The Annals of Statistics

2017, Vol. 45, No. 5, 2151-2189

DOI: 10.1214/16-A0S 1522

© Institute of Mathematical Statistics, 2017

PHASE TRANSITIONS FOR HIGH DIMENSIONAL
CLUSTERING AND RELATED PROBLEMS

BY JIASHUN JIN, ZHENG TRACY KE AND WANIJIE WANG

Carnegie Mellon University, University of Chicago and
University of Pennsylvania

Consider a two-class clustering problem where we observe X; = ¢; u +
Zi, Z; iifd. N(0, Ip), 1 <i < n. The feature vector u € RP is unknown but
is presumably sparse. The class labels ¢; € {—1, 1} are also unknown and the
main interest is to estimate them.

We are interested in the statistical limits. In the two-dimensional phase
space calibrating the rarity and strengths of useful features, we find the pre-
cise demarcation for the Region of Impossibility and Region of Possibility.
In the former, useful features are too rare/weak for successful clustering. In
the latter, useful features are strong enough to allow successful clustering.
The results are extended to the case of colored noise using Le Cam’s idea on
comparison of experiments.

We also extend the study on statistical limits for clustering to that for
signal recovery and that for global testing. We compare the statistical limits
for three problems and expose some interesting insight.

We propose classical PCA and Important Features PCA (IF-PCA) for
clustering. For a threshold ¢ > 0, IF-PCA clusters by applying classical PCA
to all columns of X with an L2-norm larger than t. We also propose two ag-
gregation methods. For any parameter in the Region of Possibility, some of
these methods yield successful clustering.

We discover a phase transition for IF-PCA. For any threshold 7 > 0, let
£® pe the first left singular vector of the post-selection data matrix. The
phase space partitions into two different regions. In one region, there is a ¢
such that cos(S(’), £) — 1 and IF-PCA yields successful clustering. In the
other, cos(§®, £) <cg < 1forallt > 0.

Our results require delicate analysis, especially on post-selection random
matrix theory and on lower bound arguments.

1. Introduction. Motivated by the interest on gene microarray study, we con-
sider a clustering problem where we have n subjects from two different classes
(e.g., normal and diseased), measured on the same set of p features (i.e., gene ex-
pression level). To facilitate the analysis, we assume that two classes are equally
likely so the class labels satisfy

(1.1) £; Lid. 2Bernoulli(1/2) — 1, 1<i<n.

Received March 2015; revised June 2016.

MSC2010 subject classifications. Primary 62H30, 62H25; secondary 62G05, 62G10.

Key words and phrases. Clustering, comparison of experiments, feature selection, hypothesis
testing, Ll-distance, lower bound, low-rank matrix recovery, phase transition.

2151


http://www.imstat.org/aos/
http://dx.doi.org/10.1214/16-AOS1522
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html

2152 J.JIN, Z. T. KE AND W. WANG

We also assume that the p-dimensional data vectors X;’s are standardized, so that
for a contrast mean vector u € R?,

j.i.d.
(1.2) Xi=tip+Zi,  Zi¥ NOIp) 1<i<n.

Throughout this paper, we call feature j, 1 < j < p, a “useless feature” or
“noise” if (j) =0 and a “useful feature” or “signal” otherwise.

The paper focuses on the problem of clustering (i.e., estimating the class la-
bels £;). Such a problem is of interest, especially in the study of complex disease
[31]. In the two-dimensional phase space calibrating the signal rarity and signal
strengths, we are interested in the following limits.'

e Statistical limits. This is the precise boundary that separates the Region of Im-
possibility and Region of Possibility. In the former, the signals are so rare and
(individually) weak that it is impossible for any method to correctly identify
most of the class labels. In the latter, the signals are strong enough to allow
successful clustering, and it is desirable to develop methods that cluster suc-
cessfully.

e Computationally tractable statistical limits. This is similar to the boundary
above, except that for both Possibility and Impossibility, we only consider sta-
tistical methods that are computationally tractable.

We use Region of Possibility and Region of Impossibility as generic terms, which
may vary from occurrence to occurrence. The paper also contains three closely
related objectives as follows, which we discuss in Sections 1.4 and 2, Section 3
and Section 4, respectively:

e Performance of the recent idea of Important Features PCA (IF-PCA).

e Limits for recovering the support of  (signal recovery).

e Limits for testing whether X;’s are i.i.d. samples from N (0, I},), or generated
from Model (1.2) (hypothesis testing).

Our work on sparse clustering is related to Azizyan et al. [7] and Chan and Hall
[12] (see also [35, 36, 40, 46]): the three papers share the same spirit that we should
do a feature selection before we cluster. Our work on support recovery is related to
recent interest on sparse PCA (e.g., Amini and Wainwright [3], Johnstone and Lu
[29], Vu and Lei [43], Wang et al. [44], Arias-Castron and Verzelen [5]), and our
work on hypothesis testing is related to recent interest on matrix estimation and
matrix testing (e.g., Arias-Castro and Verzelen [5], Cai et al. [10]). However, our
work is different in many important aspects, especially for our focus on the limits
and on the Rare/Weak models. See Section 6 for more discussion.

L All limits in this paper are with respect to the ARW model introduced in Section 1.2.
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1.1. Four clustering methods. Denoting the data matrix by X, we write
:[X15X2’7XH]9 X:[x17x27"'axp]'

We introduce two methods: a feature aggregation method and IF-PCA. Each
method includes a special case, which can be viewed as a different method.

The first method fg\s,a) targets on the case where the signals are rare but individ-
ually strong (“sa”: Sparse Aggression; N: tuning parameter; usually, N < p), so
feature selection is desirable. Denote the support of i by

(1.3) S(w)y={1<j<p:p(j)#0}.

The procedure first estimates S(u) by optimizing (|| - ||1: vector L'-norm)
D% }

jes
and then cluster by aggregating all selected features 8( ) = =sgn(}_. jesen X J)

(1.4) S(Sa) = argmaxs—(2. ... p):[S|=N} {

An important special case is N = p, where ZE\, % reduces to the method of Simple

Aggregation which we denote by (ifk 3 This procedure targets on the case where

the signals are weak but less sparse, so feature selection is hopeless. Note that fg\s,a)

is generally NP-hard but éisa) is not. .
The second method is IF-PCA, denoted by é(lﬂ, where ¢ > 0 is a tuning pa-
rameter. The method targets on the case where the signals are rare but individually

strong. To use éf;ﬂ, we first select features using the y2-tests:

(15) SO ={1<j<p:00)=2qlog(p)},  QG)=(Ix;lII> —n)/v2n.

We then obtain the first left singular vector £(4) of the post-selection data matrix
X(@ (containing only columns of X where the indices are in $5"):

(1.6) 5@ =& (x'),

and cluster by §90 — sgn(£@)). IF-PCA includes the classical PCA (denoted by
q

f,(klf)) as a special case, where the feature selection step is skipped, and &4 reduces
to the first singular vector of X .4

In Table 1, we compare all four methods. Note that for more complicated
cases [e.g., the nonzero u(j)’s may be both positive and negative], we may
égf,a) E;;a) = sgn(X 1), with [t being

consider a variant of which clusters by

ZFor any vector x € R", sgn(x) € R" is the vector where the ith entry is sgn(x;), 1 <i <n
[sgn(x;) = —1,0, 1 according to x; <0, =0, or > 0].

3The superscript “sa” now loses its original meaning, but we keep it for consistency.
4The superscript “if” now loses its original meaning, but we keep it for consistency.
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TABLE 1
Comparison of basic characteristics of four methods

Simple Sparse Classical

aggregation aggregation PCA IF-PCA
Methods NS Y Ngp &P i (g > 0)
Signals Less Sparse/strong* Moderately Very

sparse/weak sparse/weak sparse/strong
Feature selection No Yes No Yes
Comp. complexity Polynomial NP-hard Polynomial Polynomial
Need tuning No Yes No Yest

*: signals are comparably stronger but still weak. {: a tuning-free version exists.

argmax,,jye(—1,0,1}, lo=N} I X #llq. where g > 0. If we let ¢ =1 and restrict
w(j) € {0, 1}, it reduces to the current éﬁa). Note that when N = p and g = 2,

approximately, [t is proportional to the first right singular vector of X and fﬁa) is
approximately the classical PCA. Note also that f,(;f) can be viewed as the adap-
tion of [IF-PCA in Jin and Wang [28] to Model (1.2). The version in [28] is a tuning
free algorithm for analyzing microarray data and is much more sophisticated. The
current version of IF-PCA is similar to that in Johnstone and Lu [29] but is also
different in purpose and in implementation: the former is for estimating £ and uses
the first left singular vector of the post-selection data matrix, and the latter is for
estimating u and uses the first right singular vector. The theory two methods entail
are also very different. See Sections 1.8 and 6 for more discussion.

1.2. Rare and weak signal model. To study all these limits, we invoke the
Asymptotic Rare and Weak (ARW) model [11, 17, 18, 24]. In ARW, for two pa-
rameters (&, ), we model the contrast mean vector u by

(L.7) () = (1= e)vo + evr, 1<j=<p,

where v, denotes the point mass at a. In Model (1.7), all signals have the same
sign and magnitude. Such an assumption can be largely relaxed; see Sections 1.6
and 6. We use p as the driving asymptotic parameter and tie (n, &, 7) to p by fixed
parameters. In detail, fixing (0, 8) € (0, 12 and o > 0, we model

(1.8) n=n,=p’,  e=e,=pF,  t=1,=p%
In our model, n < p for we focus on the modern “large n, really large p” regime

[39]. The study can be conveniently extended to the case of n > p.

1.3. Limits for clustering. Let IT be the set of all possible permutations on
{—1, 1}. For any clustering procedure ¢ (where ¢; takes values from {—1, 1}), we
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measure the performance by the Hamming distance:
n

(1.9) Hamm,,(ﬁ,a,ﬁ,@):n_lnirellf_[{ii P; ;énﬁi)},
1=

where the probability is evaluated with respective to (i, £, Z). Fixing 9 € (0, 1),
introduce a curve o = nglu (B) in the B-« plane by

I=2p/2, p<1-6)/2,
ng(B)=10/2, (1-0)/2<p<(1-0),
d=p)/2, p>(1-0).

THEOREM 1.1 (Statistical lower bound’).  Fix (8, 8) € (0, 1)? and o > 0 such
that a > nglu(ﬂ). Consider the clustering problem for Models (1.1)—(1.2) and

(1.7)~(1.8). For any procedure £, liminf,_, oo Hamm, (¢, &, 8,6) > 1/2.

THEOREM 1.2 (Statistical upper bound for clustering). Fix (8, 8) € (0, 1)?

and a > 0 such that a < nglu (B), and consider the clustering problem for Models
(1.1)-(1.2) and (1.7)-(1.8). As p — oo:

o Hamm, (65, a, B,6) — 0, if 0 < B < (1 —6)/2.
o Hamm,, ({%", a, 8,6) — 0, if (1 —6)/2 < B < 1 and N = [pe,].°

As a result, the curve o = nglu(ﬂ) divides the B-a plane into two regions: Re-
gion of Impossibility and Region of Possibility. In the former, the signals are so
weak that successful clustering is impossible. In the latter, the signals are strong
enough to allow successful clustering.

Consider computationally tractable limits. We call a curve r = ng(8) in the
B-a plane a Computationally Tractable Upper Bound (CTUB) if for any fixed
(0, a, B) such that o < ng(B), there is a computationally tractable clustering
method £ such that Hamm,, (£, o, B, 6) — 0. A CTUB r = 15 (8) is tight if for any

computationally tractable method ¢ and any fixed (0, «, B) such that « > ng(f),
liminf,_, o Hamm, (¢, a, 8,0) > 1/2. In this case, we call r = ng(B) the Compu-
tationally Tractable Boundary (CTB). Define

(1-28)/2, B<(1-6)/2,
~clu (1+6—-2p)/4, (1-6)/2<pB<1/2,
()= 0/4, 1/2<B<1-0)2,

1-p/2, 1-6/2<B<1.

5The “lower bound” refers to the information lower bound as in the literature, not the lower bound
for the curves in Figure 1 (say). Same for the “upper bound.”
6 [x7 denotes the smallest integer that is no smaller than x.
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FIG. 1. Left: the statistical limits (red) and the CTUB (green) for clustering (s = pep is the ex-
pected number of signals). Right: phase transition of IF-PCA. White region: successful clustering is
possible but successful feature selection is impossible (using column-wise X2 scores). Yellow region:
both successful clustering and feature selection are possible.

THEOREM 1.3 (A CTUB for clustering). Fix (6, B) € (0, 1)? and a > 0 such
that a < ﬁglu(ﬁ), and consider the clustering problem for Models (1.1)—(1.2) and
(1.7)—(1.8). As p — oo:

o Hamm, (65, a, B,6) — 0, if 0 < B < (1 —6)/2.
o Hamm, (/%", &, B,6) — 0,if (1 —6)/2 < B < 1/2.
° Hammp(éélﬂ, o,B,0)—0,if1/2 < B < 1 and we take q > 3.

We now discuss CTB. We discuss the cases (a) 0 < 8 < (1 —8)/2, (b) (1 —
0)/2<B<1/2,(c)1/2 <6 <1—-6/2,and (d) 1 —6/2 < B < 1 separately.
Note that the CTB is sandwiched by two curves o = nglu(ﬂ) and o = ﬁglu (B). In
(a) and (d), 7i5™(B) = nS™(B), so our CTUB (i.e., CTUB given in Theorem 1.3)
is tight. For (b), we are not sure but we conjecture that our CTUB is tight.” For
(c), we have good reasons to believe that our CTUB is tight. In fact, our model is
intimately connected to the spike model [29]; see Section 1.8. The tightness of our
CTUB under the spike model has been well-studied (e.g., [9, 34]). Translating their
results® to our setting suggests that there is a small constant § > 0 such that when
1/2 < B < 1/2 4 8, our CTUB is tight. Note that for (c), the CTUB o = ﬁglu(ﬂ)
is flat. By the monotonicity of CTB (see below), our CTUB is tight for (c). See
Figure 1.

7TWe know that CTB crosses two points (8, @) = (1/2,6/4) and (B,) = ((1 —60)/2,6/2). A nat-
ural guess is that the CTB in this part is a line segment connecting the two points.

8Consider the hypothesis testing in the spike model. [9] proves that, with the “planted clique” con-
jecture, forn < p and s = o(\/p), if |llp = s and ] < s+/Tog(p)/n, there is no polynomial-time

test that is powerful. In ARW, since ||/J,||2 ~ s72, the above translates to (ignoring the logarithmic
factor) & > 0/4 = 7S ().
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REMARK (Monotonicity of CTB). We show the CTB is monotone in 8 (with
0 fixed). Fix 6 > 0 and consider a new experiment, where for each column of the
data matrix, we keep the column with probability p~® and replace it with an in-
dependent column drawn from N (0, I,,) with probability 1 — p~. Compare this
with the original experiment. The parameters («, #) are the same, but 8 has be-
come (B + §). The second experiment is harder, for it is the result of the original
experiment by sub-sampling the columns. This shows that the CTB is monotone
in . The monotonicity now follows by Le Cam’s results on comparison of exper-
iments [33].

1.4. Phase transition for IF-PCA. 1F-PCA is a flexible clustering method that
is easy to use and computationally efficient. In [28], we developed a tuning free
version of IF-PCA using Higher Criticism [17, 19, 25] and applied it to 10 microar-
ray data sets with satisfactory results. The success of IF-PCA in real data analysis
motivates us to investigate the method in depth. To facilitate delicate analysis, we
consider the version of IF-PCA in Section 1.1, and reveal an interesting phase
transition.

To this end, we investigate a very challenging case (not covered in Theorems
1.1-1.3) where (o, B) fall exactly on the CTUB in Theorem 1.3:

(1.10) a=7gu(p).°

Also, note that a key step in IF-PCA is the column-wise x2-screening. In our
model, a column x; is either distributed as N (0, I,) or N(z,¢, I,), where 1, =
p~%. For the x2-screening to be nontrivial, we further require that

(1.11) 1/2<B<1-0)2.

For 8 in this range, the curve o = ﬁglu(ﬁ) is flat, that is, ﬁglu(,B) =0/4, and so
1, = p~9/* = n=1/4 For B outside this range, (1.10) dictates that either 7, <
n~1/4 (so that the signals are too weak that is, that the x2-screening bounds to fail)
or T, > n~1/% (so that the signals are too strong that the x >-screening is relatively
trivial). See Figure 1.

We now restrict our attention to (1.10)—(1.11), where we recall that 7, = p_e/ 4,
To make the case more interesting, we adjust the calibration of 7, slightly by an
O(log”“(p)) factor:

(1.12) 1= p O (4r log(p))]/4 where 0 < r < 1 is a fixed parameter.

With this calibration, the x2-screening could be successful but nontrivial.

9The case o < ﬁglu(ﬂ) is comparably easier to study, and the case a > ﬁglu(ﬁ) belongs to the
Region of Impossibility for computationally tractable methods; see our conjectures.
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Introduce the standard phase function'® [17, 18]

B—1/2, 1/2 < B <3/4,
1.1 * =
(115 P (P l(l— 1-B)2,  3/4<B<l.
Define the phase function for IF-PCA by
N . B—1/2
(1.14) pp(B)=(0—-6)-p (1/2—|— g ) 1/2<B<1-6/2.

For any two vectors x and y in R", let cos(x, y) = [{x/|lx|, ¥/l ¥}

THEOREM 1.4 (Phase transition for IF-PCA). Fix @, B,a,r) € (0, D* and
g > 0 such that (1.10)~(1.11) hold. Consider IF-PCA 5" for Models (1.1)~(1.2)
and (1.7)—(1.8), where T, is replaced by the new calibration r; in (1.12), and let

£ be the leading left singular vector as in (1.6). As p — 00:

o Ifr > p;(B), then with probability at least 1 — o(p~2), cos(1"), £) — 1 with
q* = (B—6/2471)?/@r) forr > (B —6/2)/3 and q* = 4r otherwise.

o Ifr < p;(B), then with probability at least 1 — o(n™Y), there is a constant ¢ €
(0, 1) such that cos(£9, £) < co for any fixed 0 < g < 1.

Theorem 1.4 is proved in Section 2, using delicate spectral analysis on the post-
selection data matrix [and so the term of post-selection Random Matrix Theory
(RMT)]. Compared to many works on RMT where the data matrix has independent
entries [42], the entries of the post-selection data matrix are complicatedly corre-
lated, so the required analysis is more delicate. We conjecture that whenr < pj (8),
cos(£€@), £) — 0 for any fixed 0 < g < 1. For now, we can only show this for ¢ in
a certain range; see the proof for details.

Figure 1 (right) displays the phase diagram for IF-PCA. For fixed («, B) in the
interior of the white region, successful feature selection is impossible (by column-
wise x2-screening) but successful clustering is possible. This shows that feature
selection and clustering are related but different problems.

REMARK. For the IF-PCA considered here, we use column-wise x 2-tests for
screening which is computationally inexpensive. Alternatively, we may use some
regularization methods for screening (e.g., [13, 32, 47]). However, these methods
are computationally more expensive, need tuning parameters that are hard to set,
and are designed for feature selection, not clustering. For these reasons, it is un-
clear whether such alternatives may really help.

101t was introduced in the literature to study the phase transitions of multiple testing and classifica-
tion with rare/weak signals.
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1.5. Clustering when the noise is colored. Consider a new version of ARW
where (¢, ) are the same as in Models (1.1), (1.7)—(1.8), but Model (1.2) is re-
placed by a colored noise model:

(1.15) X=tu' +AZB,  Zi(j) ' NO, 1), 1<i<n1<j<p,

where A and B are two nonrandom matrices.

DEFINITION 1.1.  Weuse L, > 0 to denote a generic multi-log(p) term which
may vary from occurrence to occurrence such that for any fixed § > 0, L, p%—=0
and L,,p6 — 00, as p —> Q.

THEOREM 1.5 (Statistical lower bound for clustering with colored noise).
Consider the ARW model (1.1)—(1.2) and (1.7)—(1.8). Theorem 1.1 continues to
hold if we replace the model (1.2) by (1.15) where max{|| A, |A~"|} < L, and
max{|| B[, | B~} < L.

Theorem 1.5 is proved in Section 5, using Le Cam’s comparison of experiments
[33]. The idea is to construct a new experiment that is easy to analyze and that
the current one can be viewed as the result of adding noise to it. Since “adding
noise always makes the inference harder,” analyzing the new experiment provides
a lower bound we need for the current experiment. The idea has been used in Hall
and Jin [22], but for very different settings.

Consider the case A = I,,. In this case, the matrix AZB has independent
rows (but the columns may be correlated and heteroscedastic), and all four meth-
ods we proposed earlier continue to work, except that in IF-PCA we need g >
3 max{diag(B’B)}. The following theorem is proved in Section 3.

THEOREM 1.6 (Upper bounds for clustering with colored noise). Consider
the ARW model (1.1)—(1.2) and (1.7)—(1.8). Theorems 1.2-1.3 continue to hold
if we replace the model (1.2) by (1.15) with A = I,, and B such that max{||B||,
1B~} <L p and that all diagonals of B'B is upper bounded by a constant ¢ > 0,
where we set ¢ > 3c in IF-PCA.

Practically, it is desirable to have a method that does not depend on the unknown
parameter c. One way to attack this is to replace the column-wise x2-test by a
plug-in x2-test where we estimate the variance column-wise by median absolute
deviation (say). However, such methods usually involve statistics of higher order
moments; see [5] for discussions along this line.

1.6. Limits for signal recovery and hypothesis testing. For a more complete
picture, we study the limits for signal recovery and hypothesis testing.

The goal of signal recovery is to recover the support of u. For any fea-
ture selector S, we measure the error by the (normalized) Hamming distance
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Hamm,, (S, o, B,6) = (pe,) ' S0_ [P(n(j) =0, j € §) + P(u(j) #0,j ¢ 5],
where peg, is the expected number of signals. Define

s 0/2, B<(1-0),
”gg(’g):{aw—ﬂ)m, B>(1-06),
and
. 0/2, B<(1-0)/2,
T (B)=1(1+0-2p)/4, (1-0)/2<p<1/2,
0/4, B>1/2.

The curve r = n;ig (B) can be viewed as the counterpart of r = nglu(ﬁ), which
divides the two-dimensional phase space into the Region of Impossibility and Re-
gion of Possibility. For any fixed (8, «) in the former and any S, Hamm,, (S, o, 8,

0) 2 1. For any fixed (B, «) in the latter, there is an S such that Hammp(S‘ ,a, B,

0) — 0. The curve r = ﬁ;lg(,B) can be viewed as the counterpart of r = ﬁglu(ﬁ)
and provides a CTUB for the signal recovery problem. See Section 3 for more
discussion.

The goal of (global) hypothesis testing is to test a null hypothesis Ho(p ) that the

data matrix X has i.i.d. entries from N (0, 1) against an alternative hypothesis H l(p )
that X is generated according to Model (1.2). Define

7P (B) = max{ny® ' (B), i (B)),

(1.16) 0
P gy = maX{ngyp’l(ﬂ), Z}’

and """ (B) = (2460 — 4B) /4, n"»* =min{6/2, (1 + 6 — B)/4}. Similarly, the

curve r = ngyp(ﬁ) divides the two-dimensional phase space into the Region of
Impossibility and Region of Possibility. Fix (8, «) in the former, the sum of Type I
and Type II errors 2> 1 for any testing procedures. Fixing (8, «) in the latter, there
is a test such that the sum of Type I and Type II errors tends to 0. Also, the curve

r= ﬁgyp(ﬁ) provides a CTUB for the hypothesis testing problem. See Section 4
for more discussion.

The statistical limits for hypothesis testing here are different from those in
Arias-Castro and Verzelen [5]. For the less sparse case (8 < 6/2), the signal
strength needed in our model is weaker, because all signals have the same sign.
More interestingly, we find a phase transition phenomenon that is not seen in [5]:
when 6 < 2/3, there are three segments for the statistical limits; when 6 > 2/3,
there are only two segments.'!

UThe curve r = ngyp (B) is the maximum of the boundary achievable by Simple Aggregation (a line
segment) and that by Sparse Aggregation (two line segments). Depending on where two boundaries

h . .
cross each other, r = neyp (B) may consist of 2 or 3 line segments.
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FIG. 2. Top left: statistical limits for clustering (red), signal recovery (black) and hypothesis testing
(blue); s = pep. Other three panels: CTUB for clustering (top right), signal recovery (bottom left)
and hypothesis testing (bottom right), respectively (the three statistical limits in the top left panel are
also shown for comparison).

The tightness of CTUB for signal recovery and hypothesis testing can be ad-
dressed similarly to that for clustering. For signal recovery, the CTUB is tight in
the less sparse case [0 < 8 < (1 —0)/2] for it matches the statistical limits; we have
good reasons to believe it is tight in the sparse case (1/2 < 8 < 1), due to results
in [9, 34]; we are not sure for the moderate sparse case [(1 —6)/2 < 8 < 1/2].
For hypothesis testing, we have similar arguments except that the cases of “less
sparse” and “moderate sparse” refer to that of 0 < 8 < (2 — 0)/4 and that of
(2—-0)/4 < B < 1/2, respectively.

Figure 2 compares the limits for all three problems: clustering, signal recovery
and hypothesis testing. See details therein.

REMARK. Consider an extension of ARW where (1.7) is replaced by a more
complicated signal configuration: () Hid- (I1—¢&)vg+aev_;+ (1 —a)ev,, where
0 <a <1/2is a constant (a = 0: original ARW). When 0 < a < 1/2, our results
on statistical limits and CTUB for all three problems continue to hold, provided
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with a slight change in the definition of the Hamming distance for signal recovery.
The case of @ = 1/2 is more delicate, but the changes in statistical limits (compared
to the case of a = 0) can be explained with Figure 2 (top left): (a) the black curve
(signal recovery) remains the same, (b) the red curve (clustering) remains the same,
except for the segment on the left is replaced by 4 = p/(ns?), (c) for the blue
curve (hypothesis testing), the right most segment remains the same, while the
other two segments coincide with those of the red curve. The CTUBs also change
correspondingly. See the supplementary material [27], Appendix D, for a more
detailed discussion.

1.7. Practical relevance and a real data example. The relatively idealized
model we use allows very delicate analysis, but also raises practical concerns. In
this section, we investigate IF-PCA with a real data example and illustrate that
many ideas in previous sections are relevant in much broader settings.

We use the leukemia data set on gene microarrays. This data set was cleaned
by Dettling [15], consisting of p = 3571 measured genes for n = 72 samples from
two classes: 47 from ALL (acute lymphoblastic leukemia), and 25 from AML
(acute myeloid leukemia). The data set is available at www.stat.cmu.edu/~jiashun/
Research/software/GenomicsData/ALL.

To implement IF-PCA, one noteworthy difficulty is the heteroscedasticity across
genes in the data set. We apply IF-PCA with small modifications. In detail, ar-
range the data matrix as X = [x1, ..., x,] as before. Let X (j) = (1/n) >/, x; (i),
m(x;) = median(x;) and d(j) = median{|x;(1) — m(x;)I,...,[x;(n) — m(x;)[}
be the Median Absolute Deviation (MAD). We normalize by x;-‘ (i) = 0.6745 -
(x; (i) — X(j)/d(j), 1 <i <n,1<j < p.t? For g > 0 to be determined, we se-
lect feature j if and only if (2n)~!| ||x;-k||2 —n| > 4/2g log(p). We then obtain the
leading left singular vector (£*)@) of the post-selection data matrix [x], ... xp]
and cluster by applying the standard k-means algorithm to the leading eigenvector.
In the last step, we can also cluster by the sign vector of (§*)4) and the results are
similar. The k-means algorithm has a slightly better performance.

Table 2 displays the clustering errors for different numbers of selected features
(each corresponds to a choice of g). The table suggests that IF-PCA works nicely,
with an error rate as low as 1/72, if g is set appropriately.

Figure 3 compares (£§*)@ for three choices of ¢: (a) the ¢ determined by ap-
plying the FDR controlling procedure [8] with the FDR parameter of 0.05 and
simulated P-values under the null x; ~ N(0, I,), (b) the ¢ associated with the
ideal number of selected features (see Table 2), and (c) the ¢ corresponding to
classical PCA (any ¢ that allows us to skip the feature selection step works). This
suggests that IF-PCA works well if g is properly set.!3

12The value 0.6745 is such that E[(x;f(i))z] =1 when x;(i) ~ N(0, 0'?) for any o > 0.
13A hard problem is how to set g in a data-driven fashion. This is addressed in [26].
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TABLE 2
The clustering errors for leukemia data with different numbers of selected features

#{selected features} Errors #{selected features} Errors #{selected features} Errors

1 34 1419 3 2847 5
347 8 1776 1 3204 7
704 6 2133 1 3561 11

1062 5 2490 1

Rows highlighted correspond to the threshold choices that yield lowest clustering errors.

We compare IF-PCA with classical methods of k-means and hierarchical clus-
tering [23], k-means++ (a recent revision of the classical k-means; [6]),14 Spec-
tralGem (classical PCA applied to X*; [31]), and sparse k-means (a modification
of k-means with sparse feature weights in the objective; [46]). The error rates are
in Table 3, suggesting IF-PCA is effective in this case.

1.8. Comparison to works on the spike model. In our model (1.1)—~(1.2), if

we replace the Bernoulli model for ¢; in (1.1) by a Gaussian model where ¢; Hid.
N(0, o2), then it becomes the spike model (Johnstone and Lu [29]).

In the spike model, while ¢;’s are also of interest, the feature vector u captures
most of the attention: most recent works on the spike model (e.g., [4, 32, 44]) have
been focused on signal recovery (and especially, sparse PCA). The two problems,

0.25 0.25 0.25
0.2 0.2 0.2
0.15 0.15 0.15
01 0.1 0.1
+ +
0.05 0.05 oosf +
+ + + + ++ * ¥ +
+
PR, L © #,71-771; 0,,,,,1'_1';.,,#:':.!.'47,7 ol =~ . ,_F,,,'l',,,_i_,,,,,
-0.05 -k:- + : + + —0.05""‘1;_ + + & '!" —vos'F"' + + + +-!“_
R S T 4 B e S + + 4 *4
-0 W * F oot F + + T -oap HF I
b+ + + +F+ +
o5y + -0.15 + + 1 015 ++ + .
02 + o2 * [ + s 3
+
-0.25 -0.25 -0.25 +
0 20 40 60 0 20 40 60 o 20 40 60

FI1G. 3. Leading left singular vector of the data matrix X with very few features selected by FDR
choice (left; 931 features chosen), with ideal number of features selected (middle; 2133 features cho-
sen), and without feature selection (right). y-axis: entries of the left singular vector, x-axis: sample
indices. Plots are based on Leukemia data, where red and green dots represent samples from the two
classes ALL and AML, respectively.

14For k-means, we use the built-in Matlab package (parameter ‘replicates’ equals 30). For k-
means++, we run the program 30 times, and compute the average clustering errors.
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TABLE 3
Comparison of clustering errors (leukemia data)

Method

Sparse
k-means  k-means++  Hierarchical SpectralGem k-means IF-PCA

Errorrate  20/72 18.5/72 20/72 21/72 20/72 1/72

Columns 2—7: numerator is the number of clustering errors, and denominator is the number of sub-
jects.

signal recovery and clustering, are different. There are parameter settings where
successful clustering is possible but successful signal recovery is impossible, and
there are settings where the opposite is true; see Sections 1.4 and 1.6. Therefore, a
direct extension of sparse PCA methods to clustering does not always work well.

Our work is also different from existing works on the spike model in terms of
motivation and validation. Our model is motivated by cancer (subject) clustering,
where the class labels ¢;’s can be conveniently validated in many applications (e.g.,
see Section 1.7). In contrast, it is not easy to find real data sets where the feature
vector w is known, so it is comparably harder to validate the methods/theory on
signal recovery or sparse PCA. Given the growing awareness of reproducibility
and replicability [21], it becomes increasingly more important to develop methods
and theory that can be directly validated by real applications. In a sense, our model
extends the spike model to a new direction, and it helps strengthen (we hope) the
ties between the recent theoretical interests on the spike model with real applica-
tions.

1.9. Content and notation. Section 2 studies the phase transition of IF-PCA,
where we prove Theorem 1.4. Section 3 studies the statistical limits for signal
recovery, where we prove Theorems 1.2, 1.3, 1.6, as well as Theorems 3.2-3.3 (to
be introduced). Section 4 studies the statistical limits for hypothesis testing, where
we prove Theorems 4.2—4.3 (to be introduced). Section 5 studies the lower bounds
for all three problems and proves Theorems 1.1 and 1.5, as well as Theorems 3.1
and 4.1 (to be introduced). Other proofs are in the supplementary material [27].
Section 6 is for discussion.

In this paper, L, > 0 denotes a generic multi-log(p) term; see Section 1.5.
When & is a vector, |||, denotes the vector LY-norm, 0 < g < oo (the subscript
is dropped for simplicity if ¢ = 2). When £ is a matrix, ||| denotes the matrix
spectral norm, and ||£ || r denotes the matrix Frobenius norm. For two vectors &, n,
(€, n) denotes the inner product of them, and cos(&€, n) = [(§/II&]l, n/IInll}|. For
any two probability densities f and g, || f — gll1 and H(f, g) are the L!-distance
and the Hellinger distance, respectively. For any real value a, [a] is the smallest in-
teger that is no smaller than a. We say two positive sequences a, ~ by, a, < b, and
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an 2 by if lim,_ o0 a, /by = 1, limsup,_, o a, /b, <1 and liminf,_, o a,/b, > 1,

~

respectively. For two sets A, B, AAB=(A\ B)U(B\ A).

2. Phase transition for IF-PCA. In this section, we prove Theorem 1.4. Our
proofs need very precise characterization of the spectra of the post-selection Gram
matrix X@ (X@). Specifically, we need both a tight upper bound on the range
of the spectra of X (@) (X)) (Lemma 2.1) and a tight lower bound for the largest
eigenvalue of X @) (X @) (Lemma 2.2). The main challenges are that, due to fea-
ture selection:

e the entries of X(4) are no longer independent,
e the conditional distribution of each survived column is unclear.

For this reason, existing results on RMT do not apply directly and we need to
develop new theory on post-selection RMT. Our analysis adapts that in Vershynin
[42] and uses the results of covering number in Rogers [37].

REMARK. For the spike model, there are results about the spectra of a differ-
ent post-selection Gram matrix (X @y xX@ (e. g., Theorem 2 of [29]). Since feature
selection is column-wise, the leading eigenvectors of (X)) X@ and X @ (X @y
have very different behaviors. Moreover, the settings of [29], Theorem 2, implic-
itly force X? to have much more rows than columns (which we call the “skinny”
case), but our results do not have such a restriction.

To show the claim, it suffices to show the claim for any fixed realization of
(¢, ) in the event

Dp={u:|[S(w)| — pep| <,/6peplog(p)};

note that P(DZ) = O(p~3) and the event only has a negligible effect. Fixing 0 <
g < 1 and a realization of (¢, u) in D). Let Sé(llf) (¢, ) be the set of all survived
features. In our model, X =£4u’ + Z, and Z = [z1, 22, . . ., Zp]. Introduce a vector

w' D =D, w) e RP and a matrix Z4@) = [zgq), ey zE,Q)] € R™? by
u D)y =) 1{j € SEO, wy},
=z 1fje8iPew).  1=j<p.

and so the post-selection data matrix X?) = X@ (¢, ), viewed as an n x p matrix
with many zero columns, satisfies

XD, p)y=en' P, W+ 290, w.

Fixing (8,6,r) € (0,1)% and ¢ > 0, and assuming z ~ N(0, I,), introduce
m” () = (p — 1S@D) - P(lzl® > n + 2/gnlog(p)). mi” (¢, 1) = 1S -
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P(llz + T3> > n + 2/qnTog(p)). and mD (€, 1) = m{ (€, ) + m{? (€, ).

Note that m(()q)(ﬁ, ) and miq)(ﬁ, w) are the expected numbers of survived use-

less/useful features, respectively. We also need the following counterpart of
m@ (e, p):

m@, )= (p—|S@)|) - n " E(IzI*1{lIzlI* > n +2,/gnlog(p)))
+1S@ |- E(IzP1{ ][z + T3] > n+2)/gnlog(p)}).

The dependence on (£, u) is tedious, so for notational simplicity, we may drop
them without further notices.

The term m(?) is the expected number of selected features, and plays an im-
portant role. By tail properties of chi-square distributions (see Section B.1 of the
supplementary material), with probability 1 — O (p~>),

2.1 m@ ~m @~ L,[p7 + pgpp—[(\/a—ﬁmz]’

where as before L, is a generic multi-log(p) term. Recalling n = p?, define

max{l —60,(/1—B—0+/r)?}, B<1-0,

£ (8.0.7) =
40,1 1-0, B>1-06.

By (2.1) and basic algebra, it is seen that there are two different cases:

e (“Fat”). When g < §(B,0,r),m?/n — oo and X4 has much more columns
than rows.

o (“Skinny”). When g > G(B,60,r), m9/n — 0 and X@ has much more rows
than columns.

LEMMA 2.1 [Upper bound for the range of eigenvalues of Z?(Z©)].  Sup-
pose conditions of Theorem 1.4 hold. There exists a universal constant C > 0 such
that for any fixed g > 0, as p — 00, conditioning on any realization of (£, ) from
the event D, with probability at least 1 — o(p~3):

o (“Fat” case). When q < §(B,0,r), all eigenvalues of Z'V(ZD) fall between
m? 4 [C\/nm @ log(p) + o(m'")].

o (“Skinny” case). When q > G(B, 0,r), all nonzero eigenvalues of Z'V(Z@Y
fall between n = C/nm@ log(p).

REMARK. Noting that m‘? is the expected number of columns of Z4@, our
results are very similar to the well-known results on eigenvalues of RMT in the
case where we have an n x m@ matrix with i.i.d. N(0, 1) entries. However, we
need more sophisticated proofs, as the rows of Z@ are dependent and the distri-
bution of the columns of Z? is unknown and hard to characterize.
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For the “fat” case, it turns out that Lemma 2.1 is insufficient: we need both an
improved upper bound on the range [with the /log(p) factor eliminated] and a
lower bound on the leading eigenvalue.

LEMMA 2.2 [Improved bound (“fat” case)]. Suppose the conditions of The-
orem 1.4 hold and r < p;(B). There exist constants c1 > c2 > 0 such that as
p — 00, for any fixed q > 0, conditioning on any realization of (€, ) from the
event D, with probability 1 — O(n=2):

o All singular values of Z\D(ZDY fall between m + civ/nam@;
o Amax(ZD(ZDY) = m® + cr/nm@.

We now prove Theorem 1.4. We show the cases of r > p;(B) (Region of Possi-
bility) and r < p;(B) (Region of Impossibility) separately.

2.1. Region of possibility. Consider the case r > p;(B). Recall that

4r, r<(B—6/2)/3,

q=q"(B.0.1)=1 (B —0/2+7r)>

—

Let £* be the first left singular vector of X@ at ¢ = ¢*(8,6, r). The goal is to
show

B—0/2)/3<r<1.

cos(¢, &%) — 1.
Write
(2.2) X(q)(X(Q))/ _ HM(Q)HZM,‘F Z(Q)(Z(‘I))/—}—A,

where A = £(u DY (Z DY + ZD 1@ ¢’ for short. On the right-hand side of (2.2),
the first matrix has arank 1, with n||;‘?’ || being the only nonzero eigenvalue and £
being the associated eigenvector. In our model, the expectation of || w2 is equal

to (t;‘)zmiq), where by tail properties of chi-square distributions (see Section B.1

of the supplementary material), mgq) =L, pl=Pp-IVa ~vN+1 with overwhelm-
ing probabilities. It follows that with a probability at least 1 — O (p—3),

a2 n(el)? - m® ~ L, pd@son,

where A(q, 8,0,r)=1+0/2—B—[(/q — V7)+1?. Compare this with (2.2). By
perturbation theory in matrices 157110, 14], to show the claim, it suffices to show

15We use [10], Proposition 1, a variant of the sine-theta theorem [14]. By that proposition, if £
and £ are the respective leading eigenvectors of two symmetric matrices G and G, where G has a

rankAl, then ||§§’ —EE | < 2|\ACA}||_1 ||G — G||. We also note that for two unit-norm vectors é and &,
cos(£, &) — 1 if and only if ||£€" — £&’|| — O by linear algebra.
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that there is a scalar a* (either random or nonrandom) and a constant §* > 0 so
that'®

||Z(CI)(Z(61))’ + A —a*l, || < L,,pA(q’ﬂ’g”)_a*.
To this end, note that by triangle inequality,
”Z(LI) (Z(Q))/ +A—a*l, ” < ”Z(q)(z(Q))/ —a*l, ” + A]l.

The following lemma is proved in the supplementary material [27].

LEMMA 2.3. Suppose conditions of Theorem 1.4 hold. For any fixed q > 0,
as p — 00, conditioning on any realization of (€, 1) from the event D, with

probability 1 — O(p~2), [€(u@) (ZDY + ZOp@'|| < Cnry\/m|?.

The key to the proof is to control [|Z@ 19|, using the Bernstein inequality
[38] and to study the distribution of Z @) See [27] for details.

Now, when ¢ > g(B, 0, r), we are in the “skinny” case, combining Lemmas 2.1
and 2.3, we have that with probability at least 1 — O (p ),

|Z9(Zz@Y + A| <n+ C(nr;\/m(l‘” + \/nm(q) 10g(P))

< L,,p%Jr% max{6,A(q.8,0.r)}

In the last inequality, we have used (2.1) which indicates that m =L p1 9 and
mgq) = Lppl_ﬁ_[(f VORI By the condition of r > pj (), it can be shown that
A(g, B,0,r) > 6, and the claim follows by letting a* = 0 and §* = AT*Q. When
qg <q(B,0,r), we are in the “fat” case. Combining Lemmas 2.1 and 2.3, with
probability at least 1 — O (p~3),

|1ZD(Z2DY + A —m @1, ||<C(m \/m<q>Jr nm@ log(p) +n~ m(q))

< Lppj-l-zmax{@,A(q,ﬂ,G,r),l—q} +pA(q,,B,9,r)—%'

By the condition of r > p;(B), it can be shown that A(g, B,6,r) > max{6,

9+1 21>=4}, and the claim follows by letting a* = m(q) and §* = mm{A , A —
1— q+9 30}

16We have used the fact that adding/subtracting a multiple of the identity matrix does not affect the
eigenvectors.
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2.2. Region of impossibility. Consider the case r < p;(B). Fix 0 < ¢ < 1. Re-
call that £@) is first left singular vector of X(?). The goal is to show that

(2.3) cos(¢, 5(")) <cp<1 forany 0 < ¢ < 1,
where co is a universal constant independent of g. Denote for short H =

X@O(XDY, Hy=2D(zZ@y, £ =£@, and £ = £/||£]|. Let the eigenvalues of
Hber{(H) > y(H)>---> A, (H). Write

= ak ++/1—a%n for a unit-norm vector n such that n L £.

Note that &’Hn = A&'n =0 and n'Hy > A,, we have {'HI = a6’ HE +
2a/1—a’§'Hn + (1 — a®>)n'Hn > a’r1 + (1 — a*)A,. Rearranging it gives
a’<1—[r(H) — V' HL)/[AM(H) — An(H)]. Note that cos(€, £) = |a|. So to show
(2.3), it suffices to show there

M(H)—CHE 5
2.4) ——>1—c for some constant cg € (0, 1).

M(H) — A (H)

The following lemma is proved in the supplementary material [27].

LEMMA 2.4. Suppose r < p;(B) and the conditions of Theorem 1.4 hold.
As p — oo, for any fixed g > 0, conditioning on any realization of (£, ;1) from

the event D, for any v € S with probability 1 — O(p~3), |v Hyv — mfkq)l <
C,/m@Dlog(p), and

o(n), q > q(B,r,0) (“skinny” case),
2.5 H — Hy|| =
23) | ol {o(v nm@), g <q(B,r,0) (“fat” case).

We now show (2.4). Similarly, let Aj(Hp) > A2(Hp) > --- > A, (Hp) be the
eigenvalues of Hy. We prove for the cases of ¢ > g(B8,r,6) and q¢ < g(B,r,0)
separately. Consider the first case. This is the “skinny” case where m? < n.
By Lemma 2.1 and the first claim of Lemma 2.4, with probability 1 — O(p™),
M (Hpy) ~n, A,(Hp) > 0 and Z/HOZ = o(n). By the second claim of Lemma 2.4,
|H — Hp|| = o(n). Combining the above with Weyl’s inequality [45] [i.e.,
maxi<j<u [Ai (H) — A;(Ho)| < ||[H — Hy||], we have

AM(H) — Ay (H) <n+o(n), MH)—CHE>n— o).

Inserting these into (2.4) gives the claim.
Consider the second case. This is the “fat” case and m@ > n. By Lemma 2.2

and the first claim of Lemma 2.4, there is A1(Hp) — An(Hp) < c2v nm@ and
M (Ho) — €' Hol 2 ci~/nm'@). Similarly, combining these with the second claim
of Lemma 2.4 and Weyl’s inequality, we find that

AM(H) = ag(H) Seavnm@,  A(H) = HE > ciVnm @,

Inserting these into (2.4) gives the claim.
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3. Limits for signal recovery. In this section, we discuss limits for signal
(support) recovery. The results are intertwined with those for clustering (namely,
Theorems 1.1-1.3 and Theorem 1.5), so we prove all of them together in the later
part of the section.

Compare two problems: signal recovery and clustering. One useful insight is
that in the less sparse case, clustering is comparably easier than signal recovery,
so we should estimate £ first and then use it to estimate S(u); in the more sparse
case, we should do the opposite.

For the less sparse case, we have introduced two clustering methods, f,(,fa) and
é(iﬂ in Section 1.1. They give rise to two signal recovery methods, S¢ ¢ and Sl,(fﬂ.
In detail, let y*® = n=1/2X"0%Y and y0 = n=1/2x70  and let ty = /210g(p)
be the universal threshold [20]. Respectively, S&¥ and S are deﬁned by

S ={1<j<p: P =r)  SV={1<j<p: =)

For the more sparse case, we introduce two methods S‘Sa) and S‘gﬂ; they are in

fact the ones that give rise to the clustering methods é(sa) and f(iﬂ we introduced
in Sectlon 1.1. In detail, recalling that Q(j) = (2n)~ 1/2(||x] |2 — n) is the column-
wise y 2-statistics,

i

H)3E

jes

S50 ={1=j = p: () = 2qlog(p)).

For any signal (support) recovery procedure S, we measure the performance by
the normalized size of the difference of S and the true support

(3.2) Hamm,, (8, a, B,6) = (pe,) " E(|S ).

where AAB = (A \ B) U (B \ A) denotes the symmetric difference of two
sets and the expectation is with respectlve to the randomness of (u, ¢, Z). If
we think S as an estimate of W, say, L, and E (|SAS(,u)|) is actually the
Hamming distance between the two vectors (sgn(|a(1)]), ..., sgn(|a(p)]))" and
(sgn(u(1)),...,sgn(u(p))) . For this reason, we call that in (3.2) the (normalized)

Hamming distance. In Section 1.6, we have introduced the curves o = nglg(,B ) and

o= f;;ig (B). The following theorem is proved in Section 5.

& —1
(3.1) S§Y = argmaX{S:SC{l,2,...,p},|S|:N}{N /

and

THEOREM 3.1 (Statistieal lower bound for signal recovery). Fix («, 8,0) €
(0, 1)3 and suppose o > nzlg (B). Consider the signal recovery problem for Models
(1.1)~(1.2) and (1.7)—(1.8). For any S that is an estimate for the support of S,
Hammp(S', a,B,0) 2 1as p— oo.
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We also have the following theorems, which are proved below.

THEOREM 3.2 (Statistical upper bound for signal recovery). Fix (o, B,0) €
(0, 1)3 and suppose a < nzlg (B). Consider the signal recovery problem for Models
(1.1)-(1.2) and (1.7)-(1.8). As p — oo:

o Hamm, (8, a, B,6) — 0, if 0 < B < (1 —6)/2.
o Hamm, (3%, &, 8.6) — 0,if (1—60)/2 < B < 1 and N = [pe,].

THEOREM 3.3 (CTUB for signal recovery). Fix (¢, 8,6) € (0, 13 and sup-
pose a < f);ig(,B). Consider the signal recovery problem for Models (1.1)—(1.2)
and (1.7)—(1.8). As p — oo:

e Hamm, (8%, @, B,6) — 0, if0 < B < (1 —6)/2.
o Hamm, (5", a, B,6) = 0,if (1 —0)/2 < B < 1/2.
o Hamm, (8", a, B,6) — 0,if (1 —6)/2 < B <1/2and q > 3.

3.1. Proofs of Theorems 1.2-1.3, 1.6 and 3.2-3.3.  We need two lemmas. The
first one is on classical PCA, and it is needed for studying filﬂ and 3,@. The
second one is a large-deviation inequality for folded normal random variables and
it is needed for studying the optimization problem in (3.1).

LEMMA 3.1. Fix (a,B,0) € (0,1)® such that (1 — 0)/2 < B < 1/2 and
o< ﬁglu(ﬂ). In Models (1.1)—(1.2) and (1.7)—(1.8), let 1 be the first eigenvalue
of XX' and & be the corresponding eigenvector. There is a generic constant
8§ =8(a, B, 0) > 0 such that with probability 1 — O(p~3),

min{[|v/n€ + oo, v/ = Elloc} < p~°.

The claim continues to hold if we replace the model (1.2) by (1.15) for A = I, and
B such that max{||B|, ||B~'||} < L.

LEMMA 3.2 (Large-deviation on Folded Normals). Asn — oo, for any h > 0
and 0 < x < \/n/log(n), and n independent samples z; from N (0, 1),
> (Izi + k| — E[|zi + hl])

P(
i=1

where o(1) — 0, uniformly for all h > 0 and 0 < x < \/n/log(n).

n

> ﬁx) < 2exp(—(1 +o(1)x?/2),

We now show all theorems about upper bound. Since Theorems 1.2-1.3 are
special cases of Theorem 1.6 with B = I, it suffices to show Theorems 1.6 and
3.2-3.3. As there are four methods involved, it is more convenient to prove in a way
by grouping the items associated with each method together. Fixing (¢, 8,6) €
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(0, 1)3 and viewing all statements in Theorems 1.6 and Theorems 3.2-3.3, whz}t

we need to show can be re-organized as follows (for the statements regarding £,

we need to prove that they hold for a general B where max{||B|, |[B~'|} < L p):

e (a). Simple Aggregation. Consider the case 0 < 8 < (1 — 6)/2. In this range,
15 E(B) < nS™(B). All we need to show is that if o < ng(8), then €8 = ¢
with probability at least 1 — O(p~?), and that if additionally o < nglg(,B), then
Hammp(i,(fa), o, B,0)— 0.

o (b). Sparse Aggregation. Consider the case (1 — 6)/2 < < 1. In this
case, 1751“(,3) < nglg (B). Letting N = [pe,], all we need to show is that
Hamm, (8$¥, a, 8,6) — 0 if @ < n}%(8) and Hamm,({$”, &, B,6) — 0 if
additionally & < n§"(B).

e (c). Classical PCA. Consider the case (1 —¢)/2 < < 1/2 where only compu-
tationally tractable bounds are concerned and ﬁglu (B) = ﬁ;lg (B). All we need to
show is that if & < 775" (B), then £ = £ with probability at least 1 — O (p~>)
and that Hammp(SL,(fﬂ, o, B,0)— 0.

e (d). IF-PCA. Consider the case 1/2 < 8 < 1 ‘where only computationally
tractable bounds are concerned and ﬁglu B) < ﬁ;lg (B). All we need to show is
that if o < 73 £(B), then SV = S(u) with probability at least 1 — O(p~3); and
if additionally o < ﬁglu (B), then Hamm,, (é(lﬂ, o, B,0)— 0.

Consider (a). Note that /¢ = sgn(>_"_ x;) and ¥-0_ x; ~ N(llnllott. ply).
By (3.3), lullot = p'=#7*(1 + o(1)). Hence, & < 5§ (B) implies [|llor > /P,
and it follows that ffa) = £ with overwhelming probability. Once éfksa) =4,
Y& = 12X ~ N(Jnp, 1,). Noting that & < n,%(B) implies /n7 > 1, we
have Hamm p(S‘isa) ) — 0 with overwhelming probability. Consider (c). The first
claim is a direct result of Lemma 3.1, and the second claim can be proved similarly
as in (a). Consider (d). Recall that the column-wise test statistic Q(j) is approx-

imately distributed as N (0, 1) for useless features and N (y/n /2r2, 1) for useful
features. So 7 > n~!/4 will assure successful signal recovery, which translates to

o< ﬁ;ig (B). Once S‘,gif) = S(u), we restrict our attention to X5¥), the sub-matrix
of X restricted to the columns in S(u), and the claim of Lemma 3.1 continues to
hold by adapting the proof there (see the supplementary material [27] for details).
So Hamm,, (éélﬂ) — 0 with overwhelming probability. It remains to prove (b).
We now show (b). Define [Lgf}a) such that [Lgf}a)( N=1, 1{je 3‘,(\33)}. Write

SOV =8, a0 =, £$Y = and 5, = pe,,. With probability 1 — O (p~?),

(3.3) liello = sp| < Cy/splog(p).

Since any event of probability O(p~?) has a negligible effect to the Hamming
distances, we always condition on a fixed realization (¢, u) that satisfy (3.3); so
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the probabilities below are with respective to the randomness of Z. To show (b),
all we need to show are:

e (bl). Hammp(f a,B,0)—0,ifa < 7;01“(,8). In this item, the matrix B may be
any matrix that satisfies max{|| B||, || B~ Iy < Lp.

o (b2). Hamm (S, o, B,6) — 0, if @ < 0} (B). In this item, B = I,,.
Consider (b1) first. It suffices to show

(3.4) nlE 0 — 1.

For any realized w, we construct fi as follows:

o If ||ullo > N, replace ||i||o — N nonzero entries by 0.
o If [[ul]lo < N, replace N — ||t]lo zero entries by 7).

Let S be the support of ji. Write Xji = [|BAll - [Z(Ba/IIBll) + (i, /| Bal) €],
where Z(Bji/||Bitl) ~ N(0,1,) and (u,/||Ball) Z 1Bl ™'ty /sy = L, X
pU=B=20/2 with (1 — B — 2a) > 0 in our range of interest. According to Mills’
ratio [38], with probability 1 — O( p_3), the absolute value of standard normal vari-
able is bounded by +/6Tog(p), which is less than L, p"1=F=20/2 when p — 0.
It follows that with probability at least 1 — O( 12_3), sgn(X 1) = £. Furthermore,

OX = Xl = 1| $;c5x;1h- Since that £XA = XAl = 7| T, 5250
and that S solves the optimization problem (3.1),

(3.5) UXp>0X.

Write /X = (0, €) (i, &) + £’ ZBji. We aim to obtain an upper bound for
|¢'ZBj| (an upper bound for |[¢/ZBji| can be obtained similarly). Denote
by (ZB)SAthe sub-matrix of ZB containing columns in S. ThenA|é’ ZBh| <
ValZB)Sull < asptpll(ZB)S|, where [(ZB)S|| < IBINZS| < Lp x
max|sj—y || Z5]|. By classical RMT [42], maxjsj—y [ Z5|| < L, max{y/n, \/5,}
with probability at least 1 — O (p~3). Inserting them into (3.5) gives

(3.6) (€, ), ) = n, i) — Lp /15, Tp (V1 + /5p).

First, {(u, i) < max{||ullo, N}t2 ~Sp l% Second, by (3.3) and the definition of /i,
(W, 1) =sp p(l +0(1)). Inserting these into (3.6) gives n™ (f, ) >1-— Lp(ﬁ+
Sp)/(Tp/nsp). When a < nglu(ﬂ) the second term on the right-hand side is
<p~ ~8 for some § = §(c, B,6) > 0, and (3.4) follows.

We now consider (b2). Let & and S be the same as above. Due to (3.3), |S N
S(uw)| = 1S(w)|(1 + o(1)). It suffices to show that

(3.7) 1SN S)| = [SNSG)| —olsp).
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Since |S‘ | = |$‘ | = N and that S solves the optimization (3.1),
n

in(j)‘ > NTI2Y

jes i=1

For any S C {1,..., p} such that |S| = N, we define w; (S) = N2 ¥, ¢ Z; ()
and h(S) = N~Y2|S N S(u)|tp. It follows that G(S) @ " wi(S) + h(S)],
where w; (S) v N(@,1), 1 <i <n. For any h > 0, we define the function
u(h) = Ex~n@,1)(|X +h|). Let E, be the event that {maxgc(1..... p},|s5|=n |G(S) —
u(h(S))| < /6Nlog(p)/n}. By Lemma 3.2 and the fact that there are no more
than p" such S, P(E;) = O(p~3); so those realizations Z in E; has a negligible
effect. Combining it with (3.8) gives

(3.9) w(h(8)) = u(h(S)) — L,\/splog(p)/n.

The following lemma is proved in the supplementary material [27].

38) G =N in(j)‘EG(S)-
i=1 =

LEMMA 3.3. There exists a constant C > 0 such that for any 0 < hy < hj,
u(hy) —u(hi) > Cmin{(hy — hy), (hy — h1)?}.
Since h(S) < h(S‘) for any S with |S| = N, by Lemma 3.3,
(3.10) u(h(8)) = u(h(8)) — Cmin{h(8) — h(8), [h(3) — h(5)]*}.
We combine (3.9)—(3.10). It yields that
< h(S) — h(S) <
VSpTp

The assumption o < n;ig(,B) implies 7, < p_‘S min{n—1/2, (nsp)_1/4}. So the
right-hand side of (3.11) is o(1). Then (3.7) follows.

3.11) 0 Ly, max{(log(p)/n)'"?, (log(p)/ns,)"/*}.

4. Limits for hypothesis testing. The goal for (global) hypothesis testing is
to test a null hypothesis

@.1) HP X" NO, 1), 1<i<n,
against a specific alternative in the complement of the null,

4.2)  H":X;’s are generated from Models (1.1)~(1.2) and (1.7)~(1.8).

We consider three different tests.
The first test T*(sa) is connected to the idea of simple aggregation. Recall that x
is the average of all columns. The idea is to test whether E[x] = O or not using the

classical x2. This test rejects Hép ) if and only if

@n)~2[plE)1? — n] = 2,/210g(p).
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=~ (sa)

The second test Ty, is connected to sparse aggregation. Let gsa) be as in (3.1).
This test rejects Hép ) if and only if

> .

. _o(sa)
JESN

N~ > \/2/7n +/2n(N +2)log(p).

The third test 71 is connected to the Higher Criticism in Donoho and Jin [17].
Recalling that Q(j) = (2n)_1/2(||xj- |> — n) are the column-wise x >-tests, the idea
is to test whether some of the Q(j)’s have nonzero means:

e For | < j < p, obtain a P-value 7; = P{(2n)~/2[x2(0) —n] > Q(j)}.

e Sort the P-values in the ascending order: 7(;) < m2) < -+ < 7(p).

e Compute the Higher Criticism statistic HC ; = max{i<j<p,2) HCp i, where

HC, ;= /Pli/p) — m@y)/Imay (1 — ma)]/2

The test rejects Hép) if and only if HC* > 2,/21loglog(p).

The test f"lf,sa) is similar to a test in [5], which is designed for the case that there
is (unknown) dependence among features and so the test is more complicated than
ours. The other two tests are newly proposed.

For any testing procedure T that tests Hl(p ) against Hép ), we measure the per-
formance by the sum of Type I and Type II errors:

4.3) Er(T,a, B,6) = PHém(f” rejects Hép)) + PHl(p)(f" accepts H(gp)),

where the probabilities are with respective to the randomness of (¢, i, Z).

In Section 1.6, we have introduced two curves ngyp(ﬂ) and ﬁgyp(/ﬂ). The fol-
lowing theorem is proved in Section 5.

THEOREM 4.1 (Statistical lower bound for hypothesis testing). Fix (¢, B,0) €
0, 1) with o > n‘;yp(ﬁ). Consider the testing problem (4.1)—(4.2) for Models
(1.1)~(1.2) and (1.7)—(1.8). For any test T, Ere(T , o, B,0) > 1 as p — oo.

Consider the upper bound. By the definitions [see (1.16)], when o < ngyp (B),
we have either a < ngyp’l(ﬂ) ora < pgyp’z(ﬂ), or both.

THEOREM 4.2 (Statistical upper bound for hypothesis testing).  Fix («, 8,6) €
(0, 1)3 such that a < ngyp (B). Consider the testing problem (4.1)—(4.2) for Models
(1.1)—(1.2) and (1.7)—(1.8). As p — oc:

o Er(1{* 0. p.0) > 0ifa < 1y’ (B).
° Err(flg,sa), a,B,0) > 0ifa < ngyp’z(ﬁ) and we take N = [pe,].
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THEOREM 4.3 (CTUB for hypothesis testing). Fix («, 8,6) € (0, 13 such

that a < ﬁgyp (B). Consider the testing problem (4.1)—(4.2) for Models (1.1)—(1.2)
and (1.7)—(1.8). As p — oc:

o En(1™, a, 8,6) > 0if0 < f < 1/2.
e Err(TM o, B,6) > 0if1/2<pB <1.

4.1. Proofs of Theorems 4.2-4.3. Similarly, as three tests are involved, it is
more convenient to prove the results in a way by grouping items associated with
each test separately. Fixing («, 8, 0) € (0, 1)3 and viewing the two theorems, the
following is what we need to show:

o (Simple Aggregation). When o < ngyp’l(ﬂ), Err(f"*(sa), o, B,0)— 0.

e (Sparse Aggregation). When o < ngyp’z(ﬂ), Err(f}&,sa), «, B,0) — 0 if we take
N =[ps,].

e (HC). When 1/2 < 8 <1and o < 6/4, Err(T™  «, B,6) — 0.

In the above, (c) is an easy extension of [17], so we omit its proof. Be-

low, we prove (a) and (b). Consider (a). f”*(sa) is defined through x, where

¥~ N~ Yulor, p~'1,). So the claim follows directly from the tail probabil-
ity of chi-square distributions. Consider (b). Under Hép ), for each fixed S with
|S| = N, we can write N~1/2|| Yjesxjlli= > lwil, where w;’s are i.i.d. stan-
dard normal variables. Since E (|w;|) = +/2/m, by Lemma 3.2, f’]f,sa) <JQ2/m)n+
/2n(N + 2)log(p) with probability 1 — O( p*2). On the other hand, it is seen that

7~ (sa) /
Ty = max X (/).
N ey, 1 (0,117, illo=N (/1)

Under Hl(p ), let & be defined in the same way as Section 3.1 and so YA”IE,S&) >
CXp/llpl = n{u, ﬁ)/jlﬁll +'Z/|lill. Since |S(u)] ~ pep with probability
1= 0(p™), {w, W)/l = llnll(1 4 o(1)). Moreover, [|€'Zi|| < Cy/nllill(vn+
V/N) with probability 1 — O(p~3), by classical RMT [42]. Combining the above

gives f"lf,sa) 2 nllull — Cy/n(y/n + /p€y) = nllill/2, where the last inequality
is because o < ngyp’z(ﬂ) implies 7, > max{n~!/ Z,S;l/ %), Therefore, ]a]s/sa) >
nrp\/ﬁ/Z > max{n, /nN log(p)}, and the claim follows.

5. Proofs of Theorems 1.1, 1.5, 3.1 and 4.1 (lower bounds).

5.1. Proof of Theorem 1.1. For each 1 <i < n, consider the testing of two
hypotheses, Hilf :¢; = —1 versus Hl(i) :¢;=1.Let ff) be the joint density of X
under Hgl), respectively. Since ¢; = =1 with equal probabilities, it follows from
the connection between L'-distance and the sum of Type I and Type II testing
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errors [41] that for any clustering procedure f, P(Zi *4)>1-— ||f(’) f(l) 1.
Comparing this with the desired claim, it suffices to show that for all 1 <i <n,

G| £ (l) |, =0o(1) where o(1) — 0 and does not depend on i.

We now show (5.1) for every fixed 1 <i < n. For short, we drop the superscript
“()” in f) and Hg Recall that X = ¢’ + Z. Denote {=10— L;e;, where ¢; is
the i th standard basis vector of R"; note that Zi = 0. By basic calculus and Fubini’s
theorem,

== felh = EH/ sinh(xgu)e—“ﬂ“z/%"/x”«—m—“”“”2/2dF(u)dF(E)H
< E[/‘/sinh(Xl’-,u)e_”“”z/zeg/x“_(”_l)”“”2/2dF(u)‘dF(IZ)}

=/EH/sinh(leIu)e—||u||2/2e@~’Xu—(n—1)uz/ZdF(M)H dF(0),

where E denotes the expectation under the law of X = Z. Seemingly, to show
(5.1), it suffices to show that for every realization of ¢,

(52) EH/Slnh(Xl/M)e_”M“z/zeg’XM_(l’l—1)||/'L||2/2dF(M)H =0(1)’

note that the left-hand side does not depend on i and . We now show (5.2) for the
cases of 8 > (1 —0) and 8 < (1 — ), separately.

Consider the case S < (1 — ) first. Introduce V = (n — nH-2x ?; note that
V ~N(n—-D"2p, I,). Let g@, gSi), and g(l) be the joint densities of (X;, V)
for the cases of X; = —u +2z, X; = pu +z,and X; =z, where z ~ N (0, I,) and is
independent of u [in all three cases, V = (n — 1) 1/ 2+ 7 where 7 is independent of
(u, 2)]. By the triangle inequality and symmetry, ||gg) )||1 < ||g(’) g(()i) I+
18 — 86”1 =21g% — g8 1.

We recognize that the left-hand side of (5.2) is nothing else but || g
Combining these, to show (5.2), it is sufficient to show

(5.3) l¢¥ — g8, = o(D).

Now, denote by A(f, g) the Hellinger affinity for any two densities f and g. De-
note h,(V(j)) = ¢ e«/nflrpV(j)*(nfl)r;/Z/[l ep+e e«/nflrpV(j)f(nfl)rg/Z]'

© _ gy

By definitions and direct calculations, A(g 18 )) equals to
TIE hp (VD) (XD — 1)) V2

= (B[ +hp (VD) (X752 )] 2y
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Write for short © = X;(1) and w = V(1). According to [41], page 221, for any

probability densities f and g, If — gl <242 —2A(f, g). Combining this with

the expression of A(gg) g(() ), to show (5.3), it suffices to show

(5.4) E[(1+h,w)[e™ %" = 1)} =1+ 0(p7).
Note that for any x > —1, [«/T+x — 1 —x/2| < Cx?,

EU1+hﬂwnéﬂ—*”—1D”ﬁ—f{1+ﬁ434fﬂ—¢”—lﬂ\
(5.5) 2

< CE[R3 (w)(e"" /2 — 1)?].
On one hand, due to the independence between w and u and the fact that
E[efz’“—fﬁ/z] — 1, we have E[hp(w)[efﬁ“—fﬁ/2 11 =0 and E[R%(w) x

(efﬂ“ B2 12 = E[h3 (w)]E[(e™"~ % 1)%]. On the other hand, since
hp(w) < epe¥” —lrpw=(n— 1)72/2 by direct calculations there is E[h%(w)] <
2 e l)rP and E[(e™"~ % — D= ¢ — 1. Inserting these into (5.5) and in-

Voklng Ep=p 5,rp_p ,andn_pe,

[E[(1+ hp(w) [~ 5/2 — 1])/] — 1]
0—2a

SCef,(elz’ 1)e"~ DTy < Cp2h-20pp

By the assumptions of o > 1731”(/8) and 8 < (1 — 6), we have 2(8 + @) > 1 and
6 <2, and (5.4) follows.

We now consider the case of 8 > (1 —0). In this case, similarly, by basic algebra
and Fubini’s theorem, the left-hand side of (5.2) is no greater than

E[ﬂsmh(xm)|e—||u||2/2€Z’Xu—(n—1>uz/z dp(u)}
(5.6) — / E[|Sinh(Xl{M)|e—llull2/zeéfxu—(n—l)IIMIIZ/Z]dF(M)

= / E|sinh(X;,u)|e_”“”2/2dF(,u),

where in the last step we have used the independence between X; and {Xj : k #
i,1 <k <n}, and that E[e‘ﬂX“_(”_l)”“”z/z] = 1. Finally, let A, be the event of
{: imllo/(pep) =2}, and write

(5.7) [ E|sinh(X])|e W2 g F () = 1 +11,

where I = f(E|sinh(X;M)|e—“M”2/2 +1a,)dF (1), and II = [(E|sinh(X]u)| x
e llnl?/2 . Lag) dF ().
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By the Cauchy-Schwarz inequality, (E|sinh(X/u)))? < E[(sinh(X/n))?] =
(62“““2 — 1)/2 for any realized u in A,. Combining this with basic algebra, it

follows that I < [(y/sinh(||x[|?)-14,) dF (1) < /sinh(2pepr§), where in the last

step, we have used the fact that over the event A, lwll? < 2pep [% By our as-
sumption of 7, = p~%, g, = p —F and a > Mo cugy = (1 — B)/2, psprp =o(1).
Combining these gives

(5.8) 1] <o(1).

At the same time, since | sinh(x)| < cosh(x) for any x,
l? ,
(5.9) < /(E cosh(Xju)e 1HI7/2 1 4e) d F () = P(AS);

note that P(A;) =o0(1),so0ll =o(1l). We insert (5.8)—(5.9) into (5.7), and find that
[ E|sinh(X/ Wle 1?2 4 F (1) = o(1). Then (5.2) follows from (5.6).

5.2. Proof of Theorem 1.5. Recall that Z has i.i.d. entries from N (0, 1). By
elementary statistics'” and conditions on A and B, there is a nonstochastic term c,,
such that (a) c;l < L, (b) there is a random matrix W € R"-? such that ¢, Z + W
has the same distribution of AZB [W is independent of (¢, i, Z)]. Compare two
experiments

Experiment 1. X=0'+cpZ
Experiment 2. X=0u'+cpZ+W.

Fixing 1 <i < n, consider the testing of two hypotheses, Hﬁ’f : £; = —1 versus
H, @) :4; = 1. Let fi @ be the joint density of X under H. © respectively, for Ex-
periment 1, and let g ) be the joint density of X under HY , respectively, for

Experiment 2. By Neyman—Pearson’s fundamental lemma on testing [41], for any
clustering procedure ‘, tight lower bounds for Pl # {;) (expected Hamming er-

ror at location i) associated with the two experiments are 1 — || £’ @) ff) |l1 and

| g(l) 9) |1, respectively, where || f — g||1 denotes the L!-distance between
two densities f and g. Le Cam’s idea can be solidified as follows.

THEOREM 5.1 (Monotonicity of L!-distance). ||g(l) g < ||ff) -
(i)
S -

7Note that Z B has the same distribution as E,,Z + W, where Z has i.i.d. normal entries, Cp is half
of the minimum eigenvalue of BB’, and the columns of W follow N(0, BB’ — ¢ pIp) distribution.
Similar analysis for A(¢ pZ + W) gives the result.
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Using this, Theorem 1.5 follows directly from the proof of Theorem 1.1.
It remains to show Theorem 5.1. Without loss of generality, we assume i = 1,
and drop the superscripts in gi) and fi’ ) for simplicity. Let a € R"~! be the vector

such that g; L 2 Bernoulli(1/2) — 1. For any realization of a, let { + = 1 (a) € R"
be the vectors of (1, a’)’, respectively. Let F(a), F(u), and F(w) be the CDF
of a and pu, respectively, and let 4(z) be the (joint) density of the matrix Z. It
follows that g4 (x) = [h(x —€y(a)u' — w)dF(a)dF(n)dF(w), x € R™?, and
lg+ — g1 equals to

/’/[h(x — b —w) —h(x —l_(a)p' —w)]|dF(a)dF(n)dF (w)|dx.

Using Fubini’s theorem, this is no greater than [ G(w)dF (w), where G(w) =
| [h(x —ly(a)p' — w) — h(x —L€_(a)u' — w)dF(a)dF(n)|dx. Note that for
any fixed w € R™?, A(w) does not depend on w and equals to || f1 — f_||1, and
the claim follows.

5.3. Proof of Theorem 3.1. For each 1 < j < p, consider the testing of two
hypotheses, Héj) : mw(j) = 0 versus Hl(j) s u(j) = 1p. Let fo(j) and fl(j) be the
joint density of X under Héj ) and Hl(j ), respectively. Since P(u(j) = 1) = &p,
it follows from the connection between L!-distance and the sum of Type I and
Type 11 testing errors [41] that for any clustering procedure [z,

P(sgn(i(j)) # sgn(u())))
= (1 —,) P((j) #0|u(j) =0) + &, P(A(j) = 0| (j) = 1p)
>1/)[1— |- Sp)fo(j) - 5pf1(j)”1]
> e,[1 = (/D17 = 1)),
where in the last step we have used || (1 — 8p)f0(j) - gpf](j) lh=101- 28p)f0(j) +

ep(fI7 = FII < A =2ep)+e, 1l £ — £7 1. Comparing this with the desired
claim, it suffices to show that forall 1 < j < p,

(5.10) | fo(j) — fl(j) |, =o(1) where o(1) — 0 and does not depend on j.

We now show (5.10) for every fixed 1 < j < p. We first consider the case 8 <
1 — 6. For short, we drop the superscript “(j)” in O(j ) and fl(j ). Recall that X =
Lu' +Z =1[x1,x2,...,xpl and let i = u — u(j)e;, where ¢; is the jth standard
basis vector of R”; note that (i(j) = 0. Let E denote the expectation under the law
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of X = Z. By basic calculus and Fubini’s theorem,
I fo— fil = EH [~ er”w’xf)_”r!z’/z]ez/m_””‘1”2/2dF(/ZL)dF(E)H
(5.11) < / E[]1- efp“*xﬂ—"fﬁ/z|e‘”Xﬂ—"”ﬂ”2/2] dF (1) dF(¢)

:/E[|1 _e‘L’p(Z,XJ)—nTI%/ZHdF(g)’

where in the last step, we have used the fact that x; and X /i are independent and

that E[e? XA—nlIAI?/2] = 1, Additionally, note that E[|1 — erpw’xf')*”lz/zﬂ does not
depend on ¢. Denote z = n~VY z(ﬁ, xj); note that z ~ N (0, 1). Inserting these into
(5.11) gives

(5.12) I fo— fill = Eo[|1 — e¥menm3/2

I,
where E denotes the expectation under the law of z ~ N (0, 1). By the conditions
of @ > 1y®(B) and B < (1—6), we have « > 6/2, and nt; = p?~2* = o(1). In this
simple setting, it is seen that Eo[|1 — e¥"™*"%/2|] = o(1). Combining (5.10)—
(5.12) gives the claim.

We now consider the case 8 > (1 — ). In this case, nzlg(,B) = ngyp(,B), SO
intuitively, the claim follows by the argument that “as long as it is impos-
sible to have (global) hypothesis testing, it is impossible to identify the sig-
nals.” Still, for mathematical rigor, it is desirable to provide a proof using the
L'-distance. Similar to that in the proof on the lower bound for global test-
ing, write u = ft + u(j)e; and let d, = (6psplog(p))1/2, A be the event
{llitlo = s} and F be the conditional distribution of [ given the event of Ay,
| <5 < p. Define a, = [ ™ &3/ 2E Xi=nl P12 g (7) d F(€) and G5 =
fezlxﬂ_””’lnz/ZdFs(ﬁ)dF(E). It suffices to show that for all s such that |s —
pépl <dp that

(5.13) E[(as — a5)*] = o(1).

Let v be an independent duplicate of . By similar arguments and not-
ing that u'v = a’'v + r[% and ji'v = @i'D, we have E[a?] = [[cosh(i'D +
1:]%)]” dFy() dFy(D), E[Zl%] = [[cosh(@'D)]" d Fy(ji) d F5(V), and the cross term

Elasag] = [[cosh(ii'D)])" d Fy(j1) d Fs (V). Combining these terms and noting that
cosh(x + y) = cosh(x)[1 + tanh(x) tanh(y)], there is

E[(as — @5)*] = / [cosh('7)]"{[1 + tanh(z ) tanh(i'D)]" — 1} d Fy (1) d Fy ().

Now, over the event {(i,V) : [[ftllo = [[Vllo = s}, where s ~ pe,, we have
|Z/D| < srg < psptl% < pU=P=9/2; note that by the assumption of r > ngyp(,B)
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and 8 > (1 — 6), the exponent (1 — 8 — 60)/2 < 0. As a result, it is seen that

tanh(ﬁ’ﬁ)tanh(rg) < ,ll’f)r[% < pepr;', where pepr;' = o(n~") by the assumption

of a > nzig (B). Inserting this into (5.13) gives

G149 Ella —a)* =o()- [ [cosh(iD)]" dF, () R (3).

According to (5.17)—(5.18) in Section 5.4, the second term on the right-hand side
of (5.14) is 1 4+ o(1). This gives the claim.

5.4. Proof of Theorem 4.1. Recall that X = ¢u' + Z. Let fo(X) and f1(X) be
the joint density of Z and X, respectively. It is sufficient to show that as p — oo,
under the conditions of Theorem 4.1,

(.15 I.f1 = folli = 0.

Recall that || ||o and ||| denote the L°-norm and the L?-norm of respectively.
For 1 <s < p, let Ag be the event A; = {||u]lo = s}, F(£) and F(u) be the dis-
tributions of £ and u, respectively, and let Fs(u) be the conditional distribution
of u given the event of A;. Introduce a constant d, = (6pe), log(p))l/ 2 a set
D, ={s:|s — pep|l <dp}, and functions a;(X) = fee/X“_””M”z/zdFs(u)dF(K),
1 <s < p. Let E be the expectation under the law of X = Z. It is seen
that f(X)/fo(X) = [ !Xl 2 g F(uydF(0) = Y7 P(Ag)as(X), and so
Il f1 — foll1 equals to

p
(5.16) E|Y P(A)(as(X) — 1)| <> P(A)E[|as(X) — 1]] + rem,
s=1 Dy

where rem = ZD; P(Ay)E[las(X) — 1]]. Since E[la; — 1]] < Elag] + 1 =
2, rem < ZD; 2P(As) = 2P(linllo € D}). Note that [[uflo ~ Binomial(p, &p),
where pe, = p'~# with 0 < B < 1, it follows from basic statistics that rem =
o(1). At the same time, by the Cauchy—Schwarz inequality, (E[|as(X) — 1|])2 <
El[(a;(X) — )3 = E[af(X)] — 1. Combining these with (5.16), to show (5.15), it
suffices to show that

(5.17) E[@(X)]<14+0(l) VseD,,

where o(1) — 0 uniformly for all such s as p — oo.

We now show (5.17). Fix an s € D),. Let v € R? be an independent copy of u,
and let F(v) be the distribution of (v|{||v|lo = s}). Using basic statistics and the
independence of X;,

n
a?(X) = [e‘””’“‘”z/z_"””||2/2 l_[[cosh(,u/X,-)cosh(v’Xi)]dFs(M)dFs(v).
i=1
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First, by the independence of X; and basic statistics, E [asz(X )] equals to

e(2k—n)u’v

(5.18) /[cosh(;/v)]”dFS(/L)dFs(v) = Z/ (Z)TdFS(M)dFS(v).
k=0

Recalling that any nonzero entry of u or v is ), it is seen that over the event
{lillo = llvio = s}, T, 2(j,v) is distributed as a hyper-geometric distribution
H(p,s,s). Write €, =s/p. As s € D,, &, ~ ¢,. Following [2], there is a o-
algebra B and a random variable b ~ Binomial(s, £,,) such that T, 2(w, v) has
the same distribution as that of E[b|B]. Using Jensen’s inequality, e@k=mu'v <
E[e®M%8|B], for 0 < k < n. Tt follows that

E f eI G F () d Fy (v) < E[e®* 7]
(5.19)

— (1 _ ép + §pe(2k_”)rlz7)s_

Inserting (5.19) into (5.18) and rearranging,
n n 5
(5.20) E[aSZ(X)] < o~ Z <k> [1 - ép + épe(Zk_n)rP]s,
k=0

We now analyze the right-hand side of (5.20). Denote S by {1,2,...,n}. We
split S as the union of three disjoint subsets S = S; U S» U S3, where S1 ={k € S:
2k —n| < /nlog(n)}, S3={ke S: 2k —n| >n A /[2log(n)npe,}.

Also, let 7, = p_"gyp(ﬂ). By our assumption of o > 1g(8), there is a constant
6 =6(0,a) > 0 such that ‘E]% = p*‘sfz. We also claim that when a > ngyp(ﬁ),

p
t§|2k —n| =o(1) forany k € S; US,. In fact, by definitions and direct calculations,

we have ngyp(,B) > 6/2 when 8 < max{l — 6, (2 —6)/4} and ngyp(ﬂ) ={1+6-—
B)/4 otherwise. In the first case, recalling n = p?, the claim follows since t§|2k —
2 0—2«a §=2

nl<t,;n=p and o > 0/2. In the second case, noting that 1']% =p T, =

p“s(npep)_l/z, it follows |2k — n|r§ <./2log(n)npe, - (p_‘s(npe,,)_l/z) =o(1)
for all k € S1 US>, and the claim follows. Now, since for any x € (—1,1) and y €
R, 1—8p+8pe” <1+428|x| <e®rPl and 1 -2, +2,e" <1—8,+8pel <ell,

[(1 o ép + épetg(Zk—n)]s

(5.21) [14 28,7212k —n|]* <2551 kesus,,
<

— 2191 ) 219
(etp|2k n\)s :esrp|2k nl’ ke S3.
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If we take Y ~ Binomial(n, 1/2), then P(Y = k) =27"(}). At the same time, by
de Moivre—Laplace theorem and Hoeffding inequality [38],

-~ 2)~1/2 7(2k7n)2/(2n)’ kesSi.
(5.22) P(Y =k) (””2{ ) N €1
fe_( —m7/( n)’ ke SUsSs.

Combining (5.21)—(5.22), we have the following. First, the summation over k € S
is smaller than that that [¢ is the probability density of N (0, 1)]

. 2k — log(n) .
(523 @/NmY. ezf’eifﬁ'z’“"'dj(—”) ~ [ R ) dx,
P NG —log(n)

By the assumption of o > ngy P(B) and basic algebra, we have o > (2+6 —48) /4.

h
It follows that pé%rﬁ n~ 2p*‘sp8%f’%\/ﬁ =2.p7%. p(2+9_4ﬂ)/2_2’79yp(ﬂ), where
the exponent is negative. It follows that the right-hand side of (5.23) is 1 + o(1).

Second, let /I be the summation over k € S», then

(5.24) I < Z o2PEFTp12k=n] ,—(2k=n)*/(2n) < Z ¢~ Ck=m?/m)
kESQ kESz
where the second inequality is because 2 pé%rﬁ <2p~%//n < |2k —n|/(4n). The

right-hand side does not exceed ne=log*m — o(1) since |2k — n| > /nlog(n).
Last, we consider the summation over k € S3. We only consider the case of
B > (1 — 0) since only in this case S3 is nonempty. Note that in this case,

nA \/210g(n)npep = \/210g(n)np8p and that for any k € S3, srg < p“spspfl% <
|2k — n|/(4n),

(5.25) 1 < Z es112,|2k—n|—(2k—n)2/(2n) < Z e—(2k—n)2/(4n),
keSs keS3

which < ne1080Per/2 — o(1). Combining (5.23)—(5.25) with (5.20) gives the
claim.

6. Discussions. We have studied the statistical limits for three interconnected
problems: clustering, signal recovery and hypothesis testing. For each problem, in
the two-dimensional phase space calibrating the signal sparsity and strength, we
identify the exact separating boundary for the Region of Possibility and Region
of Impossibility. We have also derived a computationally tractable upper bound
(CTUB), part of which is tight, and the other part is conjectured to be tight. Our
study on the limits are extended to the case where the parameters fall exactly on
the separating boundaries and the case of colored noise.

We propose several different methods, including IF-PCA. IF-PCA is a two-fold
dimension reduction algorithm: we first reduce dimensions from (say) 10* to a few
hundreds by screening, and then further reduce it to just a few by PCA. Each of the
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two steps can be useful in other high-dimensional settings. Compared to popular
penalization approaches, our approach has advantages for it is highly extendable
and computationally inexpensive.

The work is closely related to Jin and Wang [28] but is also very different. The
focus of [28] is to investigate the performance of IF-PCA with real data examples
and to study the consistency theory. The primary focus here, however, is on the
statistical limits for three problems including clustering. The paper is also closely
related to the very interesting paper by Arias-Castro and Verzelen [5]. However,
two papers are different in important ways:

e The focus of our paper is on clustering, while the focus of their paper is on
hypothesis testing (without careful discussion on clustering).

e Both papers addressed signal recovery, but there are important differences: we
provided the statistical lower bound but they did not; the CTUB they derived is
not as sharp as ours. See Figure 2.

e Both papers studied hypothesis testing, but since the models are different, the
separating boundaries (and so the proofs) are also different. See Sections 1.6
and 4 (also Figure 2) for details.

e Both papers studied the case with colored noise, besides the different focuses
(clustering vs. hypothesis testing), their setting in the colored case is also dif-
ferent from ours. In their setting, coloration makes a substantial difference to
statistical limits.

For these reasons, the methods and theory (especially that on IF-PCA) in our paper
are very different from those in [5]. With that being said, we must note that since
two papers have overlapping interest, it is not surprising that certain part of this
paper overlaps'® with that in [5] (e.g., some parts of the separating boundaries and
some of the ideas and methods).

The paper is related to recent ideas in spectral clustering (e.g., Azizyan et al. [7],
Chan and Hall [12]; see also [35, 36, 40, 46]). In particular, the high level idea of
IF-PCA (i.e., combining feature selection with classical methods) is not new and
can be found in [7, 12], but the methods and theory are different. Azizyan et al. [7]
study the clustering problem in a closely related setting, but they use a different
loss function and so the separating boundaries are also different. Chan and Hall
[12] use a very different screening idea (motivated by real data analysis) and do
not study phase transitions.

Our work is closely related to recent interest in the spike model (e.g., [4, 32,
44]). In particular, mathematically, Model (1.2) is similar to the spike model [29],

18Compare the critical signal strength required for successful hypothesis testing/signal recovery in
our paper with those in [5], we note some discrepancies in terms of some multi-logarithmic factors.
This is due to that we choose a simpler calibration than that in [5]: all the parameters (n, €, T) are
expressed as a (constant) power of p and multi-logarithmic factors are neglected. Such a calibration
makes the presentation more succinct.
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and theoretical results on one can shed light on those for the other. However, two
models are also different from a scientific perspective: (a) two models are moti-
vated by different application problems, (b) the primary interest of Model (1.2) is
on the class labels ¢;, which are sometimes easy to validate in real applications
and (c) the primary interest of the spike model is on the feature vector w, which
is relatively hard to validate in real applications. The focus and scope of our study
are very different from many recent works on the spike model, and most part of
the bounds (especially those for clustering and IF-PCA) we derive are new.

This paper is also related to the recent interest on computationally tractable
lower bounds and sparse PCA [9, 10], but it is also very different in terms of our
focus on clustering and statistical limits. It is also related to the lower bound for
hypothesis testing problem [1] and the sub-matrix detection problem [34], but the
model is different. Recovering of ¢ and p can also be interpreted as recovering
a low-rank matrix from the data matrix, which is closely related to the low rank
matrix recovery studies [11]. In terms of the phase transitions, the paper is closely
related to [17] on signal detection, [18] on classification and [30] on variable se-
lection, but is also very different for the primary focus here is on clustering.

For simplicity, we focus on the ARW model, where we have several assumptions
such as ¢; = £1 equally likely, the signals have the same sign and equal strength,
etc. Many of these assumptions can be largely relaxed For example, Theorems
1.1-1.3 contlnue to hold if we replace the model w( j) 1d (I—ep)vo+e pVr, by
that of ,u(]) S (I —ep)vo+,Gp, where G is a distribution supported in the
interval [a,T),, bpTy] With 0 < max{a ,bp} < L, [amulti- log(p) term]. Also, in

Section 1.6, we have discussed the case where we replace 1 ( ]) td (I —ep)vo +
EpVr, in Model (1.7) by that of u(]) 1 (1 —¢ep)vo+agpv_ 7, T (1 —a)epve, for
aconstant 0 <a < 1/2. Theorems 1.1-1.3 continue to hold 1fa #1/2.Ifa=1/2,
the left part of the boundaries will change and the aggregation methods need to
be modified. We discuss this case in detail in the supplementary material [27],
Appendix D. It requires a lot of time and effort to fully investigate how broad the
main theorems hold, so we leave it to the future.

The paper motivates an array of interesting problems in post-selection random
matrix theory that could be future research topics. For the perspective of spectral
clustering, it is of great interest to precisely characterize the limiting behavior of
the singular values (bulk and the edge singular values) and leading singular vectors
of the post-selection data matrix. These problems are technically very challenging,
and we leave them to the future.

Our paper supports the philosophy in Donoho [16], Section 10, that simple and
homely methods are just as good as more charismatic methods in Machine Learn-
ing for analyzing (real) high dimensional data.
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SUPPLEMENTARY MATERIAL

Supplementary Material for “Phase transitions for high dimensional clus-
tering and related problems” (DOI: 10.1214/16-A0S1522SUPP; .pdf). Owing
to space constraints, some technical proofs and discussion are relegated a supple-
mentary document [27]. It contains proofs of Lemmas 2.1-2.4 and 3.1-3.3, and
discusses an extension of the ARW model.

(1]
(2]

(3]

(4]
(5]
(6]

(7]
(8]

(9]
(10]
(11]
(12]

(13]

(14]
[15]

[16]
(17]

(18]

REFERENCES

ADDARIO-BERRY, L., BROUTIN, N., DEVROYE, L. and LuGosI, G. (2010). On combinato-
rial testing problems. Ann. Statist. 38 3063-3092. MR2722464

ALDOUS, D. J. (1985). Exchangeability and related topics. In Ecole D’été de Probabil-
ités de Saint-Flour, XIII—1983. Lecture Notes in Math. 1117 1-198. Springer, Berlin.
MRO0883646

AMINI, A. and WAINWRIGHT, M. J. (2008). High-dimensional analysis of semidefinite relax-
ations for sparse principal components. In IEEE International Symposium on Information
Theory 2454-2458. IEEE, New York.

AMINI, A. A. and WAINWRIGHT, M. J. (2009). High-dimensional analysis of semidefinite
relaxations for sparse principal components. Ann. Statist. 37 2877-2921. MR2541450

ARIAS-CASTRO, E. and VERZELEN, N. (2014). Detection and feature selection in sparse mix-
ture models. arXiv:1405.1478.

ARTHUR, D. and VASSILVITSKIL, S. (2007). k-means++: The advantages of careful seeding.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
1027-1035. ACM, New York. MR2485254

AZIZYAN, M., SINGH, A. and WASSERMAN, L. (2013). Minimax theory for high-dimensional
Gaussian mixtures with sparse mean separation. In NIPS 2139-2147.

BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical
and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. Stat. Methodol. 57 289—
300. MR1325392

BERTHET, Q. and RIGOLLET, P. (2013). Complexity theoretic lower bounds for sparse princi-
pal component detection. In Conference on Learning Theory 1046—1066.

Cal, T., MA, Z. and WU, Y. (2013). Optimal estimation and rank detection for sparse spiked
covariance matrices. Probab. Theory Related Fields 1-35.

CANDES, E. J. and RECHT, B. (2009). Exact matrix completion via convex optimization.
Found. Comput. Math. 9 717-772. MR2565240

CHAN, Y. and HALL, P. (2010). Using evidence of mixed populations to select variables for
clustering very high-dimensional data. J. Amer. Statist. Assoc. 105.

D’ASPREMONT, A., EL GHAOUI, L., JORDAN, M. I. and LANCKRIET, G. R. G. (2007). A
direct formulation for sparse PCA using semidefinite programming. SIAM Rev. 49 434—
448. MR2353806

Davis, C. and KAHAN, W. M. (1970). The rotation of eigenvectors by a perturbation. III.
SIAM J. Numer. Anal. T 1-46.

DETTLING, M. (2004). BagBoosting for tumor classification with gene expression data. Bioin-

Sformatics 20 3583-3593.

DONOHO, D. (2015). 50 years of data science. Manuscript.

DONOHO, D. and JIN, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures.
Ann. Statist. 32 962-994. MR2065195

DONOHO, D. and JIN, J. (2008). Higher criticism thresholding: Optimal feature selection when
useful features are rare and weak. Proc. Natl. Acad. Sci. USA 105 14790-14795.


http://dx.doi.org/10.1214/16-AOS1522SUPP
http://www.ams.org/mathscinet-getitem?mr=2722464
http://www.ams.org/mathscinet-getitem?mr=0883646
http://www.ams.org/mathscinet-getitem?mr=2541450
http://arxiv.org/abs/arXiv:1405.1478
http://www.ams.org/mathscinet-getitem?mr=2485254
http://www.ams.org/mathscinet-getitem?mr=1325392
http://www.ams.org/mathscinet-getitem?mr=2565240
http://www.ams.org/mathscinet-getitem?mr=2353806
http://www.ams.org/mathscinet-getitem?mr=2065195

2188
[19]
(20]
(21]
(22]
(23]

[24]

(25]
[26]
(27]
(28]
(29]
[30]
(31]
(32]
(33]
[34]
(35]
(36]

(37]
(38]

(39]
[40]

[41]
(42]

[43]

[44]

J.JIN, Z. T. KE AND W. WANG

DoNoOHO, D. and JIN, J. (2015). Higher criticism for large-scale inference: Especially for rare
and weak effects. Statist. Sci. 30 1-25.

DoONOHO, D. L. and JOHNSTONE, I. M. (1998). Minimax estimation via wavelet shrinkage.
Ann. Statist. 26 879-921. MR1635414

DoONOHO, D. L., MALEKI, A., RAHMAN, 1. U., SHAHRAM, M. and STODDEN, V. (2009).
Reproducible research in computational harmonic analysis. Comput. Sci. Eng. 11 8-18.

HALL, P. and JIN, J. (2010). Innovated higher criticism for detecting sparse signals in corre-
lated noise. Ann. Statist. 38 1686—1732. MR2662357

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2009). The Elements of Statistical Learning,
2nd ed. Springer, Berlin.

INGSTER, Y. I., POUET, C. and TSYBAKOV, A. B. (2009). Classification of sparse high-
dimensional vectors. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 367 4427—
4448. MR2546395

JiN, J. and KE, Z. T. (2016). Rare and weak effects in large-scale inference: Methods and
phase diagrams. Statist. Sinica 26 1-34. MR3468343

JIN, J.,KE, Z. T. and WANG, W. (2014). Optimal spectral clustering by higher criticism thresh-
olding. Manuscript.

JiN, J., KE, Z. T. and WANG, W. (2017). Supplementary material for “Phase transitions for
high dimensional clustering and related problems.” DOI:10.1214/16-AOS1522SUPP.

JIN, J. and WANG, W. (2016). Influential features PCA for high dimensional clustering. Ann.
Statist. 44 2323-2359. MR3576543

JOHNSTONE, I. M. and LU, A. Y. (2009). On consistency and sparsity for principal compo-
nents analysis in high dimensions. J. Amer. Statist. Assoc. 104 682—693. MR2751448

KE, Z. T., JIN, J. and FAN, J. (2014). Covariate assisted screening and estimation. Ann. Statist.
42 2202-2242.

LEE, A. B., LucA, D. and ROEDER, K. (2010). A spectral graph approach to discovering
genetic ancestry. Ann. Appl. Stat. 4 179-202.

LEL J. and VU, V. Q. (2015). Sparsistency and agnostic inference in sparse PCA. Ann. Statist.
43 299-322.

LE CAM, L. and YANG, G. L. (2000). Asymptotics in Statistics: Some Basic Concepts, 2nd ed.
Springer, New York. MR1784901

MA, Z. and WU, Y. (2015). Computational barriers in minimax submatrix detection. Ann.
Statist. 43 1089-1116.

PAN, W. and SHEN, X. (2007). Penalized model-based clustering with application to variable
selection. J. Mach. Learn. Res. 8 1145-1164.

RAFTERY, A. E. and DEAN, N. (2006). Variable selection for model-based clustering. J. Amer.
Statist. Assoc. 101 168-178. MR2268036

ROGERS, C. A. (1963). Covering a sphere with spheres. Mathematika 10 157-164.

SHORACK, G. and WELLNER, J. (1986). Empirical Processes with Applications to Statistics.
John Wiley & Sons, New York.

SPIEGELHALTER, D. J. (2014). Statistics. The future lies in uncertainty. Science 345 264-265.

SUN, W., WANG, J., FANG, Y. et al. (2012). Regularized k-means clustering of high-
dimensional data and its asymptotic consistency. Electron. J. Stat. 6 148—167.

VAN DER VAART, A. (2000). Asymptotic Statistics 3. Cambridge Univ. Press, Cambridge.

VERSHYNIN, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In
Compressed Sensing 210-268. Cambridge Univ. Press, Cambridge. MR2963170

Vu, V. Q. and LEL J. (2013). Minimax sparse principal subspace estimation in high dimen-
sions. Ann. Statist. 41 2905-2947.

WANG, Z., Lu, H. and L1U, H. (2014). Nonconvex statistical optimization: Minimax-optimal
sparse PCA in polynomial time. arXiv:1408.5352.


http://www.ams.org/mathscinet-getitem?mr=1635414
http://www.ams.org/mathscinet-getitem?mr=2662357
http://www.ams.org/mathscinet-getitem?mr=2546395
http://www.ams.org/mathscinet-getitem?mr=3468343
http://dx.doi.org/10.1214/16-AOS1522SUPP
http://www.ams.org/mathscinet-getitem?mr=3576543
http://www.ams.org/mathscinet-getitem?mr=2751448
http://www.ams.org/mathscinet-getitem?mr=1784901
http://www.ams.org/mathscinet-getitem?mr=2268036
http://www.ams.org/mathscinet-getitem?mr=2963170
http://arxiv.org/abs/arXiv:1408.5352

PHASE TRANSITIONS FOR CLUSTERING AND RELATED PROBLEMS 2189

[45] WEYL, H. (1912). Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller
Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung).
Math. Ann. 71 441-479.

[46] WITTEN, D. M. and TIBSHIRANI, R. (2012). A framework for feature selection in clustering.
J. Amer. Statist. Assoc. 105 713-726.

[47] Zou, H., HASTIE, T. and TIBSHIRANI, R. (2006). Sparse principal component analysis.
J. Comput. Graph. Statist. 15 265-286. MR2252527

J. JIN Z.T.KE

DEPARTMENT OF STATISTICS DEPARTMENT OF STATISTICS

CARNEGIE MELLON UNIVERSITY UNIVERSITY OF CHICAGO

PITTSBURGH, PENNSYLVANIA 15213 CHICAGO, ILLINOIS 60637

USA USA

E-MAIL: jiashun @stat.cmu.edu E-MAIL: zke @galton.uchicago.edu
W. WANG

DEPARTMENT OF BIOSTATISTICS

AND EPIDEMIOLOGY
PERELMAN SCHOOL OF MEDICINE
UNIVERSITY OF PENNSYLVANIA
PHILADELPHIA, PENNSYLVANIA 19104
USA
E-MAIL: wanjiew @wharton.upenn.edu


http://www.ams.org/mathscinet-getitem?mr=2252527
mailto:jiashun@stat.cmu.edu
mailto:zke@galton.uchicago.edu
mailto:wanjiew@wharton.upenn.edu

	Introduction
	Four clustering methods
	Rare and weak signal model
	Limits for clustering
	Phase transition for IF-PCA
	Clustering when the noise is colored
	Limits for signal recovery and hypothesis testing
	Practical relevance and a real data example
	Comparison to works on the spike model
	Content and notation

	Phase transition for IF-PCA
	Region of possibility
	Region of impossibility

	Limits for signal recovery
	Proofs of Theorems 1.2-1.3, 1.6 and 3.2-3.3

	Limits for hypothesis testing
	Proofs of Theorems 4.2-4.3

	Proofs of Theorems 1.1, 1.5, 3.1 and 4.1 (lower bounds)
	Proof of Theorem 1.1
	Proof of Theorem 1.5
	Proof of Theorem 3.1
	Proof of Theorem 4.1

	Discussions
	Supplementary Material
	References
	Author's Addresses

