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Comment on Article by Craigmile et al.

Alexandra M. Schmidt∗

I would like to start by congratulating the authors for their interesting contribution,
and thanking Brad Carlin for the opportunity of commenting on it. In reading this
article (hereafter CCLPC) and the related references, one realizes how powerful the
available tools for Bayesian analysis are, and how we can now tackle important problems
in more realistic ways than only some years ago. Contributions such as this one illustrate
the great development Bayesian methods have been experiencing since (Gelfand and
Smith 1990) was published. However, despite these recent advances, there are many
practical issues which still need to be addressed. And I understand, as outlined by the
authors, that this work aims to open a dialog on practical strategies for hierarchical
modelling.

My comments below follow the organization of the article and are based partly on
my experiences in Brazil.

1 Model building

In an interesting section on exploratory data analysis and model building (Section 3),
CCLPC makes clear that when tackling complex problems we should conduct the model
fitting in compartmentalized fashion, separately validating and assessing the model fit
of each component. I found this point extremely important. Although obvious, it bears
repeating that life is easier when we start by solving simpler problems. From these
simpler problems we gather a better understanding of the process(es) being studied
and learn how better to communicate with the experts, which in turn may allow us to
propose a more realistic model.

This section indicates that “model building should be a combination of EDA and
scientific knowledge”, but does not make very clear to the reader how the subject-
specific knowledge on arsenic pathways was acquired by the modellers. Expert opinion
should be part of the exploratory analysis; therefore, readers would likely benefit from a
description of any behind-the-scenes communication between themselves and the subject
experts, as well as how these interactions were structured.

Prior specification

Although we, as Bayesians, claim the benefits of Bayesian inference, most of us, including
CCLPC, still make use of noninformative priors. In this sense, I wonder if we are fully
using the advantages that the Bayesian paradigm provides. Given that most of the
parameters in CCLPC enter as coefficients of linear models, they may be interpretable
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as effects of individual covariates; elicitation may thus be helpful to establish the priors.
Similarly, I wonder if informative priors would not help in improving the estimation of
the missing data.

Some Bayesian analysts have made important contributions on how to elicit prior
distributions for such complex models. In particular, Tony O’Hagan and Jeremy Oakley
have proposed an elicitation tool named SHELF∗. A thorough introduction to elicitation
is provided by O’Hagan et al. (2006). Although elicitation can be a challenging process,
I believe we should be discussing more broadly how to incorporate it more frequently
and more effectively in applications requiring expert knowledge.

Two doubts regarding the prior distributions arose while I was reading the paper.
First, the prior variances for the baseline parameters are set to 1000 with the exception
of that of the global-water parameter, αW . Why was αW assumed to be much more
concentrated around 0, and how sensitive are the results to the choice of this prior
variance for αW ? Second, it was not clear to me, even after reading (Santner et al.
2008), why the measurement-error precisions (ωj) for the various media were assumed
known. Would there not be information in the data to use instead the values of the
relative standard deviation associated with each medium as prior information and assign
some uncertainty to the ωjs?

Persistence of the effect of arsenic

Both Cressie et al. (2008) and CCLPC focus on the strength of the linear relationships
between different stages of exposure to infer the importance of the various pathways.
Individuals were monitored for seven consecutive days and urine samples were collected
on the third and seventh days of the study. The response variable was the mean of the
log-transformed arsenic concentrations in the urine of each individual.

It was unclear to me whether the level of arsenic assimilated by an individual over
a short time period is reflected only in measures for that period or instead propagates
to future observations as well. In a time series context, Alves et al. (2009) proposed a
dynamic transfer model to capture the effect of carbon monoxide on counts of infant
deaths. This kind of model allows for estimation of the temporal evolution of regres-
sor impacts on a response variable. It would be interesting to combine the pathway
and transfer function models with a view to examining variation in regressor impacts.
However, a time series would be required to implement this combined model.

Handling different spatial scales and the proper CAR prior

Analysts are frequently confronted with observations made at different spatial scales.
For example, Ravines et al. (2008) proposed a joint spatio-temporal model for the runoff
of a basin as a function of rainfall. However, rainfall was measured at fixed monitoring
locations spread across the basin, whereas the runoff measurements were taken at a

∗Visit http://www.tonyohagan.co.uk/shelf/ for further details.
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single downstream location; this situation exemplifies the change of support problem
(Cressie 1993). This problem was handled by overlaying a regular grid of locations over
the basin and obtaining basinwide rainfall as the sum of spatially-interpolated values
based on the rainfall measurements made at monitoring locations.

I find interesting how CCLPC deals with the spatial misalignment sampling schemes
in the global-soil model. Following Calder et al. (2008), CCLPC defines the topsoil
process (point-referenced data) as linearly related to the stream-sediment process, which
is defined over watersheds (areal data). The latent stream-sediment process is assumed
to follow a proper CAR prior. I understand that the choice of a proper CAR is made
because interpolations of the stream-sediment process across AZ can be obtained. Use
of a proper CAR prior can be coupled with methods that exploit the sparseness of the
neighbourhood matrix, which can speed up the MCMC computations dramatically (see
(Rue and Follestad 2003) for details).

CAR priors are commonly used for modelling epidemiological data for which obser-
vations are available for all areal units. The aim in such studies is usually smoothing
rather than interpolating. Banerjee et al. (2004) [p. 82-83] note that, under a proper
CAR prior, interpolated predictions for ungauged locations are not assumed to come
from the same spatial process. Gelfand (private communication, ISBA 2008) suggested
as a remedy that all locations, gauged and ungauged, be introduced in the MCMC pro-
cedure at once. Schmidt et al. (2009) faced a similar situation, but because our spatial
domain was not very large, we assigned a multivariate normal prior distribution for the
spatial effects, with a free-form covariance matrix. We avoided using a proper CAR
because we were uncomfortable with the idea of having different spatial processes for
gauged and ungauged locations.

2 Practical issues

The authors successfully describe many different practical aspects of Bayesian model
fitting. Advances in hardware, together with the development of powerful computational
statistical methods, have made Bayesian inference a natural paradigm for modelling
highly complex processes. In particular, MCMC methods are now standard tools for
fitting Bayesian hierarchical models. The spread of software such as WinBUGS has made
Bayesian inference accessible to a wide range of researchers. As cautioned by many
authors (e.g., Spiegelhalter et al. (2002)), it is fundamental to stress that these tools
should not be used as a black box. Below I will describe my own experiences with
various issues discussed in the paper.

Data management and software

There is no doubt that SAS is excellent software for dealing with huge datasets. However,
I work in a developing country where funds are limited; therefore, it is essential that we
have access to free software. In such situations, it is extremely helpful when researchers
make quality software freely available.
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It is helpful to code a particular MCMC algorithm using different programming tools.
Although I find the WinBUGS software extremely useful, I find it essential to understand
the underlying computations to determine whether the sampling procedure is being
performed efficiently. Otherwise, longer chains may be required to reach convergence.
An alternative algorithm may be required altogether. In our Graduate Program it has
become common practice to use the Ox Console† language to code MCMC algorithms.
The console version of Ox is free for non-commercial use. It is very similar to R, is easy
to use, and deals with matrices and vectors very efficiently, often running the same
algorithm faster than R. Usually, I write my codes both in R and Ox as a means of
double-checking my computations.

Program coding and sampling schemes

One of the main challenges that I find in implementing a Gibbs sampler is to ensure that
the code yields reliable results. As mentioned in CCLPC, organization and clarity are
fundamental when writing an MCMC algorithm to sample from the target distribution.
It is very useful to explicitly write down the full conditional distributions and verifying
them analytically before writing the code itself. This helps avoid different sources of
errors. Also, at this stage, one can investigate ways of simplifying the algorithm. For
example, Schmidt et al. (2008) avoided sampling (and monitoring the convergence of)
over 25,000 parameters by using a marginalized version of the likelihood. Marginalizing
also helps to make computation more stable.

I agree with the authors that when dealing with unknown full conditional posteriors
it is convenient to use random walk proposal distributions in Metropolis-Hastings steps.
However, it can be challenging to tune the variance of the proposal distribution. To
this end, the method proposed by Roberts and Rosenthal (2001, 2006) is very useful
and easy to implement.

As described in CCLPC, fitting the model to synthetic data is a useful means of
initially exploring the model. I usually perform this exercise considering multiple real-
izations obtained from both a single set of parameters and different sets of parameters.
This approach helps to check the code, explore the range of possible responses, and
yield hints on possible unidentifiability problems.

Checking convergence

There are situations in which convergence can be speeded up by choosing convenient
starting values. For example, in (Schmidt et al. 2008) we propose a stochastic frontier
model with a spatial component. Convergence of the regressor coefficients was reached
faster when the starting values were set to the OLS estimates of a multiple regression
model without the inefficiency component.

The model in CCLPC has an unspecified, but large, number of parameters. This

†Visit www.doornik.com for more details.
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raises a general issue: how can one check for convergence of all parameters for models
or submodels having hundreds or thousands of parameters? CCLPC mentions that
convergence was checked mainly running multiple chains starting from multiple starting
locations. It would be helpful if the authors discussed further how they chose the starting
values and specified how many chains were run. I too, check convergence using multiple
chains (usually two or three), but, additionally, use the convergence diagnostics available
in BOA (Smith 2005) for those parameters that are key for the inference procedure.

3 Analyzing the results

Model checking

An essential (and challenging) task in Bayesian model fitting is checking whether the
model provides a reasonable fit. Chapter 6 of (Gelman et al. 2004) illustrates several
useful approaches to model checking. The approach selected for model checking will gen-
erally depend on the structure of the observations (e.g., presence of spatial or temporal
correlation; nested observations). I also follow the approach pursued by the authors, of
performing some kind of cross-validation, especially when dealing with point-referenced
data. Cross-validation is very useful to investigate influential observations. For time
series, I often check the model by considering one-step-ahead predictive distributions
(e.g, Sansó et al. (2008)). Whenever missing data in a time series are being imputed
within the inference procedure, I like to visualize the completed series by examining
a graphical summary that includes predictive distribution at missing points, to detect
possible discrepancies between observed and imputed data. Figure 1 shows an example
of such a plot for a time series of concentrations of particulate matter at a monitoring
station in Rio de Janeiro.

CCLPC makes use of standardized residuals obtained from particular realizations
from the posterior distribution of the parameters. A potential difficulty with this ap-
proach is that it may be difficult to choose which and how many realizations should be
used to adequately characterize the distribution of residuals. As an alternative, CCPLC
mentions the use of posterior predictive checks which would be involved because of the
great amount of missing and censored data. Gelman et al. (2005) extend posterior pre-
dictive checking to situations with missing or latent data by including unobserved data
in the model checks.

Model comparison

In Section 4.5, CCLPC explores alternative models which assume proper CAR prior
specifications for the intercepts of each medium in the LEB model. An interesting
aspect is that model comparison is performed by examining the residuals and posterior
summaries of the parameters obtained under the different specifications. It would be
helpful to discuss further this important aspect of Bayesian model fitting. Despite the
many recent advances in Bayesian modelling, there is no agreement yet in the literature
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Figure 1: Example of a time series where the imputed missing data (open circles) are
shown with their associated 95% posterior credible interval (dashed lines). Solid lines
and filled circles represent observed data.

on how to compare different model specifications. Although there are advantages to
using Bayes factors, it is well known that they are sensitive to the use of vague prior
distributions. There are well known alternatives in the literature. See, for example,
Chapter 7 of (O’Hagan and Foster 2003) for a nice review of the many different criteria
available for model comparison.

When modelling spatio-temporal data, it can be useful to compare models through
their predictive distributions. The scoring rules proposed recently by Gneiting et al.
(2007) are relatively easy to implement once a sample from the posterior distribution
has been obtained. See (Gschlößl and Czado 2007) for details on implementation.

Presentation of results

The complexity of the models we deal with also challenges us to think carefully about
how to present the results. The project described in CCLPC and related references
provides a good example of this challenge. Cressie et al. (2008) report summaries of
the posterior distributions of regressor coefficients together with the acyclic directed
graphs, whereas in CCLPC, summaries of the posteriors are presented in a different
format (e.g., compare Figure 3 of (Cressie et al. 2008) with Figure 9 of CCLPC). The
figures in (Cressie et al. 2008) emphasize the dependencies among variables, whereas
those in CCLPC emphasize the visualization of posterior uncertainty while still depicting
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the dependencies among variables. Ultimately, results can often be shown in a number
of different ways; we should always be concerned about how to make visualization and
understanding easier to the reader.

4 Concluding remarks

Once again, I thank the authors for opening this debate on practical issues related to
Bayesian analysis of complex hierarchical models. We are dealing more and more often
with richly structured data which require highly dimensional models to describe their
underlying correlation structures. The Bayesian paradigm provides a natural way to
model such complex structures. A Bayesian analysis generally involves four main steps:
building the model, specifying a prior, obtaining a sample from the resultant posterior,
and analysing the results, including model checking and model comparison. As CCLPC
illustrates, we must keep in mind that each of these steps requires attentiveness and
reflection.

References
Alves, M. B., Gamerman, D., and Ferreira, M. A. R. (2009). “Transfer functions in

dynamic generalized linear models.” Statistical Modelling: an International Journal
(to appear).

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). Hierarchical Modeling and
Analysis of Spatial Data. New York: Chapman and Hall.

Calder, C. A., Craigmile, P. F., and Zhang, J. (2008). “Regional spatial modeling of
topsoil geochemistry.” Biometrics DOI 10.1111/j.1541-0420.2008.01041.x.

Cressie, N., Buxton, B. E., Calder, C. A., Craigmile, P. F., Dong, C., McMillan, N. J.,
Morara, M., Santner, T. J., Wang, K., Young, G., and Zhang, J. (2008). “From
sources to biomarkers: a hierarchical Bayesian approach for human exposure model-
ing.” Journal of Statistical Planning and Inference, 137: 3361–3379.

Cressie, N. A. C. (1993). Statistics for Spatial Data, Revised Edition. New York: John
Wiley and Sons.

Gelfand, A. E. and Smith, A. F. M. (1990). “Sampling-based approaches to calculating
marginal densities.” JASA, 85: 398–409.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian data analysis.
New York: Chapman and Hall/CRC.

Gelman, A., Mechelen, I. V., Verbeke, G., Heitjan, D. F., and Meulders, M. (2005).
“Multiple imputation for model checking: Completed-data plots with missing and
latent data.” Biometrics, 61: 74–85.



52 Comment on Article by Craigmile et al.

Gneiting, T., Balabdaoui, F., and Raftery, A. E. (2007). “Probabilistic forecasts, cali-
bration and sharpness.” JRSSB, 69: 243–268.
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