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Abstract. Association between random variables is a generalization of independence of
these random variables. This concept is more and more commonly used in current trends
in any research fields in Statistics. In this paper, we proceed to a simple, clear and rigor-
ous introduction to it. We will present the fundamental asymptotic normality theorem on
stationary and associated sequences of random variables. A coherent and modern frame is
used. This review will be profitable to new resarchers in the topic.

Résumé. Le concept de variables aléatoires associées est une généralisation de
l’indépendance entre variables aléatoires. Il devient de plus en plus important dans les prob-
abilités et les applications statistiques de tous les jours. Dans ce papier, nous introduisons à
ce concept et présentons le théorème fondamental de la normalité asymptotique de sommes
partielles d’une suite stationnaire de variables aléatoires associées. Nous utilisons un cadre
moderne et cohérent qui sera profitable aux chercheurs débutants dans ce domaine.

Key words: Positive and Negative Dependence; Association; Central Limit Theorem.
AMS 2010 Mathematics Subject Classification : 60F05; 62G20; 62H20.

1. A brief reminder of association

We begin to introduce to the associated random variables concept which goes back to
Lehmann (1966) in the bivariate case. The concept of association for random variables
generalizes that of independence and seems to model a great variety of stochastic models.
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This property also arises in Physics, and is quoted under the name of FKG property (Fortuin
et al., 1971), in percolation theory and even in Finance (see Jiazhu, 2002).

The definite definition is given by Esary et al. (1967) as follows.

Definition 1. The rv’s X1, ..., Xn are associated, or equivalently the finite sequence
X1, ..., Xn is associated, if for any couple of real and coordinatewise nondecreasing func-
tions h and g defined on Rn, we have

Cov(h(X1, ..., Xn), g(X1, ..., Xn)) ≥ 0

An infinite sequence of rv’s is associated whenever all its finite subsequences are associated.

We have a few number of interesting properties to be found in (Prakasa Rao, 2012) :

(P1) A sequence of independent rv’s is associated.

(P2) Partial sums of associated rv’s are associated.

(P3) Order statistics of independent rv’s are associated.

(P4) Non-decreasing functions and non-increasing functions of associated variables are as-
sociated.

(P5) Let the sequence Z1, Z2, ..., Zn be associated and let (ai)1≤i≤n be positive numbers
and (bi)1≤i≤n real numbers. Then the rv ’s ai(Zi − bi) are associated.

As immediate other examples of associated sequences, we may cite Gaussian random vectors
with nonnegatively correlated components (see Pitt, 1982) and homogenuous Markov chains
(Daley, 1968).

Demimartingales are set from associated centered variables exactly as martingales are de-
rived from partial sums of centered independent random variables. We have

Definition 2. A sequence of rv’s {Sn, n ≥ 1} ⊂ L1(Ω,A,P) is a demimartingale if for any
j ≥ 1, for any coordinatewise nondecreasing function g defined on Rj , we have

E
(
(Sj+1 − Sj) g(S1, ..., Sj)

)
≥ 0. (1)

Two particular cases should be highlighted. First any martingale is a demimartingale. Sec-
ondly, partial sums S0 = 0, Sn = X1 + ... + Xn, n ≥ 1, of associated and centered random
variables X1, X2, ... form a demimartingale for, in this case, (1) becomes :

E {(Sj+1 − Sj) g(S1, ..., Sj)} = E {Xj+1 g(S1, ..., Sj)} = Cov {Xj+1, g(S1, ..., Sj)} ,

since EXj+1 = 0. Since (x1, ..., xj+1) 7−→ xj+1 et (x1, ..., xj+1) 7−→ g(x1, ..., xj) are
coordinate-wise nondecreasing functions and since the X1, X2, .. are associated, we get

E {(Sj+1 − Sj) g(S1, ..., Sj)} = Cov {Xj+1 g(S1, ..., Sj)} ≥ 0.
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2. Key results for associated sequences

Lemma 1. Let (X,Y ) be a bivariate random vector such that E(X2) <∞ and E(Y 2) <∞.
If (X1, Y1) and (X2, Y2) are two independent copies of (X,Y ), then We have

2Cov(X,Y ) = E(X1 −X2)(Y1 − Y2).

We also have

Cov(X,Y ) =

∫ +∞

−∞

∫ +∞

−∞
H(x, y)dxdy,

where,
H(x, y) = P(X > x, Y > y)− P(X > x)P(Y > y).

Before the proof of the lemma, we observe that :

H(x, y) = P(X > x, Y > y)− P(X > x)P(Y > y) = P(X ≤ x, Y ≤ y)− P(X ≤ x)P(Y ≤ y).
(2)

Indeed we have

P(X > x, Y > y)− P(X > x)P(Y > y) = E(I(X>x)I(Y >y))− E(I(X>x))E(I(Y >y))
= Cov(I(X>x), I(Y >y))
= Cov(1− I(X>x), 1− I(Y >y))
= Cov(I(X≤x), I(Y≤y))
= P(X ≤ x, Y ≤ y)− P(X ≤ x)P(Y ≤ y).

Proof. We have

E(X1 −X2)(Y1 − Y2) = E(X1Y1)− E(X1)E(Y2)− E(X2)E(Y1) + E(X2Y2)

= 2E(X1Y1)− 2E(X1)E(Y1)

= 2Cov(X1, Y1).

Next, for a ∈ R,by Fubini’s Theorem for nonegative random variables,∫ ∞
a

∫ ∞
a

P(X > x, Y > y)dxdy = E
∫ ∞
a

∫ ∞
a

I(X>x)I(Y >y)dxdy

= E

(∫ X

a

dx

∫ Y

a

dy

)
= E[(X − a)(Y − a)].

We have

2Cov(X1, Y1) = E(X1 −X2)(Y1 − Y2)

= E({(X1 − a)− (X2 − a)} {(Y1 − a)− (Y2 − a)}))
= E(X1 − a)(Y1 − a)− E(X1 − a)(Y2 − a)

−E(X2 − a)(Y1 − a) + E(X2 − a)(Y2 − a)

=

∫ ∞
a

∫ ∞
a

P(X1 > x, Y1 > y)dxdy −
∫ ∞
a

∫ ∞
a

P(X1 > x, Y2 > y)dxdy
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−
∫ ∞
a

∫ ∞
a

P(X2 > x, Y1 > y)dxdy +

∫ ∞
a

∫ ∞
a

P(X2 > x, Y2 > y)dxdy.

By the independence of {X1, Y1} and {X2, Y2}, P(X1 > x, Y2 > y) = P(X1 > x)×P(Y1 > y)
and P(X2 > x, Y1 > y) = P(X1 > x)× P(Y1 > y),

2Cov(X,Y ) = 2

(∫ ∞
a

∫ ∞
a

{P(X1 > x, Y1 > y)− P(X1 > x)× P(Y1 > y)} dxdy
)
.

We get the final result by letting a→ −∞. �

Lemma 2. Suppose that X, Y are two random variables with finite variance and, f and g
are C1 complex valued functions on R1 with bounded derivatives f ′ and g′. Then

|Cov(f(X), h(Y ))| ≤ ||f ′||∞||g′||∞Cov(X,Y )

Proof. By Lemma 1, we have

2Cov(f(X), g(Y )) = E(f(X1)− f(X2))(g(Y1)− g(Y2))

= E

(∫ X2

X1

f ′(x)dx

∫ Y2

Y1

g′(x)dx

)
.

But ∫ X2

X1

f ′(x)dx =

∫ +∞

X1

f ′(x)dx−
∫ +∞

X2

f ′(x)dx

=

∫
R
f ′(x)

{
1(X1≤x) − 1(X2≤x)

}
dx

Applying this to
∫ Y2

Y1
g′(x)dx and combining all that, leads to

2Cov(f(X), g(Y )) = E
∫
R2

f ′(x)g′(y)
{

1(X1≤x) − 1(X2≤x)
}{

1(Y1≤y) − 1(Y2≤y)
}
dxdy. (3)

It is easy to see that

E
{

1(X1≤x) − 1(X2≤x)
}{

1(Y1≤y) − 1(Y2≤y)
}

= 2(P(X ≤ x, Y ≤ y)− P(X ≤ x)P(Y ≤ y))

and by (2), this is equal to 2H(x, y). By applying Fubini’s theorem in (3), we get

2Cov(f(X), g(Y )) = 2

∫
R2

f ′(x)g′(y)H(x, y)dxdy.

This gives, since H(x, y) ≥ 0 for associated rv’s,

|Cov(f(X), g(Y ))| ≤ ||f ′||∞||g′||∞
∫
R2

H(x, y)dxdy.

And we complete the proof by applying Lemma 1. �

Remark : We used the proof of Yu (1993) here.
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Theorem 1. Let X1, X2, ..., Xn be associated, then we have for all t = (t1, ..., tn) ∈ Rk,∣∣∣∣∣ψ(X1,X2,...,Xn)
(t)−

n∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣ ≤ 1

2

∑
1≤i 6=j≤n

|titj | |Cov(Xi, Xj)| . (4)

Proof : First, we prove this for n = 2. Use the Newman inequality in Lemma 2. Let X
and Y be two associated random variables. For (s, t) ∈ R2, put U = f(X) =: eisX and
V = g(Y ) =: eitY . We have

Cov(U, V ) = E(e(isX+tY ))− E(eisX)E(eitY ) = ψ(X,Y )(s, t)− ψX(s)ψY (t).

But Lemma 2 implies

|Cov(U, V )| = |Cov(f(X), g(Y ))| ≤ |st| ‖f ′‖∞ ‖g
′‖ |∞Cov(X,Y )| = |st| |Cov(X,Y )| .

=
1

2
|st| |(Cov(X,Y ) + cov(Y,X))| .

And (4) is valid for n = 2. Now we proceed by induction and suppose that (4) is true up to
n. Consider associated random variables X1, X2, ..., Xn+1 and let t = (t1, ..., tn+1) ∈ Rn+1.
If all the ti are nonnegative, we have U = t1X1 + ...+ tnXn and V = Xn+1 are associated.
We have

ψ
(X1,X2,...,Xn+1)

(t) = ψ
(U,V )

(1, tn+1) and ψ
U

(1) = ψ
(X1,X2,...,Xn)

(t1, ..., tn).

By the induction hypothesis, we have∣∣∣ψ(X1,X2,...,Xn+1)
(t)− ψ

(X1,X2,...,Xn)
(t1, ..., tn)ψXn+1

(tn+1)
∣∣∣ (5)

≤ |tn+1| |cov(Xn+1, t1X1 + ...+ tnXn)|

≤ 1

2

n∑
j=1

|titn+1| |cov(Xn+1, Xi)| .

Next ∣∣∣∣∣ψ(X1,X2,...,Xn+1)
(t)−

n+1∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣
≤
∣∣∣ψ(X1,X2,...,Xn+1)

(t)− ψ
(X1,X2,...,Xn)

(t1, ..., tn)ψXn+1(tn+1)
∣∣∣

+

∣∣∣∣∣ψ(X1,X2,...,Xn)
(t1, ..., tn)ψXn+1

(tn+1)−
n+1∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣ .
The first term in the right side member is bounded as in (5). The second term is bounded,
due to the induction hypothesis, by

∣∣ψXn+1(tn+1)
∣∣ ∣∣∣∣∣ψ(X1,X2,...,Xn)

(t1, ..., tn)−
n∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣
Journal home page: www.jafristat.net
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=

∣∣∣∣∣ψ(X1,X2,...,Xn)
(t1, ..., tn)−

n∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣
≤ 1

2

∑
1≤i 6=j≤n

|titj | |cov(Xi, Xj)| . (6)

By putting (5) and (6) together, we get that (4) is valid. By re-arranging the ti, we observe
that we have proved( 4) for n = 3, if at least n of the ti are nonnegative. Also, if at least
n of them are nonpositive, we consider the sequence −X1, ...,−Xn+1 that is also associated
and get the same conclusion. This means that (4) is true. It remains the case where exactely
p of the ti’s are nonnegative with 2 ≤ p ≤ n− 2. By re-arranging the ti if necessary, we may
consider that ti ≥ 0 for 1 ≤ i ≤ p and ti < 0 for i > p. Now, put U = t1X1 + ...+ tpXp and
U = tp+1Xp+1 + ...+ tn+1Xn+1. Since U et −V are associated and since

ψ
(X1,X2,...,Xn+1)

(t) = ψ(U,−V )(1,−1),

we have by the induction hypothesis∣∣∣ψ(X1,X2,...,Xn+1)
(t)− ψU (1)ψ−V (−1)

∣∣∣ ≤ 1

2
|Cov(U,−V )| ≤ 1

2

p∑
i=1

n+1∑
j=p+1

|titj | |cov(Xi, Xj)|

(7)
Now use ∣∣∣∣∣ψ(X1,X2,...,Xn+1)

(t)−
n+1∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣ ≤ ∣∣∣ψ(X1,X2,...,Xn+1)
(t)− ψU (1)ψ−V (−1)

∣∣∣ (8)

+

∣∣∣∣∣∣ψU (1)ψ−V (−1)− ψU (1)

n+1∏
i=p+1

ψ
Xi

(ti)

∣∣∣∣∣∣
≤
∣∣∣ψ(X1,X2,...,Xn+1)

(t)− ψU (1)ψ−V (−1)
∣∣∣+

∣∣∣∣∣ψU (1)ψ−V (−1)−
p∏
i=1

ψ
Xi

(ti)ψ−V (−1)(ti)

∣∣∣∣∣
+

∣∣∣∣∣
p∏
i=1

ψ
Xi

(ti)ψ−V (−1)−
n+1∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣
The first term already handled in (8). The second term is bounded as follows∣∣∣∣∣ψU (1)ψ−V (−1)−

p∏
i=1

ψ
Xi

(ti)ψ−V (−1)(ti)

∣∣∣∣∣ = |ψ−V (−1)(ti)| ×

∣∣∣∣∣ψU (1)−
p∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣
≤

∣∣∣∣∣ψU (1)−
p∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣ =

∣∣∣∣∣ψ(X1,X2,...,Xp)
(t1, ..., tp)−

p∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣
≤ 1

2

p∑
1≤i 6=j≤p

|titj | |cov(Xi, Xj)| . (9)
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where we used the induction hypothesis in the last formula. The last term is∣∣∣∣∣
p∏
i=1

ψ
Xi

(ti)ψ−V (−1)−
n+1∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣ =

∣∣∣∣∣
p∏
i=1

ψ
Xi

(ti)ψ−V (−1)−
n+1∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣
≤

∣∣∣∣∣
p∏
i=1

ψ
Xi

(ti)

∣∣∣∣∣×
∣∣∣∣∣∣ψ−V (−1)−

n+1∏
i=p+1

ψ
Xi

(ti)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ψ(Xp+1,...,Xn+1)
(tp+1, ..., tn+1)−

n+1∏
i=p+1

ψ
Xi

(ti)

∣∣∣∣∣∣
≤ 1

2

∑
p+1≤i 6=j≤n+1

|titj | |cov(Xi, Xj)| , (10)

where we used again the induction hypothesis. We complete the proof by putting (7), (8),
(10) and (9) together, we arrive at the result (4). �

3. Central limit theorem for a stricly stationary and associated sequence

In this section, we provide all the details of the sharpest result in this topic by Newman and
Wright (1981). This came as a concluding paper for a series of papers by Newman.

We present here all the materials used in the proof of Newman and Wright in a detailed
writing that makes it better understandable by a broad public.

First, we have this simple lemma.

Lemma 3. Let X and Y be finite variance random variables such that

E(X,Y 1(Y≤0)) ≥ 0. (11)

Then, we have
E[(max(X,X + Y ))2] ≤ E(X + Y )2. (12)

If X and Y are associated and X is mean zero, then (11) holds and (12) is true.

Proof. We have

max(X,X + Y )2 =
{
X1(Y≤0) + (X + Y )1(Y >0)

}2
= X21(Y≤0) + (X + Y )21(Y >0) = X21(Y≤0) + (X2 + Y 2 + 2XY )1(Y >0)

= X2 + Y 2 − Y 21(Y≤0) + 2(XY )1(Y >0)

= X2 + Y 2 + 2XY − 2XY 1(Y≤0) − Y 21(Y≤0)

= (X + Y )
2 − 2XY 1(Y≤0) − Y 21(Y≤0)

We get the desired result whenever
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E(XY 1(Y≤0)) = Cov(X,Y 1(Y≤0)) ≥ 0

Now if X and Y are associated, we have

XY 1(Y≤0) = (−X)(−Y )1(−Y≥0).

Since (−X) and (−Y ) are associated too and 1(−Y≥0) is a nondecreasing function of (−Y ),
and reminding that X is mean zero, we get that

E(XY 1(Y≤0)) = E((−X)(−Y )1(−Y≥0)) = Cov((−X), (−Y )1(−Y≥0)) ≥ 0.

�

Theorem 2 (Maximal inequality of Newman and Wright). Let X1, X2, · · · , Xn be
associated, mean zero, finite variance, random variables and Mn = max(S1, S2, · · · , Sn)
where Sn = X1 +X2 + · · ·+Xn, we have

E(M2
n) ≤ V (Sn). (13)

Proof. Let us prove (13) by induction. It is obviously true for n = 1 and for n = 2 by
Lemma 3. Let us suppose that it is true for j, 2 ≤ j < n. By putting Lj = X2 + ... + Xj ,
j ≥ 2,we have

Mn = max(X1, X1 + L2, ..., X1 + Ln) = X1 + max(0, L2, ..., Ln).

Also
max(X1, X1 + max(L2, ..., Ln)) = X1 + max(0,max(L2, ..., Ln))

We obviously have
max(0,max(L2, ..., Ln)) = max(0, L2, ..., Ln).

Then
EM2

n = Emax(X1, X1 + max(L2, ..., Ln))2

Since X1 and max(L2, ..., Ln) are associated and X1 is mean zero, use Lemma 3 to get

EM2
n = Emax(X1, X1 + max(L2, ..., Ln))2 ≤ EX2

1 + Emax(L2, ..., Ln)2.

And then, apply (13) on Emax(L2, ..., Ln)2 for (n− 1) mean zero associated rv’s to have

Emax(L2, ..., Ln)2 ≤ EX2
2 + ...+X2

n.

We conclude that
EM2

n ≤ EX2
1 + EX2

2 + ...+ EX2
n.

�

Lemma 4. Let X1, X2, · · · , Xn be a second-order stationary sequence with σ2 = V (X1) +
2
∑∞
j=2 |Cov(X1, Xj)| <∞, then

V

(
Sn√
n

)
→ σ2 = V (X1) + 2

∞∑
j=2

Cov(X1, Xj).
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Proof. We have

αn = V

(
Sn√
n

)
=

1

n


n∑
j=1

V (Xi) +
∑

1≤i6=j≤n

Cov(Xi, Xj)

 .

By stationarity, we have

V

(
Sn√
n

)
= V (X1) +

2

n

∑
1≤i<j≤n

Cov(Xi, Xj)

= V (X1) +
2

n

n∑
j=2

(n− j + 1)Cov(X1, Xj).

Let ε > 0. Since
∑∞
j=2 Cov(X1, Xj) < +∞, there exists K > 0 such that for any k ≥ K,∑

j≥k+1

Cov(X1, Xj) < ε.

We fix that k ≥ K and write,

αn = V (X1) + 2

 k∑
j=2

(
1− j − 1

n

)
Cov(X1, Xj) +

n∑
j=k+1

(
1− j − 1

n

)
Cov(X1, Xj)


and observe that ∣∣∣∣∣∣αn − V (X1)− 2

k∑
j=2

(
1− j − 1

n

)
Cov(X1, Xj)

∣∣∣∣∣∣ ≤ 2ε.

Thus, we get

lim inf V (X1) + 2

k∑
j=2

(
1− j − 1

n

)
Cov(X1, Xj)− 2ε ≤ lim inf αn

≤ lim supαn ≤ lim supV (X1) + 2

k∑
j=2

(
1− j − 1

n

)
Cov(X1, Xj) + 2ε.

Therefore, for any k ≥ K,

V (X1) + 2

k∑
j=2

Cov(X1, Xj)− 2ε ≤ lim inf αn ≤ lim supαn

≤ V (X1) + 2

k∑
j=2

Cov(X1, Xj) + 2ε.

We finish the proof by letting k →∞ and next by letting ε→ 0. �
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Theorem 3. Let X1, X2, · · · , Xm be a strictly stationary, mean zero, associated random
variables such that

σ2 = V (X1) + 2

+∞∑
j=2

Cov(X1, Xj) <∞,

then
Sn√
n

=
X1 +X2 + · · ·+Xn√

n
→ N(0, σ2) as n→∞

Proof. Let us fix ` > 1 an integer and let us set m = [n` ], that is m` ≤ n ≤ m`+ `. Let us

define Ψn(r) = E(eirSn/
√
n), r ∈ R. First, we have for r ∈ R,

|Ψn(r)−Ψm`(r)| = |E(eirSn/
√
n)− E(eirSm`/

√
m`)|

=
∣∣∣E [eirSm`/

√
m`
(
eir[(Sn/

√
n)−(Sm`/

√
m`)] − 1

)]∣∣∣
≤ E

∣∣∣∣eir( Sn√
n
− Sm`√

m`

)
− 1

∣∣∣∣ . (14)

But for any x ∈ R,

|eix − 1| = |(cosx− 1) + i sinx| = |2 sin
x

2
| ≤ |x|.

Thus the second member of (14) is, by the Cauchy-Schwarz’s inequality, bounded by

|r|E
∣∣∣∣ Sn√n − Sm`√

m`

∣∣∣∣ ≤ |r|V ( Sn√n − Sm`√
m`

) 1
2

.

Let us compute the quantity between brackets for fixed ` and n→∞ (m→∞), we get

Sn√
n
− Sm`√

m`
=

Sn√
n
− Sm`√

n
+
Sm`√
n
− Sm`√

m`

=
Sn − Sm`√

n
−
√
n−
√
m`√

nm`
Sm`

and

δm,` = V

(
Sn√
n
− Sm`√

m`

)
= V

(
Sn − Sm`√

n

)
+

(√
n−
√
m`√

n

)2

V

(
Sm`√
m`

)

−2

√
n−
√
m`√

nm`
Cov(Sn − Sm`, Sm`).

Cov(Sn − Sm`, Sm`) ≥ 0 by association. Thus

δm,` ≤ V
(
Sn−m`√

n

)
+

(√
n−
√
m`√

n

)2

V

(
Sm`√
m`

)
.

Journal home page: www.jafristat.net



G.S. Lo, H. Sangare and C.H. Ndiaye, Afrika Statistika, Vol. 11(1), 2016, pages 855–867. A
Review on asymptotic normality of sums of associated random variables. 865

Since 0 ≤ n−m` ≤ `, and Cov(X1, Xj) ≥ 0 by association, we have

V (Sn−m`) =

n−m`∑
i=1

V (Xi) +
∑

1≤i 6=j≤n−m`

Cov(Xi, Xj)

≤
∑̀
i=1

V (Xi) +
∑

1≤i 6=j≤`

Cov(Xi, Xj) = A(`).

Further, m` ≤ n ≤ (m+ 1)` implies

0 ≤
√
n−
√
m`√

n
≤

(
1−

√
m`

n

)
→ 0 as n→ +∞.

Then when m→∞ (n→∞)

V

(
Sm`√
m`

)
→ V (X1) + 2

∞∑
j=2

Cov(X1, Xj) <∞

and

δm,` ≤
A(`)

n
+

(
1−

√
m`

n

)2

V

(
Sm`√
m`

)
→ 0.

For fixed `, n→∞, we get
|Ψn(r)−Ψm`(r)| → 0.

Now, let us set Yj = (Sj` − S`(j−1))/
√
`, for a fixed `. By strict stationarity, the Yj ’s are

associated and identically distributed. Let Ψ` be the common characteristic function of
Y1, · · · , Ym. Furthermore

Sm`√
m`

=
1

√
m
√
`

m∑
j=1

(Sj` − S`(j−1)) =
1√
m

m∑
j=1

Yj .

According to the Newman’s Theorem (see Theorem 1)∣∣∣∣Ψm`(r)−
(

Ψ`

(
r√
m

))m∣∣∣∣ ≤ r2

2m

∑
1≤j 6=k≤m

Cov(Yj , Yk),

and we know that

V

 m∑
j=1

Yj

 =

m∑
j=1

V (Yj) +
∑

1≤j 6=k≤m

Cov(Yj , Yk).

Thus, by using the stationarity again, we get

1

m

∑
1≤j 6=k≤m

Cov(Yj , Yk) =
1

m
V

 m∑
j=1

Yj

− 1

m

m∑
j=1

V (Yj)
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= V

 1√
m

m∑
j=1

Yj

− 1

m

m∑
j=1

V (Yj)

V

(
Sm`√
m`

)
− V

(
S`√
`

)
= σ2

m` − σ2
` ,

where for any p ≥ 2,

σ2
p =

1

p

p∑
i=1

V (Yi) +
1

p

∑
1≤i6=j≤p

Cov(Yi, Yj)

Now, when m→∞, σ2
m` → σ2 and(

Ψ`

(
r√
m

))m
→ e−σ

2
` r

2/2,

where σ2
` is the common variance of Yj ’s,

σ2
` =

∑̀
i=1

V (Xi) +
1

`

∑
1≤i 6=j≤m

Cov(Xi, Xj).

Then it comes out that

lim
∣∣∣Ψm`(r)− e−σ

2
` r

2/2
∣∣∣ ≤ r2

2
(σ2 − σ2

` ).

We complete the proof by letting `→∞. Thus σ2
` − σ2 → 0 and we get

lim
n→∞

∣∣∣Ψn(r)− e−σ
2r2/2

∣∣∣ = 0.

�

Remark. We finish this exposition by these important facts. A number of CLT’s and invari-
ance principles are available in the literature for strictly stationary sequences of associated
random variables and not stationary ones. The most general CLT seems to be the one
provided by Cox and Grimmett (1983) for arbitrary associated rv’s fulfulling a number of
moment conditions. Dabrowski and co-authors (see Burton et al., 1986 and Dabrowski ,
1958) considered weakly associated random variables to establish principle invariances in
the lines of Newman and Wright (1981), as well as Berry-Essen-type results and functional
LIL’s. But almost all these results use adaptations of the original method of Newman we
have described here.
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