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Sobolev's imbedding theorem in the limiting case 
with Lorentz space and BMO 

Abstract. 

Hideo Kozono, Kouei Minamidate 
and 

Hidemitsu Wadade 

We shall prove a Gagliardo-Nirenberg type interpolation inequality 
with Lorentz space and BMO of functions of bounded mean oscillation 
in the critical case. Moreover, we obtain a Trudinger type inequality 
and a Brezis-Gallouet-Wainger type inequality as an application of the 
Gagliardo-Nirenberg type inequality. 

§1. Introduction 

We consider a Gagliardo-Nirenberg type inequality in ~n. It is well 
known that Sobolev space Hnfp,p(~n), 1 < p < oo, is continuously em
bedded into Lq(~n) for all q with p;; q < oo. However, we cannot take 
q = oo in such an embedding. T.Ogawa [15] and T.Ogawa-T.Ozawa [16] 
treated Hilbert space Hnf2 , 2 (~n) and then T.Ozawa [19] gave the fol
lowing general embedding theorem in Sobolev space Hnfp,p(~n) of the 
fractional derivatives which states that 

(1.1) 

jp-1 ~j 00 ~j 
<I>p(O := exp(~) - L --:-;- = L --:-;- , )p := min{j E N I j ~ p- 1 }. 

j=O J. j=jp J. 

The advantage of (1.1) gives the scale invariant form. In order to prove 
the above Trudinger type inequality, T.Ozawa [19] showed the following 
Gagliardo-Nirenberg type interpolation inequality which is equivalent to 
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(1.1). For 1 < p < oo, there is a constant C depending only on n and p 
such that 

(1 .2) II II < c 11p'll llp/q II ( ~)n1 < 2P> 11 1-p/q U £q(JRn) = q U LP(JRn) - . U LP(JRn) 

holds for all u E Hn/p,p(l~n) and for all q with p ~ q < oo. However, the 
usage of the Gagliardo-Nirenberg inequality to derive the embedding 
into Orlitz space is originally due to T.Ogawa [15]. Our goal is obtaining 
a Gagliardo-Nirenberg type inequality which is located in the extreme 
case of (1.2) in some sense. That is, we shall prove (1.2) of which the crit
ical Sobolev norm is replaced by the BMO norm. Furthermore, we use 
Lorentz space instead of Lebesgue space as the functional space. Here, we 
note that Lorentz space includes Lebesgue space. As corollaries of the 
Gagliardo-Nirenberg type inequality with BMO, we have a correspond
ing Trudinger type inequality. The method of the proof is also based on 
T.Ogawa [15]. The Trudinger type inequality with BMO is regarded as 
the whole space version of the well known inequality due to F.John
L.Nirenberg [11] which is treated in the case of an arbitrary domain 
with the finite measure. Finally, as another corollary of the Gagliardo
Nirenberg type inequality with BMO, we obtain a logarithmic type Sobo
lev inequality including BMO, that is, the Biezis-Gallouet-Wainger type 
inequality proved by H.Brezis-T.Gallouet [6] for an arbitrary domain 
in ~2 originally and by H.Brezis-S.Wainger [7] for the whole space ~n. 
Moreover, we refer to H.Engler [8] concerning another proof of the Brezis
Gallouet-Wainger inequality. With respect to the derivation of the Brezis
Gallouet-Wainger type inequality with BMO, we consider the heat equa
tion with the fractional derivative and the initial value belonging to the 
Schwartz class. the LP-Lq estimate of the Gauss kernel corresponding to 
this heat equation is the key of the proof. 

§2. Preliminaries 

In this section, in order to state the main theorems, let us recall the 
definition of the rearrangement of a measurable function to define BMO 
and Lorentz space. Concerning the rearrangement and its fundamental 
properties, we refer to C.Bennett-R.Sharpley [4]. For a measurable func
tion u on ~n, au : [0, oo) --> [0, oo] denotes the distribution function of 
u, i.e., 

au(A) := l{x E ~n; lu(x)l > A}l for A~ 0. 

Then u* : [0, oo) --> [0, oo] is defined as follows. 

u*(t) := inf{A > 0; au(A) ~ t} fort~ 0. 
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We call u* the rearrangement of u. Moreover, u** denotes the average 
function of u* , i.e., 

u**(t) := ~ t u*(T)dT fort> 0. 
t Jo 

In what follows, we assume that u*(t) < oo for all t > 0. Then u* is 
right-continuous and nonincreasing on (0, oo ). Hence, u** is continuous 
and norincreasing on (0, oo) with 

u*(t) ;£ u**(t) fort> 0. 

Furthermore, the rearrangement preserves the LP-norm, i.e., 

(2.1) 

holds for 1 ;£ p < oo. Moreover, 

lluiiL= = supu*(t) = limj*(t) = supu**(t) = limu**(t). 
t>O tlO t>O tlO 

Concerning the relations between u* and u**, the following inequality is 
well known. Let 1 < p < oo. Then there hold 

(2.2) 100 
u**(T)PdT ;£ p1 p 100 

u*(T)PdT. 

(2.2) is a variant of the Hardy inequality (see G.Hardy-J.Littlewood
G.P6lya [10]). Here, we note the well known inequality as follows. Let 
1 ;£ p ;£ oo. Then there hold 

lluiiLE. : = supt11Pu*(t) 
t>O 

;£ supt11Pu**(t) 
t>O 

;£ llulb-

Here, let us define Lorentz space with the rearrangement which appear 
in the main theorems. For 1 ;£ p, q < oo, Lorentz space is defined as 
follows. 

L(p, q) := { f E Lfoc(JH.n); lluliL(p,q) := (100 
(tlfPu**(t) r ~t) l/q < oo}. 

For 1 ;£ p ;£ oo, q = oo, we define L(p, q) as follows. 

L(p,q) := {u E Lfoc(JH.n); lluiiL(p,q) := sup t 11Pu**(t) < oo}. 
O<t<oo 
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By considering (2.1) and (2.2), we can easily checked that L(p,p) = £P 
and L(p, oo) = L~ for 1 < p ~ oo. Moreover, we see that the inclusion 
relation holds with respect to the second index q in L(p, q). That is, the 
continuous imbedding L(p, Ql) ~ L(p, q2) holds for 1 ~ p < oo and 
1 ~ Ql ~ Q2 ~ oo. Furthermore, 

(2.3) ( )
1/ql-1/q2 

lluiiL(p,q2) ~ ~ lluiiL(p,ql) 

holds for all u E L(p, ql). In the end of this section, we define the func
tion space BMO. We introduce the sharp function of a locally integrable 
function relative to an arbitrary domain n which is defined by 

{
sup IQ1 1 r lu(y)- UQidy, 

u#(x) ·= Qcn JQ 0 " xEQ 

0, 

X E !1, 

X E JRn \ fl, 

UQ := 1~1 k u(y)dy, 

where Q is a open cube having its sides parallel to the coordinate 
axes. Then we call a locally integrable function u belongs to BMO if u:" 
is in L00 (1Rn). We denote the BMO norm by lluiiBMO := llu:niiL=(IR")· 

§3. Main theorems 

We state main theorems in this section. Firstly, the Gagliardo-Niren
berg type inequalities with BMO are obtained as follows. 

Theorem 3.1. Let 1 < p 1 < oo. 
(i) There exists a constant C depending only on n and p 1 such that 

lluiiL(ql,q2) ~ Cq~+l/q2 llull~1(~~:p2 ) llullkk~q1 

holds for all u E L(pl,P2) n BMO, where p2, Ql and Q2 are satisfying 
Pl ~ Ql < oo and 1 ~ P2 ~ Q2 ~ oo. 
(ii) There exists a constant C depending only on n and p 1 such that 

2+1/q2 
II II < cq1 II llpl/ql II lll-pl/ql U L(ql,q2) = Ql - Pl U L(pl,P2) U BMO 

holds for all u E L(pl,P2) n BMO, where p2, Ql and q2 are satisfying 
Pl < Ql < oo and 1 ~ Q2 < P2 ~ oo. 
(iii) There exists a constant C depending only on n such that 

lluiiL(q"q2) ~ C qi+l/q2 llull~q1 llullk~~1 
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holds for all u E £In BMO, where qi and q2 are satisfying 1 ;; qi < oo 
and 1 ;; q2 ;; oo. 

By putting q1 = q2 in Theorem 3.1, we have the following Corollary 3.2. 

Corollary 3.2. (i) For every 1 ;; PI < oo, there exists a constant 
C depending only on n and PI such that 

(3.1) !l ull q <S C q !!u!!p,fq !!u!!I-p,fq L - L(p1 ,p2 ) BMO 

holds for all u E L(pi,P2) n BMO, where P2 and q are satisfying 1 ;; 
P2 ;; PI ;; q < oo. 
(ii) For every 1 <PI < oo, there exists a constant C depending only on 
n and PI such that 

(3.2) 

holds for all u E L(pi, oo) n BMO and for all PI< q < oo. 

Remark 3.3. The above theorems also may be obtained from the 
interpolation theory if we don't care the sharp constant. However, what 
we emphasize most is that the orders with respect to qi in Theorem 3.1 
or q in Corollary 3.2, that is, qi+I/q2 as qi -----> oo or qi as q -----> oo are 
optimal respectively. The optimality is easily shown by considering the 
logarithmic function restricted in a ball centered at the origin. 

Moreover, from Corollary 3.2, we obtain Trudinger type inequalities 
equivalent to (3.1) and (3.2) as follows: 

Corollary 3.4. (i) For every 1 ;; PI < oo, there exists a constant C 
depending only on n and PI such that the following holds. For arbitrary 
0 < o: < C, there exists a constant 6 depending only on n, PI and o: 
such that 

{ <I>p, (o: !u(x)! ) dx-:;_ 6 ( !lu!!L(p1 ,p2 ) )P' 
}WI." !!u!!BMO - !!u!!BMO 

holds for all u E L(pi,P2) n BMO \ {0} and for all1 ;; P2 ;; PI, where 
<I>p, is defined by 

for~ E R 
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(ii) For every 1 < p 1 < oo, there exists a constant C depending only on 
n and p 1 such that the following holds. For arbitrary 0 < a < C, there 
exists a constant 6 depending only on n, p 1 and a such that 

{ <f>P1 (a lu(x)l ) dx ~ 6 (lluiiL(pl,oo))P1 

I~." lluiiBMO - lluiiBMO 

holds for all u E L(PI. oo) n BMO \ {0}, where <i>p1 is defined by 

for~ E R 

Finally, we shall state the application to the Brezis-Gallouet-Wainger 
type inequality with BMO. In fact, from Corollary 3.2, we can obtain the 
inequality as follows : 

Theorem 3.5. (i) For every 1 ~ p 1 < oo, 1 ~ q ~ oo and njq < 
m < oo, there exists a constant C depending only on n, p1 , q and m such 
that 

holds for all u E L(PI.P2) n BMO with (-~)mf2u E Lq, where P2 is 
satisfying 1 ~ P2 ~ PI. 
(ii) For every 1 < p1 < oo, 1 ~ q ~ oo and njq < m < oo, there exists a 
constant C depending only on n, p 1 , q and m such that 

holds for all u E L(p1, oo) n BMO with ( -~)mf2u E Lq. 

§4. Outline of proof 

Firstly, we state the outline of the proof of the Gagliardo-Nirenberg 
type inequality with BMO, i.e., Theorem 3.1. We define a new function 
space as follows. 

W := {u E Lfoc(JR.n); llullw :=sup (u**(t)- u*(t)) < oo}. 
t>O 

Then in order to prove Theorem 3.1, it is enough to show the following 
propositions, i.e., 
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Proposition 4.1. Let 1 ~ p < oo. Then there exists a constant C 
depending only p such that 

3 

lluiiL(q,l) ~ C _q_llulli!(qp oo)llull~p/q 
q-p ' 

holds for all u E L(p, oo) n W and for all p < q < oo. 

Proposition 4.2. There exists a constant C depending only on n 
such that 

llullw ~ ClluiiBMO 

holds for all u E { u E B M 0 : There exists 1 < p < oo such that u E 

L(p,oo) oruEL1}. 

In fact, from (2.3) and Proposition 4.1, we have the following Corol
lary 4.3 immediately. 

Corollary 4.3. Let 1 ~ Pl < oo. 
(i) There exists a constant C depending only on p 1 such that 

ll ull ~ Cql+l/q2 llullp!/q1 llull 1-p!/q1 
L(q1,q2) - 1 L(pl,P2) W 

holds for all u E L(pl,P2) n W, where P2, q1 and q2 are satisfying Pl ~ 
q1 < oo and 1 ~ P2 ~ q2 ~ oo. 
(ii) There exists a constant C depending only on Pl such that 

holds for all u E L(p1, P2) n W, where P2, q1 and q2 are satisfying P1 < 
q1 < oo and 1 ~ q2 < P2 ~ oo. 

It is clear that we obtain Theorem 3.1 from Corollary 4.3 and Proposi
tion 4.2. Concerning the proof of Proposition 4.1, we divide the Lorentz 
norm into two parts with one parameter and estimate each term by the 
definition of Lorentz space. Finally, by optimizing the estimated value 
with respect to the parameter, we have the desired interpolation in
equality. Furthermore, Proposition 4.2 is obtained as a corollary of the 
following theorem proved by C.Bennett-R.Sharpley [4]. 

Theorem 4.4. There exists C depending only on n such that 

u**(t)- u*(t) ~ C ( u~) * (t) 

holds for all cubes Q in ~n, u E L 1 (~n) with supp u C Q and 0 < t < 
IQI/6. 
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Next, concerning the proof of the Brezis-Gallouet-Wainger type in
equality with BMO, i.e., Theorem 3.5, we consider the heat equation with 
the fractional derivative, i.e., 

au __ -(- A)m/2U IDn (0 ) u in.I.L'I>. x ,oo, at 
u(·,O) = <P in JR.n, 

where <Pis a function which belongs to the Schwartz class and 0 < m < 
oo. Then the solution to this heat equation is represented by 

u(·, t) = c;, * <P, 

where the heat kernel a;, is defined by 

c;, := F-l(e-(27rl·ll"'t), 

F- 1 means the Fourier inverse transformation. From the Young inequal
ity, we obtain the LP-Lq estimate of the heat kernel as follows. 

Proposition 4.5. For every 0 < m < oo, there exists a constant C 
depending only on n and m such that 

IIG;, * uiiL• ~ c c(n/m)( 1/p- 1/q) lluiiLP 

holds for all u E LP and for all t > 0, where p and q are satisfying 
1 ~ p ~ q ~ 00. 

Since L00 is the dual space of L 1 , we can show Theorem 3.5 by applying 
Corollary 3.2 and Proposition 4.5. 
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