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Abstract. We give a partial extension of a Kakutani–Mackey theorem for
quasi-complemented vector spaces. This can be applied in the representation
theory of certain complemented (non-normed) topological algebras. The exis-
tence of continuous linear maps, in the context of quasi-complemented vector
spaces, is a very important issue in their study. Relative to this, we prove
that every Hausdorff quasi-complemented locally convex space has continuous
linear maps, under which a certain quasi-complemented locally convex space
turns to be pre-Hilbert.

1. Introduction and Preliminaries

In what follows, by the term “a subspace of a vector space” (resp. “a closed
subspace of a topological vector space”) we shall mean “a vector subspace of a
vector space” (resp. “a closed vector subspace of a topological vector space”).
Also, VX will denote the set of all closed subspaces of a (real or complex) topo-
logical vector space X. Moreover, by a generalized real Hilbert space, we mean a
real Hilbert space which is neither necessarily separable nor infinite-dimensional.
In 1944, Shizuo Kakutani and George W. Mackey proved in [7, p. 51, Theorem
1] the following theorem.

Theorem 1.1. (Kakutani–Mackey) Let X be a real Banach space with dimension
at least 3. Suppose there exists an endo-mapping on VX , say, σ : VX → VX with
σ(M) = Mσ, that satisfies the following conditions:
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If M1,M2 ∈ VX with M1 ⊆ M2, then M2
σ ⊆ M1

σ. (1.1)

If M ∈ VX , then Mσσ = M. (1.2)

If M ∈ VX , then M ∩Mσ = {0}. (1.3)

Then there is an isomorphism between X and a generalized real Hilbert space,
such that σ is finally a correspondence between orthogonal complements in the
Hilbert space. In other words, it is possible an inner product ⟨·, ·⟩ to be defined
on X such that the induced norm ∥| · ∥|, defined by the relation

∥|x∥| = ⟨x, x⟩1/2, x ∈ X

is equivalent with the initial norm ∥ · ∥ and, moreover, for any M ∈ VX ,

Mσ = {y ∈ X : ⟨x, y⟩ = 0 for every x ∈ M}.

The complex case of the above theorem was stated for infinite-dimensional
spaces in [8, p. 729, Theorem 1]. For later use, we state it here.

Theorem 1.2. (Kakutani–Mackey) Let X be an infinite-dimensional complex
Banach space. Suppose there exists an endo-mapping on VX , say σ : VX → VX

with σ(M) = Mσ, that satisfies the conditions (1.1), (1.2), and (1.3) of Theorem
1.1.

Then there is an isomorphism between X and a (not necessarily separated)
complex Hilbert space, such that σ is finally a correspondence between orthogonal
complements in the Hilbert space. Namely, an inner product ⟨·, ·⟩ is defined on X

such that the induced norm ∥|·∥|, defined by the relation ∥|x∥| = ⟨x, x⟩1/2 , x ∈
X, is equivalent with the initial norm ∥ · ∥, and moreover, for any M ∈ VX ,

Mσ = {y ∈ X : ⟨x, y⟩ = 0 for every x ∈ M}.

An application of Theorem 1.2 is given in section 2 (see Theorem 2.1).
The following definition gathers some types of complemented topological vector

spaces, which we deal with in what follows. We also note here that actually Kaku-
tani and Mackey employed topological vector spaces the kind of which alluded in
(ii) of the same definition.

In the rest of the paper, all vector spaces are taken over the field C of complexes.

Definition 1.3. Let X be a topological vector space.
(i) X is called a semi-quasi-complemented space if there is a mapping

σ : VX → VX with σ(M) = Mσ, satisfying the conditions (1.1) and (1.2).
The mapping σ is called a semi-quasi-complementor, and Mσ a semi-quasi-

complement of M .
(ii) X is called a quasi-complemented space if it is a semi-quasi-complemented

space and satisfies the condition (1.3).
The mapping σ is called a quasi-complementor, and Mσ a quasi-complement of

M .
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(iii) X is called a complemented space if it is a semi-quasi-complemented space
and satisfies the condition

if M ∈ VX , then X = M ⊕Mσ.

The mapping σ is called a (vector) complementor on X, and Mσ a (vector)
complement of M .

In what follows, by (X, σ) we shall denote a semi-quasi-complemented space
or a quasi-complemented space or, yet, a complemented (vector) space X with
a semi-quasi (or quasi-)complementor or, yet, a complementor σ. Of course, a
complemented space is quasi-complemented and semi-quasi-complemented.

A terminology comment. - The terms “quasi-complement” and “com-
plement” have been used in the Banach space context, in connection with the
existence of (quasi-)complements of closed subspaces. Here, one concerns about
closed subspaces that are “(quasi-)complemented” by other closed subspaces and
where the presence of a mapping is not in the proscenium, as in our case (see Def-
inition 1.3). Since 1945, when F.J. Murray introduced quasi-complements [12],
the references on the existence-problem of quasi-complements is reach enough.
See, for example, [6] for Banach spaces and [2] for F -spaces (complete metrizable
topological vector spaces).

Example 1.4. Every Hilbert space is (semi-quasi-)complemented in the sense of
Definition 1.3, (iii) (see e.g. [1, p. 201, Theorem 15.1.1 and p. 202, Corollary
15.1.1]). In that case, the vector complementor is defined via orthogonality. Here,
we note that in a Banach space, complementation of every closed subspace yields
the space to be (isomorphically) a Hilbert one (see [10, p. 263, Theorem 1]).

The existence of continuous linear maps, in the context of quasi-complemented
vector spaces, is a very important issue in the theory of topological vector spaces.
In Theorem 3.4, we prove that every Hausdorff quasi-complemented locally con-
vex space has continuous linear maps, under which a certain quasi-complemented
locally convex space turns to be a pre-Hilbert space (see Corollary 3.11). The
following terminology is employed in Proposition 3.3, where there is defined an
appropriate correspondence between the one-dimensional subspaces of a certain
semi-quasi-complemented space and that of its dual. The correspondence, in
question, ensures among others, the existence of semilinear correspondences (Def-
inition 1.6, Lemma 3.5, and Theorem 3.6).

Definition 1.5. The subspaces W1,W2, . . . ,Wk of a vector space X are (linearly)
independent, if the relation a1 + a2 + · · · + ak = 0, where ai ∈ Wi, 1 ≤ i ≤ k,
implies a1 = a2 = · · · = ak = 0.

An extended notion of linearity is that of semilinearity (Definition 1.6) that con-
stitutes a prerequisite in defining the automorphically perfect pairs (Definition
3.8), through which the existence of inner products is succeeded. The problem of
the existence of such a type of mappings is faced in infinite-dimensional spaces
(Lemma 3.5). In the context of Theorem 3.6, we get semilinear transformations
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from a vector space to its dual. Under further properties, the vector space is
equipped with an inner product, that leads to a representation of a certain topo-
logical algebra (see [4]).

Definition 1.6. Let X and Y be vector spaces. A mapping T : X → Y is
named semilinear or a semilinear transformation (with respect to ϕ), if there
exists an automorphism ϕ on C such that T (λx+µy) = ϕ(λ)T (x)+ϕ(µ)T (y) for
any scalars λ, µ and every x, y ∈ X. If, in particular, ϕ(κ) = κ, where κ is the
complex conjugate of κ, then T is named conjugate linear.

In some results, from a family of quasi-complemented spaces (Definition 1.3)
there are defined certain locally convex spaces (see Theorem 3.14 and Proposi-
tion 3.15) in the sense of the following definition. The term involved here was
introduced in [3, p. 27].

Definition 1.7. A pseudo-H-space is a vector space X equipped with a family
(⟨·, ·⟩i)i∈I of positive semi-definite (:pseudo-) inner products, such that the in-
duced topology makes X into a locally convex space. The topology of X is then
defined by a family (pi)i∈I of seminorms, such that pi(x) = (⟨x, x⟩i)1/2 for each
x ∈ X.

For the next example, see [3, p. 27].

Example 1.8. Let I be an arbitrary set of elements. Consider the set CI×I of all
complex-valued functions a on I × I, such that

∑
i,j |a(i, j)|2 ∈ R+. The latter,

endowed with “point-wise” defined operations, becomes a vector space. Take a
family of real numbers (tα)α∈Λ, such that tα ≥ 1. For each α ∈ Λ, the mapping
⟨·, ·⟩α : CI×I × CI×I → C given by

⟨a, b⟩α = tα
∑
i,j

a(i, j)b(i, j)

defines a pseudo-inner product on CI×I , where “−” denotes complex conjugation.
Thus A ≡ (CI×I , (⟨·, ·⟩α)α∈Λ) becomes a pseudo-H-space.

2. Applications of Kakutani–Mackey theorem

An application of Theorem 1.2 is given in the next result, where we apply the
following notation. We denote by τ⟨·,·⟩ or by τ∥·∥ or by τp the topology on a
topological vector space X induced on it by a (quasi-)inner product ⟨·, ·⟩ or a
norm ∥ · ∥ or, yet, a seminorm p, respectively.

Theorem 2.1. Let (Xi, ∥·∥i)i∈I be a family of infinite-dimensional Banach spaces,
and let Vi, i ∈ I, the set of all closed subspaces of Xi. We suppose that each Xi

is a quasi-complemented space with a quasi-complementor σi.
Then on X =

∏
i∈I Xi is defined a family ([·, ·]i)i∈I of pseudo-inner products.

Moreover, the locally convex topology, induced on X, via the pseudo-inner prod-
ucts [·, ·]i, i ∈ I, coincides with the initial one.
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Proof. By Theorem 1.2, on Xi, i ∈ I, an inner product ⟨·, ·⟩i is defined, such that
the induced norm ∥| · ∥|i is equivalent with the initial norm ∥ · ∥i and such that
Mσi = {y ∈ Xi : ⟨x, y⟩i = 0 for every x ∈ M} for any M ∈ Vi. By the above, we
get τ∥|·∥|i = τ∥·∥i , namely, the topologies on Xi, are defined by the norms ∥|·∥|i and
∥·∥i, coincide. Thus the product topology on X, is defined by the family (∥·∥i)i∈I ,
coincides with the product topology on X, is defined by the family (∥| · ∥|i)i∈I .
Namely, the topological vector spaces (X, (∥ · ∥i)i∈I) and (X, (∥| · ∥|i)i∈I) have the
same topology.

Define the mapping

[·, ·]i :
∏
j∈I

Xj ×
∏
j∈I

Xj −→ C with [(xj), (yj)]i = ⟨xi, yi⟩i, i ∈ I.

It is easily seen that the latter is a quasi-inner product on X =
∏

i∈I Xi. Thus
the family ([·, ·]i)i∈I on X gives a family of seminorms (pi)i∈I with

pi((xj)j∈I) = ([(xj)j∈I , (xj)j∈I ]i)
1/2 = (⟨xi, xi⟩i)1/2 = ∥|xi∥|i, i ∈ I. (2.1)

It is known that a basis of the system of the neighborhoods of 0 in the topological
vector space (X, (pi)i∈I) consists of sets of the form

∩n
i=1 Vpi(εi) where

Vpi(εi) = {x = (xj) ∈
∏
j∈I

Xj : pi(x) < εi, εi > 0},

namely, (see also (2.1))

Vpi(εi) = {x = (xj) ∈
∏
j∈I

Xj : ∥|xi∥|i < εi, εi > 0}.

On the other hand, a basis of the system of the neighborhoods of 0 in
X =

∏
i∈I Xi with respect to the product topology, is described as follows. If

Ui = {x ∈ Xi : ∥|x∥|i < ε, ε > 0} is a neighborhood of 0 in Xi, then the set
Vi = pr−1i (Ui) is a neighborhood of 0 in the product space X with respect to the
product topology, say, τΠXi

. Thus the topologies of the vector spaces (X, (pi)i∈I)
and (X, τΠXi

) have the same basis of the system of neighborhoods of 0 and there-
fore they coincide.

□
The following two corollaries are direct consequences of Theorem 2.1.

Corollary 2.2. Let (Xi, ∥·∥i)i∈I be a family of infinite-dimensional complemented
Banach spaces. Then on X =

∏
i∈I Xi a family ([·, ·]i)i∈I of pseudo-inner products

is defined. Moreover, the locally convex topology, induced on X, via the pseudo-
inner products [·, ·]i, i ∈ I, coincides with the initial one.

For the next result, we remind that lim
← i∈I

Xi, as a subspace of the locally convex

space
∏

i∈I Xi, is locally convex too. Here, the relative topology is involved.

Corollary 2.3. Let ((Xi, ∥ · ∥i)i∈I , fij, i, j ∈ I) be a projective system of infinite-
dimensional (quasi-)complemented Banach spaces. Then on X = lim

← i∈I
Xi a

family ([·, ·]i)i∈I of pseudo-inner products is defined. Moreover, the locally convex
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topology, induced on X, via the pseudo-inner products [·, ·]i, i ∈ I, coincides with
the initial one.

3. Existence of continuous linear mappings in quasi-complemented
spaces

Throughout, X ′ stands for the topological dual of a topological vector space
X. Namely X ′ = {f : X → C with f linear and continuous}. Moreover, if S is a
subset of a vector space X, then [S] stands for the subspace of X, generated by
S. We also use the symbol [S]X , in the case, we want to indicate the vector space
X. If, in particular, S = {x}, x ∈ X, we shall use the symbol [x] or, yet, [x]X . We
start with a useful result, concerning the analysis of quasi-complemented vector
spaces via the kernels of continuous linear maps.

Proposition 3.1. Let (X, σ) be a Hausdorff semi-quasi-complemented vector
space. If M is an one-dimensional subspace of X, then Mσ is a maximal closed
subspace of X. If, moreover, (X, σ) is a quasi-complemented vector space, and
there exists f ∈ X ′ with ker f = Mσ, then X = M ⊕Mσ.

Proof. M , as an one-dimensional subspace of the Hausdorff topological vector
space X, is closed. Namely, M ∈ VX . Claim that Mσ is a maximal closed
subspace of X. Indeed, if N ∈ VX with Mσ ⊆ N ⊆ X, then

{0} = Xσ ⊆ Nσ ⊆ Mσσ = M.

Thus, by the one-dimensionality of M , we get either {0} = Nσ or Nσ = M , that
yields either N = X or N = Mσ, assuring the maximality of Mσ.

If M = [x] (with x ̸= 0), then Mσ ̸= [Mσ ∪ {x}] = M ⊕ Mσ, and
by the maximality of Mσ, we get M ⊕Mσ = X. Take z ∈ X; then
z = lim

δ
zδ with zδ = λδx+ yδ, δ ∈ ∆, where yδ ∈ Mσ and λδ ∈ C, for every

δ ∈ ∆. Then f(zδ) = f(λδx+ yδ) = λδf(x). Since x /∈ Mσ, f(x) ̸= 0, and thus
λδ = (1/f(x))f(zδ). By the continuity of f , lim

δ
λδ = f(z)/f(x), z ∈ X. By

putting λ = f(z)/f(x), we get λδx → λx ∈ M . Moreover,

yδ = zδ − λδx −→
δ

z − λx with yδ ∈ Mσ = Mσ.

Thus z − λx ∈ Mσ, and therefore z = λx + (z − λx) ∈ M ⊕Mσ that yields the
assertion.

□
Proposition 3.2. Let (X, σ) be a Hausdorff semi-quasi-complemented vector
space. If M is an one-dimensional subspace of X and there exists f ∈ X ′ with
ker f = Mσ, then the subspace M τ = {f ∈ X ′ : Mσ ⊆ ker f} of X ′ is one-
dimensional.

Proof. By Proposition 3.1, Mσ is a maximal closed subspace of X. To prove
that the subspace M τ is one-dimensional; take f ∈ M τ , and then the subspace
ker f of X is closed, since f is continuous and contains Mσ. The maximality of
Mσ yields either ker f = Mσ or ker f = X. By hypothesis, there exists f ∈ X ′

with ker f = Mσ. But, Mσ ̸= X. Thus ker f ̸= X, and hence f ̸= 0. Namely,
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M τ ̸= {0}, and hence the choice of f above is meaningful. Choose x ∈ X with
f(x) = 1. Consider g ∈ M τ . If g = 0, we have nothing to prove. If g ̸= 0, then
ker f = Mσ = ker g. Since f(x) = 1 and ker f = Mσ, we get that x /∈ Mσ. Thus,

by the maximality of the closed subspaceMσ, we get X = [Mσ ∪ {x}]. Therefore,
for arbitrary z ∈ X, there are nets (yδ)δ∈∆ and (λδ)δ∈∆ with yδ ∈ Mσ and λδ ∈ C,
for each δ ∈ ∆, such that if zδ = yδ + λδx, δ ∈ ∆, then z = lim

δ
zδ. We have

g(zδ) = g(yδ + λδx) = λδg(x). Since g(x) ̸= 0, we get λδ = (1/g(x))g(zδ), and by
the continuity of g, λδ = lim

δ
((1/g(x))g(zδ)) = g(z)/g(x). By putting λ = lim

δ
λδ,

we get g(z) = λg(x). Moreover,

f(z) = lim
δ
f(zδ) = (lim

δ
λδ)f(x) = λf(x) = λ = g(z)/g(x).

Put g(x) = µ. Then g(z) = µf(z), z ∈ X, and g = µf , which completes the
proof.

□
The use of the symbolM τ , in Proposition 3.2, is evident in the next proposition.

Moreover, in the same proposition, (3.1) is, for instance, fulfilled in Banach spaces
(see [8, p. 729, Theorem 1]). According to this condition, the quasi-complements
of one-dimensional subspaces of a semi-quasi-complemented space are realized by
the kernels of continuous linear forms. The same condition is the gist for the
results of Theorems 3.6 and 3.10 that follow.

Proposition 3.3. Let (X, σ) be a Hausdorff semi-quasi-complemented vector
space. Suppose that the following condition holds.

If M is an one− dimensional subspace of X, (3.1)

then there exists f ∈ X ′ with ker f = Mσ.

Consider the correspondence τ from the one-dimensional subspaces of X into
one-dimensional subspaces of X ′ with τ(M) = M τ , whereM is an one-dimensional
subspace of X and M τ = {f ∈ X ′ : Mσ ⊆ ker f} of X ′. Then τ is well defined,
1− 1, and onto. If, in particular, (X, σ) is quasi-complemented, then τ preserves
the linearly independence.

Proof. From Proposition 3.2, τ is well defined. LetM1 andM2 be one-dimensional
subspaces of X, M1

σ and M2
σ be their images through σ, and M1

τ and M2
τ be

the respective one-dimensional subspaces in X ′ (see Proposition 3.2). Suppose
that M1

τ = M2
τ , and take f ∈ M1

τ with f ̸= 0. Then M1
σ ⊆ ker f . Since

f ̸= 0 and the closed subspace M1
σ is maximal (see Proposition 3.1), we get

M1
σ = ker f . Moreover, f ∈ M2

τ , whence M2
σ = ker f and M1

σ = M2
σ. The

latter gives M1 = M2. Therefore τ is 1−1. Concerning the ontoness of τ , take an
one-dimensional subspace N = {λf : 0 ̸= f ∈ X ′, λ ∈ C} of X ′. Put K = ker f ,
which obviously is a proper closed subspace of X. Claim that K is maximal.
Choose x ∈ X with f(x) = 1 and take z ∈ X. Put y = z− f(z)x, then f(y) = 0.
Therefore y ∈ K, and since x /∈ K, we get z ∈ K ⊕ [x]. Therefore X = K ⊕ [x],
assuring the maximality of K. Moreover, the closed subspace M = Kσ of X is
one-dimensional. Indeed, consider a finite-dimensional subspace M1 of X with
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{0} ⊆ M1 ⊆ M . Then K = Mσ ⊆ Mσ
1 ⊆ X. The maximality of K implies either

K = Mσ
1 or Mσ

1 = X. Hence M1 = Kσ = M or M1 = {0}, which means that M
is one-dimensional. Obviously, M τ = N and the correspondence τ is onto.

By [8, p. 729, Theorem 1], τ preserves the linearly independence, in the sense
of Definition 1.5. We present here the proof for two subspaces. Consider two
linearly independent (one-dimensional) subspaces M1 = [x] and M2 = [y] of X,
with x, y ∈ X linearly independent. By the above proof, there are f ̸= 0 and
g ̸= 0 with M τ

1 = [f ] and M τ
2 = [g]. Claim that M τ

1 and M τ
2 are linearly

independent, otherwise, f and g would be linearly dependent elements of X ′.
Hence ker f = ker g, namely, Mσ

1 = Mσ
2 , whence Mσσ

1 = Mσσ
2 and M1 = M2,

which is a contradiction. □
It is true that, if X is a locally convex space, F a closed subspace of X and

x /∈ F , then there is f ∈ X ′ with f(x) = 1 and f(y) = (0) for every y ∈ F (see
e.g. [9, p. 233, §20, 1. (3)]). In the same vein, we get the next, as a realization
of (3.1). Namely, the quasi-complements of one-dimensional subspaces are the
kernels of continuous linear forms.

Theorem 3.4. Every Hausdorff quasi-complemented locally convex space (X, σ)
satisfies the condition (3.1).

Proof. Let M = [x] be an one-dimensional subspace of X. Since M ∩Mσ = {0},
we get that x /∈ Mσ. By the closedness of Mσ and the comment preceding the
statement, there exists f ∈ X ′ with f(x) = 1 and f(y) = 0 for every y ∈ Mσ.
The latter yields to Mσ ⊆ ker f . But, Mσ is a maximal closed subspace of X
(see Proposition 3.1) while, by the continuity of f , the subspace ker f is closed.
Moreover, since f ̸= 0, ker f ̸= X, and therefore Mσ = ker f . □
Lemma 3.5. (Existence) Let X and Y be infinite-dimensional vector spaces, and
let A 7→ A′ an 1− 1 correspondence between the one-dimensional subspaces of X
and Y, respectively, that “respects” the linearly independence. Then there exists
an 1 − 1 semilinear correspondence T : X → Y , such that if Ax = [x]X , then
AT (x) = A′x, where AT (x) = [T (x)]Y and A′x = ([x]X)

′.

Proof. Apply [11, p. 245, Lemma A], adapted in the complex case. See also the
proof of Theorem 1 in [8, p. 729]. □

Note. - In what follows, we make use of the following fact. Let X be a vector
space, and let M = [x], x ̸= 0, be an one-dimensional subspace of X that has a
vector complement N in X, namely, X = M + N . If x /∈ N , then the subspace
N of X is maximal. Indeed, suppose that K is a subspace of X with N ⊆ K.
If x ∈ K, then M + K ⊆ K. But M + N ⊆ M + K, and thus K = X. If
x /∈ K, then for z ∈ K, there are λ ∈ C, y ∈ N with z = λx + y. Since N ⊆ K,
λx = z − y ∈ K, and since x /∈ K, we get λ = 0. Therefore z = y, and hence
z ∈ N . Namely, K ⊆ N , and finally K = N .

The next result generalizes and improves respective assertions in the proof of
[ibid p. 729, Theorem 1].

Theorem 3.6. Let (X, σ) be a Hausdorff quasi-complemented vector space that
satisfies (3.1). Consider the correspondence τ from the one-dimensional subspaces
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of X to those of X ′ with τ(M) = M τ , where M is an one-dimensional subspace
of X and M τ = {f ∈ X ′ : Mσ ⊆ ker f}. Then there exists an 1 − 1 semilinear
correspondence T : X → X ′, such that T (M) = M τ . In that case, T is onto, the
subspace T (Mσ) is a closed maximal subspace of X ′, and the following hold:

T (Mσ) = {f ∈ X ′ : M ⊆ ker f} and X ′ = T (M)⊕ T (Mσ). (3.2)

Moreover,

T (M ⊕Mσ) = T (M)⊕ T (Mσ). (3.3)

Proof. By Proposition 3.3, τ is well defined 1−1 and onto, preserving the linearly
independence. Thus (Lemma 3.5) there is defined an 1− 1 semilinear correspon-
dence, say, T : X → X ′. We prove the “onto” of the semilinear mapping T . Take
g ∈ X ′. If g = 0, then g = T (0). Suppose that g ̸= 0, and let K = ker g be the
closed proper subspace of X, since g ̸= 0. Choose w ∈ X, such that g(w) = 1.
Take arbitrary z ∈ X, and put y = z− g(z)w. Then g(y) = g(z)− g(z)g(w) = 0,
and hence y ∈ K. Therefore z = y + g(z)w ∈ K ⊕ [w], and thus X = K ⊕ [w].
Hence K is a maximal subspace of X (see the note preceding Theorem 3.6). It
is obvious that the subspace Kσ is one-dimensional (see also the proof of Propo-
sition 3.3), so there exists 0 ̸= x ∈ X with Kσ = [x] = Mx. Then, by Lemma
3.5, [T (x)]X′ = τ([x]X) = [x]τX = M τ

x . But, T ([x]X) = T ({λx : λ ∈ C}) =
{ϕ(λ)T (x) : λ ∈ C} = [T (x)]X′ where ϕ is the automorphism on C that corre-
sponds to the semilinear map T . Therefore T (Mx) = M τ

x . Then (see also the
condition (3.1)) g ∈ M τ

x = T (Mx) ⊆ T (X). Therefore X ′ ⊆ T (X) and hence
T (X) = X ′.

In what follows, put M = Mx = [x], x ̸= 0. Take y ∈ Mσ
x with y ̸= 0, and put

T (y) = g ∈ X ′. Since x ̸= 0, T (x) ̸= 0. From

T (x) ∈ T (Mx) = [T (x)]X′ = M τ
x = {f ∈ X ′ : Mσ

x ⊆ ker f}
and since Mσ

x is a maximal closed subspace of X, we get

T (x) ∈ {f ∈ X ′ : Mσ
x = ker f}

, and thus kerT (x) = Mσ
x . Now, from T (x) ∈ M τ

x , we get T (x)(y) = 0. Thus, if
My = [y], then T (x)(My) = 0, and

My ⊆ kerT (x) = Mσ
x or Mx = Mσσ

x ⊆ Mσ
y .

But kerT (x) = Mσ
x is true for all x ̸= 0; so, since y ̸= 0, we also get the relation

kerT (y) = Mσ
y . Thus, by the above reasoning, Mx ⊆ kerT (y) (the last relation

also holds when y = 0). Therefore T (y) ∈ {f ∈ X ′ : Mx ⊆ ker f}. But,
T (y) ∈ T (Mσ

x ) for all y ∈ Mσ
x , so we get T (Mσ

x ) ⊆ {f ∈ X ′ : Mx ⊆ ker f}.
To prove the inverse relation, we consider f ∈ X ′ with f ̸= 0 and Mx ⊆ ker f .

If K = ker f , then K is a maximal closed subspace of X and the subspace Kσ is
one-dimensional (see also the proof of Proposition 3.3). If Kσ = Mz = [z] with
z ̸= 0, then K = ker f = Mσ

z and T (Mz) = M τ
z = [f ]. Without loss of generality,

we consider T (z) = f . Namely, Mx ⊆ ker f = Mσ
z , that yields Mz ⊆ Mσ

x . Hence
z ∈ Mσ

x . Therefore f = T (z) ∈ T (Mσ
x ), proving that

{f ∈ X ′ : Mx ⊆ ker f} ⊆ T (Mσ
x ).
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So, finally

T (Mσ) = T (Mσ
x ) = {f ∈ X ′ : Mx ⊆ ker f}.

The subspace T (Mσ
x ) is closed. Indeed, take a net (gδ)δ∈∆ ⊆ T (Mσ

x ) with lim
δ
gδ =

g, g ∈ X ′. Since Mx ⊆ ker gδ, for every δ ∈ ∆, we get gδ(x) = 0. Thus, we take
in turn g(x) = 0, x ∈ ker g, and Mx ⊆ ker g, that yields g ∈ T (Mσ

x ). We claim
that T (Mσ

x ) is maximal. To this end, consider h ∈ X ′. Since T is onto, there
exists z ∈ X with T (z) = h. Since X = Mx ⊕ Mσ

x (see Proposition 3.1), there
exist λ ∈ C and y ∈ Mσ

x , such that z = λx+ y. Therefore

h = T (z) = T (λx+ y) = T (λx) + T (y) ∈ T (Mx) + T (Mσ
x ).

Moreover, X ′ ⊆ T (Mx) + T (Mσ
x ), and thus X ′ = T (Mx) + T (Mσ

x ). The latter
sum is direct, since if f ∈ T (Mx) ∩ T (Mσ

x ), then Mσ
x ⊆ ker f and Mx ⊆ ker f .

Thus Mx +Mσ
x ⊆ ker f . But X = Mx ⊕Mσ

x , whence X = ker f , namely, f = 0,
and so the aforementioned sum is direct. Namely, X ′ = T (Mx) ⊕ T (Mσ

x ), and
since T (Mx) is one-dimensional, the subspace T (Mσ

x ) is maximal (see the Note,
preceding Theorem 3.6). Besides, the ontoness of T gives X ′ = T (X), and thus
X ′ = T (Mx⊕Mσ

x ), and finally, T (Mx⊕Mσ
x ) = T (Mx)⊕T (Mσ

x ). Here, we remind
that we have employed the symbol M = Mx. □

As a consequence of Theorems 3.4 and 3.6 we get the next.

Corollary 3.7. Let (X, σ) be a Hausdorff quasi-complemented locally convex
space. If τ is a mapping as in Theorem 3.6, then there exists an 1 − 1 semi-
linear correspondence T : X → X ′, such that T (M) = M τ , which is onto, the
subspace T (Mσ) is a closed maximal subspace (of X ′), and the equalities (3.2)
and (3.3) hold true.

For the following notion, we also refer to Lemma 3.5 and Definition 1.6.

Definition 3.8. Let X be an infinite-dimensional topological vector space and
X ′ its dual. Suppose there exists an 1 − 1 correspondence τ between the one-
dimensional subspaces of X and X ′ that respects the linearly independence. If
for any semilinear mapping T : X → X ′ with τ([x]X) = [T (x)]X′ the automor-
phism ϕ, that corresponds to T , is continuous, then the pair (X, τ) is called
automorphically perfect.

The previous definition is realized in the context of Banach vector spaces (see
[8, p. 728, Lemma 2 and p. 729, the proof of Theorem 1]).

Remark 3.9. In the proof of Theorem 3.10 below, by the phrase “adapting the
operator T”, we mean the following. If x ∈ X with x ̸= 0 and Mx = [x], then
M τ

x = {f ∈ X ′ : Mσ
x ⊆ ker f} and for T we have T ([x]) = M τ

x . If T (x) = f and
f(x) = α ∈ C− {0}, we consider the semilinear transformation Tα = 1

α
T , which

has all the properties of T , and further

Tα(x)(x) =
1

α
T (x)(x) =

1

α
f(x) = 1.

This adaptation satisfies the requirement ⟨x, x⟩ ∈ R.
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We state now one of the main results which is a partial generalization of the
Kakutani–Mackey Theorem (see Theorem 1.2) in the context of Banach comple-
mented (in some sense) vector spaces. This result is a key to state an important
result concerning continuous representations of appropriate complemented alge-
bras (see [4]).

Theorem 3.10. Let (X, σ) be a Hausdorff quasi-complemented vector space that
satisfies (3.1). Suppose that the pair (X, τ) is automorphically perfect, where τ
is the correspondence between the one-dimensional subspaces of the spaces X and
X ′, as defined in Proposition 3.3. Then, on X, there is defined an inner product
⟨·, ·⟩; that is, the pair (X, ⟨·, ·⟩) is a pre-Hilbert space. Moreover, σ is, finally,
a correspondence between orthogonal complements, namely, for every closed sub-
space M of X, the following holds.

Mσ = {x ∈ X : ⟨x, y⟩ = 0 for every y ∈ M}. (3.4)

Proof. According to Proposition 3.3, τ is defined between the one-dimensional
subspaces of the spaces X and X ′, respectively. Thus, in view of Lemma 3.5,
there exists a semilinear 1-1 correspondence

T : X → X ′, and such that τ([x]) = [T (x)], x ∈ X.

By the automorphically perfectness of the pair (X, τ), the respective automor-
phism (as in Definition 1.6) is continuous. But, the only continuous automor-
phisms of the field of complexes are the identity and the conjugate (see, e.g., [13,
p. 5]). Thus T is linear or conjugate linear. Claim that the first case is impossi-
ble. Otherwise, if x and y are linearly independent elements in X, T (x) = f , and
T (y) = g, then f and g are linearly independent elements in X ′, as well (see also
Proposition 3.3). For every µ ∈ C, x, y ∈ X, we have T (x+ µy) = f + µg and

(f + µg)(x+ µy) = f(x) + µ(g(x) + f(y)) + µ2g(y).

Since x ̸= 0, if Mx = [x], then T (Mx) = M τ
x and, according to (3.1), f ∈ M τ

x and
ker f = Mσ

x . But, Mx ∩Mσ
x = {0}. So x /∈ Mσ

x , and thus f(x) ̸= 0. In analogy,
we have g(y) ̸= 0, since 0 ̸= y ∈ My = [y] and T (y) = g ∈ M τ

y . Again, in the
same fashion, 0 ̸= x+ µy ∈ Mx+µy and T (x+ µy) = f + µg ∈ M τ

x+µy, that yield
(f + µg)(x+ µy) ̸= 0. Since g(y) ̸= 0, the equation

f(x) + µ(g(x) + f(y)) + µ2g(y) = 0

has, with respect to µ, a solution (in C). Therefore (f + µg)(x+ µy) = 0, which
is a contradiction, and thus T is conjugate linear.

Using the conjugate linearity of T , we define, on X, an inner product as follows:
for any x, y ∈ X, we define

⟨x, y⟩ = f(x), where f = T (y).

It is easily seen that ⟨·, ·⟩ : X ×X → C is well defined, linear in x, and conjugate

linear in y. Claim now that ⟨·, ·⟩ satisfies ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ X. If
⟨x, y⟩ = 0, then ⟨y, x⟩ = 0. Indeed, in case x = 0 or y = 0, we have nothing to
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prove. If x ̸= 0, y ̸= 0, and Mx and My are the one-dimensional subspaces of X
generated by x, y, respectively, we get

⟨x, y⟩ = 0 ⇔ f(x) = 0, f = T (y) ⇔ T (y)(x) = 0 ⇔ x ∈ kerT (y) ⇔ Mx ⊆ Mσ
y ,

whence

My ⊆ Mσ
x ⇔ y ∈ kerT (x) ⇔ T (x)(y) = 0 ⇔ ⟨y, x⟩ = 0.

Now, take x ∈ X with x ̸= 0. We have

Mx = {λx : λ ∈ C} and T (Mx) = M τ
x .

Since Mσ
x is a closed maximal subspace of X (see Proposition 3.1) we have

M τ
x = {f ∈ X ′ : ker f = X or ker f = Mσ

x }.
If ⟨x, x⟩ = 0, then

f(x) = 0, f = T (x) ⇔ T (x)(x) = 0 ⇔ x ∈ kerT (x) ⇔ Mx ⊆ Mσ
x .

Therefore Mx ⊆ Mx ∩Mσ
x = {0}, a contradiction. The previous argumentation

yields ⟨x, x⟩ = 0 if and only if x = 0.
Now let x and y be arbitrary elements in X with ⟨x, y⟩ ̸= 0. Then there exist

λ, µ ∈ C− {0} such that the following hold.

λ⟨x, x⟩+ ⟨x, y⟩ = 0 and (3.5)

µ⟨y, y⟩+ ⟨x, y⟩ = 0. (3.6)

From (3.5) and the fact that ⟨x, y⟩ = 0 if and only if ⟨y, x⟩ = 0, we have

⟨x, λx⟩+ ⟨x, y⟩ = 0 ⇔ ⟨x, λx+ y⟩ = 0 ⇔ ⟨λx+ y, x⟩ = 0 ⇔ λ⟨x, x⟩+ ⟨y, x⟩ = 0.

Therefore

λ⟨x, x⟩+ ⟨y, x⟩ = 0. (3.7)

Similarly, from (3.6), it follows

µ⟨y, y⟩+ ⟨y, x⟩ = 0. (3.8)

By the relations (3.5)-(3.8), we get λ⟨x, x⟩ = µ⟨y, y⟩ and λ⟨x, x⟩ = µ⟨y, y⟩. There-
fore ⟨x, x⟩⧸⟨x, x⟩ = ⟨y, y⟩⧸⟨y, y⟩, which means that, if ⟨z, z⟩ is a real number
for some z ∈ X, then the number ⟨w,w⟩ is real, as well, for every w ∈ X with
⟨z, w⟩ ≠ 0. Take z ̸= 0 with ⟨z, z⟩ ∈ R and ⟨z, w⟩ = 0. Then ⟨w, z⟩ = 0, and thus
T (z)(w) = 0 if and only if w ∈ kerT (z). But, kerT (z) = Mσ

z , and thus w ∈ Mσ
z ,

whence z + w /∈ Mσ
z , otherwise, z ∈ Mσ

z , which is a contradiction, since z ̸= 0.
Hence

T (z)(z + w) ̸= 0 ⇔ ⟨z + w, z⟩ ≠ 0,

and thus ⟨z, z + w⟩ ̸= 0. The latter yields ⟨z + w, z + w⟩ ∈ R. Therefore
⟨z + w, z + w⟩ − ⟨z, z⟩ ∈ R, namely, ⟨w,w⟩ ∈ R. By adapting the operator T ,
in the sense of Remark 3.9, we can choose z ∈ X with z ̸= 0 and T (z)(z) ∈ R,
that means ⟨z, z⟩ ∈ R. Thus we may suppose that ⟨x, x⟩ ∈ R, for every x ∈ X.
We prove that the numbers ⟨x, x⟩ have the same sign for every nonzero element
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x ∈ X. Indeed, suppose there exist nonzero elements x, y ∈ X with ⟨x, x⟩ > 0
and ⟨y, y⟩ < 0. For every real number λ, we have

⟨λx+ y, λx+ y⟩ = λ2⟨x, x⟩+ λ⟨x, y⟩+ λ⟨y, x⟩+ ⟨y, y⟩.

But, by (3.5) and (3.7), we get ⟨x, y⟩ = ⟨y, x⟩, whence it is easy to see that the
trinomial

λ2⟨x, x⟩+ λ(⟨x, y⟩+ ⟨x, y⟩) + ⟨y, y⟩
has (a real) root. Namely, there exists nonzero λ ∈ R with ⟨λx+ y, λx+ y⟩ = 0.
So, as we have mentioned y = −λx. Therefore ⟨y, y⟩ = ⟨−λx,−λx⟩ = λ2⟨x, x⟩,
which obviously, is a contradiction. After the adaptation of T , if ⟨z, z⟩ < 0 then
we choose as T , the operator −T , and thus we have ⟨z, z⟩ > 0, and so ⟨x, x⟩ > 0
for every nonzero x ∈ X, which completes the assertion that ⟨·, ·⟩ is a hermitian
inner product. We finally prove that σ is a correspondence between orthogonal
complements on VX . For M ∈ VX , we have

{x ∈ X : ⟨x, y⟩ = 0 for every y ∈ M}

= {x ∈ X : T (y)(x) = 0 for every y ∈ M}

=
∩
y∈M

{x ∈ X : T (y)(x) = 0} =
∩
y∈M

kerT (y) =
∩
y∈M

Mσ
y .

Claim that
∩

y∈M
Mσ

y = Mσ. Indeed, for y ∈ M we have My ⊆ M , whence

Mσ ⊆
∩

y∈M
Mσ

y . For the inverse inclusion, take x ∈
∩

y∈M
Mσ

y , then Mx ⊆ Mσ
y

for every y ∈ M , and thus My ⊆ Mσ
x for every y ∈ M . Namely, y ∈ Mσ

x for
every y ∈ M or M ⊆ Mσ

x . So, we have Mx ⊆ Mσ and x ∈ Mσ, and, finally,∩
y∈M

Mσ
y ⊆ Mσ. The previous argument shows that

Mσ = {x ∈ X : ⟨x, y⟩ = 0 for every y ∈ M}.
□

As a direct consequence of Theorems 3.4 and 3.10, we get the next.

Corollary 3.11. Let (X, σ) be a Hausdorff quasi-complemented locally convex
space, such that (X, τ) is automorphically perfect, where τ is the correspondence,
as defined in Proposition 3.3. Then an inner product ⟨·, ·⟩ is defined on X; that
is, the pair (X, ⟨·, ·⟩) is a pre-Hilbert space. Moreover, σ is a correspondence
between orthogonal complements, namely, (3.4) holds.

Based on Theorem 3.10 and laying on Remark 3.9, we are in position to define
a family of appropriate semilinear mappings from a quasi-complemented (vec-
tor) space to its dual. The last family is further used to equip the pseudo-
complemented space with a family of inner products, making it a locally convex
one. Namely, we have the next.

Proposition 3.12. Let (X, σ) and (X, τ) be pairs as in Theorem 3.10. Then
a family (⟨·, ·⟩i)i∈I of inner products is defined on X, such that I is the set of
positive real numbers and, for every i ∈ I, the pair (X, ⟨·, ·⟩i) is a pre-Hilbert
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space and σ is a correspondence between orthogonal complements, namely, the
respective (3.4) holds with respect to the inner product ⟨·, ·⟩i.

Moreover, the topological space (X, (∥ · ∥i)i∈I) is locally convex, where ∥·, ·∥i is
the norm on X, induced from the inner product ⟨·, ·⟩i, i ∈ I.

Proof. In view of Remark 3.9, there exists a conjugate semilinear transformation
Tα : X → X ′ and x ∈ X with Tα(x)(x) = 1. For any positive real number i, we
consider the semilinear transformation

Ti : X → X ′ with Ti = iTα.

For i ∈ I, an inner product ⟨·, ·⟩i is defined on X by ⟨x, y⟩i = Ti(y)(x). From
Theorem 3.10, it follows that σ is a correspondence between orthogonal comple-
ments, namely the respective (3.4) holds with respect to the inner product ⟨·, ·⟩i.
Of course, the topological space (X, (∥ · ∥i)i∈I) is locally convex. □

Theorem 3.4 and Proposition 3.12 give the next.

Corollary 3.13. Let (X, σ) be a Hausdorff quasi-complemented space. Consider
the assertions.

(1) (X, σ) is a locally convex space.
(2) (X, σ) satisfies (3.1).

Then (1) implies (2). If moreover, the pair (X, τ) is automorphically perfect,
where τ is the correspondence, as in Proposition 3.3, then (2) implies (1).

Theorem 3.14. Let (Xi, σi)i∈I be a family of Hausdorff quasi-complemented
spaces, each member of which satisfies (3.1). Suppose that the pair (Xi, τi) is au-
tomorphically perfect, where τi is the correspondence between the one-dimensional
subspaces of the spaces Xi and X ′i, i ∈ I, as defined in Proposition 3.3. Then on
X =

∏
i∈IXi, a family ([·, ·]i)i∈I of pseudo-inner products is defined, such that X

is a pseudo-H-space.

Proof. By Theorem 3.10, for each i ∈ I, an inner product, say, ⟨·, ·⟩i, is defined on
Xi, such that σi is turn to be a correspondence between orthogonal complements.
We define the mapping

[·, ·]i :
∏

i∈I
Xi ×

∏
i∈I

Xi → C with [(xj), (yj)]i = ⟨xi, yi⟩i,

which, as it is easily seen, is a pseudo-inner product on X. Thus we have a
family ([·, ·]i)i∈I of pseudo-inner products, that make X a pseudo-H-space (see
Definition 1.7). □

For the notion of a projective system of topological vector spaces, see for example
[5, p. 155].

Proposition 3.15. Let {((Xi, σi), fij)}i∈I be a projective system of Hausdorff
quasi-complemented vector spaces, where each (Xi, σi) satisfies (3.1). Suppose
that the pair (Xi, τi), i ∈ I, is as in Theorem 3.14. Then on X = lim

←i

Xi, a family

([·, ·]i)i∈I of pseudo-inner products is defined, such that X is a pseudo-H-space.

Proof. The proof goes along the same fashion as that of Theorem 3.14. □
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