimated multinomial probabilities, respectively
(Burgette and Nordheim 2012). This measure is equivalent to

max
A∈A
|PrT (yi ∈ A|xi)− PrE(yi ∈ A|xi)|

where A is the set of all subsets of {1, . . . , p}. We estimate this difference on a 5×5 grid
over the covariate space, and report the average over the grid. We avoid performance
metrics based directly on likelihoods or regression parameters because the likelihoods
differ between the logit and probit specifications.

The FHT method requires the selection of a tuning parameter that sets the strength
of the penalty for non-zero regression parameters. FHT suggest using ten-fold cross-
validation to select the tuning parameter, as implemented in their glmnet package in
R. We follow the default behavior of their software, which uses a deviance criterion
in the cross-validation. Cross-validation via prediction error is also an option in their
software. The need to choose this tuning parameter (rather than marginalizing over a
prior distribution) is one of the major differences between FHT and the MT approach.
The MT method is implemented in the textir package in R. We use the default settings
of the mnlm function here.

Figure 3 displays the results from 100 simulation runs of each scenario. In Scenario
1, the two fully Bayesian MNP models perform favorably relative to FHT and MT, even
though the data generation closely matches the assumptions of MT and FHT. Evidently,
in these simulations the gains from the fully Bayesian analysis outweigh any penalty
that might be incurred by assuming a more complex model (i.e., multiple shrinkage
locations). In Scenario 2, the data-generating algorithm results in multi-modality when
pooled across the length of β and asymmetry within β1 and β2. The flexibility of the
multiple shrinkage models pays off in this situation. In fact, in Scenario 2, when we
examine the estimated coefficients in the MNP methods, we find that allowing multiple
shrinkage locations encourages coefficient estimates to be closer to their true values
(which are not all zero) than when all are shrunk to the single value zero. We note that
there is little performance difference between the two MNP models, though the Laplace
kernels slightly outperform the normal kernels, especially in Scenario 1.

In Scenario 3, we discover an interesting set of tradeoffs. In the low information
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setting, the normal kernel MNP performs best. The FHT model and Laplace kernel
MNP have similar performance, and MT is least effective. In the high information
setting, the ordering reverses with MT and the Laplace kernel MNP performing best.
In the medium information setting, the Laplace kernel MNP performs best, with FHT
as least effective. In the mixed setting — i.e., when one covariate belongs to the high
information setting, and another corresponds to the low information setting — the
Laplace kernel MNP again performs best, often significantly better than the normal
kernel MNP and FHT.

We interpret these results as follows. In the low information setting, the cross-
validated approach is quite aggressive in shrinking coefficients to zero, at times even
choosing an intercepts-only model, which performs well in this case. The MT prior does
not shrink coefficients as strongly to zero due to the use of separate scale parameters for
each regression parameter, which results in underperformance in this case. In the sce-
narios with stronger signals, FHT shrinks some coefficients too far toward zero whereas
MT does not, resulting in the relative performances of the methods. Turning to the two
MNP models, across all scenarios they tend to allocate coefficients to small numbers of
components with non-zero values and modest variances, which better approximates the
true values of β and thus explains their strong overall performance.

Examining parameter estimates for the normal and Laplace kernel MNP models in
Scenario 3, we find as in Section 3.1 that the Laplace kernel tends to result in tighter
groupings of regression parameters within mixture groupings than the normal kernel
does. This plays out in their relative performances. In the low information setting, the
models tend not to recognize that there are two modes in the β distributions. With this
being the case, the stronger within-mixture shrinkage results in poorer performance for
the Laplace than the normal kernels. (We also investigated the low information data
generation, except modified to have β0 = 0. The normal kernels still outperformed the
Laplace kernels, indicating that the better performance of the normal kernels in the low
information setting is not being driven by the fact that the intercept parameters were
drawn from a normal distribution.) In the medium and high information settings, both
the Laplace and normal kernels tend to put coefficients in their correct mixture com-
ponents, but within components the Laplace kernel shrinks coefficients more strongly
towards the corresponding component means and hence closer to the true values. In the
case of signals of mixed strength, the Laplace kernel is more accurate than the normal
kernel, reflecting the relative importance of accurately estimating the large effects.

Taken as a whole, the simulations suggest that the Laplace kernel MNP offers the
most favorable performance. Across scenarios, its estimates are never beaten badly by
other competing methods, and it often provides the highest predictive accuracy. This is
not to say, however, that analysts should always prefer the Laplace (or normal) kernel
MNP to the methods of FHT and MT. In particular, both of these methods are orders of
magnitude faster than our proposed Gibbs sampler for the MNP models. For example,
we ran the MCMC simulations for 6000 iterations (including 1000 discarded for burn-
in), which took around 20 minutes on a standard laptop computer. For problems of this
size (in terms of n, p and q), FHT fits are typically available in one minute (when using
cross-validation, and less otherwise), and the MT method gives results in seconds. For
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the extremely large problems considered by MT, the multiple-shrinkage MNP would be
infeasible as we currently run it. In fact, MT reports that even the FHT software is
unable to manage the large models considered in his paper.

Based on our experience, the multiple shrinkage MNP is most useful in the case of
moderate p (say, 20 ≤ p ≤ 250) where the sample size is moderate relative to p. When
the sample size is large relative to p, the likelihood dominates the prior, minimizing
the differences among the various methods, but the Gibbs sampler for the multiple
shrinkage models can be slow to run. Since the multiple shrinkage is performed within
covariates, we would not recommend the model for small p but large q. In practice,
the computational speed is primarily a function of n and p, so — from a computational
standpoint — analysts should not be restricted to small q.

When dealing with large multinomial response variables, a combination of approaches
may be fruitful. For example, when a very large number of covariates are under con-
sideration, one could use the FHT or MT method to explore many possible models.
After having settled on one or a few models of ultimate interest, one could use the
multiple-shrinkage MNP (if it is feasible) to form final model estimates, predictions, or
inference.

4 Simulating Areal Identifiers via the Multiple-Shrinkage
MNP

Government statistical agencies and other data stewards often collect data with areal
geographies, such as county or census tract identifiers, that they seek to disseminate
as public use files. However, sharing areal identifiers can result in high risks to data
subjects’ confidentiality, particularly when the data include demographic characteris-
tics that are readily available in external databases. For example, there may be only
one person of a certain age, sex, race, and marital status—which may be available to
ill-intentioned users at low cost—in a particular county (but many in the state), so that
releasing county level indicators carries too high risk of this person being identified in the
data. To reduce risks, agencies typically release geographic information only at highly
aggregated levels, if at all. For example, the U.S. Health Insurance Portability and
Accountability Act mandates that released geographic units comprise at least 20,000
individuals; and, the U.S. Bureau of the Census does not release public use files with
geographic identifiers of areas with fewer than 100,000 people (Wang and Reiter 2012).
Such disclosure limitation requirements degrade the utility of data for legitimate users,
especially for analyses that would benefit from finer spatial resolution. Further, aggre-
gation can create or magnify ecological inference fallacies (Robinson 1950; Freedman
1999).

We propose an alternative to aggregation for releasing areal geographic information:
release values of areal identifiers that are simulated from models designed to preserve
spatial relationships among the attributes in the data. This is an example of what is
known as partially synthetic data in the literature on statistical disclosure limitation
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(Reiter 2003). To describe this approach more fully, we modify the scenario of Wang
and Reiter (2012), who used tree-based models to simulate latitudes and longitudes of
respondents’ home addresses. Suppose that a statistical agency has collected data on
a random sample of 10,000 heads of households in a state. The data comprise each
person’s census tract, age, sex, and education. Suppose that combining census tract,
age, sex, and education uniquely determines a large percentage of records in the sample
and the population, but that that age, sex, and education without census tract do not
uniquely identify many people. Therefore, the agency wants to replace census tract for
all people in the sample to disguise their identities. The agency fits an MNP model of
census tract on age, sex, and education, and for each person generates a draw from the
predictive distribution of census tract. These simulated values replace the actual census
tracts, and the result is one partially synthetic dataset. The agency repeats this process
say ten times, and these ten datasets are released to the public to enable inference via
methods akin to multiple imputation combining rules (Reiter and Raghunathan 2007).

A related partially synthetic data approach is used to protect locations in the
Census Bureau’s OnTheMap project (Machanavajjhala et al. 2008). In that project,
Machanavajjhala et al. (2008) synthesize the street blocks where people live conditional
on the street blocks where they work and other block-level attributes. They use multi-
nomial regressions to simulate home-block values, constraining the possible outcome
space for each individual based on where they work. This constraint, which avoids the
task of estimating large multinomial regressions, is somewhat particular to the setting
of OnTheMap. For example, this constraint would not sensibly apply in the typical
demographic survey with only one areal location per individual. The multiple shrink-
age MNP model does not require these constraints. We also note that the approach of
Wang and Reiter (2012) differs from the multiple shrinkage MNP approach, since they
consider point-referenced data whereas we use data attached to areal identifiers.

To illustrate partial synthesis of areal geographies, we consider data that record
the causes of all deaths for the year 2007 in Alamance, Durham, Orange, and Wake
counties of North Carolina. These counties include the Raleigh, Durham, and Chapel
Hill communities. These mortality data are in fact publicly available and so do not
require disclosure protection. Nonetheless, they are ideal test data for methods that
protect confidentiality of geographies since, unlike many datasets on human individuals,
locations are available and can be revealed for comparisons. Similar data (but point-
referenced) from 2002 were used by Wang and Reiter (2012).

In 2007, in these counties 7373 residents passed away. The deaths were spread
among 200 census tracts. We seek to simulate new values of every person’s census tract
identifier, leaving other attributes at their original values. To do so, we use the Laplace
kernel MNP model from Section 2 to estimate the probability that person i was from
the jth census tract, where j = 1, . . . , 200, as a function of several attributes on the file.
These include indicators for age 18 or under, age greater than 65, race of black/non-
black, and whether the cause of death was recorded as being cardiac-related or not.
We expect the multiple shrinkage framework to be desirable for the race variable in
particular, since the data exhibit racial clustering over tract-level geography. To fit the
model, we run the MCMC for 50,000 iterations, storing every 10th draw.
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Figure 4: Plot of probabilities of assignment to census tracts for a non-black respondent,
aged greater than 65 years, who died of a non-cardiac cause. The colors correspond of
deciles of the multinomial probabilities, with white corresponding to low probability,
and black corresponding to high.

The results of the Laplace kernel MNP model indicate that there are strong spatial
associations in the data. For example, Figures 4 and 5 display tract probabilities Pr(yi =
j) for people older than age 65 who died of a non-cardiac cause for black and non-black
races, respectively. The eastern-most county in these plots is Wake; the city of Raleigh
is at its center. The region of small census tracts to the north and west of Raleigh in
the adjoining county is the city of Durham. Durham is characterized by a relatively
high proportion of black residents, especially compared to the west and north portions
of Raleigh. The fitted probabilities reflect this, with much of the mass shifting from
Raleigh to Durham when we change race from non-black (Figure 4) to black (Figure 5).

To demonstrate the extent to which synthetic data generated from the MNP model
preserve the associations of the observed variables, we create m = 20 partially synthetic
datasets by sampling 20 times from the posterior predictive distributions of the census
tracts. We then apply spatial simultaneous autoregressive lag models (e.g., Banerjee
et al. 2004) to each of the synthetic spatial datasets, and combine the results according
to the rules derived in Reiter (2003). In particular, the spatial regression models take
on the form

Y = ρV Y +Xβ + ε.
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Figure 5: Plot of probabilities of assignment to census tracts for a black respondent,
aged greater than 65 years, who died of a non-cardiac cause. The colors correspond of
deciles of the multinomial probabilities, with white corresponding to low probability,
and black corresponding to high.

Here, Y is a p-vector with a single measure from each tract, and V is a right stochastic
matrix defined as follows. Let Nj contain the tract identifiers of the regions that border
tract j. The jth row of V has elements 1/|Nj | in the columns corresponding to the
elements in Nj and zeros elsewhere. Hence, the Y value in each cell is assumed to
consist of a fraction of the average value from the neighboring tracts, a contribution
from a linear regression, and a normal additive error. The scalar ρ therefore captures an
extent of the spatial association net of the covariates. To find the maximum likelihood
estimates of these models, we use the spautolm function in the spdep package in R
(Bivand 2011).

We begin with a model of the tract-level rates of cardiac-related deaths. We model
this as a function of tract-level rates of young (age ≤ 18), old (age > 65), and black
study subjects. In the spatial models, we drop the 12 tracts that had fewer than 10
records in the genuine data since the tract-level rates for these units are highly volatile
and can degrade the estimates, though they were included in the model that produces
the synthetic spatial identifiers themselves.

Table 1 summarizes the results. The cause-of-death variable does not have a strong
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Synthetic geography True geography
Parameter Estimate 95% CI Estimate 95% CI
Intercept 0.213 (0.073, 0.353) 0.193 (0.074, 0.311)
Young -0.194 (-0.687, 0.298) -0.103 (-0.485, 0.279)
Old 0.237 (0.099, 0.375) 0.221 (0.107, 0.335)
Black -0.049 (-0.151, 0.053) -0.007 (-0.063, 0.048)
ρ 0.041 (-0.183, 0.265) 0.105 (-0.106, 0.316)

Table 1: Parameter estimates from the spatial simultaneous autoregressive lag model
of tract-level percent cardiac-related deaths. The “synthetic geography” aggregates the
variables according to the synthetic spatial identifiers that result from the multiple-
shrinkage MNP. The explanatory variables are the tract-level means of the indicated
traits.

spatial pattern, and the imputations preserve this: the estimates of ρ from the synthetic
and genuine data are not significantly different from zero. The imputed tract identifiers
also do a good job of preserving the β parameter estimates. The 95% confidence intervals
from the imputed sets cover the estimates from the true data. (Since both the response
and covariate values are aggregated by tract in this model, variables on both sides of
the regression equation are changing with each set of imputed geographic identifiers.)

We also switch the roles of race and cause-of-death in the spatial regression. Al-
though such a model (i.e., one predicting race) is not of great substantive interest, it
does offer a test of the synthesizer in an application with strong spatial patterns. We
summarize the results in Table 2. Here again, the imputed geography preserves many
of the key features of the data. The measure of spatial association ρ is estimated to
be strongly significant in both sets of regressions: the corresponding confidence interval
from the synthetic data covers the value from the true data. The synthetic geographic
identifiers preserve (in-)significance of the β parameters. Although two of the corre-
sponding confidence intervals do not cover the estimates from the true data, they barely
miss doing so. Finally, if the insignificant regression parameters are dropped so that we
model percent black as a function of percent old study subjects, all of the confidence
intervals from the synthetic data cover the values estimated using the true data.

The process of imputing new spatial identifiers would not be worthwhile if we were
preserving statistical relationships between the observed variables simply by preserving
the true tract identifier values. To assess the extent to which the synthetic identifiers
were changed from their original values, we examine the m = 20 sets of imputed tract
identifiers that were used to perform the spatial regressions described above. For 6164
records — just shy of 85% — none of the 20 imputed identifiers was the true one. For
99.4% of the records, the true identifier was imputed zero or one times.

As further evidence that the MNP model moves census tracts around, consider the
simplistic approach to breaking confidentiality of taking the records that have a single
tract imputed several times and assuming that the most frequently-imputed value is the
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Synthetic geography True geography
Parameter Estimate 95% CI Estimate 95% CI
Intercept 0.454 (0.320, 0.587) 0.591 (0.419, 0.762)
Young 0.038 (-0.578, 0.654) -0.625 (-1.386, 0.136)
Old -0.436 (-0.602, -0.269) -0.644 (-0.861, -0.427)
Cardiac -0.085 (-0.265, 0.094) -0.126 (-0.411, 0.159)
ρ 0.514 (0.360, 0.669) 0.663 (0.541, 0.785)

Table 2: Parameter estimates from the spatial simultaneous autoregressive lag model of
tract-level percent black study subjects. The “synthetic geography” columns aggregate
the variables according to the synthetic spatial identifiers that result from the multiple-
shrinkage MNP. The explanatory variables are the tract-level means of the indicated
traits.

true one. Among the 653 records that had the same identifier imputed three times, it
was correct 127 times; 51 records had the same tract imputed four times, though none
was correct; and, three records had the same identifier imputed five times, though in
only one case was it correct. In short, if a potential data intruder took the most common
identifier as the true one, more often than not he would be wrong. Although this is
not a formal disclosure risk assessment—see Reiter and Mitra (2009) for formal risk
assessment approaches for synthetic categorical data—it does suggest that the favorable
preservations of the spatial associations shown in Tables 1 and 2 are not the result of
inadequate shuffling of the true identifiers.

As a final note on this analysis, we return to the identifiability issue noted in Section
2. The Laplace kernel MNP model is not technically identified as it is described: for each
added covariate, we can only identify p−1 parameters rather than the p parameters that
enter into the model. However, the model is identified if we require that each group of p
parameters sums to zero. This is the identifying restriction that corresponds to forcing
the latent Wi to sum to zero, which we do enforce. In this application, we find that the
loss of identification is minor, because the sampled βk parameters (where k = 1, . . . , q)
in practice nearly do have mean zero, even though the model does not demand it. Figure
6 displays trace plots of the mean of each group of regression parameters (i.e., βk for
k = 1, . . . , q). These numbers are centered around zero and small in magnitude relative
to the estimated effects, so the under-identification is not important. Thus, the marginal
distributions of the estimated parameters honestly reflect uncertainty. Heuristically, we
expect the iteration-by-iteration average of the groups of parameters to be closest to
zero when p is relatively large, but this property is easy to check from output of the
MCMC.
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MCMC Iteration
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Figure 6: Trace plots of means of regression parameters across blocks of p parameters
that relate to each covariate. If the model were fully identified these quantities would be
identically zero. On average the magnitude of the deviations from zero is 0.008, which
indicates that the under-identification is small. Results are thinned to every 10th stored
draw.

5 Concluding Remarks

There are several ways in which one could extend the MNP model while working within
the proposed multiple-shrinkage framework. For example, one could use the hierarchical
DP of Teh et al. (2006) to encourage similar shrinkage patterns across some or all of the
covariates. Further, this model is built on an i.i.d. normal error structure. One could
consider more general substitution patterns, i.e., the way in which probabilities change
if one outcome category is removed from consideration, by allowing for more general
covariance structures. A good deal of care would have to be taken in doing this, since
standard inverse-Wishart-based MNP models (e.g., McCulloch and Rossi 1994; Imai
and van Dyk 2005; Burgette and Hahn 2010) often encounter numerical problems in the
form of degenerate covariance matrices when p is even moderately large (say, p = 10).

When applying the MNP model to synthesize areal identifiers, it is important to
recognize that the MNP model does not fully account for the spatial structure in the
data. Areal adjacencies are not part of the synthesis so that, for example, individuals
living in the same or adjacent tracts in the original data may be far away from one
another in the simulated data. Further, areal adjacencies are not used to estimate
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parameters in the MNP model. An alternative model might encourage each tract a
priori to have associated regression parameters that are similar in some way to the
regression parameters of its neighbors.

Synthesizing areal geographies may not suffice to protect confidentiality; it may
be necessary to simulate values of non-geographic variables as well (e.g., age, race,
marital status). One approach is to simulate from hierarchical, area-level spatial models
(Banerjee et al. 2004), which can be challenging with large datasets. Another strategy
is to mask attribute data using spatial smoothing techniques (Zhou et al. 2010). We
note that applying either of these approaches alone, i.e., without simulating geography,
leaves the original areal geographies on the file, which may result in too high disclosure
risks. An open research question involves quantifying the trade offs in disclosure risk
and data quality for different amounts of synthesis, e.g., simulating areal identifiers plus
only age versus simulating age, race, and marital status.

In some contexts, n or p may be too large to estimate the MNP models efficiently
with fully Bayesian approaches. Nonetheless, there are settings in which our methods
apply directly. For example, many state-wide or national cancer registries publish counts
of cancer incidence by subjects’ sex, race, age (typically categorized), and cancer type.
Doing so in moderately aggregated regions like census tracts may represent too high
disclosure risks. Instead of suppressing the tract-level counts, the agency can use the
MNP to synthesize these regions, perhaps after stratifying on larger aggregates like
counties to facilitate computation and preserve counts within the larger aggregates.

Although challenges remain, we anticipate that the MNP model presented here will
help researchers in a range of fields — economics, marketing, and sociology, among
others — construct flexible and principled models of categorical variables with many
categories.
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Appendix: MCMC details

Updating utilities

We use the following lemma: If (x′, y′)′ ∼ normal((µ′x, µ
′
y)′,Σ), where we have the

partitioning

Σ =

[
Σxx Σxy
Σyx Σyy

]
then (y|x) ∼ normal(µy|x,Σy|x) where

Σy|x = Σyy − ΣyxΣ−1xxΣxy

and
µy|x = µy + ΣyxΣ−1xx (x− µx).

We consider the distribution ofW ∗i ≡ (wi,1, wi,2, . . . , wi,p−1, w̄i)
′. If y ∼ normal(0, I),

then W ∗i ∼ normal(0, TT ′) where

TT ′ =


1 0 · · · 0 p−1

0
... Ip−2

...
0
p−1 · · · p−1

 .

For our sampler, we will be interested in the distribution of wi,1|W ∗i,−1. Via a draw
from this conditional distribution, we infer a draw from the conditional distribution of
(wi,1, wi,p), taking the sum-to-zero restriction into account. Dropping the i subscripts,
this conditional variance is given by

Σw1|W∗
−1

= 1− [0, . . . , 0, p−1]Σ−1W∗
−1,W

∗
−1

[0, . . . , 0, p−1]′.

We calculate

Σ−1W∗
−1,W

∗
−1

=

[
Ip−2 + .5Jp−2J

′
p−2 −.5pJp−2

−.5pJ ′p−2 .5p2

]
.

It follows that
Σw1|W∗

−1
= 1− p−2(.5p2) = 0.5.

Similarly,
µw1|W∗

−1
= µw1

+ [−.5J ′p−2, .5p](W ∗−1 − µW∗
−1

).

Once we have these conditional distributions, we only need to derive the truncations.
For simplicity, we will jointly sample the jth and yith elements of Wi. In this case, we
have

wij ≤
∑

k/∈{j,yi}

wik + min
k/∈{j,yi}

(wik).
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Other MCMC details

After updating the latent utilities, the algorithm proceeds as follows:

1. Update (wij , wiyi) for all i and j 6= yi.

2. Update the regression coefficients:

β ∼ normal(β̂, Σ̂β)

where Σ̂β = (X ′X + Λ−1)−1 and β̂ = Σ̂β(X ′z + Λ−1µ0).

3. Update the mixing parameters matrix Λ:

λj
ind∼ inv-Gaussian(a, b)

where a =
√
τkj/|βj − µkj | and b = τkj .

4. Update {(µt, τt)}pt=1 via

µt
ind∼ normal(bt, Bt)

τt
ind∼ gamma(nt + a1, 1/(

∑
j:kj=t

λj/2 + 1/b1))

where Bt = (1/d+
∑
j:kj=t

1/λj)
−1 and bt = Bt(c/d+

∑
j:kj=t

βj/λj).

5. Update p according to the truncated stick-breaking scheme outlined in Ishwaran
and James (2002). Draw

vk
ind∼ beta(1 + rk, α+

N∑
l=k+1

rl)

and set

pk = vk

k−1∏
j=1

(1− vj)

where rk counts the number of β components assigned to the kth mixture com-
ponent.

6. Update the vector of coefficient configurations k. For each i and j, draw from

Pr(kij) ∝ pijN(βij |µ, λj)exp(λj |2/τl).
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Making predictions

We will be interested in making draws from the posterior predictive distribution of the
model. To do so, we need to make draws from a multivariate normal that preserve the
sum-to-zero property of the Wi vectors. As above, we operate on w∗i , though this time
conditioning only on its last element, which is defined to be w̄i. Doing so, we see that
our draws should be from a normal distribution with mean {Xiβ}−p−p−1(J ′pXiβ)Jp−1
and variance Ip−1 − p−1Jp−1J ′p−1. A single draw from this distribution can be used to
impute the areal identifier; repeated draws give Monte Carlo estimates of the assignment
probabilities.
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