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SHARP ORACLE INEQUALITIES FOR LEAST SQUARES
ESTIMATORS IN SHAPE RESTRICTED REGRESSION1

BY PIERRE C. BELLEC

ENSAE, UMR CNRS 9194 and Rutgers University

The performance of Least Squares (LS) estimators is studied in shape-
constrained regression models under Gaussian and sub-Gaussian noise. Gen-
eral bounds on the performance of LS estimators over closed convex sets
are provided. These results have the form of sharp oracle inequalities that
account for the model misspecification error. In the presence of misspecifica-
tion, these bounds imply that the LS estimator estimates the projection of the
true parameter at the same rate as in the well-specified case.

In isotonic and unimodal regression, the LS estimator achieves the non-
parametric rate n−2/3 as well as a parametric rate of order k/n up to logarith-
mic factors, where k is the number of constant pieces of the true parameter. In
univariate convex regression, the LS estimator satisfies an adaptive risk bound
of order q/n up to logarithmic factors, where q is the number of affine pieces
of the true regression function. This adaptive risk bound holds for any collec-
tion of design points. While Guntuboyina and Sen [Probab. Theory Related
Fields 163 (2015) 379–411] established that the nonparametric rate of convex
regression is of order n−4/5 for equispaced design points, we show that the
nonparametric rate of convex regression can be as slow as n−2/3 for some
worst-case design points. This phenomenon can be explained as follows: Al-
though convexity brings more structure than unimodality, for some worst-
case design points this extra structure is uninformative and the nonparametric
rates of unimodal regression and convex regression are both n−2/3. Higher
order cones, such as the cone of β-monotone sequences, are also studied.

1. Introduction. This paper studies shape-constrained regression models,
which includes isotonic, convex and unimodal regression. These regression models
are nonparametric but enjoy a canonical estimator, namely, the shape-constrained
Least-Squares (LS) estimator. This canonical estimator requires no tuning param-
eter, which is in contrast to most other nonparametric models where the choice
of the tuning parameter can be a challenging issue. We study the performance
of the shape-constrained LS estimator in univariate fixed-design regression un-
der the squared loss. This problem was studied in, among others, Meyer and
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Woodroofe [18], Zhang [25], Chatterjee [9], Guntuboyina and Sen [16] and Chat-
terjee et al. [11].

Assume that we have the observations

(1.1) Yi = μi + ξi, i = 1, . . . , n,

where μ = (μ1, . . . ,μn)
T ∈ R

n is unknown, ξ = (ξ1, . . . , ξn)
T is a noise vector

with n-dimensional Gaussian distribution N (0, σ 2In×n) where σ > 0 and In×n is
the n×n identity matrix. The vector y = (Y1, . . . , Yn)

T is observed and the goal is
to estimate μ. The estimation error is measured with the scaled norm ‖ · ‖ defined
by

(1.2) ‖u‖2 = 1

n

n∑
i=1

u2
i , u = (u1, . . . , un)

T ∈ R
n.

The error of an estimator μ̂ of μ is given by ‖μ̂ − μ‖2. Denote by Eμ and Pμ

the expectation and the probability with respect to the distribution of the random
variable y = μ + ξ .

The components μ1, . . . ,μn of μ can be interpreted as the values of an unknown
regression function f : R→R at given, deterministic design points x1 < · · · < xn.
We observe Yi = f (xi) + ξi for i = 1, . . . , n and our goal is to construct esti-
mates μ̂i that are close to f (xi). The shape constraint is a nonparametric class of
functions, for instance, the class of nondecreasing functions or the class of convex
functions. For any design points x1 < · · · < xn, define the sets

S↑
n := {

u = (
f (x1), . . . , f (xn)

)T ∈ R
n for some nondecreasing f

}
,(1.3)

KC
x1,...,xn

:= {
u = (

f (x1), . . . , f (xn)
)T ∈ R

nfor some convex f
}
.(1.4)

The above notation emphasizes that the set S↑
n does not depend on a particular

collection of design points x1, . . . , xn, whereas the set KC
x1,...,xn

does depend on
the design points x1, . . . , xn. The isotonic regression problem studies the class of
nondecreasing functions and the set S↑

n , equivalently defined as

S↑
n := {

u = (u1, . . . , un)
T ∈ R

n : ui ≤ ui+1, i = 1, . . . , n − 1
}
.

The convex regression problem studies the class of convex functions and the set
KC

x1,...,xn
. If x1 < · · · < xn are equispaced design points in R, that is, xi = (i −

1)(x2 − x1) + x1, i = 2, . . . , n, then the set KC
x1,...,xn

is equal to

(1.5) SC
n := {

u = (u1, . . . , un)
T ∈ R

n : 2ui ≤ ui+1 + ui−1, i = 2, . . . , n − 1
}
.

This paper studies the Least Squares (LS) estimator in shape restricted regression
under model misspecification. The LS estimator over a nonempty closed set K ⊂
R

n is defined by

μ̂
LS

(K) ∈ argmin
u∈K

‖y − u‖2.
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If K is a closed set, there exists at least one solution to this minimization problem
and μ̂

LS
(K) denotes any such solution. The sets S↑

n ,KC
x1,...,xn

are closed and con-

vex and we will study the performance of the isotonic LS estimator μ̂
LS

(S↑
n ) and

the convex LS estimator μ̂
LS

(KC
x1,...,xn

).
The techniques developed in the present paper deepens our understanding of

two problems in shape restricted regression: (a) the role of the design points intro-
duced in the next subsection, and (b), the consequences of model misspecification,
introduced in Section 1.2. A detailed summary of our contributions is given in
Section 1.3.

1.1. On the design points in univariate shape-constrained regression models.
It is clear that the design points play no particular role in isotonic regression since
the set (1.3) is the same for any collection of design points x1 < · · · < xn. However,
the role of the design points is not clear in convex regression. Although the convex
LS estimator for equispaced design points is well studied in the literature [10, 16],
little is known about its performance if the design points are not equispaced. This
raises the following question:

• What is the performance of the convex LS estimator if the design points are
allowed to be arbitrarily close or arbitrarily far from each other?

We now review the literature on the isotonic and convex LS estimators. The
following quantities will be useful. First, define the total variation

(1.6) V (θ) := max
i=1,...,n

θi − min
i=1,...,n

θi for all θ = (θ1, . . . , θn)
T ∈ R

n.

If u = (u1, . . . , un)
T ∈ S↑

n , its total variation is simply V (u) = un − u1. For u ∈
S↑

n , let k(u) ≥ 1 be the minimal integer k such that u is piecewise constant with
k pieces. For u ∈ KC

x1,...,xn
, let q(u) ≥ 1 be the minimal integer q such that u is

piecewise affine with q pieces [cf. Section 1.4 below for formal definitions of k(·)
and q(·)].

Previous results on the performance of the LS estimator μ̂
LS

(S↑
n ) can be found

in [9, 11, 18, 25]. Two types of risk bounds or oracle inequalities have been ob-
tained so far. If, μ = (μ1, . . . ,μn)

T ∈ S↑
n , it is known [9, 11, 18, 25] that for some

absolute constant c > 0,

(1.7) Eμ

∥∥μ̂LS(S↑
n

) − μ
∥∥2 ≤ cσ 2 log(en)

n
+ cσ 2

(
V (μ)

σn

)2/3

and c ≤ 12.3; cf. [25]. If μ ∈ S↑
n , the following oracle inequality was proved in

[11]:

(1.8) Eμ

∥∥μ̂LS(S↑
n

) − μ
∥∥2 ≤ 6 min

u∈S↑
n

(
‖u − μ‖2 + σ 2k(u)

n
log

en

k(u)

)
.
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The risk bounds (1.7) and (1.8) hold under the assumption that μ ∈ S↑
n , which

does not allow for any model misspecification. We will see in Section 3 that the
misspecified case μ /∈ S↑

n can be handled provided that an error term of the form
inf

u∈S↑
n
‖u − μ‖2 is added to the right hand side of (1.7). The risk bound (1.7)

implies that the LS estimator achieves the rate n−2/3 while (1.8) yields a parametric
rate (up to logarithmic factors) if μ is well approximated by a piecewise constant
sequence with not too many pieces. Let us note that the bound (1.8) can be used to
obtain that μ̂

LS
(S↑

n ) converges at the rate n−2/3 up to logarithmic factors, thanks
to the approximation argument given in [5], Lemma 2.

Mimimax lower bounds that match (1.7) and (1.8) up to logarithmic factors have
been obtained in [5, 11]. If D > 0 is a fixed parameter and log(en)3σ 2 ≤ nD2,
the bound (1.7) yields the rate (Dσ 2)2/3n−2/3 for the risk of μ̂

LS
(S↑

n ). By the
lower bound [5], Corollary 5, this rate is minimax optimal over the class {μ ∈
S↑

n : V (u) ≤ D} if log(en)3σ 2 ≤ nD2. Proposition 4 in [5] shows that there exist
absolute constants c, c′ > 0 such that, for any estimator μ̂,

(1.9) sup
μ∈S↑

n :k(μ)≤k

Pμ
(‖μ̂ − μ‖2 ≥ cσ 2k/n

) ≥ c′.

Together, (1.8) and (1.9) establish that for any k = 1, . . . , n, the minimax rate over
the class {μ ∈ S↑

n : k(μ) ≤ k} is of order σ 2k/n up to logarithmic factors.
The performance of the convex LS estimator with equispaced design points has

been recently studied in [11, 16], where it was proved that if μ ∈ SC
n , the estimator

μ̂ = μ̂
LS

(SC
n ) satisfies

Eμ‖μ̂ − μ‖2 ≤ C

(
min
u∈SC

n

(
‖u − μ‖2 + σ 2q(u)

n

(
log

en

q(u)

)5/4))
(1.10)

for some absolute constant C > 1. Guntuboyina and Sen [16] showed that the LS
estimator achieves the nonparametric rate n−4/5 up to a logarithmic factor and
Chatterjee [10] later proved that the logarithmic was not necessary: The LS esti-
mator μ̂ = μ̂

LS
(SC

n ) satisfies [10, 16]

Eμ‖μ̂ − μ‖2 ≤ Cσ 2(1 + V (u)/σ )2/5

n4/5(1.11)

for some absolute constant C > 0. The bound (1.10) yields an almost parametric
rate if μ can be well approximated by a piecewise affine sequence with not too
many pieces. If V̄ > 0 is a fixed parameter and V̄ ≥ σ , the bound (1.11) yields the
rate (V̄ σ 4)2/5n−4/5, which is minimax optimal over the class {μ ∈ SC

n : V (μ) ≤
V̄ } [10, 16].

The performance of the LS estimator μ̂
LS

(KC
x1,...,xn

) is also studied in [16] in the
case where the design points are almost equispaced: The bounds (1.10) and (1.11)
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both hold if SC
n is replaced with KC

x1,...,xn
and if C > 0 is a constant that depends

on the ratio

(1.12)
maxi=2,...,n(xi − xi−1)

mini=2,...,n(xi − xi−1)
,

and this constant C becomes arbitrarily large as this ratio tends to infinity.
Inequalities (1.11) and (1.10) provide an accurate picture of the performance of

the LS estimator for equispaced (or almost equispaced) design points. However,
little is known on the behavior of the convex LS estimator for design points that
are not equispaced, and some natural questions arise:

• Does the adaptive risk bound (1.10) still hold for nonequispaced design points?
• How is the bound (1.11) impacted for nonequispaced design points? Is the non-

parametric rate still of order n−4/5 if the design points are allowed to be arbi-
trarily close to each other?

These questions will be answered in Section 4. Section 4.1 shows that the adaptive
risk bound (1.10) holds irrespective of the design points, and Section 4.2 shows
that the nonparametric rate of the convex LS estimator can be as slow as n−2/3 for
some worst-case design points.

1.2. Accounting for model misspecification. Let K be a subset of Rn. If the
unknown regression vector μ lies in K , we say that the model is well-specified.
If μ ∈ K , an estimator μ̂ enjoys good performance if the squared error ‖μ̂ − μ‖2

is small, either in expectation or with high probability. If μ /∈ K , we say that the
model is misspecified. In that case, several natural quantities are of interest to
assess the performance of an estimator μ̂. This includes the regret of order 1 and
the regret of order 2 of an estimator μ̂ which are defined by

(1.13) R2(μ̂) := ‖μ̂−μ‖2 −min
u∈K

‖u−μ‖2, R1(μ̂) := ‖μ̂−μ‖−min
u∈K

‖u−μ‖.

If the set K is closed and convex and μ̂ is valued in K , another quantity of interest
is the estimation error with respect to the projection of μ onto K :

(1.14)
∥∥μ̂ − �K(μ)

∥∥2
.

Estimation of �K(μ) by the LS estimator μ̂
LS

(K) and upper bounds on the quan-
tity (1.14) have been considered in [25], Section 4, for K = S↑

n , and in [16], Sec-
tion 6, for K = SC

n . Misspecification bounds usually take the form of oracle in-
equalities, that is, bounds such as

(1.15) E‖μ̂ − μ‖2 ≤ C min
u∈K

‖u − μ‖2 + rn,

where C ≥ 1 is called the leading constant, and rn is a small quantity called the
remainder term. If C = 1 in (1.15), we say that the oracle inequality is sharp or
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exact. Such inequalities were derived in [5] in isotonic and convex regression for
an estimator μ̂ that cannot be computed in practice.

Although model misspecification was studied in [5, 11, 16, 25], a clear com-
parison of the quantities (1.13)–(1.14) is lacking. A goal of the present paper is
to provide a comparison of the quantities (1.13)–(1.14) as well as general tools
to bound from above these quantities in the form of sharp oracle inequalities; cf.
Section 2. Section 2.3 will highlight advantages of sharp oracle inequalities, that
is, oracle inequalities such as (1.15) with leading constant C = 1.

1.3. Organization of the paper. Section 1.4 defines our notation and Sec-
tion 1.5 recalls properties of closed convex sets and closed convex cones. The
contributions of the paper are organized as follows.

In Section 2, we establish general tools to derive sharp oracle inequalities for the
LS estimator over a closed convex set K ; cf. Corollary 2.2 and Theorem 2.3. These
results are generalized to the nonconvex case in Remarks 2.1 and 2.4. Section 2.3
compares different quantities that represent the estimation error when the model is
misspecified.

In Section 3, we apply results of Section 2 to the isotonic LS estimator. We
obtain an adaptive risk bound that is tight with sharp numerical constants.

Section 4 studies the role of the design points in univariate convex regression
and answers questions 1, 2 and 3 raised in the Introduction:

• On the one hand, the adaptive risk bound (1.10) holds for any collection of
design points.

• On the other hand, although the nonparametric rate is of order n−4/5 for eq-
uispaced design points, this rate can be as slow as n−2/3 for some worst-case
design points that are studied in Section 4.2.

Section 5 illustrates the results of Section 2.3 for K = S↑
n and K = SC

n : If μ /∈ K

then the LS estimator consistently estimates the projection of the true parameter μ
onto K at the same rate as in the well-specified case. An extension to sub-Gaussian
noise is given in Section 6. Some proofs are delayed to Appendices A and B. An
outcome of the proof techniques used to study convex regression is the oracle
inequalities satisfied by the unimodal LS estimator in Appendix C. The supple-
mentary material [3] contains generalizations of the results in isotonic and convex
regression to higher order cones. Our main results are summarized in Table 1.

Finally, although the focus of the present paper is on shape-constrained models,
Remark 2.2 provides general oracle inequalities for some penalized estimators.

1.4. Notation. We consider the observations (1.1). We also use the notation
g := (1/σ)ξ so that y = μ + ξ = μ + σg and g ∼ N (0, In×n). The scaled norm
‖ ·‖ is defined in (1.2). Let also | · |∞ be the infinity norm and | · |2 be the Euclidean
norm, so that 1

n
| · |22 = ‖ · ‖2. For any vector u = (u1, . . . , un)

T ∈ R
n and any set
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TABLE 1
Rates of estimation of the LS estimator for several shape constraints, for σ = 1 and V (μ) ≤ 1. The
rates of estimation of μ in the well-specified case are the same as the rates of estimation of �K(μ)

in the misspecified case. In unimodal regression, the misspecified rate is undefined because of the
nonconvexity of the set U

Well-specified rate Misspecified rate

K E‖μ̂LS(K) − μ‖2 if μ ∈ K E‖μ̂LS(K) − �K(μ)‖2

S↑
n Isotonic regression k(μ)

n ∧ 1
n2/3

k(�K(μ))
n ∧ 1

n2/3

SC
n Convex regression

with equispaced
design

q(μ)
n ∧ 1

n4/5
q(�K(μ))

n ∧ 1
n4/5

KC
x1,...,xn

Convex regression
for worst-case design

q(μ)
n ∧ 1

n2/3
q(�K(μ))

n ∧ 1
n2/3

U Unimodal regression k(μ)
n ∧ 1

n2/3 Undefined

T ⊂ {1, . . . , n} of the form T = {t1, . . . , tp} with 1 ≤ t1 < t2 < · · · < tp ≤ n, define
uT = (ut1, . . . , ttp )T , the restriction of u to the set T .

The total variation V (u) of any u ∈ R
n is defined in (1.6). If u = (u1, . . . ,

un)
T ∈ S↑

n , its total variation is simply V (u) = un − u1.
Let x1 < · · · < xn be real numbers that will be called the design points. The sets

S↑
n ,SC

n and KC
x1,...,xn

are defined in (1.3), (1.4) and (1.5). They are closed convex
subsets of Rn. An equivalent definition of the set (1.4) is

KC
x1,...,xn

:=
{
u ∈R

n : ui − ui−1

xi − xi−1
≤ ui+1 − ui

xi+1 − xi

, i = 2, . . . , n − 1
}
.(1.16)

For any u = (u1, . . . , un)
T ∈ KC

x1,...,xn
, we say that u is piecewise affine with

k pieces if there exist real numbers a1, . . . , ak and a partition (T1, . . . , Tk) of
{1, . . . , n} such that

ui = aj (xi − xl) + ul, i, l ∈ Tj , j = 1, . . . , k.

If u = (f (x1), . . . , f (xn))
T for some convex function f : R→R and f is a piece-

wise affine function with k pieces, then u is piecewise affine with k pieces. For
any u ∈ KC

x1,...,xn
, let q(u) ≥ 1 be the smallest integer q such that the sequence u

is piecewise affine with q pieces. The quantity q(u) ≥ 1 satisfies

q(u) − 1 ≤
∣∣∣∣
{
i = 2, . . . , n − 1 : ui − ui−1

xi − xi−1
<

ui+1 − ui

xi+1 − xi

}∣∣∣∣.
Let m = 1, . . . , n. A sequence u ∈ R

n is unimodal with mode at position m if
and only if u{1,...,m} is nonincreasing and u{m,...,n} is nondecreasing. Define the
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convex set

(1.17) Km := {
u = (u1, . . . , un)

T ∈ R
n : u1 ≥ · · · ≥ um ≤ um−1 ≤ · · · ≤ un

}
.

The convex set Km is the set of all unimodal sequences with mode at position m

and

(1.18) U := ⋃
m=1,...,n

Km

is the set of all unimodal sequences. The set U is nonconvex for n ≥ 3. For all
u ∈ U , let k(u) be the smallest integer k such that u is piecewise constant with
k pieces. Formally, k(u) is the smallest integer k such that there exists a partition
(T1, . . . , Tk) of {1, . . . , n} such that for all l = 1, . . . , k, the sequence uTl

is constant
and the set Tl is convex in the sense that if a, b ∈ Tl then Tl contains all integers
between a and b. If u ∈ S↑

n , then k(u) ≥ 1 is the integer such that u has k(u) − 1
jumps, that is, k(u) − 1 is the number of inequalities ui ≤ ui+1 that are strict for
i = 1, . . . , n − 1.

The unimodal LS estimator μ̂
LS

(U) enjoys properties similar to that of the iso-
tonic LS estimator: the rate of estimation is parametric if the true regression vector
μ is unimodal with few constant pieces, and the nonparametric rate is of order
n−2/3; cf. [13, 14] and Appendix C below.

1.5. Preliminary properties of closed convex sets. We recall here several prop-
erties of convex sets that are used throughout the paper. Given a closed convex set
K ⊂ R

n, denote by �K : Rn → K the projection onto K . For all y ∈ R
n, �K(y)

is the unique vector in K such that

(1.19)
(
u − �K(y)

)T (
y − �K(y)

) ≤ 0, u ∈ K.

Inequality (1.19) can be rewritten as follows:

(1.20)
∥∥�K(y) − y

∥∥2 + ∥∥u − �K(y)
∥∥2 ≤ ‖u − y‖2, y ∈ R

n,u ∈ K,

which is a consequence of the cosine theorem. The LS estimator over K is exactly
the projection of y onto K , that is, μ̂

LS
(K) = �K(y). In this case, (1.20) yields

that for all u ∈ K ,

(1.21)
∥∥μ̂LS

(K) − y
∥∥2 ≤ ‖u − y‖2 − ∥∥u − μ̂

LS
(K)

∥∥2
.

Inequality (1.21) can be interpreted in terms of strong convexity: the LS estimator
μ̂

LS
(K) solves an optimization problem where the function to minimize is strongly

convex with respect to the norm ‖ · ‖. Strong convexity grants inequality (1.21),
which is stronger than the inequality

(1.22)
∥∥μ̂LS

(V) − y
∥∥2 ≤ ‖u − y‖2 for all u ∈ V,

which holds for any closed set V ⊂R
n.
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Now, assume that K is a closed convex cone. In this case, (1.19) is equivalent
to the statement that for all y ∈ R

n, �K(y) is the unique vector in K such that

(1.23) �K(y)T y = ∣∣�K(y)
∣∣2
2 and ∀θ ∈ K, θT y ≤ θT �K(y).

The property (1.23) readily implies that for any v ∈ R
n we have

(1.24)
∣∣�K(v)

∣∣
2 = sup

θ∈K:|θ |2≤1
vT θ .

Define the statistical dimension of the cone K by

(1.25) δ(K) := E
[∣∣�K(g)

∣∣2
2

] = E
[
gT �K(g)

] = E

[(
sup

θ∈K:|θ |2≤1
gT θ

)2]
,

where g ∼ N (0, In×n). The Gaussian width of a closed convex cone K is defined
by

w(K) = Eg∼N (0,In×n)

[
sup

v∈K:|v|2=1
gT v

]
.

The quantities δ(K) and w(K) are closely related as they satisfy w2(K) ≤ δ(K) ≤
w2(K) + 1 for any closed convex cone K [1], Proposition 10.2. The following
properties of the statistical dimension are useful for our purpose. If K ⊂ R

q , C ⊂
R

p are two closed convex cones, then K ×C is a closed convex cone in R
q+p and

(1.26) δ(K × C) = δ(K) + δ(C).

The statistical dimension δ(·) is monotone in the following sense: If K,L are two
closed convex cones in R

n, then

(1.27) K ⊂ L ⇒ δ(K) ≤ δ(L).

We refer the reader to [1], Proposition 3.1, for straightforward proofs of the equiv-
alence between the definitions (1.25) and the properties (1.26), (1.27) and (1.24).
An exact formula is available for the statistical dimension of S↑

n . Namely, it is
proved in [1], (D.12), that

(1.28) δ
(
S↑

n

) =
n∑

k=1

1

k
,

and this formula readily implies that

(1.29) log(n) ≤ δ
(
S↑

n

) ≤ log(en).

The following upper bound on the statistical dimension of the cone KC
x1,...,xn

is
derived in [16]:

(1.30) δ
(
KC

x1,...,xn

) ≤ c
(
log(en)

)5/4
,

for some constant c > 0 that depends on the ratio (1.12). In Theorem 4.1, we derive
a tighter bound independent of the design points.
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2. General tools to derive sharp oracle inequalities. In this section, we de-
velop general tools to derive sharp oracle inequalities for the LS estimator over
a closed convex set. Generalizations to nonconvex sets are given in Remarks 2.1
and 2.4.

2.1. Statistical dimension of the tangent cone. Let μ ∈ R
n, let K be a closed

convex subset of Rn and let u ∈ R
n. Define the tangent cone at u by

TK,u := closure
{
t (v − u) : t ≥ 0,v ∈ K

}
.

If K is a closed convex cone, then TK,u = {v − tu | v ∈ K, t ≥ 0}.

PROPOSITION 2.1. Let μ ∈R
n, let K be a closed convex subset of Rn and let

u ∈ K . Then if g = (1/σ)ξ , we have almost surely

(2.1)

∥∥μ̂LS
(K) − μ

∥∥2 − ‖u − μ‖2 ≤ σ 2

n

(
sup

θ∈TK,u:|θ |22≤1

θT g
)2

= σ 2

n

∣∣�TK,u(g)
∣∣2
2.

PROOF. Let μ̂ = μ̂
LS

(K). Then (1.21) yields

(2.2)
|μ̂ − μ|22 − |u − μ|22 ≤ 2ξT (μ̂ − u) − |μ̂ − u|22

= 2ξT θ̂ |μ̂ − u|2 − |μ̂ − u|22,
where θ̂ is defined by θ̂ = (1/|μ̂ − u|2)(μ̂ − u) if μ̂ �= u and θ̂ = 0 otherwise. By
construction we have θ̂ ∈ TK,u and |θ̂ |22 ≤ 1. Using the simple inequality 2ab −
b2 ≤ a2 with a = supθ∈TK,u:|θ |2≤1 ξT θ and b = |μ̂ − u|2, we obtain

|μ̂ − μ|22 − |u − μ|22 ≤ 2ξT (μ̂ − u) − |μ̂ − u|22
≤

(
sup

θ∈TK,u:|θ |22≤1

θT ξ
)2

.

The equality (1.24) completes the proof. Alternatively, one can observe that μ̂ −
u ∈ TK,u and thus

2ξT (μ̂ − u) − |μ̂ − u|22 = |ξ |22 − ∣∣ξ − (μ̂ − v)
∣∣2
2

≤ |ξ |22 − ∣∣ξ − �TK,u(ξ)
∣∣2
2

= ∣∣�TK,u(ξ)
∣∣2
2,

where the last equality is a consequence of the Pythagorean theorem. �
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By definition of the statistical dimension, δ(TK,u) := E|�TK,u(g)|22 so that (2.1)
readily yields the sharp oracle inequality in expectation (2.4) below. Bounds with
high probability are obtained as follows. Let L ⊂ R

n be a closed convex cone.
By (1.24), we have |�L(g)|2 = supx∈L:|x|2≤1 xT g. Thus, by the concentration of
suprema of Gaussian processes ([6], Theorem 5.8), we have

P
(∣∣�L(g)

∣∣
2 > E

∣∣�L(g)
∣∣
2 + √

2x
) ≤ e−x,

and by Jensen’s inequality we have (E|�L(g)|2)2 ≤ δ(L). Combining these two
bounds, we obtain

(2.3) P
(∣∣�L(g)

∣∣
2 ≤ δ(L)1/2 + √

2x
) ≥ 1 − e−x.

From (2.1), applying this concentration inequality to the cone L = TK,u yields
(2.5) below.

COROLLARY 2.2. Let μ ∈ R
n, let K be a closed convex subset of Rn. If ξ ∼

N (0, σ 2In×n) then

(2.4) E
[∥∥μ̂LS

(K) − μ
∥∥2] ≤ min

u∈K

[
‖u − μ‖2 + σ 2

n
δ(TK,u)

]
.

Furthermore, for all x > 0 with probability at least 1 − e−x we have

(2.5)

∥∥μ̂LS
(K) − μ

∥∥2 ≤ min
u∈K

[
‖u − μ‖2 + σ 2

n

(
δ(TK,u)1/2 + √

2x
)2

]

≤ min
u∈K

[
‖u − μ‖2 + σ 2

n

(
2δ(TK,u) + 4x

)]
.

In the well-specified case, an upper bound similar to (2.4) was derived in [7,
19]. Oymak and Hassibi [19] also proved a worst-case lower bound that matches
the upper bound.

The surveys [1, 8] provide general recipes to bound from above the statistical
dimension of cones of several types. For instance, the statistical dimension of S↑

n is
given by the exact formula (1.28). Bounds on the statistical dimension of a closed
convex cone K can be obtained using the inequality δ(K) ≤ w(K)2 + 1 and by
bounding from above the Gaussian width w(K) using Dudley integral bound and
metric entropy results. This technique is used in [16] to derive the bound (1.30).

REMARK 2.1 (Tangent cones and nonconvex LS estimators). A result similar
to Proposition 2.1 and Corollary 2.2 holds for closed nonconvex sets. Let V ⊂ R

n

be a closed nonconvex set. The LS estimator μ̂ = μ̂
LS

(V) satisfies almost surely

(2.6) |μ̂ − μ|2 ≤ min
u∈V

[
|u − μ|2 + 2

(
sup

θ∈T (u):|θ |2≤1
θT ξ

)]
,

where the set T (u) is defined by T (u) := {t (v − u) | t ≥ 0,v ∈ V}.
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PROOF OF (2.6). Let u be a minimizer of the right hand side of the previous
display. Let R̂ := |μ̂ − μ|2 and R := |u − μ|2. Inequality (1.22) can be rewritten
as R̂2 − R2 ≤ 2ξT (μ̂ − u) and thus

R̂ − R = R̂2 − R2

R̂ + R
≤ 2ξT (μ̂ − u)

R̂ + R
= 2ξT θ̂ ,

where θ̂ := (1/(R̂ + R))(μ̂ − u). The vector θ̂ belongs to the set T (u) and θ̂ has
norm at most one because of the triangle inequality |μ̂ − u|2 ≤ R̂ + R. We have
proved (2.6). �

Note that because of nonconvexity, it may be impossible to compute the non-
convex LS estimator μ̂

LS
(V) in practice. Performance bounds for an iterative algo-

rithm that approximate a nonconvex LS estimator are given in [20], Theorem 2.6.
The oracle inequality of (2.6) is sharp (i.e., it has leading constant 1), but it is

an oracle inequality with respect to the loss ‖ · ‖ rather than to the squared loss
‖ · ‖2. An oracle inequality with respect to the loss ‖ · ‖2 is stronger than an oracle
inequality with respect to the loss ‖ · ‖. Indeed, if an estimator μ̂ satisfies ‖μ̂ −
μ‖2 ≤ minu∈E ‖u − μ‖2 + rn for some set E and some rn > 0, then the inequality√

a + b ≤ √
a + √

b for all a, b ≥ 0 yields ‖μ̂ − μ‖ ≤ minu∈E ‖u − μ‖ + r
1/2
n .

Thus, the oracle inequality (2.6) is weaker than the oracle inequality obtained in
the convex case studied in Proposition 2.1.

Let M > 1 be an integer. Consider the special case of a union of closed convex
sets V = K1 ∪· · ·∪KM where Kj ⊂ R

n is a closed convex set for all j = 1, . . . ,M .
Then the LS estimator μ̂ = μ̂

LS
(V) satisfies

(2.7) |μ̂ − μ|2 ≤ min
u∈V

[
|u − μ|2 + 2σ

(
max

j=1,...,M
δ(TKj ,u)1/2 +

√
2(x + logM)

)]

with probability at least 1 − e−x .

PROOF OF (2.7). In this case, inequality (2.6) yields that almost surely

|μ̂ − μ|2 ≤ |u − μ|2 + 2 max
j=1,...,M

(
sup

θ∈TKj ,u:|θ |2≤1
θT ξ

)
.

Applying the concentration inequality (2.3) to L = TKj ,u for all j = 1, . . . ,M and
using the union bound completes the proof of (2.7) �

An application of (2.7) to unimodal regression is given in Appendix C.

REMARK 2.2 (Proximal operator). A result similar to Corollary 2.2 holds
for estimators defined by the proximal mapping μ̂ = argminv∈Rn H(v) where
H(v) = |v − y|22 + 2γ (v) and γ : Rn → [0,+∞] is a proper convex function.
The function v → |v − y|22 is 1-strongly convex. The function H is the sum of the
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convex function γ (·) and a 1-strongly convex function, thus H is also 1-strongly
convex, that is,

(2.8) H(μ̂) ≤ H(u) + dT (μ̂ − u) − |μ̂ − u|22 for all u ∈ R
n,

where d is any vector in the subdifferential of H at μ̂. Let u ∈ R
n be deterministic.

As μ̂ is a minimizer of H(·), one can take d = 0 in (2.8). This can be rewritten as

E := |μ̂ − μ|22 − |u − μ|22 ≤ 2
(
γ (u) − γ (μ̂) − ξT (u − μ̂)

) − |μ̂ − u|22.
By monotonicity of the subdifferential, for all h in the subdifferential of γ (·) at
u we have γ (u) − γ (μ̂) ≤ hT (u − μ̂). Using the Cauchy–Schwarz inequality and
the elementary inequality 2ab − b2 ≤ a2 yields

E ≤ 2(h − ξ)T (u − μ̂) − |μ̂ − u|22
≤ 2|h − ξ |2|u − μ̂|2 − |μ̂ − u|22
≤ |h − ξ |22.

By taking the infimum over all h in the subdifferential of γ (·) at u we have estab-
lished that

|μ̂ − μ|22 ≤ |u − μ|22 + inf
h∈∂γ (u)

|ξ − h|22 almost surely, and(2.9)

Eμ|μ̂ − μ|22 ≤ |u − μ|22 +Eμ inf
h∈∂γ (u)

|ξ − h|22.(2.10)

Here, the remainder term is the squared distance from the noise vector ξ to the
subdifferential of γ at u. This extends the result of [7, 19] to the misspecified case.
A high-probability bound analogous to (2.10) can be obtained as follows. Since
the subdifferential ∂γ (u) is a closed convex set, the map ξ → infh∈∂γ (u) |ξ − h|2
is 1-Lipschitz and we have

P

(
inf

h∈∂γ (u)
|ξ − h|2 ≤ E inf

h∈∂γ (u)
|ξ − h|2 + σ

√
2x

)
≥ 1 − e−x

for any x > 0; cf. [6], Theorem 5.6. This yields the high-probability bound

P

(
|μ̂ − μ|22 ≤ |u − μ|22 +

(
E inf

h∈∂γ (u)
|ξ − h|2 + σ

√
2x

)2)

≥ 1 − e−x.

These results can be extended to sub-Gaussian noise, see Section 6.
Interestingly, it is possible to deduce (2.4) from (2.10). To see this, let K be a

closed convex set and let γ be the indicator of K , that is, γ (v) = 0 if v ∈ K and
+∞ otherwise. In this case, the subdifferential of γ at u is the normal cone

NK,u := {
h ∈ R

n : (v − u)T h ≤ 0 for all v ∈ K
}
.
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To deduce (2.4) from (2.10), it is enough to prove that h = ξ −�TK,u(ξ) belongs to
the normal cone NK,u. Let π = �TK,u(ξ). For any v ∈ K and t > 0, by definition
of the tangent cone, t (v − u) belongs to TK,u. By the characterization (1.19) we
thus have

0 ≥ (1/t)(ξ − π)T )
(
t (v − u) − π

)
≥ (ξ − π)T (v − u) − (1/t)(ξ − π)T π .

Letting t go to infinity, we obtain that 0 ≥ (ξ − π)T (v − u) for all v ∈ K , that is,
h = ξ − π belongs to the normal cone NK,u.

2.2. Localized Gaussian widths. In this section, we develop yet another tech-
nique to derive sharp oracle inequalities for LS estimators over closed convex sets.
This technique is associated with localized Gaussian widths rather than statistical
dimensions of tangent cones. The result is given in Theorem 2.3 below. Recently,
other general methods have been proposed [11, 21, 24], but these methods did not
provide oracle inequalities with leading constant 1.

THEOREM 2.3. Let K be a closed convex subset of Rn, let μ ∈ R
n. Assume

that ξ ∼ N (0, σ 2In×n) and that for some u ∈ K , there exists t∗(u) > 0 such that

(2.11) E sup
v∈K:|v−u|2≤t∗(u)

ξT (v − u) ≤ t∗(u)2

2
.

Then for any x > 0, with probability greater than 1 − e−x ,

(2.12)
∥∥μ̂LS

(K) − μ
∥∥2 − ‖u − μ‖2 ≤ (t∗(u) + σ

√
2x)2

n
≤ 2t2∗ (u) + 4σ 2x

n
.

Furthermore, Eμ‖μ̂LS
(K) − μ‖2 ≤ ‖u − μ‖2 + 2t2∗ (u)+4σ 2

n
.

PROOF. The proof of Theorem 2.3 is related to the isomorphic method [2]. Let
t = t∗(u) and μ̂ = μ̂

LS
(K) for brevity. The concentration inequality for suprema of

Gaussian processes [6], Theorem 5.8, yields that on an event �(x) of probability
greater than 1 − e−x ,

Z := sup
v∈K:|v−u|2≤t

ξT (v − u) ≤ E[Z] + tσ
√

2x ≤ t2/2 + tσ
√

2x.

On the one hand, if |μ̂ − u|2 ≤ t , then by (2.2) on �(x) we have

|μ̂−μ|22−|u−μ|22 ≤ 2ξT (μ̂−u)−|μ̂−u|22 ≤ 2Z ≤ t2+2tσ
√

2x ≤ (t +σ
√

2x)2.

On the other hand, if |μ̂ − u|2 > t , then α := t/|μ̂ − u|2 belongs to (0,1). If
v = αμ̂+ (1 −α)u then α(μ̂−u) = v −u, by convexity of K we have v ∈ K and
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by definition of α, the equality |v − u|2 = t holds. On �(x),

2ξT (μ̂ − u) − |μ̂ − u|22 = (2/α)ξT (v − u) − t2/α2 ≤ (2/α)Z − t2/α2

= (2t/α)(Z/t) − t2/α2 ≤ (Z/t)2 ≤ (t + σ
√

2x)2,

where we used 2ab − b2 ≤ a2 with b = t/α and a = Z/t . Thus (2.12) holds on
�(x) for both cases |μ̂−u|2 ≤ t and |μ̂−u|2 > t . Finally, the elementary inequal-
ity (u + v)2 ≤ 2u2 + 2v2 yields that (t + σ

√
2x)2 ≤ 2t2 + 4σ 2x.

Integration of (2.12) yields the bound in expectation. �

Note that condition (2.11) does not depend on the true vector μ, but only de-
pends on the vector u that appears on the right-hand side of the oracle inequality.
The left-hand side of (2.11) is the Gaussian width of K localized around u. This
differs from the recent analysis of [9] where the Gaussian width localized around
μ is studied. An advantage of considering the Gaussian width localized around u is
that the resulting oracle inequality (2.12) is sharp, that is, with leading constant 1.
Chatterjee [9] proved that the Gaussian width localized around μ characterizes a
deterministic quantity tμ such that |μ̂LS

(K)−μ|2 concentrates around tμ. This re-
sult from [9] grants both an upper bound and a lower bound on |μ̂LS

(K)−μ|2, but
it does not imply nor is implied by a sharp oracle inequality such as (2.12) above.
Thus, the result of [9] is of a different nature than (2.12).

A strategy to find a quantity t∗ that satisfies (2.11) is to use metric entropy results
together with Dudley integral bound, although Dudley integral bound may not be
tight ([6], Section 13.1, Exercises 13.4 and 13.5).

REMARK 2.3. A referee pointed out the following argument to derive oracle
inequalities in deviation from a bound in expectation. It is observed in [23] that if
K is closed and convex, the function ξ → |μ̂LS

(K)−μ|2 is 1-Lipschitz and by the
concentration of a Lipschitz function of a standard normal random variable [6],
Theorem 5.6, we have∣∣μ̂LS

(K) − μ
∣∣
2 ≤ E

∣∣μ̂LS
(K) − μ

∣∣
2 + σ

√
2x

with probability at least 1 − e−x . This holds for any closed convex set K . In the
well-specified setting, this means that one can always obtain risk bounds in de-
viation from a bound on the expected error E|μ̂LS

(K) − μ|2. In the misspecified
setting, assume that μ̂

LS
(K) satisfy a sharp oracle inequality in expectation of the

form E|μ̂LS
(K)−μ|22 ≤ |u−μ|22 + rn for some u ∈ K and some quantity rn. Then

the elementary inequality (a + b)2 ≤ (1 + ε)x2 + (1 + 1/ε)y2 yields that∣∣μ̂LS
(K) − μ

∣∣2
2 ≤ (1 + ε)|u − μ|22 + (1 + 1/ε)rn

holds with probability at least 1 − e−x for any ε > 0. Thus, thanks to the Lipschitz
concentration argument from [23], an oracle inequality in expectation with leading
constant 1 implies an oracle inequality in deviation with leading constant (1 + ε).
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REMARK 2.4 (Nonconvex analog of Theorem 2.3). It is possible to generalize
the previous result to the LS estimator over a nonconvex set V .

PROPOSITION 2.4. Let V be a closed subset of Rn, let μ ∈ R
n. Assume that

ξ ∼ N (0, σ 2In×n) and that for some u ∈ V , there exists t∗(u) > 0 such that

E

(
sup

α∈[0,1]

[
sup

v∈V:|v−u|2≤t∗(u)

αξT (v − u)
])

≤ t∗(u)2/2.

Then for any x > 0, with probability greater than 1 − e−x ,∣∣μ̂LS
(V) − μ

∣∣
2 ≤ |u − μ|2 + t∗(u) + 2σ

√
2x.

PROOF. Let t = t∗(u) and μ̂ = μ̂
LS

(V) for brevity. Let R̂ := |μ̂ − μ|2 and
R := |u − μ|2. If |μ̂ − u|2 ≤ t then the claim is trivial because of the triangle
inequality. Thus, we only treat the case |μ̂ − u|2 > t . Inequality (1.22) can be
rewritten as R̂2 − R2 ≤ 2ξT (μ̂ − u) and thus

R̂ − R = R̂2 − R2

R̂ + R
≤ 2ξT (μ̂ − u)

R̂ + R
= (2/t)α̂ξT (μ̂ − u),

where α̂ = t/(R + R̂). As we treat the case |μ̂ − u|2 > t , the triangle inequality
|μ̂ − u|2 ≤ R̂ + R yields that α̂ ∈ [0,1]. Thus the right-hand side of the previous
display is bounded from above by (2/t)Zt where

(2.13) Zt := sup
α∈[0,1]

[
sup

v∈V:|v−u|2≤t

αξT (v − u)
]
.

The concentration of a supremum of a Gaussian process yields that with probabil-
ity at least 1 − e−x , we have Zt ≤ E[Zt ] + tσ

√
2x ≤ t2/2 + tσ

√
2x and the proof

is complete. �

2.3. Estimation of the projection of the true parameter. Let K be a subset of
R

n that represents the underlying regression model. Model misspecification allows
that the true parameter μ does not belong to K . Let μ̂ be an estimator of μ. This
section compares different ways to measure the error of the estimator μ̂ under
misspecification. The proposition below compares the regret of order 1 [cf. (1.13)],
the regret of order 2 [cf. (1.13)] as well as the estimation error of �K(μ) [cf.
(1.14)].

If μ̂ is valued in K , it is clear that R1(μ̂) ≥ 0,R2(μ̂) ≥ 0 and that R1(μ̂)2 ≤
R2(μ̂) by using the elementary inequality (a − b)2 ≤ |a2 − b2| for all a, b ≥ 0.

If K is closed and convex, then the triangle inequality yields

R1(μ̂) = ‖μ̂ − μ‖ − min
u∈K

‖u − μ‖
= ‖μ̂ − μ‖ − ∥∥�K(μ) − μ

∥∥
≤ ∥∥μ̂ − �K(μ)

∥∥.
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Furthermore, if μ̂ is valued in K and K is closed and convex, then (1.20) with y
replaced by μ and u replaced by μ̂ can be rewritten as∥∥μ̂ − �K(μ)

∥∥2 ≤ ‖μ̂ − μ‖2 − ∥∥μ − �K(μ)
∥∥2 for all μ̂ ∈ K.

Thus, if K is convex, for any estimator μ̂ valued in K we have R2
1(μ̂) ≤ ‖μ̂ −

�E(μ)‖2 ≤ R2(μ̂). The following proposition sums up the relationship between
the quantity (1.14) and the regrets of order 1 and 2 in the case of a closed convex
set K .

PROPOSITION 2.5 (Misspecification inequalities). Let μ ∈ R
n and let K ⊂

R
n be a closed convex set. Then minu∈K ‖u − μ‖ = ‖�K(μ) − μ‖ and for any

μ̂ ∈ K , the following holds almost surely:(‖μ̂ − μ‖ − ∥∥�K(μ) − μ
∥∥)2 ≤ ∥∥μ̂ − �K(μ)

∥∥2

≤ ‖μ̂ − μ‖2 − ∥∥�K(μ) − μ
∥∥2

.

Estimation of �K(μ) by the LS estimator μ̂
LS

(K) has been considered for in-
stance in [25], Section 4, for K = S↑

n , and in [16], Section 6, for K = SC
n . Propo-

sition 2.5 above shows that for any quantity rn and any estimator μ̂ valued in a
closed convex set K , we have

‖μ̂ − μ‖2 ≤ ∥∥�K(μ) − μ
∥∥2 + rn implies

∥∥μ̂ − �K(μ)
∥∥2 ≤ rn,

that is, a sharp oracle inequality with leading constant 1 automatically implies
an upper bound on the estimation error ‖μ̂ − �K(μ)‖2. Finally, the following
corollary is a consequence of Proposition 2.5, Proposition 2.1 and Theorem 2.3.

COROLLARY 2.6. Let K be a closed convex set and let μ ∈ R
n. Then, almost

surely, ∥∥μ̂LS
(K) − �K(μ)

∥∥ ≤ (σ/
√

n)
∣∣�TK,�K(μ)

(g)
∣∣
2,

where g = (1/σ)ξ . Furthermore, if t∗ > 0 is such that

E

[
sup

v∈K:|v−�K(μ)|2≤t∗
ξT (

v − �K(μ)
)] ≤ t2∗

2
,

then for all x > 0, with probability at least 1 − e−x we have∣∣μ̂LS
(K) − �K(μ)

∣∣
2 ≤ t∗ + σ

√
2x.

These results highlight a major advantage of oracle inequalities with leading
constant 1 over oracle inequalities with leading constant strictly greater than 1.
Indeed, oracle inequalities with leading constant 1 yield an upper bound on the
estimation error ‖μ̂LS

(K) − �K(μ)‖ for any closed convex set K . The results of
this section will be applied to K = S↑

n and K = SC
n in Section 5.
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3. Sharp bounds in isotonic regression. We study in this section the perfor-
mance of μ̂

LS
(S↑

n ) using the general tools developed in the previous section. We
first apply Corollary 2.2. To do so, we need to bound from above the statistical di-
mension of the tangent cone TS↑

n ,u
. In fact, it is possible to characterize the tangent

cone TS↑
n ,u

and to obtain a closed formula for its statistical dimension.

PROPOSITION 3.1. Let u ∈ S↑
n and let k = k(u). Let (T1, . . . , Tk) be a parti-

tion of {1, . . . , n} such that u is constant on each Tj , j = 1, . . . , k. Then

TS↑
n ,u

= S↑|T1| × · · · × S↑|Tk |.

PROOF. Let TS↑
n ,u

= T for brevity. If u is constant, then it is clear that T = S↑
n

so we assume that u has at least one jump, that is, k(u) ≥ 2. As S↑
n is a cone we

have T = {v − tu | t ≥ 0,v ∈ S↑
n }. Thus, the inclusion TS↑

n ,u
⊂ S↑|T1| × · · · ×

S↑|Tk | is straightforward. For the reverse inclusion, we use the following argument
based on [12], Remark 4.1. Let x ∈ S↑|T1| × · · · × S↑|Tk | and let ε > 0 be the
minimal jump of the sequence u, that is, ε = mini=1,...,n−1:ui+1>ui

(ui+1 − ui). If

t = |x|∞/(4ε), then the vector v := tu + x belongs to S↑
n , which completes the

proof. �

Using (1.26) and (1.29), we obtain δ(TS↑
n ,u

) = ∑k(u)
j=1

∑|Tj |
t=1

1
t

≤ ∑k(u)
j=1 log(e ×

|Tj |). Following [11], Example 2.2, this quantity is bounded from above by
k(u) log(en/k(u)) by Jensen’s inequality. Applying Corollary 2.2, leads to the fol-
lowing result.

THEOREM 3.2. For all n ≥ 2 and any μ ∈ R
n,

(3.1) Eμ

∥∥μ̂LS(S↑
n

) − μ
∥∥2 ≤ min

u∈S↑
n

(
‖u − μ‖2 + σ 2k(u)

n
log

en

k(u)

)
.

Furthermore, for any x > 0 we have with probability greater than 1 − exp(−x),

(3.2)
∥∥μ̂LS(S↑

n

) − μ
∥∥2 ≤ min

u∈S↑
n

(
‖u − μ‖2 + 2σ 2k(u)

n
log

en

k(u)

)
+ 4σ 2x

n
.

Let us discuss some features of Theorem 3.2 that are new. First, the estimator
μ̂

LS
(S↑

n ) satisfies oracle inequalities both in deviation with exponential probabil-
ity bounds and in expectation; cf. (3.2) and (3.1), respectively. Previously known
oracle inequalities of this type for the LS estimator μ̂

LS
(S↑

n ) were only proved in
expectation.

Second, both (3.1) and (3.2) are sharp oracle inequalities, that is, with leading
constant 1. Although sharp oracle inequalities were obtained using aggregation
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methods [5], this is the first known sharp oracle inequality for the LS estimator
μ̂

LS
(S↑

n ).
Third, the assumption μ ∈ S↑

n is not needed, as opposed to the result of [11].

Last, the constant 1 in front of σ 2k(u)
n

log en
k(u)

in (3.1) is optimal for the LS
estimator. To see this, assume that there exists an absolute constant c < 1 such that
for all μ ∈ S↑

n and μ̂ = μ̂
LS

(S↑
n ),

(3.3) Eμ‖μ̂ − μ‖2 ≤ min
u∈S↑

n

(
‖u − μ‖2 + cσ 2k(u)

n
log

en

k(u)

)
.

Set μ = 0. Thanks to (1.29), the left-hand side of the above display is bounded
from below by σ 2 log(n)/n while while the right-hand side is equal to cσ 2 log(e ×
n)/n. Thus, it is impossible to improve the constant in front of σ 2k(u)

n
log en

k(u)
for

the estimator μ̂
LS

(S↑
n ). However, it is still possible that for another estimator μ̂,

(3.3) holds with c < 1 or without the logarithmic factor. We do not know whether
such an estimator exists.

We now highlight the adaptive behavior of the estimator μ̂
LS

(S↑
n ). Let u∗ ∈ S↑

n

be a minimizer of the right-hand side of (3.1). Let k = k(u∗) and let (T1, . . . , Tk)

be a partition of {1, . . . , n} such that u∗ is constant on all Tj , j = 1, . . . , k. Given
T1, . . . , Tk , consider the piecewise constant oracle

μ̂
ORACLE ∈ argmin

u∈WT1,...,Tk

‖y − u‖2,

where WT1,...,Tk
is the linear subspace of all sequences that are constant on all Tj ,

j = 1, . . . , k. This subspace has dimension k, so the estimator μ̂
ORACLE satisfies

Eμ

∥∥μ̂ORACLE − μ
∥∥2 = min

u∈WT1,...,Tk

‖u − μ‖2 + σ 2k

n

≤ ∥∥u∗ − μ
∥∥2 + σ 2k

n
.

Furthermore, if μ ∈ S↑
n then minu∈WT1,...,Tk

‖u − μ‖2 = ‖u∗ − μ‖2 and if R∗ is

the expected prediction error of the oracle, that is, R∗ = E‖μ̂ORACLE − μ‖2, then

R∗ = σ 2k
n

+ ‖u∗ − μ‖2. By Theorem 3.2, we obtain

Eμ

∥∥μ̂LS(S↑
n

) − μ
∥∥2 ≤ ∥∥u∗ − μ

∥∥2 + σ 2k log(en/k)

n

= R∗ + σ 2k log(n/k)

n

≤ R∗ log(en/k).

Thus, (3.1) can be interpreted in the sense that without the knowledge of
T1, . . . , Tk , the performance of μ̂

LS
(S↑

n ) is similar to that of μ̂
ORACLE up to the
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logarithmic factor log(en/k). Of course, the knowledge of T1, . . . , Tk is not acces-
sible in practice, so μ̂

ORACLE is an oracle that can only serve as a benchmark. This
adaptive behavior of μ̂

LS
(S↑

n ) was observed in [11].
We now apply Theorem 2.3. Using Dudley integral bound and the entropy

bounds from [15], Chatterjee [9] established that there exists an absolute constant
c > 0 such that if u ∈ S↑

n and ξ ∼ N (0, σ 2In×n), then

(3.4)
E sup

θ∈S↑
n :|θ−u|2≤t

ξT (θ − u) ≤ t2

16

for all t ≥ t∗(u) := cσ
(
1 + V (u)/σ

)1/3
n1/6.

The constant 16 is arbitrary and could be replaced by any positive numerical con-
stant provided that the numerical constant c is modified accordingly. This bound
combined with Theorem 2.3 yields the following.

COROLLARY 3.3. There exists an absolute constant c > 0 such that the fol-
lowing holds. Let n ≥ 2 and μ ∈ R

n. Assume that ξ ∼ N (0, σ 2In×n). Then for any
x > 0, with probability greater than 1 − exp(−x),

(3.5)
∥∥μ̂LS(S↑

n

) − μ
∥∥2 ≤ min

u∈S↑
n

[
‖u − μ‖2 + 2cσ 2(1 + V (u)/σ )2/3

n2/3

]
+ 4σ 2x

n
.

As this is an application of Theorem 2.3, the corresponding bound in expecta-
tion also holds. The novelty of Corollary 3.3 is that the leading constant is 1. Al-
though model misspecification was considered in [16, 25], no oracle inequalities
were obtained. As we will see in Section 5, oracle inequalities with leading con-
stant 1 such as (3.5) yield that under misspecification, the LS estimator μ̂

LS
(S↑

n )

consistently estimates �S↑
n
(μ) at the rate n−2/3.

4. Convex regression and arbitrary design points. The goal of this section
is to study univariate convex regression for nonequispaced design points.

4.1. Parametric rate for any design if μ has few affine pieces. We now present
a new argument to bound from above the statistical dimension of the cone of con-
vex sequences.

THEOREM 4.1. Let n ≥ 3. Let x1 < · · · < xn be real numbers and consider
the cone KC

x1,...,xn
defined in (1.16). Let g ∼ N (0, In×n). Then

(4.1) δ
(
KC

x1,...,xn

) = E
[∣∣�KC

x1,...,xn
(g)

∣∣2
2

] ≤ 8 log(en).



ORACLE INEQUALITIES FOR SHAPE RESTRICTED LS ESTIMATORS 765

PROOF. Let K = KC
x1,...,xn

for brevity. A convex sequence u = (u1, . . . , un) ∈
K is first nonincreasing and then nondecreasing, that is, there exists m ∈ {1, . . . , n}
such that u1 ≥ u2 ≥ · · · ≥ um ≤ um+1 ≤ · · · ≤ un, hence the sequence u is uni-
modal. Thus, if Km,m = 1, . . . , n are the sets defined in (1.17), then K ⊂ U =⋃

m=1,...,n Km where the sets Km,m = 1, . . . , n are defined in (1.17). Using (1.26),
(1.27) and (1.29) we obtain

δ(Km) ≤ δ
(
S↓

m × S↑
n−m

) ≤ log(em) + log
(
e(n − m)

) ≤ 2 log(en).

By (1.24), almost surely we have

0 ≤ ∣∣�K(g)
∣∣
2 = sup

u∈K:|u|2≤1
gT u

≤ max
m=1,...,n

sup
u∈Km:|u|2≤1

gT u = max
m=1,...,n

∣∣�Km(g)
∣∣
2.

Using (2.3) and the union bound, for all x > 0, we have with probability at least
1 − e−x the inequality |�K(g)|22 ≤ maxm=1,...,n δ(Km)1/2 + √

2(x + logn). As
(a + b)2 ≤ 2a2 + 2b2, on the same event of probability at least 1 − e−x ,

∣∣�K(g)
∣∣2
2 ≤ 2 max

m=1,...,n
δ(Km) + 4(x + logn)

≤ 4 log(en) + 4(x + logn).

Integration of this probability bound completes the proof. �

Remarkably, this bound on the statistical dimension does not depend on the
design points x1, . . . , xn. Furthermore, the bound (4.1) improves upon (1.30) as
the exponent 5/4 is reduced to 1.

PROPOSITION 4.2. Let n ≥ 3, and let u be an element of the cone KC
x1,...,xn

defined in (1.16). The statistical dimension of the tangent cone at u satisfies

δ(TKC
x1,...,xn

,u) ≤ 8q(u) log
(

en

q(u)

)
.

PROOF. Let q = q(u). Let (T1, . . . , Tq) be a partition of {1, . . . , n} such that
u is affine on each Tj , j = 1, . . . , q . Let x ∈ KC

x1,...,xn
. A convex sequence minus

an affine sequence is convex, thus for all j = 1, . . . , q , (x − u)Tj
is convex in the

sense that it belongs to KC
xi :i∈Tj

. Thus,

TKC
x1,...,xn

,u ⊂ C := KC
xi :i∈T1

× KC
xi :i∈T2

× · · · × KC
xi :i∈Tq

.
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Using (1.27), (1.26), Theorem 4.1 and Jensen’s inequality, we have

δ(TKC
x1,...,xn

,u) ≤ δ(C) ≤
q∑

j=1

8 log
(
e|Tj |)

≤ 8q log

(
e

q

q∑
j=1

|Tj |
)

= 8q log
(

en

q

)
.

�

Combining Corollary 2.2 and Proposition 4.2 yields the following.

THEOREM 4.3. Let n ≥ 3 and μ ∈ R
n. Let x1 < · · · < xn be real numbers.

Then for any x > 0, the estimator μ̂ = μ̂
LS

(KC
x1,...,xn

) satisfies

‖μ̂ − μ‖2 ≤ min
u∈KC

x1,...,xn

(
‖u − μ‖2 + 16σ 2q(u)

n
log

en

q(u)

)
+ 4σ 2x

n

with probability greater than 1 − exp(−x).

As this is an application of Corollary 2.2, the corresponding bound in expec-
tation also holds. Theorem 4.3 does not depend on the design points x1, . . . , xn.
In particular, Theorem 4.3 and the corresponding result in expectation hold for
nonequispaced design points and design points that can be arbitrarily close to each
other. This improves upon the oracle inequality (1.10) proved in [11, 16] where C

is strictly greater than 1 and depends on the design points through the ratio (1.12).
For all q ≥ 2, define the linear function �q :Rq →R

q−1 by

�q(u) = (u2 − u1, u3 − u2, . . . , uq − uq−1)
T

for all u = (u1, . . . , uq)
T , so that S↑

n = {u ∈ R
n : �nu ≥ 0} and SC

n = {u ∈ R
n :

�n−1�nu ≥ 0}. It is possible to define higher-order cones as follows. For q ≥ 3,
define �2

q : Rq → R
q−2 by �2

q = �q−1 ◦ �q and for all β = 1, . . . , q − 1 define

�
β
q :Rq →R

q−β by

�β
q = �q−β+1 ◦ · · · ◦ �q−1 ◦ �q.

For any positive integer β < n, define the cone

S[β]
n := {

u = (u1, . . . , un)
T ∈R

n : �β
nu ≥ 0 = (0, . . . ,0)T

}
.

In particular, S[1]
n = S↑

n is the cone of nondecreasing sequences and S[2]
n = SC

n is
the cone of convex sequences. Theorems 1, 2 and 3 in the supplementary mate-
rial [3] generalize Theorems 3.2, 4.1 and 4.3 to the cones S[β] for β ≥ 3.

We now turn to the nonparametric rate of convex regression. The next section
shows that, unlike to adaptive bound of Theorem 4.3 which holds irrespective
of design points, the nonparametric rate of convex regression varies substantially
based on the design points x1, . . . , xn.
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4.2. Worst-case design points in convex regression and the rate n−2/3. The
nonparametric rate for estimation of convex sequences is of order n−4/5 for equis-
paced design points. This was established in [16] using metric entropy bounds and
an extra logarithmic factor present in [16] was later removed in [10]. It is proved
in [10], (3.3), that

E sup
θ∈S↑

n :|θ−u|2≤t

ξT (θ − u) ≤ t2

2
for all t ≥ cσ

(
1 + V (u)

σ

)1/5
n1/10.

We can combine this bound on the localized Gaussian width with Theorem 2.3 to
obtain the following sharp oracle inequality.

COROLLARY 4.4. There exists an absolute constant c > 0 such that the fol-
lowing holds. Let n ≥ 3 and μ ∈ R

n. Assume that ξ ∼ N (0, σ 2In×n). Then for any
x > 0, with probability greater than 1 − exp(−x),

∥∥μ̂LS(SC
n

) − μ
∥∥2 ≤ min

u∈SC
n

[
‖u − μ‖2 + 2cσ 2(1 + V (u)/σ )2/5

n4/5

]
+ 4σ 2x

n
.

As this is an application of Theorem 2.3, the corresponding bound in expec-
tation also holds. It is natural to ask whether the nonparametric rate n−4/5 can be
achieved by the LS estimator for any collection design points. The following result
provides a negative answer: There exist design points such that no estimator can
achieve a better rate than n−2/3. This rate n−2/3 is substantially slower than the
nonparametric rate n−4/5 achieved by the LS estimator in convex regression with
equispaced design points.

THEOREM 4.5. Let V ≥ σ/
√

n. There exists design points x1 < · · · < xn that
depend on V such that, for any estimator μ̂,

sup
μ∈KC

x1,...,xn
∩S↑

n :μn−μ1≤2V

Pμ

(
‖μ̂ − μ‖2 ≥ Cσ 2 max

[(
V 2

σ 2n2

)1/3
,

1

n

])
≥ c,

where c,C > 0 are absolute constants.

PROOF. It was proved in [5], Proposition 4 and Corollary 5, that for some
integer M ≥ 2, there exist μ0, . . . ,μM ∈ S↑

n such that V (μj ) ≤ V and

(4.2) ‖μj − μk‖ ≥ Cσ 2

4
max

[(
V 2

σ 2n2

)1/3
,

1

n

]
,

n

2σ 2 ‖μj − μ0‖ ≤ logM

16

for all distinct j, k ∈ {0, . . . ,M} and some absolute constant C > 0. The quan-
tity n

2σ 2 ‖μj − μ0‖ is the Kullback–Leibler divergence from N (μj , σ
2In×n) to

N (μ0, σ
2In×n).
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Define v = (v1, . . . , vn)
T by vi = iV /n for all i = 1, . . . , n so that V (v) ≤ V

and v is strictly increasing. We define u0, . . . ,uM by uj = μj + v so that
u0, . . . ,uM are strictly increasing. Furthermore, since μj − μk = uj − uk it is
clear that (4.2) still holds if μj ,μk are replaced by uj ,uk . Applying [22], Theo-
rem 2.7, yields that for any estimator μ̂,

sup
j=0,...,M

Puj

(
‖μ̂ − μ‖2 ≥ Cσ 2 max

[(
V 2

σ 2n2

)1/3
,

1

n

])
≥ c,

where c,C > 0 are absolute constants.

Let ε := 1
2 ∧minj=1,...,M mini=2,...,n−1

u
j
i+1−u

j
i

u
j
i −u

j
i−1

. Since the sequences u0, . . . ,uM

are strictly increasing we have ε > 0. Define the design points x1 < · · · < xn by
xi = −εi for all i = 1, . . . , n. Then for all j = 0, . . . ,M we have

xi+1 − xi

xi − xi−1
= ε ≤ u

j
i+1 − u

j
i

u
j
i − u

j
i−1

for all i = 2, . . . , n − 1, and by (1.16) this implies that uj ∈ KC
x1,...,xn

. It remains
to show that V (uj ) ≤ 2V , which is a consequence of V (μj ) ≤ V and V (v) ≤ V .

�

This result emphasizes the importance of the design points in univariate con-
vex regression. For equispaced design points the rate is of order n−4/5, but for
nonequispaced design points the rate can be substantially slower. Inspection of the
proof reveals that the design points of Theorem 4.5 are contained in [−1,0) and
they concentrate around the boundary at 0. If the practitioner can choose the de-
sign points, then design points that concentrate around the boundaries should be
avoided.

Any convex function is unimodal so that the inclusion KC
x1,...,xn

⊂ U holds for
any design points x1 < · · · < xn. Intuitively, this inclusion means that convexity
brings more structure than unimodality. Theorem 4.6 below shows that the convex
LS enjoys essentially the same risk bounds and oracle inequalities as those satisfied
by the unimodal LS estimator in Appendix C.

THEOREM 4.6. Let μ ∈ R
n and let x1 < · · · < xn be any real numbers. Then

for all x > 0, with probability at least 1 − 2e−x , the estimator μ̂ = μ̂
LS

(KC
x1,...,xn

)

satisfies

‖μ̂ − μ‖

≤ min
u∈U

[
‖u − μ‖ ∨ σ√

n

(
2

√(
k(u) + 1

)
log

(
en

k(u) + 1

)
+ 3

√
2(x + logn)

)]
.
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The proof of Theorem 4.6 is given in Appendix B. Theorem 4.6 can be readily
used to prove that the convex LS estimator achieves the rate n−2/3 (up to loga-
rithmic factors) for any collection of design points. We proceed as follows. Let
V = V (μ) be the total variation of μ, where μ ∈ KC

x1,...,xn
is an unknown con-

vex sequence. Let k = 1, . . . , n be an integer that will be specified later. The ap-
proximation argument developed in [5], Lemma 2, for isotonic regression can be
trivially extended to unimodal sequence: There exists a unimodal sequence u with
at most 2k constant pieces and such that |μ − u|∞ ≤ V/(2k). Theorem 4.6 with
x = logn yields that, with probability at least 1 − 2/n, we have

‖μ̂ − μ‖ ≤
(

V

2k

)
∨ σ√

n

(
2

√
(2k + 1) log

(
en

2k + 1

)
+ 6

√
logn

)
.

If V
√

n ≥ σ , then choose k ≥ 1 as an integer such that k ≤ (V 2n/(σ 2)1/3 < 2k.
With this choice of k, bounding from above the right-hand side of the previous
display yields that, with probability at least 1 − 2/n, we have

‖μ̂ − μ‖ ≤
(

σ 2/3V 1/3

n1/3

)
∨

(
2
√

3σ 2/3V 1/3

n1/3

√
log(en) + 6σ

√
logn√
n

)
.

If V
√

n < σ , then we choose k = 1, and in this case we obtain ‖μ̂−μ‖ ≤ (2
√

3 +
6)σ

√
log(n)/n. Thus, we obtain the estimation rate n−2/3 for the squared loss

‖ · ‖2, up to logarithmic factors.
The following result provides an alternate proof that the estimation rate of con-

vex regression for any collection is design point is of order n−2/3. It is an applica-
tion of Theorem 2.3.

THEOREM 4.7. There exists an absolute constant c > 0 such that the follow-
ing holds. Let μ ∈ R

n and let x1 < · · · < xn be any real numbers. Then for all
x > 0, with probability at least 1 − 2e−x , the estimator μ̂ = μ̂

LS
(KC

x1,...,xn
) satis-

fies

‖μ̂ − μ‖2

≤ min
u∈KC

x1,...,xn

[
‖u − μ‖2 + 2 max

(
cσ 2

(
σ + V (u)

σn

)2/3
,64σ 2 log(n)

)]

+ 4σ 2x

n
.

The proof of Theorem 4.7 is given in Appendix B. The novelty of Theorem 4.7
is that the rate n−2/3 is achieved by the convex LS estimator for any collection of
univariate design points. This rate n−2/3 is substantially slower than the rate n−4/5

of convex regression with equispaced design points.
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Together, Theorems 4.7 and 4.5 establish that this rate is minimal over all design
points and all univariate convex functions with bounded total variation. To make
this precise, define the minimax quantity

R(V ) := sup
x1<···<xn

inf
μ̂

sup
μ∈KC

x1,...,xn
:V (μ)≤V

Eμ
[‖μ̂ − μ‖2]

, V > 0,

where the first supremum is taken over all x1, . . . , xn ∈ R such that x1 < · · · < xn

and the infimum is taken over all estimators that may depend on x1, . . . , xn (for
instance, the convex LS estimator μ̂

LS
(KC

x1,...,xn
) depends on the design points).

The quantity R(V ) represents the minimax risk over all possible univariate design
points, and over all convex sequences. By taking u = μ in Theorem 4.7 and by
integration, we obtain that

R(V ) ≤ sup
x1<···<xn

sup
μ∈KC

x1,...,xn
:V (μ)≤V

Eμ
[∥∥μ̂LS(

KC
x1,...,xn

) − μ
∥∥2]

≤ Cσ 2
(

σ + V

σn

)2/3

for some absolute constant C > 0. On the other hand, Theorem 4.5 and Markov
inequality yield that R(V ) ≥ C ′σ 2( V

σn
)2/3 for some absolute constant C′ > 0 pro-

vided that V ≥ σ . This establishes that the nonparametric rate of univariate convex
regression over all possible design points is of order n−2/3. This rate is substan-
tially slower than the rate n−4/5 observed by [16] for equispaced design points. In
summary, there is no hope to achieve the nonparametric rate n−4/5 for any univari-
ate design points.

As a convex function is unimodal, the inclusion KC
x1,...,xn

⊂ U holds. The convex
constraints that define KC

x1,...,xn
are more restrictive than the unimodal constraint,

that is, convexity brings more structure than unimodality. For equispaced design
points, the extra structure brought by convexity yields a nonparametric rate of order
n−4/5 which is faster than the unimodal nonparametric rate n−2/3; cf. Appendix C.
However, for some worst-case design points, this extra structure is uninformative
from a statistical standpoint: The nonparametric rates of convex and unimodal re-
gression are of the same order n−2/3.

5. Estimation of �K(μ) in isotonic and convex regression. In this section,
we exhibit some consequences of Section 2.3 in isotonic and convex regression. If
K = S↑

n , Proposition 2.5, Corollary 2.2 and Theorem 3.2 with u = �K(μ) imply
the following. If μ̂ = μ̂

LS
(S↑

n ) and π = �S↑
n
(μ), then

Pμ

(
‖μ̂ − π‖ ≤ σ

√
k(π)

n
log

(
en

k(π)

)
+ σ

√
2x

n

)
≥ 1 − e−x,
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while Proposition 2.5, Theorem 2.3 and Corollary 3.3 yield

Pμ

(
‖μ̂ − π‖2 ≤ 2cσ 2

(
σ + V (π)

σn

)2/3
+ 4σ 2x

n

)
≥ 1 − e−x,

for any μ ∈ R
n, where c > 0 is an absolute constant. That is, in the misspecified

case, the LS estimator μ̂
LS

(S↑
n ) estimates π at the parametric rate if π has few

constant pieces, and at the nonparametric rate n−2/3 otherwise.
Similar conclusions can be drawn in convex regression from Theorem 4.3 and

Corollary 4.4. If μ̂ = μ̂
LS

(SC
n ) and π = �SC

n
(μ) we have

Pμ

(
‖μ̂ − π‖2 ≤ 16σ 2q(π)

n
log

en

q(π)
+ 4σ 2x

n

)
≥ 1 − e−x,

Pμ

(
‖μ̂ − π‖2 ≤ Cσ(1 + V (π)/σ )2/5 log(en)

n4/5 + 16σ 2x

n

)
≥ 1 − e−x.

In other words, under misspecification, the LS estimator consistently estimates
the projection �K(μ) and the rate of estimation of �K(μ) under misspecification
is at least as fast as the rate of estimation of μ when the model is well specified.

6. Extension to sub-Gaussian noise. We explain in this section that if the
noise random vector has independent sub-Gaussian components, then the general
results given in Corollary 2.2 and Theorem 2.3 still hold. The argument below
relies on the well-studied contraction principle ([17], Section 4.2) and was used
for a similar purpose in [4].

We use below the following elementary fact about the composition of convex
functions. Let g : Rn → [0,+∞) and f : [0,+∞) → [0,+∞) be two functions.
If the functions f,g are both convex and if f is nondecreasing then F = f ◦ g is
also convex. In particular, if f (t) = t2 or f (t) = eλt and g(v) = supθ∈T vT θ for a
set T with {0} ⊂ T ⊂ R

n, then F = f ◦ g is convex.

PROPOSITION 6.1. Let x ∼ N (0, In×n). The conclusions of Corollary 2.2 still
hold if the assumption ξ ∼ N (0, σ 2In×n) is replaced by

(6.1) EF(ξ) ≤ EF(σx) for all convex function F :Rn → [0,+∞).

PROOF. Let L = TK,u where K,u are defined in Corollary 2.2. To prove (2.4)
from the almost-sure inequality (2.1), we only need E|�L(ξ)|22 ≤ σ 2δ(L), which
is granted by (6.1) for the convex function F defined by F(v) = |�L(v)|22 =
(supθ∈L:|θ |2≤1 vT θ)2; cf. (1.24) for the last equality.

To prove (2.5) from (6.1), it is sufficient to prove the concentration inequal-
ity (2.3). Let λ ≥ 0. Applying (6.1) to the convex function F defined by F(v) =
exp(λ|�L(v)|2), we have

logEF(ξ) ≤ logEF(σx) ≤ λE
∣∣�L(σx)

∣∣
2 + σ 2λ2/2 ≤ λσδ(L)1/2 + σ 2λ2/2,
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where we used [6], Theorems 5.5 and 5.8, and Jensen’s inequality for the two last
inequalities. A Chernoff bound yields (2.3) for any random vector ξ that satisfy
(6.1). �

PROPOSITION 6.2 (Sub-Gaussian analog of Remark 2.2). Let x ∼ N (0, In×n).
Consider the setting of Remark 2.2. If we drop the assumption ξ ∼ N (0, σ 2In×n)

and instead assume that (6.1) holds, then we have

Eμ|μ̂ − μ|22 ≤ |u − μ|22 +Eμ inf
h∈∂γ (u)

|σx − h|22
and

|μ̂ − μ|22 ≤ |u − μ|22 +
(
E inf

h∈∂γ (u)
|σx − h|2 + σ

√
2x

)2

with probability at least 1 − e−x .

PROOF. We start from (2.9). The map d : a → infh∈∂γ (u) |a − h|2 is the dis-
tance to the set ∂γ (u), hence it is convex. The function t → t2 is convex increasing
on [0,+∞), thus the function F : a → d(a)2 is also convex. Applying (6.1) yields
that E[d(ξ)2] ≤ E[d(σx)2] which completes the proof of the oracle inequality in
expectation.

For the high-probability bound, define the function F(a) = exp(λd(a)). The
function F is convex and the function d is 1-Lipschitz. By (6.1) and [6], Theorems
5.5 and 5.8, we have

logEF(ξ) ≤ logEF(σx) ≤ λE
[
d(σx)

] + σ 2λ2/2.

A Chernoff bound completes the proof. �

PROPOSITION 6.3 (Sub-Gaussian analog of Theorem 2.3). Let K be a closed
convex subset of Rn, let μ ∈ R

n. Assume that the noise random vector ξ satisfy
(6.1) and that for some u ∈ K , there exists t∗(u) > 0 such that

Ex∼N (0,In×n)

[
sup

v∈K:|v−u|2≤t∗(u)

(σx)T (v − u)
]
≤ t∗(u)2

2
.

Then for any x > 0, (2.12) holds with probability greater than 1 − e−x .

PROOF. Let t = t∗(u). The conclusions of Theorem 2.3 hold on the event

(6.2)
{

sup
v∈K:|v−u|2≤t

ξT (v − u) ≤ t2/2 + tσ
√

2x
}
.

Let λ ≥ 0. Define the functions g and F by g(v) = supθ∈K:|θ−u|2≤t v
T (θ − u) and

F(v) = exp(λg(v)). By (6.1) and [6], Theorems 5.5, we have

logEF(ξ) ≤ logEF(σx) ≤ λE
[
g(σx)

] + σ 2λ2t2

2
≤ λt2 + σ 2λ2t2

2
.
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A Chernoff bound yields that the event (6.2) has probability at least 1−e−x , which
completes the proof. �

Thus, Corollary 2.2 and Theorem 2.3 both hold for any random vector ξ that
satisfies (6.1). By the contraction argument [17], Lemmas 4.4 and 4.6, we explain
below that any random vector with independent sub-Gaussian components satisfy
(6.1).

PROPOSITION 6.4. Let x ∼ N (0, In×n) and let x1, . . . , xn be the components
of x. Assume that the components ξ1, . . . , ξn of ξ are symmetric, independent and
satisfy

(6.3) P
(|ξi | > t

) ≤ 8P
(

σ |xi |
8

> t

)
∀t > 0, i = 1, . . . , n.

Then (6.1) holds.

In other words, (6.1) is satisfied if the tail of ξi is bounded from above by 8
times the tail of a normal random variable N (0, σ/8). The constant 8 above is
arbitrary, it could be replaced by any large enough numerical constant. In fact, the
property (6.3) holds for every sub-Gaussian random variables: If the ξi satisfies
E[e(8ξi/σ )2] ≤ e then (6.3) holds; cf. [4], Lemma H.1, where a similar contraction
argument is used. As our framework and notation are different than the setting of
[17], we provide below a concise proof of this argument.

PROOF OF PROPOSITION 6.4. Let B1, . . . ,Bn be i.i.d. Bernoulli random vari-
ables with P(Bi = 1) = 1/8 = 1 − P(Bi = 0), independent of x and ξ . For all
i = 1, . . . , n we have P(|Biξi | > t) ≤ P((σ/8)|xi | > t) so that it is possible, using
inverse distribution function, to define the random variables Bi, ξi, xi on a large
enough probability space such that |Biξi | ≤ (σ/8)|xi | almost surely. Let ε1, . . . , εn

be i.i.d. Rademacher random variables with P(εi = ±1) = 1/2, independent of
all other random variables. Let Eε be the conditional expectation with respect
to ε1, . . . , εn conditionally on (Bi, ξi, xi)i=1,...,n. For all α ∈ [−1,+1]n, define
G(α) = EεF ((σ/8)ε1α1x1, . . . , (σ/8)εnαnxn). Then we have

EεF (ε1B1ξ1, . . . , εnBnξn) ≤ sup
α∈[−1,1]n

G(α)

= sup
α∈{−1,1}n

G(α)

= G(1,1, . . . ,1).

The first equality holds because G(·) is convex and a convex function a maximized
at an extreme point of [−1,+1]n, that is, at some α∗ ∈ {−1,1}n. The second in-
equality holds because εi has the same distribution as α∗

i εi .
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As 1/8 = EBi for all i = 1, . . . , n, by Jensen’s inequality with respect to
B1, . . . ,Bn we have

EF

(
ξ

8

)
= EF

(
ε1ξ1

8
, . . . ,

εnξn

8

)

≤ EF(ε1B1ξ1, . . . , εnBnξn)

≤ EG(1, . . . ,1)

= EF

(
σx

8

)
,

where the first and last equalities are consequences of the fact that for all i =
1, . . . , n, ξiεi is equal in distribution to ξi and xiεi is equal in distribution to xi .

�

Finally, the requirement that the components of ξ are symmetric can be relaxed
by adding symmetrization step [17], Lemma 6.3.

APPENDIX A: PROOF PRELIMINARIES

Recall that the sets K1, . . . ,Kn,U are defined in (1.17) and (1.18).

LEMMA A.1. Let u ∈ U be a unimodal sequence. For all m = 1, . . . , n, the
statistical dimension of the tangent cone of Km at u satisfies

δ(TKm,u) ≤ (
k(u) + 1

)
log

(
en

k(u) + 1

)
.

PROOF. Let m = 1, . . . , n, k = k(u) and let (T1, . . . , Tk) be a partition of
{1, . . . , n} such that u is constant on each Tl and Tl is convex for all l = 1, . . . , k.
Let l∗ ∈ {1, . . . , k} be the unique integer such that m ∈ Tl∗ , and let T ∗ = Tl∗ . Let
v ∈ Km. Then for all l < l∗, the sequence (v −u)Tl

is nonincreasing and for all l >

l∗, the sequence (v − u)Tl
is nondecreasing. Furthermore, if A = T ∗ ∩ {1, . . . ,m}

and B = T ∗ ∩ {m + 1, . . . , n}, the sequence (v − u)A is nonincreasing and the
sequence (v − u)B is nondecreasing. We have proved the inclusion

TKm,u ⊂ C := S↓
|T1| × · · · × S↓

|Tl∗−1| × S↓
|A| × S↑

|B| × S↑
|Tl∗+1| × · · · × S↑

|Tk |,

where for all integer q ≥ 1, S↑
q is the cone of nondecreasing sequences in R

q and

S↓
q is the cone of nonincreasing sequences in R

q . Using (1.27), (1.26) and (1.29),
we obtain

δ(TKm,u) ≤ δ(C) ≤ log
(
e|A|) + log

(
e|B|) + ∑

l=1,...,k:l �=l∗
log

(
e|Tl|).

Using Jensen’s inequality with the fact that |A| + |B| + ∑
l=1,...,k:l �=l∗ |Tl| = n, we

obtain δ(TKm,u) ≤ (k + 1) log en
k+1 . �
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LEMMA A.2. Let u ∈ U and let Zt be the random variable (2.13) with
V = U . Then if t∗(u) is defined as the right-hand side of (3.4) and t =
max(t∗(u),8σ

√
logn), we have E[Zt ] ≤ t2/2.

PROOF. Let λ > 0 be a constant that will be specified later. Let also Zt,m be
the random variable (2.13) with V = Km. Then clearly Zt = maxm=1,...,n Zt,m. By
[6], Theorem 5.5, we have

(A.1)

E exp(λZt) ≤
n∑

m=1

E exp(λZt,m)

≤
n∑

m=1

exp
(
λE[Zt,m] + λ2t2σ 2/2

)
.

Let m = 1, . . . , n. We now bound E[Zt,m] from above. Assume without loss of
generality that the mode of u is after m, that is, u ∈ Kj for some j ≥ m. Let
T := {1, . . . ,m}, E := {m+1, . . . , j −1} and S := {j, . . . , n}. Then for all v ∈ Km,
by definition of T ,E and S we have

vT ∈ S↓
|T |, uT ∈ S↓

|T |, (v − u)E ∈ S↑
|E|, vS ∈ S↑

|S|, uS ∈ S↑
|S|.

Thus, the quantity E[Zt,m] is bounded from above by

E sup
α∈[0,1]

sup
x∈S↓

|T |:|x−uT |2≤t

αξT
T (x − uT )(A.2)

+E sup
α∈[0,1]

sup
x∈S↑

|E|:|x|2≤t

αξT
Ex(A.3)

+E sup
α∈[0,1]

sup
x∈S↑

|S|:|x−uS |2≤t

αξT
S (x − uS).(A.4)

The set S
↑
|E| is a cone so the supremum supα∈[0,1] can be dropped from the second

term (A.3). For the first term (A.2), we have α(x − uT ) = (αx + (1 − α)uT ) −
uT = x′ − uT and x′ ∈ S↓

|T | by convexity. Thus the supremum supα∈[0,1] can be
dropped. The same argument allows us to drop supα∈[0,1] in (A.4). Using (3.4) and
V (u) ≥ max(V (uT ),V (uS)) we get that E[Zt,m] ≤ 3t2/16 for all m = 1, . . . , n.
We plug this bound into (A.1) with λ = 1/(8σ 2) to obtain

EeλZt ≤
n∑

m=1

eλE[Zt,m]+λ2t2σ 2/2

≤ neλ(3t2/16+t2/16)

= eλ(t2/4+8σ 2 logn).
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Jensen’s inequality implies E[Zt ] ≤ t2/4 + 8σ 2 log(n). As t ≥ 8σ
√

logn, we have
established that E[Zt ] ≤ t2/2. �

APPENDIX B: PROOFS FOR CONVEX REGRESSION

PROOF OF THEOREM 4.6. Let u ∈ U be a unimodal sequence. Define the
random variable

G := ξT (u − μ)/|u − μ|2 if u �= μ and G = 0 otherwise.

Let TKm,u,m = 1, . . . , n be the tangent cones from Lemma A.1. Define the random
variable Yu by

Yu := sup
v∈⋃

m=1,...,n TKm,u:|v|2≤1
ξT v,

Let R̃ := |μ̂ − μ|2 and R := |u − μ|2. We first prove that, almost surely,

(B.1) ‖μ̂ − μ‖ ≤ max
(
‖u − μ‖, 2Yu + G√

n

)

It is enough to prove that R̃ > R implies R̃ ≤ 2Yu + G. Assume that R̃ > R.
Inequality (2.2) yields R̃2 ≤ ξT (μ̂ − μ) and thus

R̃2 ≤ ξT (μ̂ − μ)

= ξT (μ̂ − u)

|μ̂ − u|2 |μ̂ − u|2 + G|u − μ|2
≤ Yu|μ̂ − u|2 + GR,

where we used that μ̂ ∈ U since a convex sequence is unimodal. We have R < R̃

and by the triangle inequality, |μ̂ − u|2 ≤ R̃ + R < 2R̃, which proves that R̃2 ≤
2YuR̃ + GR̃. Dividing by R̃ completes the proof of (B.1).

We now prove the oracle inequality. Since G is centered Gaussian with variance
at most σ 2 we have

(B.2) P
(
G > σ

√
2(x + logn)

) ≤ e−x/n ≤ e−x.

Furthermore, using (1.24), we have Yu = maxm=1,...,n |�TKm,u(ξ)|2. We apply
(2.3) to L = TKm,u for all m = 1, . . . , n and the union bound to obtain

(B.3) P

(
Yu ≤ σ max

m=1,...,n
δ(TKm,u)1/2 + σ

√
2(x + logn)

)
≥ 1 − e−x.

Lemma A.1 provides an upper bound on maxm=1,...,n δ(TKm,u)1/2. We complete
the proof by combining (B.2) and (B.3) with the union bound. �
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PROOF OF THEOREM 4.7. Let u be a minimizer of the right-hand side of the
oracle inequality from Theorem 4.7. Let t and Zt be defined in Lemma A.2. As
KC

x1,...,xn
⊂ U , Lemma A.2 yields that

(B.4) E sup
v∈KC

x1,...,xn
:|v−u|2≤t

ξT (v − u) ≤ E[Zt ] ≤ t2/2.

Applying Theorem 2.3 completes the proof. �

APPENDIX C: PERFORMANCE OF THE UNIMODAL LS ESTIMATOR

The results below show that the unimodal LS estimator enjoys the same perfor-
mance as the convex LS estimator in Theorems 4.6 and 4.7. The proof ingredients
are also the same: Theorems 4.6 and 4.7 rely on Lemmas A.1 and A.2, and we
explain below that these two Lemmas can be used to study the performance of the
unimodal LS estimator. Note that the oracle inequalities (C.1)–(C.2) below first
appeared in [14]; our initial result on unimodal regression only featured the risk
bound (C.3) below and no oracle inequalities.

Assume in this paragraph that ξ ∼ N (0, σ 2In×n). First, for any x > 0 and any
μ ∈ R

n we have

(C.1)

∥∥μ̂LS
(U) − μ

∥∥
≤ min

u∈U

[
‖u − μ‖ + 2σ√

n

(√(
k(u) + 1

)
log

(
en

k(u) + 1

)

+
√

2(x + logn)

)]

with probability at least 1 − e−x . Inequality (C.1) is a direct application of (2.7)
and Lemma A.1. Second, there exists an absolute constant c > 0 such that for any
x > 0 and any μ ∈R

n we have

(C.2)

∥∥μ̂LS
(U) − μ

∥∥
≤ min

u∈U

[
‖u − μ‖ + max

(
cσ

(
σ + V (u)

σn

)1/3
,8σ

√
logn

n

)]

+ 2σ
√

2x√
n

with probability at least 1−e−x . Inequality (C.2) is a direct application of Proposi-
tion 2.4 and Lemma A.2. Our proofs of Theorems 4.6 and 4.7 in convex regression
and (C.1)–(C.2) in unimodal regression are similar and the rates are also the same
up to numerical constants. This resemblance is due to the fact that convex and uni-
modal regression become essentially the same problem for the worst-case design
points studied in Section 4.2.
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The performance of the unimodal LS estimator is also studied in [13] and [14].
Chatterjee and Lafferty [13] initially obtained inequality (C.2) in the well-specified
case (μ = u), as well as an adaptive risk bound of the form ‖μ̂LS

(U) − μ‖2 ≤
Cσ 2

n
(k(μ) log(en))3/2 with high probability. An intermediary arXiv revision of the

present article proved the following well-specified version of (C.1), which showed
that the exponent 3/2 could be reduced to 1. If μ ∈ U , then

(C.3)

∥∥μ̂LS
(U) − μ

∥∥
≤ 2σ√

n

(√(
k(μ) + 1

)
log

(
en

k(μ) + 1

)
+

√
2(x + logn)

)

holds with probability at least 1 − e−x . During the writing of the arXiv revision of
the present article in which (C.3) was introduced, we became aware of a similar
result by Flammation et al. [14] obtained independently in the context of statis-
tical seriation. Interestingly, (C.3) and the result of Flammation et al. [14] were
proved using different techniques. Inequality (C.3) is an outcome of the concen-
tration inequality (2.3) and of upper bounds on the statistical dimension of tangent
cones, while Flammation et al. [14] prove an oracle inequality using metric en-
tropy bounds and the variational representation studied in [9, 13]. An advantage of
the proof presented here is that the numerical constants of (C.3) are explicit and
reasonably small.
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SUPPLEMENTARY MATERIAL

Supplement to “Sharp oracle inequalities for Least Squares estimators in
shape restricted regression” (DOI: 10.1214/17-AOS1566SUPP; .pdf). The sup-
plementary material contains generalizations of the results in isotonic and convex
regression to higher order cones. Theorems 1, 2 and 3 in the supplementary mate-
rial generalize Theorems 3.2, 4.1 and 4.3 to the cones S[β] for β ≥ 3.
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