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LARGE COVARIANCE ESTIMATION THROUGH
ELLIPTICAL FACTOR MODELS
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Princeton University∗ and Fudan University†

We propose a general Principal Orthogonal complEment Thresholding
(POET) framework for large-scale covariance matrix estimation based on
the approximate factor model. A set of high-level sufficient conditions for
the procedure to achieve optimal rates of convergence under different matrix
norms is established to better understand how POET works. Such a frame-
work allows us to recover existing results for sub-Gaussian data in a more
transparent way that only depends on the concentration properties of the sam-
ple covariance matrix. As a new theoretical contribution, for the first time,
such a framework allows us to exploit conditional sparsity covariance struc-
ture for the heavy-tailed data. In particular, for the elliptical distribution, we
propose a robust estimator based on the marginal and spatial Kendall’s tau
to satisfy these conditions. In addition, we study conditional graphical model
under the same framework. The technical tools developed in this paper are of
general interest to high-dimensional principal component analysis. Thorough
numerical results are also provided to back up the developed theory.

1. Introduction. This paper considers factor model based covariance matrix
estimation for heavy-tailed data. The factor model is a powerful tool for dimen-
sion reduction and latent factor extraction, which gained its popularity in various
applications from finance to biology. When applied to covariance matrix estima-
tion, it assumes a conditional sparse covariance structure, that is, conditioning on
the low dimensional spiked factors, the covariance matrix of the idiosyncratic er-
rors is sparse. To be specific, consider the approximate factor model in Bai and Ng
(2002):

(1.1) yit = b′
ift + uit ,

where yit is the observed data for the ith (i = 1, . . . , p) dimension at time
t = 1, . . . , n; ft is an unknown m-dimensional vector of common factors, and bi
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is the factor loading for the ith variable; uit is the idiosyncratic error, uncorre-
lated with the common factors. Previous works are limited by only considering
factors and noises whose distributions are exponentially decayed. In this paper, we
aim to move beyond this limitation and consider heavy-tailed distributions. More
specifically, we will consider as an example the case where factors and noises are
elliptically distributed. Under this broad class of heavy-tailed distributions, we aim
to understand the underlying mathematical structure of large covariance matrix es-
timation.

Large-scale covariance estimation has been pioneered by Bickel and Levina
(2008a, 2008b) and Fan, Fan and Lv (2008). After that, a substantial amount of
work has focused on the inference of high-dimensional covariance matrices under
unconditional sparsity, that is, the covariance matrix itself is sparse [Cai and Liu
(2011), Cai, Ren and Zhou (2013), Cai, Zhang and Zhou (2010), El Karoui (2008),
Lam and Fan (2009), Ravikumar et al. (2011)] or conditional sparsity, that is, the
covariance matrix is sparse after subtraction by a low-rank component [Amini and
Wainwright (2008), Berthet and Rigollet (2013a, 2013b), Birnbaum et al. (2013),
Cai, Ma and Wu (2013, 2015), Johnstone and Lu (2009), Levina and Vershynin
(2012), Rothman, Levina and Zhu (2009), Ma (2013), Shen, Shen and Marron
(2013), Paul and Johnstone (2012), Vu and Lei (2013), Zou, Hastie and Tibshirani
(2006)]. This research area is very active, and as a result, this list of references
is illustrative rather than comprehensive. To emphasize, Fan and his collaborators
proposed to use factor model, which entails a conditional sparsity structure, for
covariance matrix estimation [Fan, Fan and Lv (2008), Fan, Liao and Mincheva
(2011, 2013), Fan, Liao and Wang (2016)]. The model encompasses the situation
of unconditional sparse covariance by setting the number of factors to zero. Thus
it is more general and realistic given the fact that the observed data are usually
driven by some common factors.

Another line of research related to our work is robust estimation. The idea of
robust location estimation dates back to Huber (1964). Adaptive location estima-
tion was later considered for nonparametric symmetric distributions [e.g., Beran
(1978), Bickel (1982)]. More recently, Catoni (2012) developed the nonasymp-
totic concentration bound for general distributions with bounded variance, which
benefits high-dimensional location estimation. Fan, Li and Wang (2017) studied
the same problem with a simpler Huber influence function. The ideas of Catoni
(2012) and Fan, Li and Wang (2017) can also be applied to estimate variances for
heavy-tailed data. Another approach for robust variance estimation uses quantile
estimators, such as median absolute deviation [Hampel (1974)] and the Qn estima-
tor [Rousseeuw and Croux (1993)]. In multiple dimensions, robust factor analysis
has been studied when the dimension is fixed; see, for example, Pison et al. (2003)
and Dupuis Lozeron and Victoria-Feser (2010). The above literature only accounts
for a small portion of many tremendous contributions to robust statistics.

In high dimensions, robust covariance estimation has recently received sig-
nificant attention. For example, Han and Liu (2014, 2017) proposed to use the
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marginal Kendall’s tau for estimating a large covariance matrix under the elliptical
and transelliptical (or elliptical copula) distributions. In addition, spatial Kendall’s
tau was considered by Han and Liu (2018) to estimate eigenspaces of covariance
matrices in high dimensions. Those methods, applied to PCA or sparse PCA, can
be potentially useful for dealing with factor models with heavy-tailed factors and
noises. More related references on robust covariance estimation will be provided
in Section 4. The goal of this paper is to develop a unified theory that allows us to
extend these robust rank-based procedures to handle heavy-tailed data with condi-
tional covariance sparsity.

1.1. Background on approximate factor model. To illustrate how to use the
factor model as a dimension reduction tool for covariance matrix estimation, let us
write model (1.1) in its vector form:

(1.2) yt = Bft + ut ,

where yt contains all observed individuals at time t = 1, . . . , n and B =
(b1, . . . ,bp)′ is the factor loading matrix. Let Y = (y1, . . . ,yn), F = (f1, . . . , fn)′
and U = (u1, . . . ,un). The matrix form of (1.1) is

(1.3) Y = BF′ + U,

where Yp×n, Bp×m, Fn×m, Up×n are matrices of observed data, factor loadings,
factors and errors. We consider the case where the dimension p is no smaller than
the sample size n (i.e., p ≥ n) and for simplicity we assume n samples are indepen-
dent and identically distributed. An extension to the dependent setting is possible
but with more technicality. We assume the factor matrix F is unobservable. To
make the model (1.1) identifiable, we impose the following condition as in Bai
and Ng (2013) and Bai and Li (2012):

(1.4) cov(ft ) = Im.

The condition in (1.4) is common in the factor model literature. Under (1.4), the
covariance matrix of yt is

(1.5) � = cov(yt ) = BB′ + �u,

where �u is the covariance matrix of the idiosyncratic error ut . In this paper,
we are interested in separately recovering the low-rank and sparse components.
To recover the low-rank component BB′, we only need to estimate the loading
matrix B up to an orthogonal transformation. In addition, as will be pointed out in
Section 2, (1.4) is sufficient only for asymptotic identifiability of recovering BB′
rather than exact identifiability.
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1.2. Major contributions of this paper. Under model (1.2), Fan, Liao and
Mincheva (2013) proposed the Principal Orthogonal complEment Thresholding
(POET) estimator for � under the assumption that factors and noises are exponen-
tially decayed. Under the pervasiveness condition that p−1B′B has the spectrum
bounded from above and below (Assumption 1 in their paper), implying that the
leading eigenvalues of � diverge linearly with the dimension p (Assumption 2.1 in
the current paper), Fan, Liao and Mincheva (2013) established the consistency and
rates of convergence of the POET estimator. However, their proofs are mathemat-
ically involved and do not transparently explain why POET works in estimating
large covariance matrices. The idea of pervasiveness originates from Chamberlain
and Rothschild (1983). It has been pointed out by Wang and Fan (2017) how perva-
sive factors help in estimating the low-rank component BB′ in (1.5). In the current
paper, we further explain the benefit of pervasive structure in a more transparent
way, along with a weaker sub-Gaussian assumption (see discussions after Theo-
rem 3.2). A surprising result is that the diverging signal of spiked eigenvalues ex-
cludes the necessity of the sparse principal component assumption in sparse PCA
literature compared with, for example, Cai, Ma and Wu (2013).

The main contributions of the current paper are two-fold. First, we summa-
rize a unified theoretical framework in Section 2.2 for applying POET to various
potentially heavy-tailed distributions. The key Theorem 2.1 provides a set of high-
level interface conditions (1.6) explaining how to design a POET covariance es-
timator according to factor and error distributions. More specifically, the POET
procedure needs three components: initial pilot estimators �̂, �̂, �̂ for covariance
matrix �, its leading eigenvalues � = diag(λ1, . . . , λm) and their corresponding
leading eigenvectors �p×m = (ξ1, . . . , ξm). Note we will assume distinct leading
eigenvalues so that the leading eigenvectors are uniquely determined if we choose
the sign by a certain rule, for example, the j th entry of ξ j is positive. With these
components, a generic POET estimator can be constructed. We will show that such
an estimator attains desired rates of convergence as long as

(1.6)

‖�̂ − �‖max = OP (
√

logp/n),∥∥(�̂ − �)�−1∥∥
max = OP (

√
logp/n),

‖�̂ − �‖max = OP

(√
logp/(np)

)
.

These conditions are relatively easy to verify, as they involve only the componen-
twise maximums. Through those sufficient conditions, we are able to separate the
deterministic analysis of the estimation procedure based on the theoretical inter-
face in (1.6), and the probabilistic guarantee of the design of initial pilot estimators.

Second, for both sub-Gaussian and elliptical distributions, we provide methods
to construct those initial estimators. For sub-Gaussian, it is natural to employ the
sample covariance matrix and its eigenvalues and eigenvectors as the estimates for
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�, � and �. We show that such an initialization indeed satisfies the above condi-
tions for sub-Gaussian data, which gives a more transparent explanation on why
POET in previous literature works. For elliptical distributions, constructing estima-
tors with the desired rates is nontrivial. We need to use the marginal Kendall’s tau
to obtain �̂ and �̂ and the spatial Kendall’s tau to construct �̂. The final POET es-
timator separately estimates the eigenvectors and eigenvalues using different meth-
ods. To the best of our knowledge, this is the first robust estimator constructed for
high-dimensional elliptical factor models. This result also illustrates the usefulness
of the general theoretical interface in (1.6) as a guide for designing new estimators.

1.3. Notation. If M is a general matrix, we denote its matrix entrywise
maximum value as ‖M‖max = maxi,j |Mi,j | and define the quantities ‖M‖2 =
λ

1/2
max(M′M) (or ‖M‖ for short), ‖M‖F = (

∑
i,j M2

i,j )
1/2, ‖M‖∞ = maxi

∑
j |Mi,j |

and ‖M‖1,1 = ∑
i

∑
j |Mi,j | to be its spectral, Frobenius, induced �∞ and ele-

mentwise �1 norms. If furthermore M is symmetric, we define λj (M) to be the
j th largest eigenvalue of M and λmax(M), λmin(M) to be the maximal and mini-
mal eigenvalues, respectively. We denote tr(M) to be the trace of M. We denote
diag(M1, . . . ,Mn) to be the block diagonal matrix with the diagonal block en-
tries as M1, . . . ,Mn. Here M1, . . . ,Mn can be either matrices or just numbers.
For any vector v, its �2 norm is represented by ‖v‖ while �1 and �∞ norms are
written as ‖v‖1 and ‖v‖∞. For two random matrices A,B of the same size, we say
A = B +OP (δ) if ‖A − B‖ = OP (δ) and A = B +oP (δ) if ‖A − B‖ = oP (δ). The
inner product of them is defined as 〈A,B〉 = tr(A′B). Similarly, for two random
vectors a,b of the same length, we denote a = b +OP (δ) if ‖a − b‖ = OP (δ) and

a = b + oP (δ) if ‖a − b‖ = oP (δ). We denote a d= b if random vectors a and b
have the same distribution. The inner product of them is defined as 〈a,b〉 = a′b.
For two sequences sn,p and wn,p , we denote sn,p 	 wn,p if there exists constant
c1, c2 > 0 such that c1sn,p ≤ wn,p ≤ c2sn,p In the sequel, C is a generic constant
that may differ from line to line.

1.4. Paper organization. In Section 2, we present a generic POET estimating
procedure and a high-level theoretical interface (1.6) which ensures the consis-
tency of the generic procedure for factor-based conditional sparsity models. In
Section 3, we verify that the conditions in (1.6) hold for sub-Gaussian data, which
provides a transparent understanding of the mechanism of the POET methodology.
In Section 4, we propose a new method using a combination of the marginal and
spatial Kendall’s tau estimators and show that these estimators satisfy the theoret-
ical interface in (1.6) under elliptical factor models. Thorough numerical simula-
tions are conducted to illustrate the merits of our proposed method in Section 5. In
Section 6, we conclude the paper with a short discussion. Some technical proofs
are relegated to the Appendix and the Supplementary Material [Fan, Liu and Wang
(2018)].
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2. A high-level theoretical interface. In this section, we summarize a generic
POET procedure and provide a set of high-level sufficient conditions for consistent
covariance estimation when p ≥ n. Before doing that, let us review what has been
achieved in literature where both the factors and noises are assumed sub-Gaussian.

2.1. Spiked covariance model. Suppose the observed random variables {yi}ni=1
have zero mean and covariance matrix �p×p where the eigenvalues λ1, λ2, . . . , λp

of � are ordered in descending order. We consider the spiked population model
as suggested by the approximate factor structure (1.5). Specifically, we have the
following assumption on the eigvenvalues.

ASSUMPTION 2.1 (Spiked covariance model). Let m be a fixed constant that
does not change with n and p such that m ≤ n ≤ p. As p → ∞, λ1 > λ2 >

· · · > λm � λm+1 ≥ · · · ≥ λp > 0, where the spiked eigenvalues are linearly pro-
portional to dimension p while the nonspiked eigenvalues are bounded, that is,
c0 ≤ λj ≤ C0, j > m for constants c0,C0 > 0. In addition, the average of the non-
spiked eigenvalues (p − m)−1 ∑p

j=m+1 λj = c̄ + o(1).

Assumption 2.1 divides the eigenvalues into the diverging and bounded ones.
For simplicity, we only consider distinguishable eigenvalues (multiplicity 1) for the
largest m eigenvalues. This assumption is typically satisfied by the factor model
(1.1) with pervasive factors. Specifically, if the factor loadings {bj }pj=1 are i.i.d.
samples from a population with finite second moments, then by the strong law
of large numbers, p−1B′B = p−1 ∑p

j=1 bj b′
j → �b almost surely, where �b =

E(bj b′
j ). In other words, the eigenvalues of BB′ are approximately

pλ1(�b)
(
1 + o(1)

)
, . . . , pλm(�b)

(
1 + o(1)

)
,0, . . . ,0,

where λj (�b) is the j th eigenvalue of �b. If we further assume that ‖�u‖ is
bounded, by Weyl’s theorem, we conclude

(2.1) λj = pλj (�b)
(
1 + o(1)

)
for j = 1, . . . ,m,

and the remaining are bounded.

2.2. A review of POET procedure for covariance estimation. We see from
(1.5) that the population covariance of the factor model (1.1) exhibits a low-rank
plus sparse structure if �u is sparse; we measure the sparsity level of �u by

mp := max
i≤p

∑
j≤p

|σu,ij |q

for some q ∈ [0,1]. In particular, with q = 0, mp corresponds to the maximum
number of nonzero elements in each row of �u.

To estimate the covariance matrix � with the approximate factor structure (1.5),
Fan, Liao and Mincheva (2013) proposed the POET method to recover the factor
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matrix as well as the factor loadings. The idea is to first decompose the sample
covariance matrix into the spiked and nonspiked parts,

(2.2) �̂Y = 1

n

n∑
i=1

yiy′
i =

m∑
j=1

λ̂j ξ̂
(Y )

j

(̂
ξ

(Y )

j

)′ + �̂u,

where �̂u = ∑p
j=m+1 λ̂j ξ̂

(Y )

j (̂ξ
(Y )

j )′ is called the principal orthogonal complement

and λ̂j , ξ̂
(Y )

j for j ≤ p are the eigenvalues/vectors of �̂Y . Then by employing

adaptive thresholding on �̂u to get �̂
T
u [Cai and Liu (2011)], they constructed a

final covariance estimator �̂
T defined as

(2.3) �̂
T =

m∑
j=1

λ̂j ξ̂
(Y )

j

(̂
ξ

(Y )

j

)′ + �̂
T
u .

The above procedure can be equivalently viewed as a least-square approach. That
is, the factor and loading matrices are estimated by solving the following noncon-
vex minimization problem:

(2.4) (B̂, F̂) = arg min
B,F

∥∥Y − BF′∥∥2
F s.t.

1

n
F′F = Im, B′B is diagonal.

It was shown that the columns of F̂/
√

n are the eigenvectors corresponding to the
m largest eigenvalues of the n × n matrix n−1Y′Y and B̂ = n−1YF̂. Note that the
estimator B̂ given by minimizing (2.4), after normalization, is actually the first
m empirical eigenvectors of the sample covariance matrix �̂Y = n−1YY′. The
optimizer can be obtained via the Eckart–Young theorem. Given B̂, F̂, we define
Û = Y − B̂F̂′ and �̂u = n−1ÛÛ′ = �̂Y − B̂B̂′. Finally, adaptive thresholding is
applied to �̂u = (σ̂u,ij )p×p to obtain �̂

T
u = (σ̂ T

u,ij )p×p with

(2.5) σ̂ T
u,ij =

{
σ̂u,ij , i = j,

sij (σ̂u,ij )I
(|σ̂u,ij | ≥ τij

)
, i �= j,

where sij (·) is the generalized shrinkage function [Antoniadis and Fan (2001),
Rothman, Levina and Zhu (2009)] and τij = τ(σ̂u,ii σ̂u,jj )

1/2 is an entry-dependent
threshold. The above adaptive threshold operator corresponds to applying thresh-
olding with parameter τ to the correlation matrix of �̂u. The positive parameter τ

will be determined based on theoretical analysis.
Let wn = √

logp/n + 1/
√

p. Fan, Liao and Mincheva (2013) claimed that un-
der some technical assumptions (exponentially decayed factors and noises with
mixing time dependency), with τ 	 wn, if mpw

1−q
n = o(1),

(2.6)

∥∥�̂T
u − �u

∥∥
max = OP (wn),∥∥�̂T

u − �u

∥∥
2 = OP

(
mpw1−q

n

) = ∥∥(
�̂

T
u

)−1 − �u
−1∥∥

2
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and

(2.7)

∥∥�̂T − �
∥∥

max = OP (wn),∥∥�̂T − �
∥∥
� = OP

(√
p logp

n
+ mpw1−q

n

)
,

∥∥(
�̂

T )−1 − �−1∥∥
2 = OP

(
mpw1−q

n

)
,

where ‖A‖� = p−1/2‖�−1/2A�−1/2‖F is the relative Frobenius norm. The scal-
ing p−1/2 is exploited to ensure ‖�‖� = 1. The term 1/

√
p in wn is the price we

need to pay for estimating the unknown factors. The original proofs for getting the
above rates are mathematically involved and it is not clear why the above rates are
attained, without imposing sparsity assumption on eigenvectors as in sparse PCA
literature.

We aim to provide answers to two questions: why such a simple POET pro-
cedure provides good convergence rates under the spiked covariance assumption
(Assumption 2.1)? Can we replace the sample covariance by other robust esti-
mators as a starting point for the eigendecomposition in the case of the elliptical
distribution or other more general heavy-tailed distributions?

2.3. A generic procedure and a high-level theoretical interface. We propose a
generic POET procedure here:

(1) Given three initial pilot estimators �̂, �̂, �̂ for true covariance matrix
�, leading eigenvalues � = diag(λ1, . . . , λm) and leading eigenvectors �p×m =
(ξ1, . . . , ξm), respectively, the principal orthogonal complement �̂u can be com-
puted by subtracting out the leading low-rank part, that is,

�̂u = �̂ − �̂�̂�̂
′
.

(2) The adaptive thresholding (2.5) is applied to �̂u to obtain �̂
T
u .

(3) The low-rank structure is added back to obtain �̂
T = �̂�̂�̂

′ + �̂
T
u .

The advantage of the above procedure is modular: three initial components can
be constructed separately. For sub-Gaussian distributions, �̂ = diag(̂λ1, . . . , λ̂m)

is the diagonal matrix constructed by the first m leading empirical eigenvalues of

the sample covariance matrix �̂Y while �̂ = (̂ξ
(Y )

1 , . . . , ξ̂
(Y )

m ) is the matrix of the
corresponding leading empirical eigenvectors and B̂B̂′ = �̂�̂�̂

′. But in general, �̂

and �̂ do not have to come from the sample covariance matrix. In fact, they can
even be separately estimated.

A high-level explanation is provided to understand the generic POET procedure.
Sufficient conditions are established for �̂

T
u and �̂

T to achieve the desired rates
of convergence in (2.6) and (2.7) in the following theorem.
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THEOREM 2.1. Suppose Assumption 2.1 holds, and in addition there exists
C > 0 such that ‖B‖max,‖�−1

u ‖2,‖�u‖2 ≤ C. If mpw
1−q
n = o(1) with wn =√

logp/n + 1/
√

p, and if we have estimators �̂, �̂, �̂ satisfying (1.6), then the
rates of convergence in (2.6) and (2.7) hold with the generic POET procedure
(τ 	 wn) described above. In addition, (2.8) and (2.9) below hold.

The proof of Theorem 2.1 (given in the Appendix) provides insights on how
the generic POET procedure works. Note that in (A.1) of the Appendix, the max
norm estimation error of the low-rank matrix is bounded by �1 and �2 that
we briefly describe here. The term �1 quantifies the estimation error of lead-
ing empirical eigenstructure �̂�̂�̂

′ for its population counterpart, and is of order
�1 = OP (

√
logp/n). The term �2 measures the error of identifying the low-rank

matrix BB′ by ���′. This identification under pervasiveness condition is asymp-
totically unique with identification error �2 = O(1/

√
p). The asymptotic iden-

tifiability is consistent with the sufficient nonasymptotic identification condition
given by Chandrasekaran et al. (2011) and Hsu, Kakade and Zhang (2011).

We comment on the optimality of rates in (2.6) and (2.7). First, note that
throughout the paper, we consider the high-dimensional regime p ≥ n so that
1/

√
p ≤ √

logp/n, making the term 1/
√

p negligible. We leave it there just for
illustrating the asymptotic identifiability. Second, it is not hard to see (2.6) and the
first and third conclusions of (2.7) are optimal from an application of Cai and Zhou
(2012). See also Tsybakov (2009) for more details on lower-bound construction.
In terms of the relative Frobenius norm ‖ · ‖� , we obtain the same rate of conver-
gence as in Fan, Liao and Mincheva (2013). However, this rate is not optimal (we
thank an anonymous referee for pointing this out). Interestingly, by using a naive
estimator �̂

T
u to estimate �, we are able to show

(2.8)
∥∥�̂T

u − �
∥∥
� ≤ Cp−1/2(∥∥�̂T

u − �u

∥∥
F + 1

) = OP

(
m1/2

p w1−q/2
n

)
,

which turns out to be optimal according to Cai and Zhou (2012). In (2.8), the
optimal rate for ‖�̂T

u −�u‖F is also presented. This means in terms of ‖ · ‖� , �̂
T
u

is a much better estimator in estimating � than �̂
T itself. We will verify this by

simulations in Section 5.1. How shall we explain this odd property? We provide
a detailed discussion on this point in Appendix C in the Supplementary Material
[Fan, Liu and Wang (2018)]. The key insight is that the relative Frobenius norm is
not an ideal criterion to characterize the performance of the POET procedure. To
appropriately evaluate POET in a relative sense, we should not entangle the effects
of the low-rank and sparse components. To solve this problem, we propose a more
suitable relative norm to characterize the low-rank component in (2.10) below.
Further comparison of the two relative norms can also be found in Appendix C.
Third, in terms of estimating the low-rank matrix, we have

(2.9)

∥∥�̂�̂�̂
′ − BB′∥∥

max = OP (wn),∥∥�̂�̂�̂
′ − BB′∥∥

2 ≤ ∥∥�̂�̂�̂
′ − BB′∥∥

F = OP (pwn),
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which implies the following more appropriate notion of the relative error [simply
a normalization of (2.9) by the magnitude of leading eigenvalues]:

(2.10)
∥∥L−1/2(

�̂�̂�̂
′ − BB′)L−1/2∥∥

F = OP (
√

logp/n),

where L−1/2 = ��−1/2�′. Cai, Ma and Wu (2015) showed that the rate for spec-
tral norm in (2.9) is optimal up to logp [so is the rate for the Frobenius norm and
the rate in (2.10)], when the leading eigenvalues are of order p and leading eigen-
vectors are dense. Wegkamp and Zhao (2016) proved the same rate of convergence
for the Frobenius norm of the low-rank matrix under the strict factor model.

In sum, under the pervasiveness condition, we are able to (near) optimally
recover the low-rank and sparse matrices separately, in terms of the norms
‖�̂T

u −�u‖max or 2 or F and ‖�̂�̂�̂
′ −BB′‖max or 2 or F (thus ‖�̂T −�‖max or 2 or F )

and furthermore ‖(�̂T
)−1 − �−1‖2 and a better notion of the relative error

‖L−1/2(�̂�̂�̂
′ − BB′)L−1/2‖F . We postpone more discussions on the role of per-

vasiveness in Section 6.

2.4. Conditional graphical model. In Section 2.2, mp measures the sparsity
of �u, but its inverse �u = �−1

u is not necessarily sparse. Sometimes, the spar-
sity structure on �u reveals more interesting structure than �u. For example, if
ut = (u1t , . . . , upt ) follows an elliptical distribution, that is, ut ∼ EDp(0,�u, ζ )

using the notation in Section 4.1, where ED is short for elliptical distribution,
the sparsity of �u = (ωu,ij )p×p encodes the conditional uncorrelatedness (or
conditional independence in the case of Gaussian distribution) relationships be-
tween all variables in the p dimensional vector ut . More specifically, for p nodes
U1, . . . ,Up , each corresponding to one element of ut , Ui and Uj are connected if
and only if ωu,ij �= 0, meaning that uit and ujt are uncorrelated conditioning on
all the other dimensions {ukt }k �=i,j and factors ft . If the number of factors is zero,
this reduces to the classical elliptical graphical model, studied by Vogel and Fried
(2011) and Liu, Han and Zhang (2012).

In many applications, the conditional graphical model (or conditional sparse
inverse covariance model) appears more natural compared to the unconditional
graphical model. For example, to estimate the stock network, it makes more sense
to take out the common market factors from the return data and study the condi-
tional independence relationships between idiosyncratic components; in genomics,
the conditional independence graph after removing the confounding factors such
as age and environment exposure is of better interest. The factors can also be in-
terpreted as covariates to be adjusted before analyzing the correlatedness of the
residual part [Fan et al. (2016)]. Rothman, Levina and Zhu (2010) and Cai et al.
(2013) adopted the same idea of adjusting the factors in predicting asset returns
and analyzing genomics data, but they did not assume the pervasiveness condi-
tion; instead they imposed the constraint of a sparse factor loading matrix B. In
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this section, we only require the sparsity of �u = (ωu,ij ), measured by the quan-
tity

Mp := max
i≤p

∑
j≤p

|ωu,ij |q .

The generic POET procedure could also be modified to estimate conditional
graphical model. The first step is still recovering �̂u = �̂ − �̂�̂�̂

′ by removing
the effect of the low-rank dominating factors. Then the method “constrained �1-
minimization for inverse matrix estimation” (CLIME) proposed by Cai, Liu and
Luo (2011) can be applied to obtain �̂u. Specifically, CLIME solves the following
constrained minimization problem:

(2.11) �̂
1
u = argmin

�
‖�‖1,1 subject to ‖�̂u� − I‖max ≤ τ,

where ‖�‖1,1 = ∑
i

∑
j |ωi,j | and τ is a tuning parameter so that τ 	 wn. A further

symmetrization step can be carried out to guarantee a symmetric estimator �̂u =
(ω̂u,ij ) where

(2.12) ω̂u,ij = ω̂1
u,ij1

(∣∣ω̂1
u,ij

∣∣ ≤ ∣∣ω̂1
u,ji

∣∣) + ω̂1
u,ji1

(∣∣ω̂1
u,ij

∣∣ >
∣∣ω̂1

u,ji

∣∣).
Note that (2.11) can be solved column by column using a linear program solver.

We can either apply the interior point method (with polynomial time worst case
complexity) or simplex algorithm (with superior average case complexity, but ex-
ponential worst case complexity). Other possible methods include the graphical
Lasso, graphical SCAD, graphical Dantzig selector and graphical neighborhood
selection [Friedman, Hastie and Tibshirani (2008), Yuan and Lin (2007), Fan,
Feng and Wu (2009), Lam and Fan (2009), Ravikumar et al. (2011), Yuan (2010),
Meinshausen and Bühlmann (2006)]. Though substantial amount of efforts have
been made to understand the graphical model, little has been done for estimating
conditional graphical model, which is more general and realistic.

Once we have �̂u, the original inverse covariance matrix � = �−1 can be esti-
mated using the Sherman–Morrison–Woodbury formula as follows:

(2.13) �̂ = �̂u − �̂u�̂
(
�̂

−1 + �̂
′
�̂u�̂

)−1
�̂

′
�̂u.

The following theorem gives the rates of convergence for �̂u and �̂ provided good
pilot estimators �̂, �̂ and �̂. Its proof is in Appendix B in the Supplementary
Material [Fan, Liu and Wang (2018)].

THEOREM 2.2. Under Assumptions 2.1, if there exists C > 0 such that
‖B‖max,‖�−1

u ‖2,‖�u‖∞ ≤ C, Mpw
1−q
n = o(1) and we have estimators �̂, �̂, �̂

satisfying conditions (1.6), then the generic POET procedure with CLIME
(τ 	 wn) gives

(2.14)
‖�̂u − �u‖max = OP (wn) = ‖�̂ − �‖max,

‖�̂u − �u‖2 = OP

(
Mpw1−q

n

) = ‖�̂ − �‖2.
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Note the assumption of bounded ‖�u‖∞ is stronger than the case of estimating
covariance matrix in Theorem 2.1. This condition might be relaxed if graphical
model estimation methods other than CLIME are applied. We do not pursue the
weakest possible condition here. Many potential applications only involve the esti-
mation of inverse covariance matrix �, for instance, classification and discriminant
analysis and optimal portfolio allocation.

2.5. Positive semi-definite projection under max norm. There is an additional
issue that requires careful consideration. In the generic POET procedure, if �̂ and
�̂ are not estimated by the leading empirical eigenvalues/vectors of some (and the
same) positive semi-definite (PSD) matrix �̂, the residual �̂u may not be PSD for
a given sample. Thus, the following optimization should be considered to find the
nearest PSD matrix of �̂u in terms of the max norm:

(2.15) �̃u = argmin
�u�0

‖�̂u − �u‖max.

The minimizer preserves the max norm error bound since

‖�̃u − �u‖max ≤ ‖�̃u − �̂u‖max + ‖�̂u − �u‖max ≤ 2‖�̂u − �u‖max,

and everything else in the POET procedure works with �̂u replaced by �̃u. The
same problem occurs in conditional graphical model estimation. Although �̂u is
PSD with high probability, in practice we may get a non-PSD estimator for �u. So
we need to explicitly perform the PSD projection of �̂u onto the PSD cone as in
(2.15).

Minimization (2.15) is challenging due to its nonsmoothness. An effective
smooth surrogate for the max norm objective was proposed by Zhao, Roeder and
Liu (2014) which can be solved efficiently. Specifically, they considered minimiz-
ing ‖�̂u − �u‖μ

max subject to �u � 0 with

‖A‖μ
max = max‖U‖1,1≤1

〈U,A〉 − μ

2
‖U‖2

F ,

where ‖U‖1,1 = ∑
i,j |uij |. More details can be found in their paper. An alternative

approach is to solve the dual problem of the graphical Lasso, that is,

max
W

log det(W) subject to ‖W − �̂‖max ≤ τ.

By choosing τ 	 wn, the optimal solution is a PSD matrix satisfying the max norm
bound. Such a projection is still valid for the generic POET procedure to get the
optimal convergence rates.

3. Sub-Gaussian factor models. We have established sufficient conditions in
(1.6) for optimal estimation of covariance matrices as well as conditional graph-
ical models. The next natural question is whether these conditions hold for sub-
Gaussian factor models. In this section, we validate the conditions for the sample
covariance matrix and its eigenstructure.
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By the spectral decomposition, � = �p�p�′
p where �p = diag(λ1, . . . , λp)

and �p is constructed by all the corresponding eigenvectors of �. We use sub-
script p to explicitly denote the dependence of �p and �p on all eigenvalues or
eigenvectors rather than just spiked ones. Let xi = �′

pyi . So xi has mean zero
and diagonal covariance matrix �p . Since under orthogonal transformations of
the data, the empirical eigenvalues of the sample covariance are invariant and the
empirical eigenvectors are equivariant, the analysis will be done on xi ’s which
naturally extends to our original data yi ’s by a simple affine transformation. The
following assumption on xi is imposed.

ASSUMPTION 3.1 (Sub-Gaussian distribution). Let zi = �
−1/2
p xi be the stan-

dardized version of the transformed data xi . zi ’s are i.i.d. samples of sub-
Gaussian isotropic random vector z, that is, ‖z‖φ2 = supu∈Sp−1 ‖〈z,u〉‖φ2 ≤ M for
some constant M > 0 where the sub-Gaussian norm is defined as ‖〈z,u〉‖φ2 =
supp≥1 p−1/2(E|〈z,u〉|p)1/p . Furthermore, we assume there exist M1,M2 > 0
such that for 0 ≤ θ ≤ M1,

(3.1) E

[
exp

(
−θ

p∑
j=1

(
z2
j − 1

))]
≤ exp

(
M2θ

2p
)
.

The above assumption requires a slightly stronger condition than the classical
sub-Gaussian condition for z. It has to satisfy (3.1) for technical reasons discussed
in Lemma D.2 in Appendix D in the Supplementary Material [Fan, Liu and Wang
(2018)]. This assumption is clearly satisfied if z has independent elements of sub-
Gaussian variables [Vershynin (2012)] although it could also hold for weakly de-
pendent sub-Gaussian vectors.

Under this assumption, trivially the first condition in (1.6) holds for the sample
covariance matrix �̂Y of yi , that is, ‖�̂Y −�‖max = OP (

√
logp/n) because from

(1.5) the maximal elementwise variance of yi is bounded. Next, we present two
theoretical properties respectively on leading empirical eigenvalues {̂λj }mj=1 and

eigenvectors {̂ξ j }mj=1 of the sample covariance matrix �̂X of xi ’s. These properties
are useful for us to verify the remaining conditions of the high-level theoretical
interface (1.6).

THEOREM 3.1. Under Assumptions 2.1 and 3.1, for j ≤ m we have

|̂λj/λj − 1| = OP

(
n−1/2)

,

where λ̂j = λj (�̂X) is the j th largest eigenvalue of �̂X .

Consider the empirical eigenvectors ξ̂ j of �̂X for j ≤ m. Each ξ̂ j is divided

into two parts ξ̂ j = (̂ξ
′
jA, ξ̂

′
jB)′, where ξ̂ jA is of length m corresponding to the

spiked component and ξ̂ jB corresponds to the nonspiked component. Note that
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ξ̂ j is uniquely determined up to sign since eigenvalues are well separated and we

always choose the right sign such that ξ̂
′
j ej ≥ 0.

THEOREM 3.2. Under Assumptions 2.1 and 3.1, for j ≤ m we have:

(i) ‖ξ̂ jA − ejA‖ = OP (n−1/2), where ejA is unit vector of length m with 1 at
the j th coordinate and 0 everywhere else;

(ii) ‖�ξ̂ jB‖max = Op(
√

logp/(np)) for any �p×(p−m) s.t. �′� = Ip−m.

The theorems state that under the pervasiveness condition that spiked eigenval-
ues are of order p, we are able to approximately recover the true leading eigen-
values and eigenvectors. In Wang and Fan (2017), the same phenomenon was ob-
served when zi ’s are sub-Gaussian vector with independent elements. But here
we do not require elementwise independence and relax the condition to any sub-
Gaussian isotropic random vectors satisfying (3.1). The proofs of the above two
theorems can be found in Appendix E in the Supplementary Material [Fan, Liu
and Wang (2018)].

Given the above two theorems, let us validate the second and third conditions
in (1.6). Define �̂SG = diag(̂λ1, . . . , λ̂m) where SG is short for sub-Gaussian.
The second condition holds for �̂SG according to Theorems 3.1. Note that �̂Y

and �̂X share the same set of empirical eigenvalues. To check the third one,

let �̂SG = (̂ξ
(Y )

1 , . . . , ξ̂
(Y )

m ) be the matrix consisting of the top m leading eigen-
vectors of �̂Y . If the whole eigenspace of � is written as �p = (�,�), then

ξ̂
(Y )

j = �p ξ̂ j = �ξ̂ jA + �ξ̂ jB . Therefore, ξ̂
(Y )

j − ξ j = �(̂ξ jA − ejA) + �ξ̂ jB and

(3.2)
‖�̂SG − �‖max = max

j

∥∥ξ̂ (Y )

j − ξ j

∥∥
max

≤ max
j

(√
m‖�‖max‖ξ̂ jA − ejA‖ + ‖�ξ̂ jB‖max

)
,

which is OP (
√

logp/(np)) due to Theorem 3.2 and the fact ‖�‖max = O(1/
√

p)

shown in the proof of Theorem 2.1. Hence, the sample covariance based estimators
�̂Y , �̂SG and �̂SG satisfy the sufficient conditions in (1.6). Together with Theo-
rem 2.1, this explains why POET achieves all the desired rates (2.6)–(2.9).

We finally devote a remark to the assumption of zero mean of the observed
data implied by Assumption 3.1. This condition is only made to simplify the pre-
sentation of proofs. In practice, we first center the data by ȳ = n−1 ∑

i yi . All the
conclusions of this section hold for the centered data as well.

4. Elliptical factor models. In the previous section, we assume yi to be a sub-
Gaussian random vector, a strong distributional assumption for many applications.
In this section, we replace the sub-Gaussian assumption (Assumption 3.1) by the
elliptical distribution assumption (Assumption 4.1) and propose a novel robust
estimator for the analysis of factor models.
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We first briefly review the elliptical distribution family, which generalize the
multivariate normal distribution and multivariate t-distribution. Compared to the
sub-Gaussian setting, it is more challenging to design pilot estimators to simulta-
neously satisfy the three requirements in (1.6). To handle this challenge, we sepa-
rately construct two estimators �̂1 and �̂2. �̂1 and its leading eigenvalues satisfy
the first two requirements in (1.6) while the eigenvectors of �̂2 satisfy the last
condition in (1.6).

4.1. Elliptical distribution. We define the elliptical distribution as follows. Let
μ ∈ R

p and � ∈ R
p×p with rank(�) = q ≤ p. A p-dimensional random vector y

has an elliptical distribution, denoted by y ∼ EDp(μ,�, ζ ), if it has a stochastic
representation

(4.1) y d= μ + ζAU,

where U is a random vector uniformly distributed on the unit sphere Sq−1 in R
q ,

ζ ≥ 0 is a scalar random variable independent of U, A ∈ R
p×q is a deterministic

matrix satisfying AA′ = �. Here, � is called the scatter matrix. Note that the
representation in (4.1) is not identifiable since we can rescale ζ and A. To make
the model identifiable, we require Eζ 2 = q so that Cov(y) = �. In addition, we
assume � is nonsingular, that is, q = p, following Assumption 2.1. In this paper,
we only consider continuous elliptical distributions with P(ζ = 0) = 0.

An equivalent definition of an elliptical distribution is through its characteristic
function exp(it′μ)ψ(t′�t), where ψ is a properly defined characteristic function
and i := √−1. ζ and ψ are mutually determined by each other. In this setting,
we denote by y ∼ EDp(μ,�,ψ). The marginal and conditional distributions of an
elliptical distribution are also elliptical.

Compared to the Gaussian family, the elliptical family provides more flexibil-
ity in modeling complex data. The main advantage of the elliptical family is its
ability to model heavy-tailed data and the tail dependence between variables [Hult
and Lindskog (2002)], which makes it useful for modeling many modern datasets,
including financial data [Rachev (2003), Čížek, Härdle and Weron (2005)], ge-
nomics data [Liu et al. (2003), Posekany, Felsenstein and Sykacek (2011)], and
fMRI data [Ruttimann et al. (1998)].

The following assumption is considered in this section.

ASSUMPTION 4.1 (Elliptical distribution). The data yi ’s are elliptically dis-

tributed, that is, yi ∼ EDp(μ,�, ζ ) or yi
d= μ + ζi�

1
2 Ui with Ui uniformly dis-

tributed on the unit sphere Sp−1 and the random variable ζi ≥ 0 independent from
Ui . Additionally, we assume E[ζ 2

i ] = p due to identifiability and maxj≤p Ey4
ij is

bounded by an absolute constant independent of p.

The above assumption is implied by imposing a joint elliptical model of the
factors and noises, that is, (f′t ,u′

t )
′ ∼ EDp+m(0,diag(Im,�u), ζ ). Obviously, the
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elliptical family is more general than the Gaussian family and contains heavy-
tailed distributions. One typical example is multivariate t-distribution with degrees
of freedom ν. The restriction ν > 4 will be imposed so that it has bounded fourth
moments, only for the sake of estimating marginal variances by methods discussed
in Section 4.2. We will discuss other possible alternative methods and the necessity
of the condition of bounded fourth moments in Section 4.5.

4.2. Robust estimation of variances. Let � = DRD where R is the correla-
tion matrix and D = diag(σ1, . . . , σp) is the diagonal matrix consisting of standard
deviations for each dimension. Our construction of �̂1 is based on separately es-
timating D and R. In this subsection, we first introduce a robust estimator D̂ to
estimate D.

Since yi ∼ EDp(μ,�, ζ ) may be heavy-tailed, we need a method to robustly es-
timate μ to center the data and then estimate the covariance matrix �. Substantial
amount of researches has been conducted on this subject in both low-dimensional
setting [Huber (1964), Beran (1978), Bickel (1982), Zou and Yuan (2008), Wu
and Liu (2009)] and high-dimensional setting [Belloni and Chernozhukov (2011),
Fan, Fan and Barut (2014)]. In addition, Hampel (1974), Rousseeuw and Croux
(1993), Koenker (2005) considered the problem from a quantile perspective. In
this section, we introduce two M-estimators proposed by Fan, Li and Wang (2017)
and Catoni (2012). The methods allow asymmetric distributions, and thus are also
useful for robust estimation of variances.

Let us denote μ = (μ1, . . . ,μp)′ and yi = (yi1, . . . , yip)′ for i = 1, . . . , n.
We estimate each μj using the data {y1j , . . . , ynj }. The M-estimator μ̂ =
(μ̂1, . . . , μ̂p)′ of Fan, Li and Wang (2017) is obtained by solving

(4.2)
n∑

i=1

h
[
α(yij − μ̂j )

] = 0

for each j ≤ p, where h : R → R is the derivative function of the Huber loss
satisfying h(x) = x if |x| ≤ 1, h(x) = 1 if x > 1 and h(x) = −1 if x < −1. The
above estimator can be equivalently obtained by minimizing the Huber loss

�α(x) =
{

2α−1|x| − α−2: |x| > α−1;
x2: |x| ≤ α−1.

According to Fan, Li and Wang (2017), choosing α =
√

log(ε−1)/(nv) for ε ∈
(0,1) such that log(ε−1) ≤ n/8 and v an upper bound of max{σ 2

1 , . . . , σ 2
p}, we

have

(4.3) P

(
|μ̂j − μj | ≤ 4

√
v log(ε−1)

n

)
≥ 1 − 2ε.
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Catoni (2012) proposed another M-estimator by solving (4.2) with a different
strictly increasing influence function h(x) such that − log(1−x +x2/2) ≤ h(x) ≤
log(1 + x + x2/2). For a value ε ∈ (0,1) such that n > 2 log(1/ε), letting

α =
√√√√√ 2 log(ε−1)

n(v + 2v log(ε−1)

n−2 log(ε−1)
)
,

where v is again an upper bound of max{σ 2
1 , . . . , σ 2

p}, Catoni (2012) showed that
the solution of (4.2) satisfies

(4.4) P

(
|μ̂j − μj | ≤

√
2v log(ε−1)

n − 2 log(ε−1)

)
≥ 1 − 2ε.

Therefore, by taking ε = 1/(n∨p)2, ‖μ̂−μ‖∞ ≤ C
√

logp/n with probability
at least 1 − 2(n ∨ p)−1 for both methods. We implement Catoni’s estimator in the
simulation by taking h(x) = sgn(x) log(1 + |x| + x2/2). For the choice of v, we
simply take v = 3 max{σ̃ 2

1 , . . . , σ̃ 2
p} as in Fan et al. (2015), where σ̃ 2

j is the sample
variance of the j th dimension. Catoni (2012) also introduced the Lepski’s method
for adaptively choosing v.

To estimate σ 2
j , we apply the above M-estimators on the squared data. Note that

σ 2
j = E(y2

ij ) − μ2
j . We have estimated μj above. To estimate E(y2

ij ), we employ

the M-estimator (4.2) on the squared data {y2
1j , . . . , y

2
nj }, and denote the result-

ing estimator by η̂j . This works as the fourth moment of yij is finite. The robust
variance estimator is then defined as

(4.5) σ̂ 2
j = max

{
η̂j − μ̂2

j , δ0
}
,

where δ0 > 0 is a small constant (δ0 < min{σ 2
1 , . . . , σ 2

p}).
Let D̂ = diag(σ̂1, . . . , σ̂p), we have the following proposition.

PROPOSITION 4.1. Suppose Assumption 4.1 holds and n ≥ C logp,

(4.6) ‖D̂ − D‖ = OP (
√

logp/n).

Additionally, if given the structure � = BB′ +�u with bounded ‖�u‖ and ‖B‖max
as in Theorems 2.1 and 2.2, we have ‖D‖ = O(1) and ‖D̂‖ = OP (1).

4.3. Marginal Kendall’s tau estimator. We now provide a pilot estimator to
robustly estimate the correlation matrix R = (rjk) when the data follow an ellip-
tical distribution. The idea of Kendall’s tau statistic was introduced by Kendall
(1948) for estimating pairwise comovement correlation. Kendall’s tau correlation
coefficient is defined as

(4.7) τ̂jk := 2

n(n − 1)

∑
i<i′

sgn
(
(yij − yi′j )(yik − yi′k)

)
,
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whose population counterpart is

(4.8) τjk := P
(
(y1j − y2j )(y1k − y2k) > 0

) − P
(
(y1j − y2j )(y1k − y2k) < 0

)
.

Note that the estimator does not depend on the location μ. So without loss of gener-
ality, we assume μ = 0. Then y ∼ EDp(0,�, ζ ) with independent and identically
distributed samples y1, . . . ,yn.

Let T = (τjk) and T̂ = (τ̂jk). For the elliptical family, it is known that the non-
linear relationship rjk = sin(π

2 τjk) holds for the Pearson correlation and Kendall’s
correlation [Fang, Kotz and Ng (1990), Han and Liu (2014)]. Therefore, a natural
estimator for R is R̂ = (̂rjk) where

(4.9) r̂jk = sin
(

π

2
τ̂jk

)
.

By Theorem 3.2 of Han and Liu (2017), with probability larger than 1−2ε − ε2

for any ε ∈ (0,1),

‖R̂ − R‖2

≤ π2‖R‖2

(
2

√
(tr R/‖R‖2 + 1) log(p/ε)

3n
+ (tr R/‖R‖2 + 1) log(p/ε)

n

)
.

Using the fact ‖D‖−2‖�‖ ≤ ‖R‖ ≤ ‖D−1‖2‖�‖, we know ‖R‖ 	 ‖�‖ 	 p since
all the eigenvalues of D are bounded away from infinity and zero. This is true
because λmin(D2) = minj σ 2

j ≥ min‖ξ‖=1 ξ ′�ξ = λmin(�) ≥ c0, and ‖D‖ = O(1)

in Proposition 4.1. This implies, when n ≥ C logp,

(4.10) ‖R̂ − R‖2 = OP

(√
p2 logp

n

)
.

Wegkamp and Zhao (2016) derived the same bound as above, while Mitra and
Zhang (2014) got rid of the logp term although their results cannot be directly
applied to the case of ‖R‖ � logp.

Combining the rates in (4.6) and (4.10), we conclude if n ≥ C logp,∣∣λj (D̂R̂D̂) − λj (DRD)
∣∣

≤ ‖D̂R̂D̂ − DRD‖
= OP

(∥∥(D̂ − D)RD
∥∥ + ∥∥D̂(R̂ − R)D̂

∥∥ + ∥∥(D̂ − D)R(D̂ − D)
∥∥)

= OP

(√
p2 logp

n

)
.

Define �̂1 = D̂R̂D̂ and the estimator �̂ED = diag(λ1(�̂1), . . . , λm(�̂1)), which
consists of the first m eigenvalues of �̂1. The following proposition holds based
on the above discussion.
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PROPOSITION 4.2. Under Assumptions 2.1 and 4.1, when n ≥ C logp,

(4.11)
‖�̂1 − �‖max = OP (

√
logp/n),∥∥(�̂ED − �)�−1∥∥

max = OP (
√

logp/n).

Proposition 4.2 verifies the first and second sufficient conditions in (1.6). We
can easily check the first conclusion in (4.11) using concentration bound for U-
statistics and Proposition 4.1.

Although �̂1 based on the marginal Kendall’s tau has good properties for lead-
ing eigenvalues, it is difficult to prove the third sufficient condition for eigenvectors
in (1.6) due to the complicated nonlinear sin(·) transformation. Luckily, we do not
require �̂ and �̂ in (1.6) to come from the same covariance estimator. In the next
subsection, we propose another covariance estimator �̂2 whose eigenvectors sat-
isfy the third sufficient condition in (1.6).

4.4. Spatial Kendall’s tau estimator. To find an estimator �̂ED that satisfies
the third condition in (1.6), we resort to the spatial Kendall’s tau estimator. We
focus our analysis again on the transformed data xi = �′

pyi . The population spatial
Kendall’s tau matrix is defined as

(4.12) K := E

(
(x1 − x2)(x1 − x2)

′

‖x1 − x2‖2
2

)
.

The sample version of the spatial Kendall’s tau estimator is a second-order U-
statistic:

(4.13) K̂ := 2

n(n − 1)

∑
i<i′

k(xi ,xi′),

where

k(xi ,xi′) = (xi − xi′)(xi − xi′)′

‖xi − xi′‖2
2

.

Several important properties of the above estimator are worth mentioning. First,
this estimator is location invariant, which allows us to assume μ = 0 without loss

of generality, that is, xi
d= ζi�

1
2
pUi . Moreover, the eigenvectors of the estimator K̂

is equivariant to orthogonal transformation. So if we define the spatial Kendall’s
tau estimator based on the observed data yi as

(4.14) �̂2 = 2

n(n − 1)

∑
i<i′

k(yi ,yi′) = �pK̂�′
p,

we have ξ̂
(Y )

j = �p ξ̂ j , where ξ̂ j and ξ̂
(Y )

j are the j th empirical eigenvector of K̂
and �̂2, respectively.
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The most important feature of the U-statistic estimator in (4.13) is that its ker-
nel k(xi ,xi′) does not depend on the distribution of ζ . To see this, for elliptically
distributed x, we have

x − x̃ d= ζ�
1
2
pU − ζ̃�

1
2
pŨ d= ζ̄�

1
2
pU,

where x̃ is an independent copy of x and the characteristic function of ζ̄ is de-
termined by that of ζ . See Hult and Lindskog (2002) for a detailed expression
of the characteristic function. Thus, for a multivariate standard normal vector
g = (g1, . . . , gp)′,

k(x, x̃) = (x − x̃)(x − x̃)′

‖x − x̃‖2
2

d= �
1
2
pUU′�

1
2
p

U′�pU
d= �

1
2
pgg′�

1
2
p

g′�pg
,

which depends only on g. The last equality is due to U d= g/‖g‖. Thus, K defined
by (4.12) is a diagonal matrix by the symmetry of g.

Write K = diag(θ1, . . . , θp), where θj is defined as

θj = E

( λjg
2
j∑p

k=1 λkg
2
k

)
,

which is a multiple of λj . Obviously, K shares the same eigenvalue ordering as
that of Cov(xi ) = �p , and thus the same eigenspaces as those of Cov(xi ). So
estimating the leading eigenvectors of Cov(xi ) is equivalent to estimating those
of K. In sum, �̂2 particularly fits the goal of estimating the eigenvectors of �.

The above spatial Kendall’s tau statistic was first introduced in Choi and Mar-
den (1998) and has been applied to low-dimensional covariance estimation [Visuri,
Koivunen and Oja (2000)] and principal component estimation [Marden (1999),
Croux, Ollila and Oja (2002)]. It is also widely used in testing literature, for exam-
ple, Tyler (1982), Hallin and Paindaveine (2006). The papers listed here are only
illustrative rather than complete.

We now consider the theoretical properties of the eigenvectors ξ̂ j of K̂. As
before, we choose the proper sign for ξ̂ j , which is divided into the spiked part ξ̂ jA

and nonspiked part ξ̂ jB .

THEOREM 4.1. Under Assumptions 2.1 and 4.1, for j ≤ m, we have:

(i) ‖ξ̂ jA − ejA‖ = OP (n−1/2), where ejA is a unit vector of length m with 1
at the j th coordinate and 0 everywhere else;

(ii) ‖�ξ̂ jB‖max = OP (
√

logp/(np)) for any �p×(p−m) s.t. �′� = Ip−m.

The proof for Theorem 4.1 is relegated to Appendix F in the Supplementary Ma-
terial [Fan, Liu and Wang (2018)]. Define �̂2 as the spatial Kendall’s tau estimator
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of the observed data yi’s and �̂ED = (̂ξ
(Y )

1 , . . . , ξ̂
(Y )

m ) as the leading eigenvectors
of �̂2. Theorem 4.1 implies

‖�̂ED − �‖max = OP

(√
logp/(np)

)
,

following the same derivation in (3.2). So the third sufficient condition in (1.6)
holds for �̂ED. Together with the estimators �̂1 and �̂ED defined in Section 4.3,
we are ready to apply the generic POET procedure for elliptical factor models
and achieve all the desired convergence rates for both covariance and precision
matrices.

We comment on the computation time for the robust procedure. Compared with
the computation complexity O(p2n) of the sample covariance matrix, T̂ and K̂
can be calculated by an efficient algorithm based on sorting and balanced binary
trees, which achieves the complexity O(p2n logn). Please see Knight (1966) and
Christensen (2005) for more details.

4.5. Other alternatives. Under the elliptical distribution, in addition to the
above marginal and spatial Kendall’s tau estimators, there are other possible meth-
ods. In this section, we discuss some alternative options.

For mean estimation, since elliptical distribution is symmetric, sample median
should also work well. For marginal variance estimation, Hsu and Sabato (2014)
proposed the “median-of-means” estimator, which has an optimal concentration
bound similar to (4.3) and (4.4) when the fourth moments are finite, but has less
efficiency compared with the M-estimators [Fan, Wang and Zhong (2016)]; in ad-
dition, some quantile-based methods such as the mean absolute deviation (MAD)
and Qn [Hampel (1974), Rousseeuw and Croux (1993)] may be used to robustly
estimate the variance if the underlying distribution is known. For covariance ma-
trix estimation, Han, Lu and Liu (2014) proposed the generalized MAD and Qn

estimators to estimate the scatter matrix, which is proportional to the covariance
matrix, but we still need a proper way to estimate the one-dimensional scaling fac-
tor. Visuri, Koivunen and Oja (2000) mentioned other two-step robust procedures
to estimate eigenvalues and eigenvectors. For example, one can first estimate the
eigenvectors using �̂2 and then project the data onto the estimated eigenvectors to
further estimate the eigenvalues (variances of the projected data); or one can first
estimate the median μ̂ and then replace yi′ with μ̂ in (4.7) and (4.14) and aver-
age over only sample index i [Dürre, Vogel and Tyler (2014)]. Those methods are
potentially applicable, although their analysis can be involved, especially in high
dimensions.

Another question is about the necessity of the finite fourth moments in As-
sumption 4.1, which serves only for the estimation of marginal variances. This
condition seemingly cannot be removed in all the alternative methods discussed
above. In (4.3) and (4.4), the deviation bound depends on v, which has to be as-
sumed bounded in order to achieve the desired rate ‖D̂ − D‖ = OP (

√
logp/n).
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For the MAD type of estimators, we still need to estimate the auxiliary scalar with
a desired rate of convergence, say OP (n−1/2). It is not clear to us whether this
can be done without the condition of bounded fourth moments. Certainly, if the
factor analysis is applied to standardized variables, for example, as in Wegkamp
and Zhao (2016), the marginal variance estimation can be avoided. However, one
may argue in some applications, scales indeed matter to explain variability.

5. Simulations. Simulations are carried out in this section to demonstrate the
effectiveness of the proposed method for elliptical factor models. The robust esti-
mators �̂1, �̂ED, �̂ED proposed in Section 4 will be compared with the original
POET estimator based on the sample covariance, that is, �̂Y , �̂SG, �̂SG discussed
in Section 3. We insert the two sets of pilot estimators into the generic POET
framework described in Section 2 for estimating both conditional sparsity covari-
ances and conditional graphical models. In addition, we also compare �̂

T and �̂
T
u

in estimating � in relative Frobenius norm ‖ · ‖� discussed in Section 2.3.

5.1. Conditional sparse covariance estimation. We consider the factor model
(1.1) with (ft ,ut ) jointly follow the multivariate t-distribution with degrees of free-
dom ν. Larger ν corresponds to lighter tail and ν = ∞ corresponds to the multi-
variate normal distribution. We simulated n independent samples of (ft ,ut ) from
multivariate t-distribution with covariance matrix diag(Im, Ip) and each row of B
from N (0, Im). The observed data is formed as yt = Bft + ut and the true covari-
ance is � = BB′ + Ip . We vary p from 100 to 1000 with sample size n = p/2, and
fixed number of factors m = 3.

For each triple (p,n,m), both the original POET estimator (�̂Y , �̂SG, �̂SG) and
the proposed robust POET estimator (�̂1, �̂ED, �̂ED) were employed to estimate
�u and �. 100 simulations were conducted for each case. The log-ratios (base 2)
of the average estimation errors using the two methods were reported in Figure 1,
measured under the following norms:

• For �u: ‖�̂T
u − �u‖max, ‖�̂T

u − �u‖2, ‖(�̂T
u )−1 − �−1

u ‖2.

• For �: ‖�̂T − �‖max,‖�̂T − �‖�,‖�̂T
u − �‖� , ‖(�̂T

)−1 − �−1‖2.
• For BB′: ‖�̂�̂�̂

′ − BB′‖2, ‖L−1/2(�̂�̂�̂
′ − BB′)L−1/2‖F .

• For initializers: ‖�̂ − �‖max,‖(�̂ − �)�−1‖2, ‖�̂ − �‖max.

In addition, three different degrees of freedom ν = 4.2, ν = 7, ν = ∞ were chosen,
representing heavy tail, moderate tail and normal situations.

From Figure 1, when factors and noises are heavy-tailed from t4.2 (black dotted),
the original POET estimator is poorly behaved while the robust method performs
well as we expected. t7 (blue dashed) typically fits financial or biological data
better than normal in practice. In this case, we also observe a significant advantage
of the robust POET estimator. The errors are reduced by roughly a half if the rank
based estimation is applied. However, when the distribution is indeed normal or t∞



ELLIPTICAL FACTOR MODELS 1405

FIG. 1. Conditional sparse covariance matrix estimation. The 12 plots correspond to logarithms
(base 2) of the ratios of average errors of the original and the robust POET estimators, measured
in different norms. Data were generated from the multivariate t-distribution with degree of freedom
ν = 4.2 (black dotted), ν = 7 (blue dashed), ν = ∞ (orange solid) with p from 100 to 1000, n = p/2
and m = 3. 100 simulations were conducted for each p.
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FIG. 2. Comparison of relative Frobenius norms. The plots correspond to average errors of
the original POET (for ν = ∞, solid) and the robust POET (for ν = 4.2, dotted). In each set-

ting, we compare ‖�̂T − �‖� (red) and ‖�̂T
u − �‖� (blue) in the left panel and compare

‖L−1/2(�̂�̂�̂
′ − BB′)L−1/2‖F (red) and ‖L−1/2BB′L−1/2‖F (blue) in the right panel.

(orange solid), the original POET estimator based on sub-Gaussian data performs
better, though the robust method also achieves comparable performance.

In Figure 2, unlike the log ratios plotted in Figure 1, we directly plot the errors of
the optimal method (original vs. robust POET) in the setting of t-distribution with
ν = 4.2 (dotted) and ν = ∞ (solid). We specifically compare ‖�̂T −�‖� (red) and
‖�̂T

u − �‖� (blue) in the left panel and compare ‖L−1/2(�̂�̂�̂
′ − BB′)L−1/2‖F

(red) and ‖L−1/2(0 − BB′)L−1/2‖F (blue) in the right panel (note that blue dotted
and blue solid lines coincide). As discussed in Section 2.3, the naive estimator
�̂

T
u is optimal in the relative Frobenius norm and indeed superior to the POET

estimator. However, POET provides good recovery for the low-rank part while
�̂

T
u only estimates the sparse part.

5.2. Conditional graphical model estimation. We consider the conditional
graphical model described in Section 2.4. In particular, we compare the accuracy
of different methods for estimating the precision matrices �u and �. Here, we
assume a block diagonal precision matrix �u = diag(M, . . . ,M) where M is a 2
by 2 correlation matrix with off-diagonal element equals 0.5. Then we simulate
(ft ,ut ) again from the multivariate t-distribution with covariance diag(Im,�−1

u ).
We set the dimension p to range from 50 to 500, sample size n = 0.6p and a fixed
number of factors m = 3.

For each configuration of (p,n,m), after applying POET with the original and
robust pilot estimators, we estimate �̂u and �̂ as proposed in Section 2.4 using the
CLIME procedure. To efficiently solve large-scale CLIME optimization (2.11),
we used the R package “fastclime” developed by Pang, Liu and Vanderbei (2014),
which provides a very efficient C implementation of a parametric dual simplex
algorithm [Vanderbei (2008)]. One hundred simulations were conducted for each
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FIG. 3. Conditional graphical model estimation. The plots correspond to log ratios (base 2) of
average errors of the original and the robust POET estimators for �̂u and �̂, measured in spectral
norms. Data were generated from multivariate t-distribution with degree of freedom ν = 4.2 (black
dotted), ν = 7 (blue dashed), ν = ∞ (orange solid) with p from 50 to 500, n = 0.6p and m = 3. 100
simulations were conducted for each p.

case. The log-ratios (base 2) of the average errors of the two methods were re-
ported in Figure 3, measured under spectral norms ‖�̂u − �u‖2 and ‖�̂ − �‖2.
Three different degrees of freedom ν = 4.2 (black dotted), ν = 7 (blue dashed),
ν = ∞ (orange solid) were used as in Section 5.1. Clearly, the robust estimators
outperform nonrobust ones for t4.2 and t7, and maintains competitive for the nor-
mal case.

6. Discussions. We provide a fundamental understanding of high-dimensional
factor models under the pervasiveness condition. In particular, we extend the
POET estimator in Fan, Liao and Mincheva (2013) to a generic procedure which
could take any pilot covariance matrix estimators as initial inputs, as long as they
satisfy a set of sufficient, high-level conditions specified in (1.6). Transparent the-
oretical results are then developed. The main challenge is to check those high-level
conditions for given estimators. When the observed data yi is sub-Gaussian, we
are able to use sample covariance to construct initial estimators. However, if we
encounter heavy-tailed elliptical distributions, robust estimators for the eigenstruc-
ture should be considered. The paper provides an example of separately estimating
leading eigenvalues and eigenvectors under elliptical factor models. The results
may be generalized to richer families of distributions. For example, recently by
using a novel eigenvector perturbation bound, Fan, Wang and Zhong (2017) is
able to design pilot estimators satisfying (1.6) for general heavy-tailed data with
just bounded fourth moments.

It is interesting to see whether it is possible to eliminate the pervasiveness con-
dition. Based on the recent work of Wang and Fan (2017), it is possible to relax
the spiked eigenvalue condition from order p to a weaker signal level of order√

p, by correcting the estimation biases of the empirical eigenvalues, under sub-
Gaussian factor models. However, as pointed out by Johnstone and Lu (2009),
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bounded eigenvalues are insufficient for consistent estimation of the eigenstruc-
ture when p ≥ n. It is an interesting topic of future investigation to understand
the weakest condition on the divergence rate of the spiked eigenvalues. It is worth
mentioning that the requirement on the pervasiveness condition also depends on
the targeted measure of estimation error. For example, the pervasiveness condi-
tion may be eliminated if we only care about optimally estimating � in ‖ · ‖� ,
which we perceive as an improper criterion for the POET procedure. However,
under other measures of estimation error (e.g., ‖ · ‖F , ‖ · ‖2, etc.) and under
heavy-tailed distributions, diverging eigenvalues (if not at the diverging rate p)
might still be necessary for separately recovering the low-rank and sparse compo-
nents.

Agarwal, Negahban and Wainwright (2012) considered a similar type of low-
rank plus sparse decomposition, but their work is based on solving the convex
optimization of Frobenius loss with nuclear and sparse regularization. We remark
on the comparison of the optimization approach with our generic POET approach.
The POET procedure can be viewed as a one-step approximation to the optimiza-
tion problem. Therefore, the optimization approach may potentially reduce the
required signal level as it involves multiple iterations. But it is not clear how much
the signal can be reduced for optimal recovery of both the low-rank and sparse ma-
trices in various norms. Specifically, Agarwal, Negahban and Wainwright (2012)
do not leverage pervasiveness, but assume the elementwise maximum of the low-
rank component to be of order O(1/p), which is not as natural as pervasive factors.
In addition, they only derived the Frobenius error bounds. Chandrasekaran, Parrilo
and Willsky (2012) studied an optimization based estimator for the latent graph-
ical model, but under a typical setting [μ(�) 	 1, ξ(T ) 	 1/

√
p following their

notation], they require the minimal eigenvalue of the low-rank matrix to be larger
than the order p/

√
n and only consider the situation of p ≤ Cn. So with a rela-

tively smaller dimensionality, they still have a condition on the diverging rate of
leading eigenvalues, almost as strong as our pervasiveness condition. Wegkamp
and Zhao (2016) applied the optimization approach to the strict factor model for
p ≤ n. Their requirement on the signal level is of a similar order p

√
logp/n. Hsu,

Kakade and Zhang (2011) put no restriction on the signal strength; however, their
conclusions use very different norms from ours and are not easy to be compared
with. By all means, the comparison between the optimization approach and the
generic POET approach should be studied in further details. We leave this for fu-
ture investigation.

APPENDIX: PROOFS IN SECTION 2

We first state a version of the Davis and Kahan’s sin θ theorem as follows, which
will be used now and again in the proofs.
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PROPOSITION A.1 [Davis and Kahan (1970)]. Using the notation of our pa-
per, we have

‖ξ̂ j − ξ j‖2 ≤ √
2
∥∥ξ̂ j ξ̂

′
j − ξ j ξ

′
j

∥∥
2 ≤

√
2‖�̂ − �‖

min{|̂λj−1 − λj |, |λj − λ̂j+1|}
with the convention of choosing the right sign for eigenvectors and λ̂0 = ∞.

PROOF OF THEOREM 2.1. We establish (2.6) here and put the remaining
proofs for (2.7)–(2.9) in Appendix B in the Supplementary Material [Fan, Liu and
Wang (2018)].

To obtain the rates of convergence in (2.6), it suffices to prove ‖�̂u −�u‖max =
OP (wn). Once the max error of the sparse matrix �u is controlled, it is not hard
to show the adaptive procedure discussed in (2.5) gives �̂

T
u such that the spectral

error ‖�̂T
u − �u‖2 = OP (mpw

1−q
n ); see Fan, Liao and Mincheva (2011), Cai and

Liu (2011), Rothman, Levina and Zhu (2009). Furthermore, ‖(�̂T
u )−1 −�u

−1‖2 ≤
‖(�̂T

u )−1‖2‖�̂T
u − �u‖2‖�−1

u ‖2. So ‖(�̂T
u )−1 − �u

−1‖2 is also OP (mpw
1−q
n )

due to the boundedness of ‖�−1
u ‖2.

According to the first condition in (1.6), ‖�̂ −�‖max = OP (
√

logp/n). There-
fore, to show ‖�̂u − �u‖max = OP (wn), we only need to prove the low-rank part
of � concentrates at a desired rate under max norm, that is,

(A.1)
∥∥�̂�̂�̂ − BB′∥∥

max = OP (
√

logp/n + 1/
√

p).

Let BB′ = �̃�̃�̃
′ where �̃ = diag(λ1(BB′), . . . , λm(BB′)) and �̃p×m consists

of the corresponding m eigenvectors of BB′. To obtain (A.1), we bound �1 :=
‖�̂�̂�̂

′ − ���′‖max and �2 := ‖�̃�̃�̃
′ − ���′‖max separately. Four useful rates

of convergence are listed in the following:

‖�̃ − �‖max ≤ ‖�u‖ = O(1),

‖�̃ − �‖max ≤ C‖�u‖/p = O(1/p),∥∥(�̂ − �)�−1∥∥
max = OP (

√
logp/n),

‖�̂ − �‖max = OP

(√
logp/(np)

)
.

The first one is due to Weyl’s inequality since ‖�̃ − �‖max = ‖�̃ − �‖2 while
the second follows from trivial bound ‖�̃ − �‖max ≤ ‖�̃ − �‖F , which is further
bounded by C‖�u‖/p according to the sin θ theorem of Davis and Kahan (1970)
(see Proposition A.1). The third and fourth rates are by assumption. Next, we show
‖�‖max = O(1/

√
p) and derive the rates for �1 and �2.
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Note that∥∥��
1
2 − �̃�̃

1
2
∥∥

max ≤ ∥∥B�̃
− 1

2
(
�

1
2 − �̃

1
2
)∥∥

max + ∥∥(� − �̃)�
1
2
∥∥

max

≤ C
‖B‖max + ‖�u‖√

p
= o(1).

Since ‖B‖max = ‖�̃�̃
1
2 ‖max = O(1), we have ‖��1/2‖max = O(1) and ‖�‖max =

O(1/
√

p). Using this fact, the following argument implies �1 = OP (
√

logp/n)

and �2 = O(
√

1/p). More specifically,

�1 ≤ ∥∥�̂(�̂ − �)�̂
′∥∥

max + ∥∥(�̂ − �)�(�̂ − �)′
∥∥

max + 2
∥∥��(�̂ − �)′

∥∥
max

= Op

(
p−1‖�̂ − �‖max + √

p‖�̂ − �‖max
) = OP (

√
logp/n),

�2 ≤ ∥∥�̃(�̃ − �)�̃
′∥∥

max + ∥∥(�̃ − �)�(�̃ − �)′
∥∥

max + 2
∥∥��(�̃ − �)′

∥∥
max

= O
(
p−1‖�̃ − �‖max + √

p‖�̃ − �‖max
) = O(

√
1/p).

Combining the rates of �1 and �2, we prove (A.1). Thus (2.6) follows. �
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SUPPLEMENTARY MATERIAL

Technical proofs (DOI: 10.1214/17-AOS1588SUPP; .pdf). This supplementary
material contains all the remaining proofs and technical lemmas and the compari-
son of relative error norms.
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