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The paper focuses on the problem of model selection in linear Gaussian
regression with unknown possibly inhomogeneous noise. For a given fam-
ily of linear estimators {̃θm,m ∈ M}, ordered by their variance, we offer a
new “smallest accepted” approach motivated by Lepski’s device and the mul-
tiple testing idea. The procedure selects the smallest model which satisfies
the acceptance rule based on comparison with all larger models. The method
is completely data-driven and does not use any prior information about the
variance structure of the noise: its parameters are adjusted to the underlying
possibly heterogeneous noise by the so-called “propagation condition” using
a wild bootstrap method. The validity of the bootstrap calibration is proved
for finite samples with an explicit error bound. We provide a comprehensive
theoretical study of the method, describe in details the set of possible values
of the selected model m̂ ∈ M and establish some oracle error bounds for the
corresponding estimator θ̂ = θ̃ m̂.

1. Introduction. Model selection is one of the key topics in mathematical
statistics. A choice between models of differing complexity can often be viewed
as a trade-off between overfitting the data by choosing a model which has too
many degrees of freedom and smoothing out the underlying structure in the data
by choosing a model which has too few degrees of freedom. This trade-off which
shows up in most methods as the classical bias-variance trade-off is at the heart
of every model selection method (as, e.g., in unbiased risk estimation, Kneip
(1994) or in penalized model selection, Barron, Birgé and Massart (1999), Massart
(2007)). This is also the case in Lepski’s method, Lepskiı̆ (1990, 1991, 1992),
Lepski and Spokoiny (1997), Lepski, Mammen and Spokoiny (1997), Birgé (2001)
and risk hull minimization, Cavalier and Golubev (2006). Many of these methods
allow their strongest theoretical results only for highly idealized situations (e.g.,
sequence space models), are very specific to the type of problem under consid-
eration (for instance, signal or functional estimation), require to know the noise
behavior (like homogeneity) and the exact noise level. Moreover, they typically
involve an unwieldy number of calibration constants whose choice is crucial to the
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applicability of the method and is not addressed by the theoretical considerations.
For instance, any Lepski-type method requires to fix a numerical constant in the
definition of the threshold, the theoretical results only apply if this constant is suf-
ficiently large while the numerical results benefit from the choice of a rather small
constant. Spokoiny and Vial (2009) offered a propagation approach to the calibra-
tion of Lepski’s method in the case of the estimation of a one-dimensional quantity
of interest. However, the proposal still requires the exact knowledge of the noise
level and only applies to linear functional estimation. A similar approach has been
applied to local constant density estimation with sup-norm risk in Gach, Nickl and
Spokoiny (2013) and to local quantile estimation in Spokoiny, Wang and Härdle
(2013).

In the case of unknown but homogeneous noise, generalized cross validation
can be used instead of the unbiased risk estimation method. One can also apply
one or another resampling method. Arlot (2009) suggested the use of resampling
methods for the choice of an optimal penalization, following the framework of
penalized model selection, Barron, Birgé and Massart (1999), Birgé and Massart
(2007). The validity of a bootstrapping procedure for Lepski’s method has also
been studied in Chernozhukov, Chetverikov and Kato (2014) with new innovative
technical tools with applications to honest adaptive confidence bands.

An alternative approach to adaptive estimation is based on aggregation of dif-
ferent estimates; see Goldenshluger (2009) and Dalalyan and Salmon (2012) for
an overview of the existing results. However, the proposed aggregation procedures
either require two independent copies of the data or involve a data splitting for
estimating the noise variance. Each of these requirements is very restrictive for
practical applications.

Another point to mention is that the majority of the obtained results on adaptive
estimation focus on the quality of estimating the unknown response, that is, the loss
is measured by the difference between the true response and its estimate. At the
same time, inference questions like confidence estimation would require to know
some additional information about the right model parameter. Only few results
address the issue of estimating the oracle model. Moreover, there are some negative
results showing that a construction of adaptive honest confidence sets is impossible
without special conditions like self-similarity; see, for example, Giné and Nickl
(2010).

This paper aims at developing a unified approach to the problem of ordered
model selection with the focus on the quality of model selection rather than on
accuracy of adaptive estimation. Our setup focuses on linear Gaussian regression
and it equally applies to estimation of the whole parameter vectors, a subvector
or linear mapping, as well as estimation of a linear functional. The proposed pro-
cedure and the theoretical study are also unified and do not distinguish between
models and problems. The procedure does not use any prior information about the
variance structure of the noise, the method automatically adjusts the parameters
to the underlying possibly heterogeneous noise. The resampling technique allows
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to achieve the same quality of estimation as if the noise structure were precisely
known.

Consider a linear model Y = Ψ �θ∗ + ε in Rn for an unknown parameter vector
θ∗ ∈ Rp and a given p × n design matrix Ψ . Suppose a family of linear smoothers
θ̃m = SmY , m ∈ M, to be fixed, where M is a set indexing the models considered
and Sm is for each m ∈ M a given p × n matrix. We also assume that this family
is ordered by the complexity of the method. The task is to develop a data-based
model selector m̂ which performs nearly as good as the optimal choice, which de-
pends on the model and is not available. The proposed procedure called the “small-
est accepted” (SmA) rule can be viewed as a calibrated Lepski-type method. The
idea how the parameters of the method can be tuned, originates from Spokoiny and
Vial (2009) and is related to a multiple testing problem. The whole procedure is
based on a family of pairwise tests; each model is tested against all larger ones. Fi-
nally, the smallest accepted model is selected. The critical values for this multiple
testing procedure are fixed using the so-called propagation condition. Unfortu-
nately, the proposed approach requires the distribution of the errors ε = Y − EY
to be precisely known which is unrealistic in practical applications. Section 2.6
explains how the proposed procedure can be tuned in the case of Gaussian noise
with unknown variance structure using a bootstrap method.

The paper presents a rigorous theoretical study of the proposed procedure for
two cases. The first one corresponds to an idealistic situation that the noise distribu-
tion is precisely known; see Section 3.1. In particular, Theorem 3.1 presents finite
sample results on the behavior of the proposed selector m̂ and the corresponding
estimator θ̂ = θ̃ m̂. It also describes a concentration set for the selected index m̂ and
states a probabilistic oracle bound for the resulting estimator θ̂ = θ̃ m̂. Usual rate
results can be easily derived from these statements. Further results address the im-
portant quantity zm∗ called “the payment for adaptation” which can be defined as
the gap between oracle and adaptive bounds. Theorem 3.3 gives a general descrip-
tion of this quantity. Then we specify the results to important special cases like
projection estimation and estimation of a linear functional. It appears, that in some
cases the obtained results yield sharp asymptotic bounds. In some other cases,
they lead to the usual log-price for data-driven model selection; Lepskiı̆ (1992).
An extension of the obtained probabilistic bounds to the case of a polynomial loss
function is given in Section B of the Supplementary Material (Spokoiny and Will-
rich (2018)). The results are also specified to the particular problems of projection
and linear functional estimation.

All the obtained results will be extended to regression models with unknown
heterogeneous Gaussian noise (Section 3.6). Our main results about model selec-
tion in Gaussian regression with unknown heterogeneous noise are based on The-
orem 3.6 which provides a kind of “bootstrap validity” statement: the bootstrap
distribution mimics the unknown error variance with explicit error terms which
can be controlled under usual regularity assumptions. This allows to extend the re-
sults obtained for the case of a known error distribution to the bootstrap calibrated
procedure.
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The paper is structured as follows. Section 2.1 explains our setup of ordered
model selection, then Section 2.3 and Section 2.4 link the proposed approach to
the multiple testing problem. The formal definition of the procedure is given in
Section 2.5 for known noise and in Section 2.6 for the case of Gaussian errors with
unknown variance. Section 3 states the main results, Section 4 illustrates the per-
formance of the methods by numerical examples, while the proofs are gathered in
the Appendix. The proofs of some technical results as well as some useful bounds
for Gaussian quadratic forms and sums of random matrices are collected in the
Supplementary Material (Spokoiny and Willrich (2018)).

2. SmA procedure. This section presents the proposed model selector. First,
we specify our setup.

2.1. Model and problem. Consider the following linear regression model:

Yi = Ψ �
i θ∗ + εi, Eεi = 0, i = 1, . . . , n,

with given design Ψ1, . . . ,Ψn in Rp . Below we assume a deterministic design;
otherwise, one can understand the results conditioned on the design. Further, θ∗
is an unknown vector in Rp , and ε1, . . . , εn are individual zero mean errors with
finite variance. Our main results are stated under the assumption that individual

errors εi
def= Yi − EYi are independent normal and possibly heterogeneous, Eε2

i =
σ 2

i . However, Section 2.5 also discusses the case of an arbitrary but known error
distribution.

The dimension p can be large, even p = ∞ can be incorporated. For notational
simplicity, we proceed with p finite. The proposed approach can also be extended
to the case when the linear parametric assumption EY = Ψ �θ∗ is not precisely ful-
filled. Then, as usual, the target of estimation θ∗ can be defined as the vector of co-

efficients for the best approximation of the true response f
def= EY = (f1, . . . , fn)

�
by linear combinations of the feature vectors ψi which are the rows of the ma-
trix Ψ . For the ease of notation, below we assume the linear parametric structure
fi = Ψ �

i θ∗. We write the underlying model in the vector form

(2.1) Y = f + ε = Ψ �θ∗ + ε.

Let {̃θm,m ∈ M} be a finite family of linear estimators θ̃m = SmY of θ∗. Typical
examples include projection estimation on a m-dimensional subspace or penalized
estimators with a quadratic penalty function indexed by regularization parameter
m, etc. To include specific problems like subvector/functional estimation, we also
introduce a weighting q × p-matrix W for some fixed q ≥ 1 and define quadratic
loss and risk with this weighting matrix W :

�m
def= ∥∥W (̃

θm − θ∗)∥∥2
, Rm

def= E
∥∥W (̃

θm − θ∗)∥∥2
.
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Alternatively, one can say that

φ̃m
def= W θ̃m = W θ̃m = WSmY = KmY

with Km = WSm is an estimator of the target φ∗ = Wθ∗ and �m = ‖φ̃m − φ∗‖2.
Typical examples of W are as follows.

Estimation of the whole vector θ∗. Let W be the identity matrix W = Ip with
q = p. This means that the estimation loss is measured by the usual squared Eu-
clidean distance ‖θ̃m − θ∗‖2.

Prediction. Let W be the square root of the p × p matrix F = Ψ Ψ �, that is,
W 2 = F. The loss ‖W(θ − θ∗)‖ = ‖Ψ (θ − θ∗)‖ is usually referred to as prediction
loss because it measures the prediction ability of the true model by the model with
the parameter θ .

Semiparametric estimation. Suppose that the target of estimation is not the
whole vector θ∗ but some subvector θ∗

0 of dimension q . The matrix W can be de-
fined as the projector Π0 on the θ∗

0 subspace. The estimate Π0θ̃m is called the pro-
file maximum likelihood estimate. The corresponding loss is equal to the squared
Euclidean distance in this subspace:

�m = ∥∥Π0
(̃
θm − θ∗)∥∥2

.

Alternatively, one can select W 2 as the efficient information matrix defined by
relation W 2 = (Π0F

−1Π�
0 )−, where A− means a pseudo-inverse of A.

Linear functional estimation. The choice of the weighting matrix W of rank
one can be adjusted to address the problem of estimating some functionals of the
whole parameter θ∗, for instance, the first coefficient θ∗

1 or the sum of the θ∗
j ’s.

In all cases, the most important feature of the estimators φ̃m = KmY is linearity.
It greatly simplifies the study of their properties including the prominent bias-
variance decomposition of the risk of φ̃m. Namely, for the model (2.1) with Eε = 0
and f = EY , it holds

Eφ̃m = φ∗
m

def= Kmf ,

Rm = ∥∥φ∗
m − φ∗∥∥2 + tr

{
Km Var(ε)K�

m

} = ‖bm‖2 + pm,

(2.2)

where ‖bm‖2 def= ‖φ∗
m − φ∗‖2 is the squared bias term and pm

def= tr Var(φ̃m) is the
variance term. This is the usual “bias-variance” decomposition of the squared risk
Rm. The optimal choice of m is often defined by risk minimization:

(2.3) mopt
def= argmin

m∈M
Rm = argmin

m∈M
(‖bm‖2 + pm

)
.
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Alternatively, one can define the best choice m∗ via the “bias-variance trade-off;”
see the definition below in (2.9). The model selection problem can be described as
a data-based choice m̂ which leads to essentially the same quality of the adaptive
estimator θ̃ m̂ as for the optimal choice m∗.

2.2. Ordered case. Below we discuss the ordered case. For simplicity of pre-
sentation, we assume that M is a finite set of positive numbers, although the ap-
proach can be extended to situations with a countable and/or continuous and even
unbounded set M using a discretization. Let |M| stand for the cardinality of M.
Typical examples of the parameter m are given by a chosen dimension (number
of basis vectors) in projection estimation or by the bandwidth in kernel smooth-
ing. In general, complexity can be naturally expressed via the variance of the
stochastic term of the estimator φ̃m: the larger m, the larger is the variance term
pm = tr{Var(φ̃m)}. In the case of projection estimation and a homogeneous noise
Var(ε) = σ 2In, this variance term is linear in m: pm = σ 2m; see Section 3.3 for
details. In general, dependence of the variance term on m is more complicated but
monotonicity of pm in m should be preserved. The related condition can be written
as

(2.4) tr
(
Km Var(ε)K�

m

)
< tr

(
Km′ Var(ε)K�

m′
)
, m′ > m.

Monotonicity assumption yields, in particular, that the total number |M| of con-
sidered models m ∈ M is not large. Usually it is bounded by na for some a < 1,
and the use of a geometric scaling allows to reduce |M| to C logn; see, for ex-
ample, Lepskiı̆ (1990), Lepski, Mammen and Spokoiny (1997). This is in striking
difference with the case of unordered or partially ordered model selection problem
when the number of models can be huge and the value log |M| can be compara-
ble with the sample size; see, for example, Birgé and Massart (2007). Further, it
is implicitly assumed that the bias term ‖bm‖2 = ‖φ∗

m − φ∗‖2 becomes smaller
as m increases. The smallest index m0 ∈ M corresponds to the simplest (zero)
model, usually with a large bias, while a large m ensures a good approximation
quality φ∗

m ≈ φ∗ and a small bias at cost of a big complexity measured by the vari-
ance term. In the case of projection estimation, the bias term in (2.2) describes the
accuracy of approximating the response f by an m-dimensional linear subspace
and this approximation improves as m grows. However, in general, in contrast to
the case of projection estimation, one cannot require that the squared bias ‖bm‖2

monotonously decreases with m. An example is given below.

EXAMPLE 2.1. Suppose that a signal θ∗ is observed with noise: Yi = θ∗
i + εi .

Consider the set of projection estimates θ̃m on the first m coordinates and the target

is φ∗ def= Wθ∗ = ∑
j θ∗

j . If θ∗ is composed of alternating blocks of 1’s and −1’s
with equal length, then the bias |φ∗ − φ∗

m| for φ∗
m = ∑

j≤m θ∗
j is not monotonous

in m.
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2.3. Smallest accepted (SmA) method in ordered model selection. This section
presents the basics of the SmA procedure, in particular, relations to the multiple
testing problem.

Suppose we are given an ordered set of linear estimators φ̃m of the q-
dimensional target of estimation φ∗ = Wθ∗, that is, φ̃m = WSmY = KmY with
q × n matrices Km = WSm for m ∈ M, and (2.4) holds. Below we present a gen-
eral approach to model selection problems based on multiple testing. In the prob-
lem of choosing m, we face a usual dilemma: an increase of complexity of the
method m yields an increase of the variance term but probably improves the ap-
proximation quality measured by the bias term ‖bm‖2. Thus, we aim at picking up
a possibly small index m◦ ∈ M for which a further increase of the index m over
m◦ only increases the complexity of the method without real gain in the quality of
approximation. The latter fact can be interpreted in term of pairwise comparison:
whatever m ∈ M with m > m◦ we take, there is no significant bias reduction in
using a larger model m instead of m◦. Introduce for each pair m > m◦ from M a
hypothesis Hm,m◦ of “no significant difference between the models m◦ and m;” see
the next section for a precise formulation. Let τm,m◦ be the corresponding test. The
model m◦ is accepted if τm,m◦ = 0 for all m > m◦. This can be viewed a multiple
test of the set of hypotheses Hm◦ = {Hm,m◦,m > m◦}. Finally, the selected model
is the “smallest accepted”:

m̂
def= argmin

{
m◦ ∈ M : τm,m◦ = 0,∀m > m◦}.

Usually the test τm,m◦ can be written in the form

(2.5) τm,m◦ = 1{Tm,m◦ > zm,m◦}
for some test statistics Tm,m◦ and for critical values zm,m◦ . The information-
based criteria like AIC or BIC use the likelihood ratio test statistics Tm,m◦ =
σ−2‖Ψ �(̃θm − θ̃m◦)‖2. A great advantage of such tests is that the test statistic
Tm,m◦ is pivotal (χ2 with m − m◦ degrees of freedom) under the null hypothe-
sis Eθ̃m = Eθ̃m◦ and homogeneous Gaussian noise with known variance σ 2, this
makes it simple to compute the corresponding critical values. However, under more
general assumptions on the noise distribution, and it is more convenient to apply
another choice corresponding to Lepski-type procedure and based on the norm of
differences φ̃m − φ̃m◦ :

Tm,m◦ = ‖φ̃m − φ̃m◦‖ = ‖KmY −Km◦Y‖ = ‖Km,m◦Y‖,
where Km,m◦ def= Km −Km◦ . The main issue for such a method is a proper choice
of the critical values zm,m◦ in (2.5). One can say that the procedure is specified
by a way of selecting these critical values. Below we fix these values by imposing
a so-called propagation property: a “good” model m◦ for which all Hm,m◦ with
m > m◦ are true, has to be accepted with a high probability. This rule can be seen
as an analogue of the family-wise error rate condition in a multiple testing problem.
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2.4. A “good” model. This section aims at formalizing the above mentioned
relations between model selection and multiple testing. We use below for each pair
m > m◦ from M the decomposition of the test statistic Tm,m◦:

Tm,m◦ = ‖φ̃m − φ̃m◦‖ = ‖Km,m◦Y‖
= ∥∥Km,m◦(f + ε)

∥∥ = ‖bm,m◦ + ξm,m◦‖,(2.6)

with Km,m◦ = Km −Km◦ , where bm,m◦ def= Km,m◦f ∈ Rq is the deterministic bias

vector, while ξm,m◦
def= Km,m◦ε ∈ Rq is the stochastic component. It obviously

holds Eξm,m◦ = 0. Introduce the q × q-matrix Vm,m◦ as the variance of φ̃m −
φ̃m◦ = Km,m◦Y :

Vm,m◦ def= Var(φ̃m − φ̃m◦) = Var(Km,m◦Y ) = Km,m◦ Var(ε)K�
m,m◦ .

If the noise ε is homogeneous with Var(ε) = σ 2In, it holds

Vm,m◦ = σ 2Km,m◦K�
m,m◦ .

Further,

ET2
m,m◦ = ‖bm,m◦‖2 +E‖ξm,m◦‖2 = ‖bm,m◦‖2 + pm,m◦,

pm,m◦ def= E‖ξm,m◦‖2 = tr(Vm,m◦).
(2.7)

For a fixed m◦ ∈M, let

M+(
m◦) def= {

m ∈ M : m > m◦}.
A “good” choice m◦ can be defined by the condition that, for each m ∈ M+(m◦),
the bias term ‖bm,m◦‖2 is not significantly larger than the variance term pm,m◦ .
This condition can be quantified in the following “bias-variance trade-off” relation:

Hm,m◦ : ‖bm,m◦‖2 ≤ β2pm,m◦,

with a given parameter β . This can be viewed as a null hypothesis of “no significant
difference” between models with parameters m◦ and m. For each candidate model
m◦, define a set of hypotheses

(2.8) Hm◦ = {
Hm,m◦ : ‖bm,m◦‖2 ≤ β2pm,m◦,m ∈ M+(

m◦)}.
A “good” model m◦ is one with all hypotheses in this set Hm◦ fulfilled. Below this
set of hypotheses will be considered for each m◦ separately. Now define the oracle
m∗ as the minimal m◦ under (2.8):

(2.9) m∗ def= min
{
m◦ : max

m∈M+(m◦)

{‖bm,m◦‖2 − β2pm,m◦
} ≤ 0

}
.

Clearly, the notion of a “good” model depends on the value β , in particular,
m∗ = m∗(β). Also m∗ does not coincide with the risk minimizer mopt from (2.3).
However, both definitions exhibit bias-variance trade-off in (2.7).
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2.5. Calibration of the SmA procedure for the known noise distribution. This
section explains the choice of the critical values zm,m◦ for the idealistic case when
the noise distribution is precisely known. This greatly helps to explain the essence
of the approach. Section 2.6 presents a data-driven procedure for the unknown
noise variance using a resampling technique.

For a fixed m◦, the related set of critical values zm,m◦ should be fixed to ensure
a prescribed family-wise error rate (FWER) e−x of the family of tests 1(Tm,m◦ >

zm,m◦) for m ∈ M with m > m◦. In the terminology of Romano and Wolf (2005),
this is a weak FWER control.

Let us start with β = 0 corresponding to the set Hm◦ of hypotheses Hm,m◦ :
bm,m◦ = 0 for all m > m◦. In this situation, the test statistic Tm,m◦ coincides under
Hm,m◦ with the norm of the stochastic term ξm,m◦ whose distribution is precisely
known under given noise. For instance, if errors ε are Gaussian, then the stochastic
component ξm,m◦ is a normal zero mean vector with the covariance matrix Vm,m◦ .
Introduce for each pair m > m◦ from M a tail function zm,m◦(t) of the argument t

such that

(2.10) P
(‖ξm,m◦‖ > zm,m◦(t)

) = e−t .

Here, we assume that the distribution of ‖ξm,m◦‖ is continuous and the value
zm,m◦(t) is well defined. Otherwise, one has to define zm,m◦(t) as the smallest
value for which the deviation probability is smaller than e−t . For multiple testing,
we need a uniform in m > m◦ version of the probability bound (2.10). To guaran-
tee the prescribed FWER for the set of hypotheses Hm◦ , introduce, given x, the
multiplicity correction qm◦ = qm◦(x):

(2.11) P

( ⋃
m∈M+(m◦)

{‖ξm,m◦‖ ≥ zm,m◦(x+ qm◦)
}) ≤ e−x.

A simple way of fixing the value qm◦ is based on the Bonferroni bound: qm◦ =
log(|M+(m◦)|); cf. Spokoiny (1996) in context of adaptive testing. However, it
is well known that the Bonferroni correction is very conservative and results in
a large qm◦ ; see, for example, Baraud, Huet and Laurent (2003). This is espe-
cially striking if the random vectors ξm,m◦ are strongly correlated, which is exactly
the case under consideration. As the joint distribution of the ξm,m◦ ’s is precisely
known, one can define the correction qm◦ just as the smallest value ensuring (2.11);
cf. (5) in Baraud, Huet and Laurent (2003). This choice zm,m◦(x+qm◦) of the crit-
ical values yields automatically the weak FWER bound for the set of hypotheses
Hm◦ = {Hm,m◦,m > m◦} with β = 0. Moreover, the FWER control would fail for
any other uniformly smaller set of critical values.

In the case of β positive, we define the critical values zm,m◦ = zm,m◦(x) by one
more correction for the bias term ‖bm,m◦‖:

(2.12) zm,m◦ def= zm,m◦(x+ qm◦) + β
√
pm,m◦
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for pm,m◦ = tr(Vm,m◦). The bound (2.11) automatically ensures the desired propa-
gation property: any good model m◦ in the sense (2.8) will be rejected with prob-
ability at most e−x in the following sense:

P
(
m◦ is rejected

) def= P

( ⋃
m∈M+(m◦)

{‖Tm,m◦‖ ≥ zm,m◦(x)
})

≤ P

( ⋃
m∈M+(m◦)

{‖ξm,m◦‖ ≥ zm,m◦(x+ qm◦)
}) ≤ e−x.

(2.13)

The last inequality follows from (2.6). One can say this is a built-in property of
the procedure. By definition, the oracle m∗ is also the smallest “good” choice, this
yields due to (2.13)

(2.14) P
(
m∗ is rejected

) ≤ e−x.

Definition (2.12) still involves two numerical constants x and β . It is quite
common in the model selection literature to define the optimal choice of tuning
parameters by minimization of the risk of the resulting procedure. Unfortunately,
it does not apply in our setup which is based on multiple testing. Note however,
that these values are not tuning parameters of the method, they rather serve to fix
some expected features of the method. The value x defines the nominal FWER
e−x. Similar to the testing problem, there is no unique choice for x, a usual choice
of x in the range between 2 and 3 can be recommended. The value β controls the
amount of admissible bias in the definition of a good model; cf. (2.8) and (2.9).
The natural choice for β is β = 1 which balances the bias and variance terms in
(2.8). Note, however, that the procedure and the theoretical results hold for any
combination of these parameters. We only require that the value β is the same in
the definition of a good model and in formula (2.12) for the critical values zm,m◦ .
Our default choice is x= 2, β = 1. An intensive numerical study indicates a very
minor change in the estimation results for moderate deviations of these parameters
around the mentioned default choice.

Define the selector m̂ by the “smallest accepted” (SmA) rule. Namely, with
zm,m◦ from (2.12), the acceptance rule reads as follows:

(2.15)
{
m◦ is accepted

} =
{

max
m∈M+(m◦)

{Tm,m◦ − zm,m◦} ≤ 0
}
.

The SmA choice is defined by the “smallest accepted” rule:

(2.16) m̂
def= min

{
m◦ : max

m∈M+(m◦)
{Tm,m◦ − zm,m◦} ≤ 0

}
.

Our study mainly focuses on the behavior of the selector m̂. The performance of
the resulting estimator φ̂ = φ̃m̂ is a kind of corollary from the statements about m̂.
The desired solution would be m̂ ≡ m∗, then the adaptive estimator φ̂ coincides
with the oracle estimator φ̃m∗ .
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REMARK 2.1. The SmA procedure originates from Lepskiı̆ (1990). However,
Lepski’s acceptance rule for a candidate m◦ is a bit stronger: it requires that each
larger model m > m◦ is accepted as well, that is, all hypotheses Hm′,m for m′ >

m ≥ m◦ are accepted. This allows to efficiently implement the procedure as a top-
down algorithm: start from the largest model index m and check acceptance by the
criterion (2.15) until rejection. Our acceptance rule is similar to Birgé (2001) and
it can be implemented as a bottom-up algorithm: start from the smallest model and
check each new candidate m◦ by rule (2.15) until the first acceptance. Note that
the way of computing the critical values by multiplicity arguments can be used for
the original Lepski’s rule as well. It however requires an additional correction due
to the more strict acceptance rule. More precisely, define for each t and each m◦
the correction qm◦(t) similar to (2.11):

P

( ⋃
m∈M+(m◦)

{‖ξm,m◦‖ ≥ zm,m◦
(
t + qm◦(t)

)}) ≤ e−t .

Further, given x, define an additional correction q+ = q+(x) by

(2.17) P

( ⋃
m◦∈M

⋃
m∈M+(m◦)

{‖ξm,m◦‖ ≥ zm◦,m
(
x+ qm◦(x) + q+)}) ≤ e−x.

Finally define the critical values zLm,m◦ = zLm,m◦(x) in the form

zLm,m◦ = zm,m◦
(
x+ qm◦(x) + q+) + β

√
pm,m◦ .

Again, this construction allows to build a set of critical values which guarantees the
propagation property for Lepski’s procedure. The correction (2.17) can be viewed
as a special case of a classical proposal for simultaneous structured testing; see,
for example, Marcus, Peritz and Gabriel (1976) or Romano and Wolf (2005) and
of a sequential rejection principle from Goeman and Solari (2010).

2.6. Bootstrap tuning. This section explains how the proposed SmA proce-
dure can be applied in the case of Gaussian heterogeneous noise with unknown
covariance matrix Σ = Var(ε) = diag(σ 2

1 , . . . , σ 2
n ). Let the observed data Y fol-

low the model Y = Ψ �θ∗ + ε with ε ∼ N (0,Σ). Assume to be given an ordered
family of linear estimators φ̃m =KmY = WSmY of the target φ∗ = Wθ∗, m ∈M.
For each pair m > m◦ from M, we consider the test statistic Tm,m◦ and its decom-
position from (2.6):

Tm,m◦ = ‖φ̃m − φ̃m◦‖ = ‖bm,m◦ + ξm,m◦‖.
Calibration of the SmA model selection procedure requires to know the joint distri-
bution of all corresponding stochastic terms ‖ξm,m◦‖ for m > m◦ which is uniquely
determined by the noise covariance matrix Σ . In the case when this matrix is un-
known, we are going to use a bootstrap procedure to approximate this distribution.
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It allows to mimics the unknown heterogeneous noise, however, the bootstrap va-
lidity result requires that the parameter dimension of the largest considered model
is not too big; see Section 3.7 for details. The proposed procedure relates to the
concept of the wild bootstrap, Wu (1986), Beran (1986) or Härdle and Mammen
(1993). In the framework of a regression problem, it suggests to model the un-
known heteroscedastic noise using randomly weighted residuals from pilot esti-
mation. We apply normal weights; for other weighting schemes see, for example,
Mammen (1993).

Suppose we are given a pilot estimator (presmoothing) f̃ of the response vector
f = EY ∈ Rn. Define the residuals:

Y̆
def= Y − f̃ .

About this pilot it is supposed that the related bias is negligible and the variance
of Y̆ is close to Σ . This presmoothing assumes some minimal regularity of the re-
sponse f (usually expressed via minimal smoothness of the underlying regression
function), and this condition seems to be unavoidable if no information about the
noise is given: otherwise one cannot distinguish between signal and noise. Below
we suppose that f̃ is a linear predictor, f̃ = ΠY , where Π is a sub-projector in the
space Rn. For example, one can take Π = Πm† , where Πm = Ψ �

m (ΨmΨ �
m )−Ψm,

Ψm is the rank m feature matrix corresponding to the first m features, and m† ∈ M

corresponds to a model with a possibly small bias, for example, the largest model
M in our collection M. The wild bootstrap proposes to resample from the het-
eroscedastic Gaussian noise with the covariance matrix

Σ̆ = diag(Y̆ · Y̆ ) = diag
(
Y̆ 2

1 , . . . , Y̆ 2
n

)
,

where Y̆ · Y̆ denotes the coordinate-wise product of the vector Y̆ with itself and
diag(Y̆ · Y̆ ) denotes the diagonal matrix with entries Y̆ 2

i . These entries depend on Y

and thus are random. Therefore, the bootstrap distribution is a random measure on
Rn and the aim of our study is to show that this random measure mimics well the
underlying data distribution for typical realizations of Y . Clearly, Σ̆ = diag(Y̆ · Y̆ )

is a very poor estimator of Σ . However, under realistic conditions on the pilot f̃

and on the model, it allows to obtain essentially the same results as in the case of
known Σ .

Let w � denote the n-vector of bootstrap standard Gaussian weights, w � ∼
N (0, In). Clearly, the product ε � = diag(Y̆ )w � is conditionally on Y normal zero
mean:

ε � = diag(Y̆ )w �
∣∣
Y ∼ P� def= N (0, Σ̆).

The bootstrap analogue of ξm,m◦ = Km,m◦ε reads

(2.18) ξ
�
m,m◦ = Km,m◦ε � = Km,m◦ diag(Y̆ )w �.
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The idea is to calibrate the SmA procedure under the bootstrap measure P� using
‖ξ �

m,m◦‖ in place of ‖ξm,m◦‖. The bootstrap quantiles z
�
m,m◦(t) are given by the

analogue of (2.10):

(2.19) P�(∥∥ξ �
m,m◦

∥∥ ≥ z
�
m,m◦(t)

) = e−t .

The use of a continuous distribution for the bootstrap weights w
�
i allows us to

uniquely define the values z
�
m,m◦(t). If a discrete distribution of the weights is used,

then, as usual, z
�
m,m◦(t) is the minimal value for which the probability in the left

hand-side of (2.19) does not exceed e−t . The multiplicity correction q
�
m◦ = q

�
m◦(x)

is specified by the condition

(2.20) P�

( ⋃
m∈M+(m◦)

{∥∥ξ �
m,m◦

∥∥ ≥ z
�
m,m◦

(
x+ q

�
m◦

)}) = e−x.

Finally, the bootstrap critical values are fixed by the analogue of (2.12):

(2.21) z
�
m,m◦

def= z
�
m,m◦

(
x+ q

�
m◦

) + β �
√
p�

m,m◦,

where β � is a given positive constant and p�
m,m◦ = E�‖ξ �

m,m◦‖2 is the conditional

expectation of ‖ξ �
m,m◦‖2 w.r.t. the bootstrap measure:

p�
m,m◦

def= tr
{
K�

m,m◦ diag(Y̆ · Y̆ )Km,m◦
}
.

Now we apply the SmA procedure (2.16) with the data-driven critical values z�
m,m◦

from (2.21).

3. Theoretical properties. This section contains the main theoretical proper-
ties of the proposed SmA procedure. We start again from the case of known noise.
Then the results are extended to the bootstrap procedure.

3.1. Known noise. Let m∗ be the oracle choice from (2.9), and let m̂ be the
SmA selector from (2.16). Our study focuses on the properties of m̂. As a byprod-
uct, we describe some oracle bounds on the loss of the corresponding adaptive
procedure φ̂ = φ̃m̂. The construction of m̂ ensures that the oracle m∗ is accepted
with high probability; see (2.14). Therefore, the selector m̂ with probability at least
1 − e−x takes its value in the set

M− = M−(
m∗) = {

m ∈ M : m ≤ m∗}
of all models in M not greater than m∗. It remains to check the performance of the
method in this region. The next step is to specify a subset of M− which contains
m̂-values with a high probability. By definition (2.9), m∗ is the smallest index for
which the bias terms ‖bm,m◦‖ are uniformly bounded by βp1/2

m,m◦ , m > m◦. There-

fore, for each m◦ < m∗, there is at least one m > m◦ with ‖bm,m◦‖ > βp1/2
m,m◦ .
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The next result shows that the test τm,m◦ based on Tm,m◦ rejects Hm,m◦ with high
probability if the condition ‖bm,m◦‖ ≤ βp1/2

m,m◦ is significantly violated (the “large
bias” case). This observation allows us to describe the so-called zone of insensi-
tivity Min, where m̂ concentrates. The results in this subsection hold for a general
noise distribution with zero mean and finite variance. In the subsequent subsec-
tions, we will then again assume Gaussianity of the errors.

THEOREM 3.1. For the linear model Y = Ψ �θ∗ +ε with arbitrary but known
distribution of ε, suppose to be given a family of smoothers φ̃m = KmY , m ∈ M,
ordered by their variance due to (2.4). Let zm,m◦(·) be the tail function from (2.10)
for each pair m > m◦ ∈ M. Given x and β , let zm,m◦ be due to (2.11) and (2.12),
and let the oracle m∗ be defined in (2.9). Then the property (2.14) is fulfilled for
the SmA rule m̂. Let also M−

b be the subset of M− defined by the “large bias”
condition:

M−
b

def= {
m ∈ M− : ‖bm∗,m‖ > zm∗,m + zm∗,m(x)

}
,

where x
def= x+ log |M−|. Then it holds with Min

def= M− \M−
b

P(m̂ ∈ Min) ≥ 1 − 2e−x.

REMARK 3.1. The set of insensitivity Min = M− \ M−
b contains all indices

m◦ < m∗ for which the squared bias ‖bm,m◦‖2 exceeds at some point m > m◦ the
value β2pm,m◦ but not essentially. Therefore, we cannot guarantee that the related
test τm,m◦ is powerful. The worst case setup corresponds to a flat bias profile with
‖bm,m◦‖ ≈ βp1/2

m,m◦ . Then the set of insensitivity Min can coincide with the whole
range M−.

The next result describes the properties of the SmA estimator φ̂ = φ̃m̂.

THEOREM 3.2. Under conditions of Theorem 3.1, the SmA estimator φ̂ = φ̃m̂

satisfies the following bound:

(3.1) P
(‖φ̂ − φ̃m∗‖ > zm∗

) ≤ 2e−x,

where zm∗ is defined as

(3.2) zm∗
def= max

m∈Min
zm∗,m.

This implies the probabilistic oracle bound: with probability at least 1 − 2e−x

(3.3)
∥∥φ̂ − φ∗∥∥ ≤ ∥∥φ̃m∗ − φ∗∥∥ + zm∗ .
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REMARK 3.2. The result (3.3) is called the oracle bound because it compares
the loss of the data-driven selector m̂ and of the oracle choice m∗. The discrepancy
zm∗ in (3.1) or (3.3) can be viewed as a price for a data-driven model choice or
“payment for adaptation;” cf. Lepski, Mammen and Spokoiny (1997). An interest-
ing feature of the presented result is that not only the oracle quality but also the
payment for adaptation depend upon the unknown response f and the correspond-
ing oracle choice m∗. The bound (3.3) is nearly sharp if the value zm∗ is smaller in
order than p

1/2
m∗ .

REMARK 3.3. The usual Lepski’s risk upper bound is very similar to (3.3);
cf. Lepski, Mammen and Spokoiny (1997). However, the related “payment for
adaptation” z is evaluated by rather crude Bonferroni-type arguments for the worst
case, and it can be significantly larger than zm∗ from (3.2).

The procedure and the results can be extended to the case of polynomial loss;
see Section B in the Supplementary Material (Spokoiny and Willrich (2018)).

3.2. Analysis of the payment for adaptation zm∗ . We now return to the setting
of Gaussian errors εi . The benefit of considering the Gaussian case is that each
vector ξm,m◦ is Gaussian as well, which simplifies the analysis of the tail function
zm,m◦(·). The bounds can be easily extended to sub-Gaussian errors.

With Vm
def= Var(φ̃m) = Km Var(ε)K�

m, denote for m◦ < m,

pm = tr(Vm), λm = ‖Vm‖op,

pm,m◦ = tr(Vm,m◦), λm,m◦ = ‖Vm,m◦‖op.

THEOREM 3.3. Let the conditions of Theorem 3.1 be fulfilled, and let the er-
rors εi be normal zero mean. Then the critical values zm,m◦ given by (2.12) satisfy
for all pairs m > m◦ in M

zm,m◦ ≤ (1 + β)
√
pm,m◦ +

√
2λm,m◦

(
x+ log |M|).

Suppose also that

pm∗,m ≤ pm∗, λm∗,m ≤ λm∗ ∀m ∈M−.

Then the value zm∗ follows the bound

zm∗ ≤ (1 + β)
√
pm∗ +

√
2λm∗

(
x+ log |M|).

REMARK 3.4. The presented results help to understand the relation between
the oracle risk Rm∗ and the term zm∗ . We know that Rm∗ = ‖bm∗‖2 + pm∗ ≥ pm∗ .
Consider separately two cases: pm∗ � λm∗ and pm∗ � λm∗ . In the first case which
is the typical situation in model selection, it also holds 2λm∗(x+ log |M|) � pm∗
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and the payment for adaptation is not essentially larger than the oracle risk. In fact,
for the case with a narrow zone of insensitivity Min = M− \M−

b , the value zm∗ is

much smaller than p1/2
m∗ ; see Section 3.3 for details. The second case pm∗ � λm∗

is somewhat extreme and it corresponds to estimation of a linear functional or
estimation for severely ill-posed problems; see Section 3.4 below. In this case, the
squared payment for adaptation z2

m∗ can be larger than the oracle risk by a factor
log |M|.

3.3. Application to projection estimation. This section discusses the case of
projection estimation in the linear model Y = Ψ �θ∗ +ε with homogeneous errors
εi : Var(εi) = σ 2. All the conclusions can be easily extended to heterogeneous
errors whose variances are contained in some fixed interval. We also focus on
probabilistic loss, the case of polynomial loss can be considered in the same way.

Let us assume that the features in Ψ are ordered and for each m ∈ N, denote by
Ψm the p × n matrix corresponding to the first m features and obtained from Ψ by
letting to zero all the entries for the remaining features. The related estimator θ̃m =
SmY is the standard LSE with Sm = (ΨmΨ �

m )−Ψm and the prediction problem with
W = Ψ � yields KmY = Ψ �SmY = ΠmY , where Πm = Ψ �

m (ΨmΨ �
m )−Ψm is the

projector in Rn onto the corresponding m -dimensional subspace. For homoge-
neous errors εi with Var(εi) = σ 2, the variance Vm = Var(ΠmY ) satisfies

pm = tr
{
Var(ΠmY )

} = σ 2 tr(Πm) = σ 2m.

Moreover, for each pair m > m◦, it holds

Ψ �(̃θm − θ̃m◦) = (Πm − Πm◦)Y .

COROLLARY 3.4. Consider the problem of projection estimation with homo-
geneous Gaussian errors εi and probabilistic loss. Then pm,m◦ = σ 2(m − m◦),
λm,m◦ = σ 2, and

zm,m◦ ≤ σ(1 + β)
√

m − m◦ + σ
√

2x+ 2 log |M|,
zm∗ ≤ σ(1 + β)

√
m∗ + σ

√
2x+ 2 log |M|.

(3.4)

REMARK 3.5. The first term in the expression for zm∗ is of order
√

m∗ and
it is a leading one provided that the effective dimension m∗ is essentially larger
than log |M|. The ordering condition yields that the total number |M| of consid-
ered models is at most n. Moreover, a choice of the set M in a geometric scale
yields that |M| is only logarithmic in the sample size n; cf. Lepskiı̆ (1991), Lepski,
Mammen and Spokoiny (1997). Then log |M| ≈ log logn and zm∗ ≈ σ

√
m∗ for

m∗ � log logn. For the oracle risk Rm∗ , it holds Rm∗ = pm∗ + ‖bm∗‖2 ≥ σ 2m∗.
Therefore, the payment for adaptation zm∗ is not larger in order than the square
root of the oracle risk, and the result of Theorem 3.3 has a surprising corollary: if
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the oracle dimension m∗ is significantly larger than log logn, then the data-driven
SmA estimator provides nearly the same accuracy as the oracle one.

REMARK 3.6. The payment for adaptation can be drastically reduced in the
situations with a narrow zone of insensitivity. Suppose that the “large bias set”
M−

b contains all indices m ≤ m◦ for a fixed m◦ < m∗. For instance, this is the case
when ‖bm∗,m‖2 ≥ Cσ 2(m∗ −m+ 2x+ 2 log |M|) for some fixed sufficiently large
constant C and all m ≤ m◦. Then by (3.4)

zm∗ = max
m∈Min

zm∗,m ≤ σ(1 + β)
√

m∗ − m◦ + σ
√

2x+ 2 log |M|.

So, if (m∗ − m◦)/m∗ is small, the payment for adaptation is smaller in order than
the oracle risk, and the procedure is sharp adaptive. In particular, one can easily see
that the self-similarity condition of Giné and Nickl (2010) ensures a rapid growth
of the bias when the index m becomes smaller than m∗. This in turn yields a narrow
zone of insensitivity, and hence, a sharp adaptive estimation.

REMARK 3.7. The popular Akaike criterion (AIC) defines m̂ as

m̂ = argmin
m

{‖Y − ΠmY‖2 + 2σ 2m
}
.

One can easily see that this rule is equivalent to the SmA rule (2.16) with
z2
m,m◦ = 2σ 2(m − m◦). For this choice, one can prove a risk oracle bound un-

der rather general conditions (see, e.g., Kneip (1994)); however, it does not deliver
any information about the behavior of m̂, in particular, it does not guarantee the
propagation property (2.14).

Oracle accuracy and asymptotic minimax risk. Here we briefly discuss
the relation between the oracle bound (3.3) and minimax rates of estimation in
regression with regular design and homogeneous noise. Suppose that the mean
response vector f corresponds to the values of a smooth regression function
f (Xi) at some regular design points X1, . . . ,Xn ∈ [0,1]. Let ψ1, . . . ,ψm, . . . ,
be a set of basis functions on [0,1] like cosine, Demmler–Reinsch, or B-splines
basis. We identify the function ψm with the vector ψm of its values at de-
sign points, ψm = (ψm(X1, . . . ,ψm(Xn))

� ∈ Rn. The operator Πm projects onto
the subspace spanned by the first m vectors ψ1, . . . ,ψm. Then under the stan-
dard Sobolev smoothness condition on f , the bias bm = f − Πmf satisfies
n−1‖bm‖2 ≤ Cm−2s and similarly n−1‖bm′,m‖2 ≤ Cm−2s for m′ > m. Together
with pm = σ 2m, this yields that the conditions (2.9) are fulfilled with any fixed
β and m∗ ≈ C(β)n1/(2s+1) and n−1Rm∗ ≤ C(β)n−2s/(2s+1), where the constant
C(β) only depensd on β . This is the optimal accuracy over the class of smooth
function of the Sobolev degree s; see, for example, Ibragimov and Has’minskiı̆
(1981) or Pinsker (1980). In view of Remark 3.5, the proposed selector ensures
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the optimal estimation rate over a Sobolev smoothness class without knowing
the parameters of the class up to the additive payment for adaptation zm∗ . This
easily implies the classical results on adaptive estimation: the SmA estimator is
rate-adaptive over a wide range of smoothness classes such of degree s under the
constraint n1/(2s+1) ≥ C log logn.

3.4. Linear functional estimation. In this section, we discuss the problem of
linear functional estimation. As previously, we assume a family of estimators φ̃m =
KmY , m ∈ M, to be given, where the rank of each Km is equal to 1. The ordering
condition means that these estimators are ordered by their variance

pm = Var(KmY ) =Km Var(ε)K�
m

which grows with m. Further, each stochastic component ξm,m◦ = Km,m◦ε is one-
dimensional, and it holds for m > m◦

λm,m◦ = pm,m◦ =Km,m◦ Var(ε)K�
m,m◦ .

Note that in the case of Gaussian errors, ξm,m◦ is also Gaussian: ξm,m◦ ∼
N (0,pm,m◦). The tail function zm,m◦(x) of ξm,m◦ can be upper-bounded by√

2xpm,m◦ yielding

zm,m◦ ≤ p1/2
m,m◦

(
β +

√
2x+ 2 log |M|),(3.5)

zm∗ ≤ p1/2
m∗

(
β +

√
2x+ 2 log |M|).(3.6)

THEOREM 3.5. Let the errors εi be Gaussian zero mean. Consider a problem
of linear functional estimation of φ∗ = Wθ∗ by a given family φ̃m = KmY with
rank(Km) = 1, m ∈ M. Then the critical values zm,m◦ from (2.12) fulfill (3.5) and
the oracle inequality (3.3) holds with the payment for adaptation zm∗ obeying (3.6).

REMARK 3.8. For the problem of linear functional estimation with proba-
bilistic loss, the squared payment for adaptation z2

m∗ is by a factor log |M| larger
than the oracle variance pm∗ . If |M| itself is logarithmic in the sample size n, we
end up with the extra log logn—factor in the accuracy of adaptive estimation. This
factor appears to be unavoidable; see, for example, Spokoiny and Vial (2009) in
the context of estimating a linear functional.

3.5. Validity of the bootstrap procedure. Conditions. This and the next sec-
tions extend the results obtained for the case of known error distribution to the
bootstrap procedure which does not use any information about the noise variance.
The main result claims that the bootstrap choice still ensures the condition (2.11)
and, therefore, all the obtained results including the oracle bounds, apply for this
choice as well; see Theorem 3.7. Moreover, we evaluate the distance between the
unknown underlying distribution Q of the set of random vectors ξm,m◦ and their
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bootstrap counterpart Q�. The latter is random, however, we show that with high
probability, it is close to Q. In what follows, we assume the model (2.1) with a het-
erogeneous Gaussian noise ε. The results presented below rely on the following
quantities.

Design regularity is measured by the value δΨ

(3.7) δΨ
def= max

i=1,...,n

∥∥S−1/2Ψi

∥∥σi where S
def=

n∑
i=1

ΨiΨ
�
i σ 2

i ;

Obviously,

n∑
i=1

∥∥S−1/2Ψi

∥∥2
σ 2

i = tr

(
n∑

i=1

S−1ΨiΨ
�
i σ 2

i

)
= tr Ip = p,

and therefore in typical situations the value δΨ is of order
√

p/n.
Presmoothing bias for f = EY is described by the vector

(3.8) B = Σ−1/2(f − Πf ).

We will use the sup-norm ‖B‖∞ = maxi |bi | to measure the bias after presmooth-
ing.

Regularity of the smoothing operator Π is required in Theorem 3.7. Namely,

we assume that the rows Υ �
i of the matrix Υ

def= Σ−1/2ΠΣ1/2 fulfill

(3.9)
∥∥Υ �

i

∥∥ ≤ δΠ, i = 1, . . . , n.

This condition is in fact very close to the design regularity condition (3.7). To
see this, consider the case of a homogeneous noise with Σ = σ 2In and Π =
Ψ �(Ψ Ψ �)−1Ψ . Then Υ = Π and (3.7) implies∥∥Υ �

i

∥∥ = ∥∥Ψ �(
Ψ Ψ �)−1

Ψi

∥∥ = ∥∥(
Ψ Ψ �)−1/2

Ψi

∥∥ ≤ δΨ .

In general, one can expect that δΨ and δΠ are of the same order
√

p/n.

3.6. Bootstrap validation. This section states the main results justifying the
proposed bootstrap procedure: the joint distribution Q� of the bootstrap stochas-
tic components ξ

�
m,m◦ for m > m◦ from (2.18) nicely reproduces the underlying

distribution Q of the ξm,m◦ ’s, and hence, all the probabilistic results obtained in
Section 3.1 for known noise continue to apply after bootstrap parameter tuning.
The next result presents a bound on the total variation distance ‖Q − Q�‖TV be-
tween Q and Q�. As Q� is a random measure, the result only holds with high
probability.

THEOREM 3.6. Let Y = Ψ �θ∗ + ε be a Gaussian vector in Rn with inde-
pendent components, ε ∼ N (0,Σ) for Σ = diag(σ 2

1 , . . . , σ 2
n ), and let also the
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feature matrix Ψ be such that the p × p-matrix S = Ψ ΣΨ � is nondegener-
ated and (3.7) holds. For a given presmoothing operator Π : Rn → Rn, assume

(3.9) to be fulfilled with Υ
def= Σ−1/2ΠΣ1/2. Let Q = L(ξm,m◦,m > m◦ ∈ M)

and let Q� be the joint conditional distribution of the bootstrap stochastic terms
ξ

�
m,m◦ for m > m◦ ∈ M given the data Y . Then it holds on a random set Ωn with

P(Ωn) ≥ 1 − 6/n:

∥∥Q−Q�
∥∥

TV ≤ 1

2
√

pΔn,(3.10)

Δn
def= ‖B‖2∞ + 4

(
δΠ‖B‖∞ + δΨ

)√
logn

(3.11) + 4
(
δΠ + δ2

Π + δ2
Ψ

)
logn,

where the bias B is given by (3.8).

The result (3.10) enables us to control the differences Q(A) −Q�(A) for fixed
sets A. To justify the propagation property for the bootstrap-based set of critical
values z

�
m,m◦(x + q

�
m◦), given according to (2.18), (2.19), and (2.20) with Y̆ =

Y − ΠY , we also need to take into account the Y -dependence of z
�
m,m◦(x+ q

�
m◦).

This is done by the following theorem.

THEOREM 3.7. Assume the conditions of Theorem 3.6. Let Δn be from (3.11).
Then for each m◦ ∈ M, it holds on a random set Ωn with P(Ωn) ≥ 1 − 6/n:∣∣∣P(

max
m>m◦

{‖ξm,m◦‖ − z
�
m,m◦

(
x+ q

�
m◦

)} ≥ 0
)

− P�
(

max
m>m◦

{∥∥ξ �
m,m◦

∥∥ − z
�
m,m◦

(
x+ q

�
m◦

)} ≥ 0
)∣∣∣ ≤ √

pΔn.

(3.12)

By construction, the values z
�
m,m◦(x+ q

�
m◦) are selected as minimal ones under

the propagation constraint in the bootstrap world. The presented result shows that
the use of these data-dependent critical values does not destroy the propagation
condition in the real world.

Now we state a bootstrap version of Theorem 3.1. Note that the definition (2.9)
of the oracle m∗ involves a constant β , and exactly the same constant shows up in
the definition (2.12) of the zm,m◦ ’s for the case of known noise distribution. For the
bootstrap procedure, the value β � in the definition (2.21) of the z

�
m,m◦ ’s has to be

slightly larger than β from (2.9):

β � ≥ (1 − Δn)
−1/2β.

If Δn is small, then one can fix β � ≈ β . Our default choice is again β � = 1.
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THEOREM 3.8. Assume the conditions of Theorem 3.7. Given x and β �, let
the critical values z�

m,m◦ be given by (2.21). If the value β (from the definition (2.9)
of m∗) and β � satisfy β � ≥ (1 − Δn)

−1/2β , then

P
(
m∗ is rejected

) ≤ e−x + √
pΔn,

and the bootstrap calibrated SmA estimator φ̂ = φ̃m̂ satisfies

(3.13) P
(‖φ̂ − φ̃m∗‖ > z

�
m∗

) ≤ e−x + 6n−1 + √
pΔn,

where z
�
m∗ satisfies on the set Ωn (from Theorem 3.6) the bound

(3.14) z
�
m∗

def= max
m∈M− z

�
m∗,m ≤ √

1 + Δn

{
(1 + β)

√
pm∗ +

√
2λm∗

(
x+ log |M|)}.

3.7. Bootstrap validity and critical dimension. Now we discuss the sense of
the required conditions for bootstrap validity. The obtained results involve the error
term

√
pΔn describing the accuracy of the bootstrap approximation. The Gaussian

framework allows to reduce the proof of bootstrap validity to the comparison of
two Gaussian measures and to get explicit error bounds. If the errors ε in the
original model (2.1) are not Gaussian, the proof of bootstrap validity requires ad-
ditional tools like high dimensional Gaussian approximation yielding much larger
error bounds; cf. Spokoiny and Zhilova (2015).

Our results are only meaningful and the bootstrap approximation is accurate if
the value

√
pΔn in (3.10) is small. One easily gets

√
pΔn ≤ Cp1/2{‖B‖2∞ + (δΨ + δΠ) logn

}
,

where C is a generic notation for an absolute constant. So, the bootstrap approxi-
mation is valid if the values p1/2δΨ logn, p1/2δΠ logn, ‖B‖2∞p1/2 are sufficiently
small. Now we spell this condition in the typical situation with δΨ � √

p/n and
δΠ � √

p/n. Then it suffices that the values pn−1/2 log(n) and ‖B‖2∞p1/2 are
small. Suppose that

(3.15) ‖B‖∞ ≤ Cp−s .

Such bounds for B = f − Πf are often used in the approximation theory when
the response vector f corresponds to a Hölder-smooth regression function with
the smoothness parameter s observed with noise at design points. So, the bias
component does not destroy the bootstrap validity result if p1−4s is small. We
summarize that the bootstrap procedure is justified for s > 1/4 if p = pn → ∞
but pnn

−1/2 log(n) → 0 as n → ∞.

COROLLARY 3.9. Assume the conditions of Theorem 3.7 and let (3.15) hold
for s > 1/4. If p = pn fulfill pnn

−1/2 log(n) → 0 as n → ∞, then the results of
Theorem 3.6 and 3.7 apply with Δn → 0 as n → ∞.
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FIG. 1. True function and observed data with oracle estimator, the known-variance SmA-Estimator
(SmA-Est.) and the Bootstrap-SmA-Estimator (SmA-BS-Est.) for inhomogeneous noise. The numbers
in parentheses indicate the chosen model dimension.

4. Simulations. This section illustrates the performance of the proposed pro-
cedure by means of simulated examples. We consider a regression model Yi =
f (Xi)+ εi for an unknown univariate function on [0,1] with unknown inhomoge-
neous Gaussian noise ε. The aim is to compare the bootstrap-calibrated procedure
with the SmA procedure for the known noise and with the oracle estimator. We also
check the sensitivity of the method to the choice of the presmoothing parameter
m†.

We consider a sequence of equidistant design points (xi)1≤i≤n on [0,1] and
the Fourier basis {ψj(x)}∞j=1 to define a sequence of projection estimators where
m indicates the truncation dimension of the Fourier basis. The true function is
generated by

f (x) = c1ψ1(x) + · · · + cnψn(x),

where the (cj )1≤j≤n are chosen randomly: with γj i.i.d. standard normal

cj =
{
γj , 1 ≤ j ≤ 10,

γj /(j − 10)2, 11 ≤ j ≤ n.

The noise variances are obtained in the following way: one draws a vector from a
normal distribution N (2,0.4In), takes the square of the coefficients of this vector,
puts the coefficients in ascending order and then defines the resulting vector as
σ 2. The covariance matrix will then be Σ = λint · diag((σ 2

i )1≤i≤n), where λint

governs the intensity of the noise and will be 0.22, 0.82 and 1.42, respectively,
for low, medium and high noise level. To generate the noisy observations n = 200
will be used. When considering smaller sample sizes, we will take equidistant
subsamples of the observations. As a default, the medium noise level will be used
for simulations.
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For each index m, we build the projection estimate using the first m basis func-
tions. Solving the associated least squares problem gives θm which we will assume
to be in Rn by filling up the vectors of coefficients with zeros.

We use nsim-bs = nsim-theo = nsim-calib = 1000 samples for computing the boot-
strap marginal quantiles and the theoretical quantiles and for checking the calibra-
tion condition. The maximal model dimension is M = 37. Our default choice for
calibration is x= 2, β � = 1, and m† = 20.

We start by considering examples for W = Ψ �
n , that is, the estimation of the

whole function vector with prediction loss. One can see in Figure 1 three examples
with different intensity of the noise term comparing the Bootstrap-method to the
oracle estimator and the known-variance SmA-Method.

Figure 2, top, illustrates the dependence of the SmA choice m̂ on the presmooth-
ing dimension m† and on the parameter β � for different values of the sample size
n for one typical noise realization. We see that in the specific example we are con-
sidering, the impact of m† decreases very fast with n. In particular, in the case
n = 200, no variation in the choice of m̂ is observed in the whole range of m†. The
oracles are respectively m∗ = 12 for n = 100,200 and m∗ = 10 for n = 50. The
impact of the parameter β � on the estimation results is illustrated on Figure 2, bot-
tom, for n = 200. The method appears to be very stable with respect to the choice
of β �.

Figure 3 demonstrates the variability of the ratios z�
m1,m2/zm1,m2 w.r.t. m†. It is

remarkable that it is very stable in the range m† ≥ 12. Figure 4 shows the distri-
bution of the selected index m̂ after nhist = 100 simulations of the method with
the same underlying function f observed with different realizations of the errors.
Figure 5 shows the numerical results for the estimation of the first derivative f ′(x)

FIG. 2. (Top) The value m̂ chosen by the Bootstrap-SmA-Method as a function of the presmooth-
ing dimension m† for n = 50,100,200. (Bottom) m̂ as a function of β for n = 200. The blue line
indicates the oracle m∗ according to the definition (2.9).
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FIG. 3. Maximal, minimal and mean ratio of the bootstrap and theoretical critical values

|z �
m,m◦/zm,m◦ |2 as a function of m†.

FIG. 4. Histograms for the selected model by the bootstrap (BS) and the known-variance method
(MC), simulation size nhist = 100.

in the same model as above. This means taking W = (ψ
′
i (xj ))1≤i,j≤n. The boot-

strap SmA-procedure is well competitive with the procedure based on a known
noise structure and the method does a good job of mimicking the oracle in various
settings.

FIG. 5. Left: the true function and the observations. Right: the true derivative, the oracle estimator,
the known-variance SmA-Estimator (SmA-Est.) and the Bootstrap-SmA-Estimator (SmA-BS-Est.).
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APPENDIX: PROOFS

The Appendix collects the proofs of announced results.

A.1. Proof of Theorems 3.1 and 3.2. The propagation property (2.14) claims
that the oracle model m∗ will be accepted with high probability. This yields that
the selected model is not larger than m∗, that is, m̂ ≤ m∗ with a probability at
least 1 − e−x. Below we consider only this event. Let m ∈ M−. Acceptance of m

requires in particular that Tm∗,m ≤ zm∗,m. The representation Tm∗,m = ‖bm∗,m +
ξm∗,m‖ implies

P(Tm∗,m ≤ zm∗,m) ≤ P
(‖ξm∗,m‖ ≥ ‖bm∗,m‖ − zm∗,m

)
.

If m ∈M−
b , this yields with x= x+ log |M−|

P(m is accepted) ≤ P
(‖bm∗,m + ξm∗,m‖ ≤ zm∗,m

)
≤ P

(‖ξm∗,m‖ ≥ zm∗,m(x)
) ≤ e−x.

This helps to bound the probability of the event {m̂ ∈ M−
b }:

P
(
m̂ ∈M−

b

) ≤ ∑
m∈M−

b

P
(‖bm∗,m + ξm∗,m‖ ≤ zm∗,m

) ≤ ∑
m∈M−

b

e−x ≤ e−x.

Therefore, the probability that the SmA-selector picks up a value m > m∗ or m ∈
M−

b is very small:

P
(
m̂ ∈ M+(

m∗) ∪M−
b

) ≤ 2e−x.
It remains to study the case when m̂ = m for some m ∈ Min. We can use that this
m is accepted, which implies by definition

Tm∗,m = ‖φ̃m − φ̃m∗‖ ≤ zm∗,m.

This yields (3.1). The bound (3.3) now follows by the triangle inequality.

A.2. Proof of Theorem 3.3. Below we use the deviation bound (C.2) for
a Gaussian quadratic form from Theorem C.1 in the Supplementary Material
(Spokoiny and Willrich (2018)). Note that similar results are available for non-
Gaussian quadratic forms under exponential moment conditions; see, for exam-
ple, Spokoiny (2012). The result (C.2) combined with the Bonferroni correction
qm◦ = log |M+(m◦)| ≤ log |M| yields the following upper bound for the critical
values zm,m◦ :

zm,m◦ ≤ zm,m◦(x+ qm◦) + βp1/2
m,m◦

≤ (1 + β)
√
pm,m◦ +

√
2λm,m◦

(
x+ log

∣∣M+(
m◦)∣∣)

≤ (1 + β)
√
pm,m◦ +

√
2λm,m◦

(
x+ log |M|).

(A.1)
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For the payment for adaptation zm∗ , the result (A.1) and the conditions pm∗,m ≤
pm∗ and λm∗,m ≤ λm∗ imply the required upper bound:

zm∗ ≤ (1 + β)
√
pm∗ +

√
2λm∗

(
x+ log |M|).

A.3. Proof of Theorem 3.6. Any statement on the use of bootstrap-tuned pa-
rameters faces the same fundamental problem: the bootstrap distribution is random
and depends on the underlying sample. When we use such bootstrap-based values
for the original procedure, we have to account for this dependence. The statement
of Theorem 3.6 is even more involved due to the presmoothing step and multi-
plicity correction (2.20). The proof will be split into a couple of steps. First, we
evaluate the effect of the presmoothing bias and variance and reduce the study to
an artificial situation where one uses the errors εi for resampling in place of the
residuals Y̆i . Then we compare Q and Q� using the Pinsker inequality.

Below we write Ψ in place of ΨM , where M is the largest model in the collec-
tion. This does not conflict with our general setup, it is implicitly assumed that the
largest model coincides with the original one. By p, we denote the correspond-
ing parameter dimension, that is, Ψ is a p × n matrix. Further, the feature ma-
trix Ψm can be written as the product Ψm = ΓmΨ , where Γm is the projector on
the subspace of the feature space Rp spanned by the features from the model m:
Γm = ΨmΨ �

m (ΨmΨ �
m )−. This allows to represent each estimator φ̃m in the form

φ̃m = W θ̃m = WSmY = W
(
ΨmΨ �

m

)−
ΨmY = TmΨ Y ,

Tm
def= W

(
ΨmΨ �

m

)−
Γm = W

(
ΨmΨ �

m

)−
.

This implies the following representation of the stochastic components ξm,m◦ of
the difference φ̃m − φ̃m◦ : with ∇ = Ψ ε, it holds

(A.2) ξm,m◦ = Tm,m◦Ψ ε = Tm,m◦∇, Tm,m◦ def= Tm − Tm◦ .

Thus, each stochastic vector ξm,m◦ is a linear function of the vector ∇ . A similar
representation holds true in the bootstrap world:

(A.3) ξ
�
m,m◦ = Tm,m◦Ψ diag(Y̆ )w � = Tm,m◦∇ �, ∇ � def= Ψ diag(Y̆ )w �.

Here, the original errors ε are replaced by their bootstrap surrogates ε � =
diag(Y̆ )w �. Therefore, it suffices to compare the distribution of ∇ = Ψ ε with the
conditional distribution of ∇ � = Ψ diag(Y̆ )w � given Y . Then the results will be
automatically extended to any deterministic mapping of these two vectors. Nor-
mality of the errors εi ∼N (0, σ 2

i ) implies that ∇ = Ψ ε is also normal zero mean:

∇ ∼ N (0, S), S
def= Ψ ΣΨ �, Σ = Var(ε) = diag

(
σ 2

1 , . . . , σ 2
n

)
.

Similarly, given the data Y , the vector ∇ � is conditionally normal zero mean with
the conditional variance

S � def= Var�(∇ �) = Ψ diag
(
Y̆ 2

1 , . . . , Y̆ 2
n

)
Ψ � = Ψ diag(Y̆ · Y̆ )Ψ �.
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Therefore, it remains to compare two p-dimensional Gaussian distributions with
different covariance matrices. We apply Pinsker’s inequality (see Lemma E.1 in
the Supplementary Material, Spokoiny and Willrich (2018)) which only relies on
the values ‖B‖op and ‖B‖Fr = √

tr(B2) for a random p × p matrix B given by

(A.4) B
def= S−1/2(

S � − S
)
S−1/2.

PROPOSITION A.1. There is a random set Ωn with P(Ωn) ≥ 1 − 6/n such
that it holds on Ωn with Δn given in (3.11):

(A.5) ‖B‖op ≤ Δn, ‖B‖Fr ≤ √
pΔn,

PROOF. Define a p × n matrix U = S−1/2Ψ Σ1/2 so that UU� = Ip . We will
use the decomposition

Σ−1/2Y̆ = Σ−1/2(Y − ΠY ) = Σ−1/2(ε − Πε) + Σ−1/2(f − Πf ) = η + B

with η
def= Σ−1/2(ε − Πε) and the result follows from Proposition D5 in the Sup-

plementary Material (Spokoiny and Willrich (2018)) with δ = δΨ and δn = δΠ and
y = logn yielding y+ logn = 2 logn and y+ logp ≤ 2 logn, and thus Δ(y) ≤ Δn.

�

On the set Ωn, the claim (3.10) follows from ‖B‖Fr ≤ √
pΔn by Lemma E.1 in

the Supplementary Material (Spokoiny and Willrich (2018)) with b = b � = 0.

A.4. Proof of Theorem 3.7. The result of Theorem 3.6 explains why the
known bootstrap distribution can be used as a proxy for the unknown error dis-
tribution. However, it cannot be applied directly to (3.12) because the quantities
z

�
m,m◦(x) and q

�
m◦ are random and depend on the original data. This especially

concerns the multiplicity correction q
�
m◦ which is based on the joint distribution of

the vectors ξ
�
m,m◦ from (2.18) and is defined in (2.20). The latter distribution is a

Gaussian random measure in the bootstrap world. To cope with the problem of this
cross-dependence, we apply geometric arguments to sandwich (with high proba-
bility) the random measure from (2.20) in two deterministic measures; see section.
The statement of Theorem 3.7 can be derived from Theorem A.1 of the Supple-
mentary Material (Spokoiny and Willrich (2018)) using the bound ‖B‖Fr ≤ √

pΔn

and ‖B‖op ≤ Δn of Proposition A.1 and conditioning on the set Ωn.

A.5. Proof of Theorem 3.8. Due to Theorem 3.7, the bootstrap stochastic
terms ξ

�
m,m◦ nicely mimic (in distribution) their real world counterparts ξm,m◦ . The

SmA procedure also involves the values pm,m◦ = E‖ξm,m◦‖2, which are unknown

and depend on the noise ε. The bootstrap procedure utilizes their versions p�
m,m◦ =

E�‖ξ �
m,m◦‖2. This is justified by the next lemma.
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LEMMA A.2. On the set Ωn shown in Theorem 3.6, the values for p�
m,m◦

def=
tr{Var�(ξ

�
m,m◦)} and λ

�
m,m◦

def= λmax{Var�(ξ
�
m,m◦)} for all pairs m < m◦ ∈M fulfill

pm,m◦(1 − Δn) ≤ p�
m,m◦ ≤ pm,m◦(1 + Δn),

λm,m◦(1 − Δn) ≤ λ
�
m,m◦ ≤ λm,m◦(1 + Δn).

PROOF. Similar to the proof of Theorem 3.6, we use that ξm,m◦ = Tm,m◦∇
and ξ

�
m,m◦ = Tm,m◦∇ � for the same deterministic linear mapping Tm,m◦ ; see (A.2)

and (A.3). On the set Ωn the variances S = Var(∇) and S � = Var(∇ �) are related
by (A.5) for B from (A.4). This easily implies

(1 − Δn)S ≤ S � ≤ (1 + Δn)S

and thus, the desired bounds follow. �

The relation β � ≥ (1 − Δn)
−1/2β helps to bound on the set Ωn

‖bm,m◦‖ ≤ β
√
pm,m◦ ≤ β �

√
p�

m,m◦

and one can upper bound the probability of the event {m∗ is rejected} similar to
the case of known noise distribution. The oracle inequality (3.13) follows from
the acceptance rule under the conditions that m̂ ≤ m∗ and m̂ is accepted; cf. the
proof of Theorem 3.2. The bound (3.14) follows from Lemma A.2 and arguments
of Theorem 3.3 applied to the bootstrap quantities z�

m,m◦ .
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SUPPLEMENTARY MATERIAL

Some auxiliary results (DOI: 10.1214/18-AOS1717SUPP; .pdf). The supple-
ment collects some useful technical facts and extensions.

REFERENCES

ARLOT, S. (2009). Model selection by resampling penalization. Electron. J. Stat. 3 557–624.
MR2519533

BARAUD, Y., HUET, S. and LAURENT, B. (2003). Adaptive tests of linear hypotheses by model
selection. Ann. Statist. 31 225–251. MR1962505

BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via penalization.
Probab. Theory Related Fields 113 301–413. MR1679028

BERAN, R. (1986). Discussion: Jackknife, bootstrap and other resampling methods in regression
analysis. Ann. Statist. 14 1295–1298.

BIRGÉ, L. (2001). An alternative point of view on Lepski’s method. In State of the Art in Probability
and Statistics (Leiden, 1999). Institute of Mathematical Statistics Lecture Notes—Monograph
Series 36 113–133. IMS, Beachwood, OH. MR1836557

https://doi.org/10.1214/18-AOS1717SUPP
http://www.ams.org/mathscinet-getitem?mr=2519533
http://www.ams.org/mathscinet-getitem?mr=1962505
http://www.ams.org/mathscinet-getitem?mr=1679028
http://www.ams.org/mathscinet-getitem?mr=1836557


BOOTSTRAP-TUNED MODEL SELECTION 1379

BIRGÉ, L. and MASSART, P. (2007). Minimal penalties for Gaussian model selection. Probab. The-
ory Related Fields 138 33–73. MR2288064

CAVALIER, L. and GOLUBEV, Y. (2006). Risk hull method and regularization by projections of
ill-posed inverse problems. Ann. Statist. 34 1653–1677. MR2283712

CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2014). Anti-concentration and honest,
adaptive confidence bands. Ann. Statist. 42 1787–1818. MR3262468

DALALYAN, A. S. and SALMON, J. (2012). Sharp oracle inequalities for aggregation of affine esti-
mators. Ann. Statist. 40 2327–2355. MR3059085

GACH, F., NICKL, R. and SPOKOINY, V. (2013). Spatially adaptive density estimation by localised
Haar projections. Ann. Inst. Henri Poincaré Probab. Stat. 49 900–914. MR3112439

GINÉ, E. and NICKL, R. (2010). Confidence bands in density estimation. Ann. Statist. 38 1122–
1170. MR2604707

GOEMAN, J. J. and SOLARI, A. (2010). The sequential rejection principle of familywise error con-
trol. Ann. Statist. 38 3782–3810. MR2766868

GOLDENSHLUGER, A. (2009). A universal procedure for aggregating estimators. Ann. Statist. 37
542–568. MR2488362

HÄRDLE, W. and MAMMEN, E. (1993). Comparing nonparametric versus parametric regression fits.
Ann. Statist. 21 1926–1947. MR1245774
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