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NONPARAMETRIC COVARIATE-ADJUSTED REGRESSION
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University of Melbourne∗ and Princeton University†

We consider nonparametric estimation of a regression curve when the
data are observed with multiplicative distortion which depends on an ob-
served confounding variable. We suggest several estimators, ranging from
a relatively simple one that relies on restrictive assumptions usually made in
the literature, to a sophisticated piecewise approach that involves reconstruct-
ing a smooth curve from an estimator of a constant multiple of its absolute
value, and which can be applied in much more general scenarios. We show
that, although our nonparametric estimators are constructed from predictors
of the unobserved undistorted data, they have the same first-order asymptotic
properties as the standard estimators that could be computed if the undis-
torted data were available. We illustrate the good numerical performance of
our methods on both simulated and real datasets.

1. Introduction. We consider nonparametric estimation of a regression curve
m(x) = E(Y |X = x) when X and Y are observed with multiplicative distortion in-
duced by an observed confounder U . Specifically, we observe X̃, Ỹ and U , where
Ỹ = ψ(U)Y , X̃ = ϕ(U)X, ψ and ϕ are unknown functions and U is independent
of X and Y . This model is known as a covariate-adjusted regression model. It was
introduced by Şentürk and Müller (2005a) to generalize an approach commonly
employed in medical studies, where the effect of a confounder U , for example,
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body mass index, is often removed by dividing by U . Motivated by the fibrinogen
data on haemodialysis patients, where Ỹ was fibrogen level, X̃ was serum trans-
ferrin level, and U was body mass index, Şentürk and Müller (2005a) pointed that
although it is often reasonable to assume that the effect of U is multiplicative, it
does not need to be proportional to U , and a more flexible model is obtained by
allowing for distortions represented by the functions ϕ and ψ . More generally, this
model is useful to describe the relationship between variables that are influenced
by a confounding variable, and see if this relationship still exists once the effect of
the confounder has been removed.

A number of authors have suggested estimators of the curve m in various para-
metric settings. Linear regression models were considered by Şentürk and Müller
(2005a, 2006) and Şentürk and Nguyen (2006), who generalized them to varying
coefficient models [Şentürk (2006)] and generalized linear models [Şentürk and
Müller (2009)]. A more general nonlinear regression model was suggested by Cui
et al. (2009) and Zhang, Zhu and Liang (2012), and in Zhang et al. (2013), the
authors considered a partially linear model, where the linear part is observed with
multiplicative distortions.

In this work, we propose more flexible nonparametric estimators of the regres-
sion function m, which not only relax the parametric assumptions imposed in the
existing literature, but also significantly weaken some of the strong assumptions
on the curves ϕ and ψ and on the distribution of the data made by previous au-
thors. In particular, we propose estimators which, unlike in the previous studies,
can be applied if EX and EY vanish, and even if the functions ψ and ϕ are not
strictly positive. Our procedures involve estimating the functions ϕ and ψ , deduce
from there predictors of X and Y , and construct nonparametric estimators of m

using those predictors. We show that, under the restrictive assumptions made in
the existing literature, this is relatively straightforward to do, whereas under the
much weaker assumptions we also consider, we need to use a sophisticated ap-
proach.

This paper is organized as follows. We describe the covariate-adjusted model
and discuss the model restrictions in the existing literature in Section 2. We pro-
pose several nonparametric estimators in Section 3, ranging from the most basic
estimators which can be applied under similar restrictions as those imposed in the
existing literature, to the most sophisticated ones which rely on much milder as-
sumptions. We derive theoretical properties of our estimators in Section 4, where
we show that they have the same first-order asymptotic properties as the non-
parametric estimators that could be computed if X and Y were observed directly.
More surprisingly, in some particular cases, our new estimators can even achieve
faster convergence rates than the standard estimators based on direct observations
from (X,Y ). We discuss practical implementation of our methods in Section 5,
where we also investigate their performance on simulated data, and apply them
to analyze two real datasets studied in Şentürk and Müller (2005b) and Şentürk
and Nguyen (2006). We discuss multivariate extensions in Section 6. Our proofs
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are provided in Section 7 and in a supplementary file [Delaigle, Hall and Zhou
(2016)].

2. Model and data. We observe independent and identically distributed
(i.i.d.) triplets {(X̃i, Ỹi,Ui)}ni=1 generated by the covariate-adjusted model of Şen-
türk and Müller (2005a), where

Y = m(X) + σ(X)ε, Ỹ = ψ(U)Y, X̃ = ϕ(U)X,(2.1)

with m(x) = E(Y |X = x) an unknown regression curve that we wish to estimate
nonparametrically, σ 2(x) = var(Y |X = x) an unknown variance function, and ϕ

and ψ unknown smooth functions. The random variables U,X and ε are mutually
independent, E(ε) = 0 and var(ε) = 1. We use fX and fU to denote the densities
of X and U , respectively. As in Şentürk and Müller (2005a), to make the problem
identifiable, we assume that

E
{
ϕ(U)

} = E
{
ψ(U)

} = 1.(2.2)

In other words, on average there is no distorting effect, which is similar to the
standard condition imposed in the related classical measurement error problems
[Carroll and Hall (1988), Fan and Truong (1993)], where one observes W = X+U

with X and U independent, and the measurement error U is assumed to have zero
mean.

As mentioned in the Introduction, several parametric estimators of m have been
suggested in the literature. There, it is commonly assumed that

(a) ϕ(u),ψ(u) > 0 for all u ∈ IU ,
(2.3)

(b) E(X) �= 0 and E(Y ) �= 0,

where IU ≡ [uL,uR] denotes the compact support of U . Without loss of generality,
we assume that IU = [0,1] throughout the paper.

An approach used by some authors is based on constructing predictors of the
(Xi, Yi)’s, which can be obtained from the data (X̃i, Ỹi,Ui), i = 1, . . . , n, on not-
ing that

ϕ0(Ui) ≡ E(X̃i |Ui) = ϕ(Ui)E(X),
(2.4)

ψ0(Ui) ≡ E(Ỹi |Ui) = ψ(Ui)E(Y ).

Now, ϕ and ψ can easily be estimated nonparametrically, say by ϕ̂ and ψ̂ , which
motivates Cui et al.’s (2009) predictors Ŷi = {ψ̂(Ui)}−1Ỹi and X̂i = {ϕ̂(Ui)}−1X̃i ,
and shows that (2.3) is needed by those authors to avoid dividing by zero. In the
next section, we shall see that it is possible to construct consistent nonparametric
estimators of m, and that this can be done under much less restrictive conditions
than (2.3).
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3. Methodology.

3.1. Different methods under different conditions. The parametric methods
developed in the literature crucially rely on assumption (2.3), and the examples
considered there are always such that ϕ, ψ , EX and EY are far from zero. We
wish to construct nonparametric estimators of m that are consistent even if those
assumptions do not hold. Let e1 = (1,0)T, and, for any pairs of random vari-
ables (Q,R) and (Qi,Ri), i = 1, . . . , n, let SQ,n(x;K,h) = n−1 ∑n

i=1 Kh(Qi −
x)w{h−1(Qi − x)}w{h−1(Qi − x)}T ∈ R2×2 and TQ,R,n(x;K,h) = n−1 ×∑n

i=1 RiKh(Qi −x)w{h−1(Qi −x)}, with w(s) = (1, s)T and where K is a kernel
function, h = hn > 0 is a bandwidth and, for every t ∈ R, Kh(t) = h−1K(t/h).

If the (Xi, Yi)’s were available, we could estimate m(x) nonparametrically by a
standard local polynomial estimator constructed from the (Xi, Yi)’s, the two most
popular versions of which are the Nadaraya–Watson and the local linear estima-
tors, defined by

m̃NW(x) =
∑n

i=1 YiKh(x − Xi)∑n
i=1 Kh(x − Xi)

,

(3.1)
m̃LL(x) = eT

1 S−1
X,n(x;K,h)TX,Y,n(x;K,h),

respectively. In our case, the (Xi, Yi)’s are not observed and these standard esti-
mators cannot be computed. We develop new nonparametric estimators that can
be computed from the (X̃i, Ỹi,Ui)’s, and whose complexity depends on whether
(2.3)(a) and (b) are satisfied or not. The simplest situation is the one where (2.3)(a)
holds. There, we can estimate m by standard nonparametric estimators based on
predictors of the (Xi, Yi)’s that are similar to, but less restrictive than, those used
by Cui et al. (2009); see Section 3.2. The case where we do not assume (2.3)(a)
requires more elaborate techniques: in Section 3.3, we suggest a method that can
be used when (2.3)(b) is satisfied; we handle the most general case in Section 3.4,
where we develop a sophisticated method which is valid regardless of whether
(2.3)(a) and (b) hold or not. It involves computing estimators of unknown constant
multiples of |ϕ| and |ψ |, estimate the zeros of those functions, construct piecewise
estimators of unknown constant multiples of ϕ and ψ , estimate these constants and
finally deduce estimators of ϕ and ψ .

3.2. Basic method. We start by deriving simple nonparametric estimators of
m that can be computed when (2.3)(a) holds, and which form the basis of the
more sophisticated methods we introduce in the subsequent sections. The idea is
similar to the one used in the parametric context by Cui et al. (2009): replace the
unobserved (Xi, Yi)’s by predictors (X̂i, Ŷi). Under (2.3), motivated by (2.4) and
since EX = EX̃ and EY = EỸ , Cui et al. (2009) take Ŷi = {ψ̂(Ui)}−1Ỹi and
X̂i = {ϕ̂(Ui)}−1X̃i , where ϕ̂ and ψ̂ denote Nadaraya–Watson estimators of ϕ0 and
ψ0, divided by, respectively, ÊX = n−1 ∑n

i=1 X̃i and ÊY = n−1 ∑n
i=1 Ỹi .
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It is because of this division that Cui at al. (2009) assume (2.3)(b), but the latter
can be avoided and replaced by E|X|,E|Y | �= 0 (which holds for all nondegenerate
random variables), by better exploiting (2.3)(a). Specifically, under (2.3)(a), |ψ | =
ψ , |ϕ| = ϕ, and

ϕ+
0 (Ui) ≡ E

(|X̃i ||Ui

) = ϕ(Ui)E|X|,
(3.2)

ψ+
0 (Ui) ≡ E

(|Ỹi ||Ui

) = ψ(Ui)E|Y |.
Motivated by this, we propose to estimate ψ and ϕ by

ϕ̂LL(u) = ϕ̂+
0,LL(u)/Ê|X| and ψ̂LL(u) = ψ̂+

0,LL(u)/Ê|Y |,(3.3)

where Ê|X| = n−1 ∑n
i=1 |X̃i |, Ê|Y | = n−1 ∑n

i=1 |Ỹi |, and where ϕ̂+
0,LL(u) =

eT
1 S−1

U,n(u;L,g1)TU,|X̃|,n(u;L,g1) and ψ̂+
0,LL(u) = eT

1 S−1
U,n(u;L,g2)TU,|Ỹ |,n(u;

L,g2) are local linear estimators of ϕ+
0 and ψ+

0 computed with a kernel function
L and bandwidths g1 and g2.

Then we predict Yi and Xi by taking

Ŷi = {
ψ̂LL(Ui)

}−1
Ỹi and X̂i = {

ϕ̂LL(Ui)
}−1

X̃i .(3.4)

Finally, replacing (Xi, Yi) by (X̂i, Ŷi) in (3.1), we obtain the following estimators
of m(x):

m̂NW(x) =
∑n

i=1 ŶiKh(x − X̂i)∑n
i=1 Kh(x − X̂i)

,

(3.5)
m̂LL(x) = eT

1 S−1
X̂,n

(x;K,h)T
X̂,Ŷ ,n

(x;K,h).

REMARK 3.1. Using E(Ỹi |Xi) = E(Yi |Xi) = m(Xi), simpler estimators of
m can also be defined by m̂NW,0(x) = ∑n

i=1 ỸiKh(x − X̂i)/Kh(x − X̂i) and
m̂LL,0(x) = eT

1 S−1
X̂,n

(x;K,h)T
X̂,Ỹ ,n

(x;K,h). Since they require predicting only

the Xi’s, these estimators seem more attractive than those in (3.5). However, it
can be proved that their asymptotic “variance” is larger than that of the estimators
in (3.5). Moreover, they cannot be adapted simply to the case where ϕ does not
satisfy (2.3)(a); see Remark 3.3 in Section 3.3.

3.3. Refined procedure. As their parametric counterparts developed in the
covariate-adjusted literature, the methods introduced in Section 3.2 can only be
computed if (2.3)(a) holds. However, in practice, there is no reason why ϕ and ψ

would always be positive, and even if they are, their estimators may vanish or get
close to zero, which can cause numerical problems. In this section, we suggest a
refined approach which can overcome these difficulties when (2.3)(b) holds. The
more complex case where (2.3)(b) is violated will be dealt with in Section 3.4.
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As in Section 3.2, to estimate m, the first step is to construct predictors
X̂i and Ŷi , and thus estimators of ϕ and ψ . Recall the notation in (2.4).
Since we assume (2.3)(b) but not (2.3)(a), instead of (3.3) we take Ŷi =
{ψ̂LL(Ui)}−1Ỹi and X̂i = {ϕ̂LL(Ui)}−1X̃i , where ϕ̂LL(u) = ϕ̂0,LL(u)/ÊX and
ψ̂LL(u) = ψ̂0,LL(u)/ÊY , and the local linear estimators

ϕ̂0,LL(u) = eT
1 S−1

U,n(u;L,g1)TU,X̃,n
(u;L,g1),

(3.6)
ψ̂0,LL(u) = eT

1 S−1
U,n(u;L,g2)TU,Ỹ ,n

(u;L,g2)

of ϕ0 and ψ0 computed with a kernel function L and bandwidths g1 and g2.
To derive consistent estimators of m without imposing (2.3)(a), recall that, for

each i, Xi and Yi are independent of Ui . As a consequence, for any subset S ⊆ R,
we have E(Yi |Xi = x,Ui ∈ S) = E(Yi |Xi = x). In particular, if Xi , Yi , ϕ and
ψ were known, then letting Cn(ρ1, ρ2) = {1 ≤ i ≤ n : |ϕ0(Ui)| ≥ ρ1, |ψ0(Ui)| ≥
ρ2}, with ρ1, ρ2 > 0 denoting two small numbers, the following modification of
m̃NW(x) at (3.1) would be consistent:

m̃NW(x;ρ1, ρ2) = ∑
i∈Cn(ρ1,ρ2)

YiKh(x − Xi)
/ ∑

i∈Cn(ρ1,ρ2)

Kh(x − Xi),

and a similar consistent version m̃LL(x;ρ1, ρ2) of m̃LL(x) at (3.1) could be con-
structed by replacing, in the definition of m̃LL(x), sums over all i by sums over
i ∈ Cn(ρ1, ρ2) as above. The advantage of this approach is that it enables us to ex-
clude the data for which ψ(Ui) or ϕ(Ui) are small, and thus it can be applied even
if (2.3)(a) does not hold.

Motivated by this discussion, in the case that interests us, where Xi , Yi , ϕ and
ψ are unknown, we suggest estimating m as follows. First, let Ĉn(ρ1, ρ2) = {i =
1, . . . , n : |ϕ̂0,LL(Ui)| ≥ ρ1, |ψ̂0,LL(Ui)| ≥ ρ2}. (The choice of ρ1 and ρ2 will be
discussed in Section 5.) We define a Nadaraya–Watson estimator of m(x), valid
even if (2.3)(a) does not hold, by

m̂NW(x;ρ1, ρ2) = ∑
i∈Ĉn(ρ1,ρ2)

ŶiKh(x − X̂i)
/ ∑

i∈Ĉn(ρ1,ρ2)

Kh(x − X̂i).(3.7)

Similarly, we define a local linear estimator m̂LL(x;ρ1, ρ2) in the same way
as m̂LL in (3.5), replacing there, and in the definitions of S

X̂,n
(x;K,h) and

T
X̂,Ŷ ,n

(x;K,h), the indices i = 1, . . . , n by the indices i ∈ Ĉn(ρ1, ρ2).

REMARK 3.2. While we shall prove in Section 4 that these estimators are
consistent and have the same first-order asymptotic properties as their counterparts
at (3.1) based on undistorted data, in practice performance can be further improved
by excluding a small fraction (say 5%) of the observations corresponding to the
Ui ’s such that a kernel density estimator f̂U (Ui) of fU(Ui) is the smallest. [Indeed,
we know from standard properties of kernel regression estimators that, at points u
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where fU(u) is small, ϕ̂(u) and ψ̂(u) are more variable.] Doing this corresponds
to enlarging the set S slightly, which does not affect consistency and convergence
rates, again due to the fact that the Ui’s are independent of the (Xi, Yi)’s,

REMARK 3.3. It is not possible to directly use this approach to modify the
estimator discussed in Remark 3.1 for the case where ϕ has zeros, because Ỹi and
Ui are dependent. Particularly, we note that in general E(Ỹi |Xi = x,Ui ∈ S) and
E(Ỹi |Xi = x) are not equal.

3.4. Elaborate procedure for the most general case. Finally, we construct es-
timators of m that rely on neither part of (2.3). As before, we start by deriving
predictors of the (Xi, Yi)’s. Constructing predictors X̂i (resp., Ŷi) without assum-
ing (2.3) requires to derive an estimator of ϕ (resp., ψ) without this assumption,
which, unlike the methods used in the previous sections, turns out to be a challeng-
ing task. Our procedure is based on the fact that, from (2.1), ϕ∗(u) ≡ E(|X̃||U =
u) = |ϕ(u)|E|X| [resp., ψ∗(u) ≡ E(|Ỹ ||U = u) = |ψ(u)|E|Y |], which implies
that we can estimate ϕ∗ (resp., ψ∗) by a standard local linear estimator ϕ̂∗

LL (resp.,
ψ̂∗

LL) with kernel L and bandwidth g1 (resp., g2) constructed from the (Ui, |X̃i |)’s
[resp., the (Ui, |Ỹi |)’s]. In what follows, we explain how to deduce an estimator of
ϕ from ϕ̂∗

LL. The same procedure can be applied to derive an estimator of ψ from
ψ̂∗

LL.
Since ϕ∗ is proportional to |ϕ|, to extract an estimator of ϕ from ϕ̂∗

LL, we need
to estimate the zeros of ϕ, say τ1, . . . , τM for some finite M , at which ϕ changes
sign. To do this, we assume that, for each j , ϕ′′(τj ) �= 0. Then it is straightforward
to see that the first derivative of ϕ∗ has jump discontinuities at the τj ’s. Moreover,
the zeros of ϕ coincide with those of ϕ∗, so that, at the τj ’s, ϕ∗ reaches its mini-
mum value, 0. Therefore, the τj ’s can be estimated using procedures for detecting
discontinuities in derivatives of a regression curve, such as those in Gijbels, Hall
and Kneip (1999) and Gijbels and Goderniaux (2004), combined with the fact that
the τ̂j ’s need to correspond to local minima of ϕ̂∗

LL; see Section 5.2 for details of
implementation. For j = 1, . . . ,M , let τ̂j denote the resulting estimator of τj , and
let I0 = (−∞, τ̂1), IM = [τ̂M,∞) and for j = 1, . . . ,M − 1, Ij = [τ̂j , τ̂j+1).

Our next target is to construct an estimator of ϕ. Recall the notation ϕ+
0 =

ϕ · E|X| in (3.2). Recalling that ϕ changes sign at each τj , we can obtain a
consistent estimator of either ϕ+

0 or −ϕ+
0 (we will see below how to distinguish

these two cases) by taking ϕ̂+
±,0(x) = ∑M

j=0(−1)j ϕ̂∗
j,LL(x) · I (x ∈ Ij ), where, for

each j , ϕ̂∗
j,LL denotes the local linear estimator of ϕ∗ constructed using only the

(Ui, |X̃i |)’s for which Ui ∈ Ij . Here, we use a different local estimator in each Ij

because, under our assumptions, the first derivative of ϕ∗ = |ϕ| ·E|X| is discontin-
uous at the τj ’s. It can be shown using standard kernel smoothing arguments that
in this case the bias near the τj ’s is reduced by using this piecewise approach.
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Our next step is to extract from ϕ̂+
±,0 an estimator of ϕ+

0 (recall that ϕ̂+
±,0 is

an estimator of ϕ+
0 or −ϕ+

0 , but we cannot know of which one). To do this, re-
call that E{ϕ(U)} = 1, which implies that E{ϕ+

0 (U)} > 0. This fact motivates
us to estimate ϕ+

0 (x) by ϕ̂+
0 (x) = ϕ̂+

±,0(x)/ sign{∑n
i=1 ϕ̂+

±,0(Ui)}. Since ϕ+
0 (x) =

ϕ(x)E|X|, once we have done this, to estimate ϕ it remains to construct an esti-
mator of E|X|.

Noting that E{ϕ+
0 (U)} = E{ϕ(U)}E|X| = E|X|, we can estimate E|X| by

Ê|X| = n−1 ∑n
i=1 ϕ̂+

0 (Ui) = |n−1 ∑n
i=1 ϕ̂+

±,0(Ui)|. Finally, we estimate ϕ(x) by

ϕ̂(x) = ϕ̂+
0 (x)/Ê|X|. Then we can predict the Xi’s by taking X̂i = {ϕ̂(Ui)}−1X̃i .

We can proceed similarly to construct predictors Ŷi of the Yi ’s. As in Section 3.3,
since, to obtain these predictors, we divide by ϕ̂(Ui) and ψ̂(Ui), when construct-
ing our estimator of m we cannot use the (X̂i, Ŷi)’s for which |ϕ̂(Ui)| or |ψ̂(Ui)|
is too small. Therefore, to estimate m we use the estimators m̂NW(x;ρ1, ρ2) and
m̂LL(x;ρ1, ρ2) defined in Section 3.3, but with the predictors X̂i and Ŷi con-
structed above.

4. Theoretical properties. We start by establishing theoretical properties of
the estimators m̂NW and m̂LL from Section 3.2. While these estimators seem intu-
itively natural, because they are computed using variables obtained through non-
parametric prediction, checking whether they are consistent, and deriving detailed
asymptotic properties, are quite difficult. Recently, Mammen, Rothe and Schienle
(2012) gave a deep account of nonparametric estimators computed from nonpara-
metrically generated covariates, but our estimators do not fall into the class of set-
tings they consider, not least because in our case, not only the covariate X, but also
the dependent variable Y , are nonparametrically generated, which makes the prob-
lem even more complex than theirs. In addition to the basic model assumptions
introduced in the first paragraph of Section 2, we make the following regularity
assumptions:

(B1) E|X| �= 0, E|Y | �= 0 and infu∈IU
ϕ(u) > 0, infu∈IU

ψ(u) > 0.
(B2) 0 < infu∈IU

fU (u) ≤ supu∈IU
fU (u) < ∞; fU , ϕ and ψ are twice differ-

entiable, and their second derivatives are uniformly continuous and bounded.
(B3) (a) fX is continuous, supx∈R fX(x) < ∞, and E{exp(c1|X|)} < ∞ for

some constant c1 > 0; (b) m and fX are twice differentiable and their sec-
ond derivatives are uniformly continuous and bounded; (c) σ is continuous and
bounded.

(B4) E(ε) = 0, E(ε2) = 1 and E{exp(c2|ε|)} < ∞ for some c2 > 0.
(B5) K and L are twice continuously differentiable, symmetric density func-

tions, and are compactly supported on [−1,1]. Moreover,
∫ 1

0 t2L(t) dt >

2{∫ 1
0 tL(t) dt}2.
(B6) The bandwidths (h, g1, g2) = (hn, g1n, g2n) are such that h � n−α0 and

g1 � n−β1 and g2 � n−β2 for some 0 < α0, β1, β2 < 1/3.
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Condition (B1) is a relaxed version of assumption (2.3) often assumed in the
covariate-adjusted regression literature. See, for example, Şentürk and Müller
(2005a, 2006) and Cui et al. (2009). Condition (B2) includes standard regularity
and smoothness assumptions for the asymptotic results of kernel-type nonparamet-
ric regression estimation. In (B3), we relax the conventional boundedness condi-
tion on the covariates used by Şentürk and Müller (2005a, 2006) and Mammen,
Rothe and Schienle (2012), and assume instead that X has a finite exponential
moment (e.g., this is satisfied if the distribution of X comes from the exponential
family or is compactly supported). Condition (B4), which requires exponentially
light tails of ε, is similar in spirit to Assumption 1(iv) in Mammen, Rothe and
Schienle (2012). Like them, we need this technical assumption to employ an ar-
gument based on empirical processes. Condition (B5) is standard in the context of
kernel regression, and is easy to satisfy since we can choose the kernels. Condi-
tion (B6) states the required range of magnitude of the bandwidths, and is easy to
satisfy in practice.

The next two theorems establish uniform consistency and asymptotic normality
of our estimators m̂NW and m̂LL defined in Section 3.2. Their proof can be found
in Section 7 and in Section D in the supplementary file [Delaigle, Hall and Zhou
(2016)].

THEOREM 4.1. Assume that (2.2) and conditions (B1)–(B6) hold and let
[a, b] ⊆ IX ≡ {x : fX(x) > 0}.

(i) If h � g1 � g2 � (logn)1/5n−1/5, then m̂NW at (3.5) satisfies
maxx∈[a,b] |m̂NW(x) − m(x)| = OP {(logn)2/5n−2/5}.

(ii) If β1 ≥ 1/5 and 0 < α0 < 1/2 − β1, then for every x ∈ [a, b],
m̂NW(x) − m(x) = √

V (x)N(x) + B0(x) + B̃(x) + R0(x),(4.1)

where N(x)
D−→N(0,1) as n → ∞, V (x) = {nhfX(x)}−1σ 2(x)

∫
K2, B0(x) =

{m′′(x) + 2m′(x)f ′
X(x)/fX(x)}μK,2h

2/2, B̃(x) = B̃ϕ(x) + B̃ψ(x) with B̃ϕ(x) =
xm′(x)E{ϕ′′(U)/ϕ(U)}μL,2g

2
1/2, B̃ψ(x) = −m(x)E{ψ ′′(U)/ψ(U)}μL,2g

2
2/2,

and the remainder R0 is such that |R0(x)| = oP {g2
1 + g2

2 + h2 + (nh)−1/2}.
THEOREM 4.2. Assume that (2.2) and conditions (B1)–(B6) hold and let

[a, b] ⊆ IX .

(i) If h � g1 � g2 � (logn)1/5n−1/5, then m̂LL at (3.5) satisfies
maxx∈[a,b] |m̂LL(x) − m(x)| = OP {(logn)2/5n−2/5}.

(ii) If β1 ≥ 1/5 and 0 < α0 < 1/2 − β1, then for every x ∈ [a, b],
m̂LL(x) − m(x) = √

V (x)N(x) + B1(x) + B̃(x) + R1(x),(4.2)

where N(x)
D−→N(0,1) as n → ∞, B1(x) = m′′(x)μK,2h

2/2, V and B̃ are as
in part (ii) of Theorem 4.1, and R1 is such that |R1(x)| = oP {g2

1 + g2
2 + h2 +

(nh)−1/2}.
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We deduce from the theorems that, although they are constructed from distorted
data, when computed with appropriate bandwidths, our estimators m̂NW and m̂LL
defined in Section 3.2 have the same uniform convergence rates as the standard
estimators in (3.1) used when the (Xi, Yi)’s are available. This contrasts with the
errors-in-variables models studied by Fan and Truong (1993) and Delaigle, Fan
and Carroll (2009), where convergence rates are significantly degraded by the mea-
surement errors. The conclusions arising from the asymptotic distribution of our
estimators are also interesting. Abusing terminology, we refer to V and B0 + B̃

(resp., B1 + B̃) as the asymptotic variance and bias and of our estimator m̂NW
(resp., m̂LL), and we call asymptotic mean squared error (AMSE) the sum of the
asymptotic variance and squared bias. We use similar terminology for the standard
estimators of m.

We learn from part (ii) of both theorems that, if we choose g1 and g2 of order
o(h), the asymptotic bias and variance of our estimators are identical to those of
standard estimators, and there, as in the standard case, it is optimal to take h �
n−1/5, so that AMSE � n−4/5. Perhaps more surprisingly, in cases where B0 (resp.,
B1 for m̂LL), Bϕ and Bψ do not all have the same sign, it is possible to choose h and
g1 or g2 an order of magnitude slightly larger than n−1/5 such that the asymptotic
bias B0 + B̃ (resp., B1 + B̃) vanishes and the AMSE our estimator is of order
o(n−4/5), thus smaller than the AMSE of the standard estimator (similar results
can be established for the integrated AMSE). However, while it is theoretically
interesting, we were not able to exploit this result in practice to make our estimator
outperform the standard one, despite several attempts. In part, this is because to
benefit from this result we need to choose the bandwidths in a very specialized
way that requires estimating too many unknowns, and we found that the simpler
bandwidths choice suggested in Section 5.2 almost always worked better.

Next, we develop theoretical properties of our estimator defined in Section 3.3.
We start by rewriting Ĉn(ρ1, ρ2) as Ĉn(ρ1, ρ2) = {1 ≤ i ≤ n : Ui ∈ L̂n(ρ1, ρ2)},
where L̂n(ρ1, ρ2) = {u ∈ IU : |ϕ̂0,LL(u)| ≥ ρ1, |ψ̂0,LL(u)| ≥ ρ2}. We can rewrite
the estimator at (3.7) as

m̂NW(x;ρ1, ρ2) =
∑n

i=1 ŶiKh(x − X̂i)I {Ui ∈ L̂n(ρ1, ρ2)}∑n
i=1 Kh(x − X̂i)I {Ui ∈ L̂n(ρ1, ρ2)}

.

To emphasize the main idea while avoiding repetitive arguments, here we
present the theoretical result only for this estimator, assuming that only ϕ may
have zeros and, therefore, we take ρ2 = 0 throughout this section. A straightfor-
ward adaptation of the arguments used to prove Theorem 4.3 below leads to similar
results in the more general case where ϕ has zeros and ρ2 > 0, and for the local
linear estimator m̂LL(x;ρ1, ρ2).

When ρ2 = 0, L̂n(ρ1, ρ2) depends only on ρ1; to simplify notation, we rewrite
it as L̂n(ρ1) = {u ∈ IU : |ϕ̂0,LL(u)| ≥ ρ1}. Likewise, we rewrite m̂NW(x;ρ1,0)

as m̂NW(x;ρ1). Under certain regularity conditions on ϕ, the random set L̂n(ρ1)
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is a consistent estimator of L(ρ1) = {u ∈ IU : |ϕ0(u)| ≥ ρ1}. Recalling that
ϕ0(u) = E(X)ϕ(u), this suggests taking ρ1 to be some value between 0 and
M0 ≡ |E(X)|maxu∈IU

|ϕ(u)|. For 0 ≤ t ≤ M0, let ∂L(t) = {u ∈ IU : |ϕ0(u)| = t}.
We will need the following assumptions:

(C1) E(X),E(Y ) �= 0 and infu∈IU
ψ(u) > 0.

(C2) ϕ is such that the set � = {t ∈ (0,M0) : ∂L(t) consists of finitely many
points located in the interior of IU and minu∈∂L(t) |ϕ′(u)| > 0} is nonempty.

The next theorem establishes uniform consistency and asymptotic normality
of m̂NW(x;ρ). See Section E in the supplementary file [Delaigle, Hall and Zhou
(2016)] for its proof.

THEOREM 4.3. Assume that (2.2), conditions (B2)–(B5), (C1) and (C2) hold
and that ρ ∈ (0,M0) in (3.7) is such that ρ ∈ �. Let [a, b] ⊆ IX .

(i) If g1 � g2 � h � (logn)1/5n−1/5, then m̂NW(x;ρ) ≡ m̂NW(x;ρ,0) at (3.7)
satisfies maxx∈[a,b] |m̂NW(x;ρ) − m(x)| = OP {(logn)2/5n−2/5}.

(ii) If β1 ≥ 1/5 and 0 < α0 < 1/2 − β1, then for every x ∈ [a, b],
m̂NW(x;ρ) − m(x) =

√
V (x;ρ)N(x) + B0(x) + B̃(x;ρ) + R2(x;ρ),(4.3)

where N(x)
D−→N(0,1) as n → ∞, V (x;ρ) = V (x)/P {U ∈ L(ρ)}, V,B0 are

as in part (ii) of Theorem 4.1, B̃(x;ρ) = xm′(x)E[ϕ′′(U)I {U ∈ L(ρ)}/ϕ(U)] ×
μL,2g

2
1/2 − m(x)E[ψ ′′(U)I {U ∈ L(ρ)}/ψ(U)]μL,2g

2
2/2, and R2 is such that

|R2(x;ρ)| = oP {g2
1 + g2

2 + h2 + (nh)−1/2}.

We deduce from the theorem that our estimator defined in Section 3.3 has
the same uniform convergence rate as the standard Nadaraya–Watson estimator
in (3.1), used when the data (Xi, Yi) are available. Moreover, as long as we choose
g1 and g2 of order o(h), the asymptotic “bias” and “variance” of our estimator
from Section 3.3 are equal to those of the standard Nadaraya–Watson estima-
tor, where i ∈ {1 ≤ j ≤ n : Uj ∈ Ln(ρ)}. As we already indicated below The-
orems 4.1 and 4.2, in theory in some cases it is possible to choose the band-
widths in such a way that the AMSE of our estimator tends to zero faster than
that of the standard estimator, but it seems very hard to find a way to exploit
this in practice. Similar results can be established for the local linear estimator
m̂LL(x;ρ1, ρ2).

Establishing theoretical results for the more general procedure described in Sec-
tion 3.4 is particularly challenging. Recall that this method combines a change
point detection algorithm and the ridge-parameter based method introduced in
Section 3.3. The complex nature of this approach implies that deriving its theo-
retical properties rigorously requires long and tedious arguments. Since our pa-
per is already very long, and even the proofs for our simpler methods are fairly
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tedious, we leave such rigorous derivations for future work. However, our pre-
liminary calculations already indicate that the procedure from Section 3.4 should
have asymptotic properties similar to those described in Theorem 4.3. In par-
ticular, these calculations indicate that estimating the τj ’s and the sign of ϕ

and/or ψ has no first-order asymptotic effect on the properties of our estimators
of m.

5. Numerical results.

5.1. Which method to use. The approach in Section 3.4 can be applied in es-
sentially all cases, but since the methods from Sections 3.2 and 3.3 are simpler,
the user might prefer to use these if all parts of (2.3) hold. While (2.3) can be ver-
ified by standard tests of hypothesis applied to the observed data (see Remark 5.1
below), when these conditions are needed, it is because the techniques employed
involve dividing by estimators of ψ , ϕ, EX or EY . Therefore, in practice, to avoid
numerical issues, we suggest using the method from Section 3.3, and to use instead
the method from Section 3.4 if the absolute values of estimators of EX or EY are
small, the extent of which depends on the magnitude of other quantities involved
and the precision of the software employed. This is generally rather easy to deter-
mine by examining the data, but if unsure the user can just apply the method of
Section 3.4, which is valid in the most general case.

We note too that one does not necessarily need to predict the Xi’s and the Yi’s
with the same method. For example, if one is confident that EX is far from zero,
but is not sure about EY , then the Xi’s could be predicted using the approach from
Section 3.3, and the predictors of the Yi ’s could be obtained from the approach
suggested in Section 3.4.

REMARK 5.1. The assumption at (2.3) can be tested in several ways. For ex-
ample, since EX̃ = EX, we can first test the sign of EX by a standard test of
hypothesis for the mean applied to the data X̃1, . . . , X̃n, and then test the sign
of the function ϕ0 = ϕ · EX at (2.4) using, for example, tests such as those in
Dümbgen and Spokoiny (2001), Chetverikov (2012) and Lee, Song and Whang
(2013), applied to the observed data.

5.2. Details of implementation. As in the case where the (Xi, Yi)’s are avail-
able, in practice we recommend using the local linear versions of our estimators,
and in this section we suggest ways of choosing the parameters required to com-
pute them. Similar ideas can be used for the Nadaraya–Watson estimators. We
know from Section 4 that, while we have to choose h with care, we have more
flexibility for the bandwidths g1 and g2, which can take a large range of values. If
we take h to be of the standard size for nonparametric regression, and g1 = o(h)

and g2 = o(h), then our estimators have the same first-order asymptotic properties
as the estimators at (3.1).
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Motivated by this, for the estimators in Section 3.2, we take g1 = n−0.1g1,PI,
g2 = n−0.1g2,PI and h = hPI, where the subscript PI means that we use a standard
plug-in bandwidth for local linear estimators [Ruppert, Sheather and Wand (1995)]
constructed based on, respectively, the data (Ui, |X̃i |), (Ui, |Ỹi |) and (X̂i, Ŷi).
For the estimators in Sections 3.3 and 3.4, we take g1 = n−1/10g1,PI and g2 =
n−1/10g2,PI, where g1,PI and g2,PI denote standard plug-in bandwidths for local
linear estimators constructed based on, respectively, the data (Ui, X̃i) and (Ui, Ỹi).
Then, in Section 3.3, we choose ρ1 = max(0.1, ρ∗

1 ) and ρ2 = max(0.1, ρ∗
2 ), where

ρ∗
1 (resp., ρ∗

2 ) denotes the square root of an estimator of the asymptotic “mean
squared error” of ϕ̂LL (resp., ψ̂LL), integrated over the set of x-values where
|ϕ̂LL(x)| (resp., |ψ̂LL(x)|) take its smallest values; see Appendix A in the sup-
plementary file [Delaigle, Hall and Zhou (2016)] for details. We do the same for
the method from Section 3.4, except that we use the estimators ϕ̂ and ψ̂ of ϕ and
ψ derived there. Finally, we take h = hPI, a standard plug-in bandwidth for local
linear estimators computed from the data (X̂i, Ŷi), i ∈ Ĉn(ρ1, ρ2).

The estimators from Section 3.4 also require to estimate the zeros τ1, . . . , τM at
which ϕ changes sign, and the same is required for ψ if the method in that section
is used to compute predictors of the Yi ’s. We proceed as follows. First, since the
τj ’s all correspond to a local minimum of ϕ∗, we find all the points at which ϕ̂∗

LL
has local minima. Then, among those points we keep only those which are close to
the discontinuity points of the derivative ϕ∗ detected by the method of Gijbels and
Goderniaux (2004). Here, we define “close” by less than 2h away, where h is the
bandwidth in Section 2.2.1 of Gijbels and Goderniaux (2004). Finally, to slightly
improve numerical performance, we implement Remark 3.2 and remove the data
corresponding to the 5% smallest f̂U (Ui)’s.

5.3. Simulations. We applied our methods to a variety of simulated examples,
ranging from the simplest ones in which ψ > 0 and ϕ > 0, where we can use the
method from Section 3.2, to more complex ones in which EX = 0 and both ψ

and ϕ oscillate between positive and negative values, where we need to use the
sophisticated approach suggested in Section 3.4.

We generated data (X̃i, Ỹi,Ui), i = 1, . . . , n, from model (2.1) for n = 100,
200, 500 and 1000, and considered various combinations of m, ϕ, ψ and σ ,
and various distributions of Xi and Ui . We took εi ∼ N(0,1), and considered
shifted versions of three regression curves m, denoted by m1, m2 and m3 and de-
fined as m1(x) = sin{π(x − 1)/2}/[{1 + 2(x − 1)2}{sign(x − 1) + 1}], m2(x) =
x2φ0,1(x), and m3(x) = 2x + φ0.5,0.1(x), where φμ,θ denotes the density of a
N(μ, θ2). In all cases below, the generic constant const. was chosen so that
E{ϕ(U)} = E{ψ(U)} = 1.

First, we considered models where the local linear estimators from Sections 3.2
to 3.4 could all be applied: (i.a) m = m1, Xi ∼ N(1,1.52), σ(x) = 0.3; (ii.a) m =
m2, Xi ∼ N(1,1.52), σ(x) = 0.05; (iii.a) m = m3, Xi ∼ N(0.5,0.752), σ(x) =
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0.55; (i.b) m(·) = m1(·−1)+2, Xi ∼ N(2,1.52), σ(x) = 0.3; (ii.b) m(·) = m2(·−
1), Xi ∼ N(2,1.52), σ(x) = 0.05; (iii.b) m(·) = m3(· − 1), Xi ∼ N(1.5,0.752),
σ(x) = 0.55. Each time we took Ui ∼ β(2,5), ψ(u) = const.(u + 0.5)2 and
ϕ(u) = const.(u + 0.25)2.

Next, we considered models (i.c)–(iii.c) and (i.d)–(iii.d), where we took m, Xi

and σ as in models (i.a)–(iii.a) and (i.b)–(iii.b), respectively, but took Ui ∼ β(3,5)

and ϕ(·) = ψ(·) = const.m1(5 · −2). Here, ϕ and ψ have zeros and change
signs, so that the method from Section 3.2 cannot be applied. Finally, in our last
models, ϕ and ψ change signs and have several zeros and E(Xi) = 0, so that
we can apply only the method from Section 3.4: (iv.a) m(·) = m1(· + 1), Xi ∼
N(0,1.52), σ(x) = 0.3; (v.a) m(·) = m2(· + 1), Xi ∼ N(0,1.52), σ(x) = 0.05;
(vi.a) m(·) = m3(· + 0.5), Xi ∼ N(0,0.752), σ(x) = 0.55; (iv.b) m(·) = m1(·),
Xi ∼ {χ2(4) − 4}/2, σ(x) = 0.3; (v.b) m(·) = m2(·), Xi ∼ {χ2(4) − 4}/2, σ(x) =
0.05; (vi.b) m(·) = m3(·), Xi ∼ {χ2(4) − 4}/3.5, σ(x) = 0.55; Each time we
took Ui ∼ β(3,5) and ϕ(·) = ψ(·) = const.m1(5 · −2). Heteroscedastic versions
of these models gave similar results; see Appendix B in the supplementary file
[Delaigle, Hall and Zhou (2016)].

We compared each of our estimators with the ideal estimator m̃LL at (3.1) com-
puted from the (Xi, Yi)’s, which are not available in real data applications but
are available when we simulate data, and with the inconsistent naive estimator
m̂LL,naive, which is the standard local linear estimator computed from the contami-
nated (X̃i, Ỹi)’s. For each n and each model, we generated 1000 samples and con-
structed each estimator for each sample. Let m̂ denote any one of the estimators
considered below. To summarize the performance of m̂, we computed, for each
sample, the integrated squared error ISE = ∫ b

a {m̂(x) − m(x)}2 dx, where, in each
case, a and b were the quantiles 0.025 and 0.975 of the distribution of X.

In Tables 1 to 4 in Appendix B in the supplementary file [Delaigle, Hall and
Zhou (2016)], for each method we report the first, second and third quartiles of the
resulting 1000 ISEs. See Appendix B for a detailed discussion of the simulation
results. In summary, we found that, as expected, when ϕ, ψ , EX and EY were
different from zero, but EX and/or EY were relatively close to zero, the estimator
that worked best was the one from Section 3.2, but the most complex estimator
from Section 3.4 worked well. When EX and EY were far from zero, all three
estimators worked well, with the simplest one from Section 3.2 giving the best
results and the one from Section 3.4 working the worst. When ϕ and/or ψ had
zeros, the estimator from Section 3.2 could not be applied, and when EX and
EY were close to zero, the best results were obtained with the estimator from
Section 3.4, whereas when EX and EY were far from zero, the estimator from
Section 3.3 worked best. Finally, we found that our approach also performed well
when the errors were heteroscedastic.

In all cases, our estimators performed considerably better than the naive esti-
mator, but were of course outperformed by the oracle estimator. As expected, the
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FIG. 1. m̂LL from Section 3.2 (left), m̂LL(·;ρ1, ρ2) from Section 3.3 (center) and estimator
m̂LL(·;ρ1, ρ2) from Section 3.4 (right) for three samples coming from model (i.a) with n = 200,
and corresponding to the 1st, 2nd and 3rd quartiles of the ISEs. The continuous line depicts the
true m.

performance of our estimators improved as sample size increased. In all our sim-
ulation settings, the estimator from Section 3.4 gave reasonable results. However,
if ϕ and ψ were far from zero, we got better results by using the simplest estima-
tor from Section 3.2, and if EX and EY were far from zero, we got better results
using the estimator from Section 3.3.

To illustrate these results graphically, we present a few figures that are repre-
sentative of the conclusions of our simulations. For each estimator m̂ presented
in the figures, we show the three estimated curves corresponding to the first three
quartiles of the 1000 ISEs defined above. In Figure 1, using example (i.a), we il-
lustrate the fact that, when all three methods can be applied, they often give similar
results. Figure 2 shows estimated curves for examples (ii.c) and (ii.d). We can see
that, in case (ii.c), where EX is close to zero, the estimator m̂LL(·;ρ1, ρ2) from
Section 3.4 worked better than the one from Section 3.3, but that the reverse is
true in case (ii.d), where EX and EY are both far from zero. In that figure, we
also depict the naive estimator m̂LL,naive, which performed very poorly. Finally, in
Figure 3, we use example (vi.a) to demonstrate the improvement that our estimator
m̂LL(·;ρ1, ρ2) from Section 3.4 benefits from as the sample size n increases. Here,
too, the naive estimator performed very poorly, even for n large.

5.4. Real data illustrations. We applied our new method to the Boston
house-price dataset described in Harrison and Rubinfeld (1978), available at
https://archive.ics.uci.edu/ml/datasets/Housing, and which contains information
about houses and their owners at 506 locations around Boston. As in Şentürk
and Müller (2005b), we are interested in the relationship between the median price
(in USD 1000s) of houses, Ỹ , and per capita crime rate by town, X̃, with the con-
founding effect of the proportion of population of lower educational status, U ,
removed. Şentürk and Müller’s (2005b), whose interest was in the correlation be-
tween X̃ and Ỹ , concluded that this correlation alters dramatically after adjusting
for the confounding effect of lower educational status. On the left panel of Fig-
ure 4, we depict the covariate-adjusted regression curve obtained using the local

https://archive.ics.uci.edu/ml/datasets/Housing
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FIG. 2. Naive estimator m̂LL,naive (left), m̂LL(·;ρ1, ρ2) from Section 3.3 (center), and estimator
m̂LL(·;ρ1, ρ2) from Section 3.4 (right) for three samples coming from model (ii.c) (top) and model
(ii.d) (bottom) with n = 500, and corresponding to the 1st, 2nd and 3rd quartiles of the ISEs. The
continuous line depicts the true m.

FIG. 3. m̂LL(·;ρ1, ρ2) from Section 3.4 (first row) and naive estimator m̂LL,naive (second row) for
three samples coming from model (vi.a) with n = 100 (left), n = 200 (centre) and n = 500 (right),
and corresponding to the 1st, 2nd and 3rd quartiles of the ISEs. The continuous line depicts the
true m.
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FIG. 4. m̂LL(·;ρ1, ρ2) from Sections 3.3 (NEW2) and 3.4 (NEW3), and naive estimator m̂LL,naive
(NAIVE) for the Boston data (left) and the diabetes data (right).

linear estimator m̂LL(·;ρ1, ρ2) from Section 3.3, the estimator m̂LL(·;ρ1, ρ2) from
Section 3.4, and the naive regression estimator m̂LL,naive obtained by regressing Ỹ

on X̃ after removing a few outliers. In this example, the estimator from Section 3.2
was identical to the one from Section 3.3. We can see that m̂LL,naive indicates a pro-
nounced relationship between house price and crime rate (as crime rate increases,
house price decreases), but once we adjust for the effect of lower educational sta-
tus, the regression curve obtained by both versions of our estimator is almost flat,
indicating a weak relationship between the adjusted X and Y .

Next, we applied our procedure to the diabetes dataset used by Schorling et al.
(1997) and Willems et al. (1997), available at http://biostat.mc.vanderbilt.edu/
DataSets, which represents a subset of 403 individuals taken from a larger co-
hort of 1046 subjects who participated in a study for African Americans about
obesity, diabetes and related factors in central Virginia. As in Şentürk and Nguyen
(2006), our goal was to examine the relationship between glycosolated hemoglobin
level Ỹ , a biomarker for diabetes, and diastolic blood pressure X̃, adjusting for the
effect of body mass index, U , which was found to be a confounder for both vari-
ables. As in Şentürk and Nguyen (2006), we removed a few outliers before our
analysis. As in the previous example, ÊX and ÊY were far from zero, so that we
used the estimator m̂LL(·;ρ1, ρ2) from Section 3.3, which we compared with the
naive estimator m̂LL,naive. Here, too, the estimator from Section 3.2 was identical
to the one from Section 3.3. We also computed the estimator from m̂LL(·;ρ1, ρ2)

from Section 3.4. These estimators, depicted on the right panel of Figure 4, show
that after adjusting for body mass index, the relationship between glycosolated
hemoglobin level and diastolic blood pressure is noticeably less pronounced. We
should highlight that, in this example, the data were rather sparse for diastolic
blood pressure greater than 100, and the few patients for which X̃ was greater than
100 had a rather low value of Ỹ , whence the decreasing shape on the right-hand
side of the graph, which may just be an artifact of the sparseness of the data in that
area.

Another interesting application of our method is to the baseline data collected
from studies A and B of the Modification of Diet in Renal Disease Study [Levey

http://biostat.mc.vanderbilt.edu/DataSets
http://biostat.mc.vanderbilt.edu/DataSets
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et al. (1994)]. The nonlinear relationship between the baseline unadjusted glomeru-
lar filtration rate (GFR) and serum creatinine (SCr) is of particular interest. Taking
body surface area (BSA) as the confounder, Cui et al. (2009) used a parametric
nonlinear model of the form m(x) = β1 exp(−β2 − β3x

2) + β4 to study the rela-
tionship between GFR and SCr after correcting for the distorting effect of BSA.
Because this dataset is not publicly available, we shall not compare the proposed
nonparametric method with that of Cui et al. (2009) in this paper.

6. Generalizations to the multivariate case. Our approach can be general-
ized to the d-variate case, d ≥ 1, where we observe data distributed like a vec-
tor (U, X̃T, Ỹ ), with X̃ ∈ Rd a distorted version of X ∈ Rd . Reflecting the fact
that some components of X̃ may not all be distorted, we write d = d1 + d2,
with d1 ≥ 0 and d2 ≥ 1, and let X = (XT

1 ,XT
2 )T and X̃ = (XT

1 , X̃T
2 )T, where

X1 = (X1, . . . ,Xd1)
T and X̃2 = (X̃d1+1, . . . , X̃d)T is a distorted version of X2 =

(Xd1+1, . . . ,Xd)T, and where we use the convention that X = X2 if d1 = 0. In this
notation, the data {(Ui, Ỹi,XT

1i , X̃T
2i)}ni=1 we observe are generated by the model{

Y = m(X) + εσ(X),

Ỹ = ψ(U)Y, X̃d1+r = ϕr(U)Xd1+r , r = 1, . . . , d2,
(6.1)

where m(x) = E(Y |X = x) is a curve we wish to estimate, the random variables
X, U and ε are mutually independent, E(ε) = 0 and var(ε) = 1. As in (2.2), we
assume that E{ψ(U)} = 1, E{ϕr(U)} = 1, for r = 1, . . . , d2.

The procedures from Section 3.2 to 3.4 can each be generalized to the mul-
tivariate setting, but for space constraint here we show only how to generalize
the approach from Section 3.2. The same ideas can be applied for the methods
from Sections 3.3 and 3.4. To construct a nonparametric version of the estima-
tor from Section 3.2, we first construct predictors Ŷi and X̂i,d1+1, . . . , X̂id as in
equation (3.4), and let

X̂i = (Xi1, . . . ,Xid1, X̂i,d1+1, . . . , X̂id)T.

Next, we use a standard multivariate local linear regression estimator applied to
the data (X̂T

i , Ŷi). That is, we define [see Fan and Gijbels (1996)] m̂LL(x) = α̂0,
where (α̂0, α̂1) = arg minα0∈R,α1∈Rd

∑n
i=1{Ŷi − α0 − αT

1 (X̂i − x)}2Kh(X̂i − x),

with Kh(x) = ∏d
r=1 h−1

r K(xr/hr) a d-dimensional product kernel, K a univari-
ate kernel, and h = (h1, . . . , hd)T a vector of bandwidths.

It is well known that fully nonparametric estimators suffer from the curse of
dimensionality, which means that as d increases, such estimators can only work
reasonably well if the sample size is very large. To overcome this problem, a com-
mon approach is to restrict the regression model so that only univariate curves
have to be fitted. A popular example is the additive model [Hastie and Tibshirani



2208 A. DELAIGLE, P. HALL AND W.-X. ZHOU

(1990)], which assumes that m(X) = m0 + ∑d
j=1 mj(Xj ). In our context, the ad-

ditive covariate-adjusted regression model can be written as⎧⎪⎪⎨⎪⎪⎩
Y = m0 +

d∑
j=1

mj(Xj ) + εσ(X),

Ỹ = ψ(U)Y, X̃d1+r = ϕr(U)Xd1+r , r = 1, . . . , d2,

(6.2)

where m1, . . . ,md are unknown univariate functions satisfying E{mj(Xj )} = 0
for j = 1, . . . , d and m0 is an unknown parameter.

In the standard setting where the (XT
i , Yi)’s are directly observed, there are sev-

eral ways to fit the additive model; see Horowitz (2014) for an overview of estima-
tion and inference for nonparametric additive models. The simplest approach is to
adapt to our setting the iterative backfitting algorithm of Buja, Hastie and Tibshi-
rani (1989), as follows. First, let m̂0 = n−1 ∑n

i=1 Ỹi and m̂j ≡ 0 for j = 1, . . . , d .
For j = 1, . . . , d , update m̂j by taking it equal to a local linear regression estimator
using the data {(X̂ij , Ŷi − m̂0 −∑

k �=j m̂j (X̂ik))}ni=1. Iterate until the estimates m̂j

stabilize. (Here, X̂ij = Xij if j ≤ d1.)
Alternatively, instead of taking m̂j = 0 as initial estimators, we could start with

a linear approximation of the model in (6.2). See Appendix C in the supplemen-
tary file [Delaigle, Hall and Zhou (2016)] for details. We could also apply similar
transformations to other existing methods for fitting additive models, such as the
approach suggested by Horowitz and Mammen (2004). The main theoretical chal-
lenge is a delicate analysis on how the presence of generated response and predic-
tors affects the first-order asymptotic properties of the final estimators. However,
deriving such results requires much more work than can possibly done in this pa-
per, and so we leave this problem for future research. The method proposed in
this section can be applied to creatinine data, which was analyzed by Şentürk and
Müller (2006). In this study, serum creatinine level is taken as the response and the
two predictors include cholesterol level and serum albumin level. The confounder
variable U is taken to be body mass index defined as weight/height. The readers
can find more details about this dataset in Şentürk and Müller (2006).

7. Proof of Theorem 4.1. We start by introducing basic notations. For a ker-
nel function K , we write μK,� = ∫

u�K(u)du for nonnegative integers �. For any
set S, we denote its complement by Sc and its cardinality by #S. Throughout, we
let const. denote a finite positive constant independent of n, which may take dif-
ferent values at each occurrence. We also use the following notation: μ0 = E(X),
m0 = E(Y ), μ+

0 = E|X|, m+
0 = E|Y | and

ϕ0 = μ0ϕ, ψ0 = m0ψ, ϕ+
0 = μ+

0 ϕ, ψ+
0 = m+

0 ψ.(7.1)

We proceed with the proof of Theorem 4.1. For u ∈ IU = [0,1], write

w0(u) ≡ 1, ŵX(u) = μ̂+
0 ϕ(u)/ϕ̂+

0,LL(u),
(7.2)

ŵY (u) = m̂+
0 ψ(u)/ψ̂+

0,LL(u),
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where μ̂+
0 = Ê|X| = n−1 ∑n

i=1 |X̃i |, m̂+
0 = Ê|Y | = n−1 ∑n

i=1 |Ỹi | and ϕ̂+
0,LL and

ψ̂+
0,LL are local linear estimators of ϕ+

0 and ψ+
0 defined below (3.3).

Noting the model at (2.1), and hence by (3.4) and (7.2),

X̂i = XiŵX(Ui), Ŷi = YiŵY (Ui).(7.3)

Substituting the expressions in (7.3) into (3.5) gives

m̂NW(x) − m(x) = {
nf̂

X̂
(x)

}−1
n∑

i=1

Kh(x − X̂i)
{
ŵY (Ui) − w0(Ui)

}
Yi

+ {
nf̂

X̂
(x)

}−1
n∑

i=1

Kh(x − X̂i)
{
m(Xi) − m(x)

}
(7.4)

+ {
nf̂

X̂
(x)

}−1
n∑

i=1

Kh(x − X̂i)σ (Xi)εi

≡ �̂01(x) + �̂02(x) + �̂03(x),

where

f̂
X̂
(x) ≡ n−1

n∑
i=1

Kh(x − X̂i).(7.5)

PROOF OF (I). We start by establishing uniform bounds for ŵX and ŵY

which will be useful throughout the proof. Recalling that the Ui ’s are supported
on IU = [0,1], for Z = Y or Z = X we use the notation ‖ŵZ − w0‖∞ =
supu∈[0,1] |ŵZ(u)−w0(u)|. To derive our bounds, note that under conditions (B1)–
(B6), for � = 0,1,2, we have [Hansen (2008), Masry (1996)]

sup
u∈[0,1]

∣∣ϕ̂+(�)
0,LL(u) − ϕ

+(�)
0 (u)

∣∣ = OP

{
δ�n(g1)

}
,

(7.6)
sup

u∈[0,1]
∣∣ψ̂+(�)

0,LL(u) − ψ
+(�)
0 (u)

∣∣ = OP

{
δ�n(g2)

}
,

where, for all t > 0,

δ�n(t) ≡ t2 + (
nt2�+1)−1/2

(logn)1/2.(7.7)

In particular, for g1 = g1n � n−β1 and g2 = g2n � n−β2 , we have δ0n(g1) =
O(n−λ1

√
logn) and δ0n(g2) = O(n−λ2

√
logn), where λν ≡ min(2βν,1/2 −

βν/2) ∈ (0,2/5], for ν = 1,2.
Now, using (7.1) and (7.2), we can write

ŵX(u) − w0(u) = μ̂+
0 ϕ(u) − ϕ̂+

0,LL(u)

ϕ̂+
0,LL(u)

(7.8)

= (μ̂+
0 − μ+

0 )ϕ(u)

ϕ̂+
0,LL(u)

+ ϕ+
0 (u) − ϕ̂+

0,LL(u)

ϕ̂+
0,LL(u)

,
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and a similar equation can be written for ŵY .
Since, by condition (B1), γ1 ≡ minu∈[0,1] min{|ϕ+

0 (u)|, |ψ+
0 (u)|} > 0, a direct

consequence of (7.6) and Taylor’s expansion is that {ϕ̂+
0,LL(u)}−1 = {ϕ+

0 (u) +
ϕ̂+

0,LL(u) − ϕ+
0 (u)}−1 = {ϕ+

0 (u)}−1 + OP {δ0n(g1)} uniformly over u ∈ [0,1].
Moreover, we also have μ̂+

0 = μ+
0 +OP (n−1/2) and m̂+

0 = m+
0 +OP (n−1/2). Sub-

stituting the previous two displays into (7.8) gives, for Z1 = X and Z2 = Y ,

‖ŵZν − w0‖∞ = OP

{
δ0n(gν)

} = OP

{
n−λν (logn)1/2}.(7.9)

Later in our proof, it will also be useful to use the fact that δ0n(g1) = o(h) because
α0 < 2β1.

Next, we study the common denominator f̂
X̂
(x) of �̂01(x), �̂02(x) and �̂03(x).

Let

f̂X(x) = n−1
n∑

i=1

Kh(x − Xi)(7.10)

denote the standard kernel estimator of fX(x) that we would use if the Xi’s were
available. For this estimator, it is well known [see, e.g., Theorem 6 in Hansen
(2008)] that maxx∈[a,b] |f̂X(x) − fX(x)| = OP {δ0n(h)}. Shortly we shall prove
that

max
x∈[a,b]

∣∣f̂
X̂
(x) − f̂X(x)

∣∣ = OP

{
h−1δ0n(g1)

} = oP (1),(7.11)

which further leads to maxx∈[a,b] |f̂X̂
(x) − fX(x)| = OP {h−1δ0n(g1) + δ0n(h)} =

oP (1). In turn, using arguments similar to those we used above to treat the denom-
inator of ŵZν − w0, and taking into account the fact that minx∈[a,b] fX(x) > 0, we
obtain {

f̂
X̂
(x)

}−1 = {
fX(x) + f̂

X̂
(x) − fX(x)

}−1

= {
fX(x)

}−1 + OP

{
h−1δ0n(g1)

}
(7.12)

= {
fX(x)

}−1 + oP (1)

uniformly over x ∈ [a, b], and that maxx∈[a,b]{f̂X̂
(x)}−1 = OP (1).

Next, we prove (7.11). For this, note that for any C > 0, we can write

P
{

max
x∈[a,b]

∣∣f̂
X̂
(x) − f̂X(x)

∣∣ > Ch−1δ0n(g1)
}

≤ P
{

max
x∈[a,b]

∣∣f̂
X̂
(x) − f̂X(x)

∣∣ > Ch−1δ0n(g1),An

}
+ P

(
Ac

n

)
,

where An is an event that we shall define below, and which is such that P(An) → 1
as n → ∞. Therefore, to prove (7.11), it suffices to handle the first term on the right
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side of the inequality above. Toward this end, first, comparing the definitions (7.5)
and (7.10) we see that for each x ∈R,∣∣f̂

X̂
(x) − f̂X(x)

∣∣
(7.13)

≤ ∥∥K ′∥∥∞
‖ŵX − w0‖∞

nh2

n∑
i=1

|Xi |I (|Xi − x| ≤ h or |X̂i − x| ≤ h
)
.

To further bound the right-hand side of (7.13), we shall show that X̂i and Xi are
uniformly close [see (7.16) below] as long as the estimation error of ŵX is well-
controlled. To see this, for λ ≥ 0, define the event

En(λ) = {‖ŵX − w0‖∞ ≤ n−λ}.(7.14)

By (7.9), we have P {En(λ)} → 1 as n → ∞ provided that λ < λ1. Moreover,
define events

E1n(λ) =
{

max
1≤i≤n

|Xi | ≤ λ logn
}

and

(7.15)
E2n(λ) =

{
max

1≤i≤n
|εi | ≤ λ logn

}
.

In the proof of Lemma F.1 in the supplementary file [Delaigle, Hall and Zhou
(2016)], we shall show that for every given c > 0, there exist a constant C1 > 0
such that P {E1n(C1)} ≥ 1 − const. n−c.

Let α ∈ (α0, λ1) be a constant, such that under condition (B6), n−α = o(h) and
P {En(α)c} → 0 as n → ∞. On the event En(α) ∩ E1n(C1), we have

max
1≤i≤n

|X̂i − Xi | ≤ ‖ŵX − w0‖∞ max
1≤i≤n

|Xi | ≤ C1n
−α logn,(7.16)

such that for every x ∈ [a, b], |Xi − x| ≤ |X̂i − x| + C1n
−α logn. Therefore, on

the event En(α) ∩ E1n(C1) with n sufficiently large,

I
(|X̂i − x| ≤ h

) ≤ I
(|Xi − x| ≤ 2h

)
.(7.17)

It follows from (7.13) and (7.17) that, on En(α) ∩ E1n(C1) with n large enough,

max
x∈[a,b]

∣∣f̂
X̂
(x) − f̂X(x)

∣∣
≤ ∥∥K ′∥∥∞‖ŵX − w0‖∞

(
nh2)−1 max

x∈[a,b]

n∑
i=1

|Xi |I (|Xi − x| ≤ 2h
)

(7.18)

≤ ∥∥K ′∥∥∞‖ŵX − w0‖∞
(
nh2)−1 max

x∈[a,b]
(|x| + 2h

) n∑
i=1

I
(|Xi − x| ≤ 2h

)
≤ const.‖ŵX − w0‖∞h−2 max

x∈[a,b]
{
F̂X(x + 2h) − F̂X(x − 2h)

}
,
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where F̂X(x) = n−1 ∑n
i=1 I (Xi ≤ x) denotes the empirical distribution function.

To further bound the right-hand side of (7.18), we let FX be the distribution
function of X and then apply the Dvoretzky–Kiefer–Wolfwitz inequality [Massart
(1990)] to obtain that P(

√
n‖F̂X −FX‖∞ > y) ≤ 2 exp(−2y2) for all y > 0, where

‖F̂X − FX‖∞ ≡ supx∈R |F̂X(x) − FX(x)|. For λ > 0, define the event

E0n(λ) = {√
n‖F̂X − FX‖∞ ≤ (λ logn)1/2},(7.19)

such that P {E0n(1/2)} ≥ 1 − 2n−1. Under condition (B3), we deduce that on the
E0n(1/2) with n sufficiently large,

max
x∈[a,b]

{
F̂X(x + 2h) − F̂X(x − 2h)

}
≤ max

x∈[a,b]
{
FX(x + 2h) − FX(x − 2h)

} + {
2(logn)/n

}1/2(7.20)

≤ 4‖fX‖∞h + {
2(logn)/n

}1/2 ≤ const. h.

Substituting this into (7.18) and taking An ≡ En(α) ∩ E0n(1/2) ∩ E1n(C1) imply
that for all sufficiently large n,

P
{

max
x∈[a,b]

∣∣f̂
X̂
(x) − f̂X(x)

∣∣ > Ch−1δ0n(g1),An

}
≤ P

{‖ŵX − w0‖∞ > const. δ0n(g1),An

}
(7.21)

≤ P
{‖ŵX − w0‖∞ > const. δ0n(g1)

}
,

and that P(Ac
n) → 0 as n → ∞. Together, (7.9) and (7.21) prove (7.11).

Next, we study �̂01(x). For this, we first write f̂
X̂
(x)�̂01(x) as

n−1
n∑

i=1

Kh(x − Xi)(ŵY − w0)(Ui)Yi

+ n−1
n∑

i=1

{
Kh(x − X̂i) − Kh(x − Xi)

}
(ŵY − w0)(Ui)Yi(7.22)

≡ J1(x) + J2(x).

Applying Lemma F.4 with g2 � n−β2 to J1(x) implies

max
x∈[a,b]

∣∣J1(x)
∣∣ = OP

(
g2

2
) = OP

(
n−2β2

)
.(7.23)

For J2(x), note that J2(x) ≤ ‖K ′‖∞‖ŵX − w0‖∞‖ŵY − w0‖∞(nh2)−1 ×∑n
i=1 |Xi |{|m(Xi)| + σ(Xi)|εi |}I (|Xi − x| ≤ h or |X̂i − x| ≤ h). The argument

leading to (7.11) can be used to prove that maxx∈[a,b](nh)−1 ∑n
i=1 |Xim(Xi)| ×

I (|Xi −x| ≤ h or |X̂i −x| ≤ h) = OP (1) and the same bound holds if the m(Xi)’s
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are replaced by the σ(Xi)’s. Moreover, similar to (F.9) in the proof of Lemma F.1,
it can be proved that

max
1≤i≤n

|εi | = OP (logn).(7.24)

This, together with (7.9) and the two displays before (7.24), yields

max
x∈[a,b]

∣∣J2(x)
∣∣ = OP

{
h−1δ0n(g1)δ0n(g2) logn

} = oP

{
g2

2 + (ng2)
−1/2}.(7.25)

Here, the last step follows from condition (B6) and the assumption that α0 < 2β1.
Together, (7.12), (7.22), (7.23) and (7.25) imply

max
x∈[a,b]

∣∣�̂01(x)
∣∣ = OP

(
g2

2
) + oP

{
(ng2)

−1/2}.(7.26)

For �̂02(x), we write Kh(x − X̂i) in f̂X(x)�̂02(x) as Kh(x − X̂i) − Kh(x −
Xi) + Kh(x − Xi). A similar argument to what we used to study (7.13) gives

max
x∈[a,b]

∣∣∣∣∣n−1
n∑

i=1

{
Kh(x − X̂i) − Kh(x − Xi)

}{
m(Xi) − m(x)

}∣∣∣∣∣
≤ ∥∥m′∥∥∞

∥∥K ′∥∥∞
‖ŵX − w0‖∞

nh2
(7.27)

× max
x∈[a,b]

∣∣∣∣∣
n∑

i=1

∣∣Xi(Xi − x)
∣∣I (|Xi − x| ≤ h or |X̂i − x| ≤ h

)∣∣∣∣∣
= OP

{
δn,0(g1)

}
.

Together with (7.7) and (7.12), this implies

max
x∈[a,b]

∣∣�̂02(x) − �02(x)
∣∣ = OP

{
δn,0(g1)

}
,(7.28)

where �02(x) ≡ {nf̂
X̂
(x)}−1 ∑n

i=1 Kh(x − Xi){m(Xi) − m(x)}.
Next, we write f̂

X̂
(x)�02(x) = n−1 ∑n

i=1 Kh(x − Xi){m(Xi) − m(x)} as

n−1
n∑

i=1

{
gn,i(x) − Egn,i(x)

} + n−1
n∑

i=1

Egn,i(x)

(7.29)

≡ Rn(x) + n−1
n∑

i=1

Egn,i(x),

where gn,i(x) = Kh(x − Xi){m(Xi) − m(x)}. To bound maxx∈[a,b] |Rn(x)|, we
create a grid using N points of the form xj = a + jδ with δ = (b − a)/N for some
N ≥ 1 to be determined below (7.32). Since g′

n,i(x) = h−1K ′
h(x − Xi){m(Xi) −
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m(x)}−m′(x)Kh(x−Xi), by the mean value theorem we have, for every x, y ∈ R,
|gn,i(x) − gn,i(y)| ≤ (‖K‖∞ + ‖K ′‖∞)‖m′‖∞h−1|x − y|. Therefore,

max
x∈[a,b]

∣∣Rn(x)
∣∣ ≤ max

1≤j≤N

∣∣Rn(xj )
∣∣ + 2

(‖K‖∞ + ∥∥K ′∥∥∞
)∥∥m′∥∥∞δh−1.(7.30)

For each x ∈ R fixed, gn,1(x), . . . , gn,n(x) are independent random variables sat-
isfying |gn,i(x)| ≤ ‖K‖∞‖m′‖∞ and E{gn,i(x)}2 = h−1 ∫

K2(t){m(x − ht) −
m(x)}2fX(x − ht) dt ≤ ‖m′‖2∞‖fX‖∞h

∫
t2K2(t) dt . Hence, by Bernstein’s in-

equality and Boole’s inequality, for every y ≥ 0,

P
{

max
1≤j≤N

∣∣Rn(xj )
∣∣ ≥ y

}

≤
N∑

j=1

P

[∣∣∣∣∣n−1
n∑

i=1

{
gn,i(xj ) − Egn,i(xj )

}∣∣∣∣∣ ≥ y

]
(7.31)

≤ 2N exp
{
− ny2

2(c2
K‖m′‖2∞‖fX‖∞h + ‖K‖∞‖m′‖∞y/3)

}
,

where cK ≡ {∫ t2K2(t) dt}1/2. For every λ > 0, define the event

Cn(λ) =
{

max
1≤j≤N

∣∣Rn(xj )
∣∣ ≤ cK

∥∥m′∥∥∞‖fX‖1/2∞

√
hλ

n
+‖K‖∞

∥∥m′∥∥∞
λ

n

}
,(7.32)

such that in view of (7.31), P {Cn(λ)c} ≤ 2N exp(−τλ) for some absolute constant
τ > 0. By taking N = n and λ = 2τ−1 logn, it follows from (7.30) and (7.32) that

max
x∈[a,b]

∣∣Rn(x)
∣∣ = OP

{
h1/2(n/ logn)−1/2 + n−1 logn + (nh)−1}.(7.33)

For the second term on the right-hand side of (7.29), standard arguments show
that, under conditions (B3) and (B5),

Egn,i(x) = {
m′′(x)fX(x)/2 + m′(x)f ′

X(x)
}
μK,2h

2 + o
(
h2)(7.34)

uniformly in x ∈ [a, b]. Consequently, combining (7.12), (7.28), (7.33) and (7.34),
we get

max
x∈[a,b]

∣∣�̂02(x)
∣∣ = OP

(
h2).(7.35)

For the last term �̂03(x) in (7.4), we need to control the stochastic error

�n,∞ ≡ max
x∈[a,b]

∣∣∣∣∣n−1
n∑

i=1

Kh(x − X̂i)σ (Xi)εi

∣∣∣∣∣(7.36)

for X̂i = XiŵX(Ui) as in (7.3). To this end, we shall use a lattice argument by mak-
ing a finite approximation of the compact interval [a, b] using a sequence {xj }Nj=1
of equidistant points xj = a + jδ for δ = (b − a)/N , and then discretize �n,∞ to
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define �n,N ≡ max1≤j≤N |n−1 ∑n
i=1 Kh(xj − X̂i)σ (Xi)εi |. Here, N is a positive

integer that will be determined after (7.44).
Instead of dealing with �n,∞ directly, we shall prove that �n,N provides

a fine approximation to �n,∞, at least with high probability, and then re-
strict attention to �n,N . By definition of �n,N , we have |�n,∞ − �n,N | ≤
‖σ‖∞‖K ′‖∞δh−2 max1≤i≤n |εi |. Together with (7.24), this leads to

|�n,∞ − �n,N | = OP

(
N−1h−2 logn

)
.(7.37)

For �n,N , shortly we shall prove by taking N = n that

�n,N = OP

{
(nh/ logn)−1/2},(7.38)

which together with (7.37) leads to

�n,∞ = OP

{
(nh/ logn)−1/2 + (

nh2)−1 logn
}

(7.39)
= OP

{
(nh/ logn)−1/2},

where the last step relies on the identity (nh2)−1 logn = (nh/ logn)−1/2(nh3/

logn)−1/2 and condition (B6). Combing (7.12) and (7.39) yields

max
x∈[a,b]

∣∣�̂03(x)
∣∣ ≤ max

x∈[a,b]
{
f̂

X̂
(x)

}−1
�n,∞

(7.40)
= OP

{
(nh/ logn)−1/2}.

Together, (7.26), (7.35) and (7.40) complete the proof of (4.1).
Next, we prove (7.38). For λ > 0, let V1n(x) = {∑n

i=1 K2
h(x − X̂i)σ

2(Xi)}1/2,
V2n(x) = max1≤i≤n Kh(x − X̂i)σ (Xi) and define the event

Dn(N,λ)
(7.41)

=
{
|�n,N | ≤ max

1≤j≤N
V1n(xj )

√
λ/n + max

1≤k≤N
V2n(xj )λ/n

}
.

To deal with V1n(x), as in the proof of (7.21), put An = En(α)∩E1n(C1)∩E0n(1/2)

with α ∈ (α0, λ1) such that P(Ac
n) → 0 as n → ∞, where En(α), E1n(C1) and

E0n(1/2) are as in (7.14), (7.15) and (7.19), respectively. On the event An with n

sufficiently large, it follows from (7.17) and (7.20) that

max
1≤j≤N

V1n(xj )

≤ max
x∈[a,b]V1n(x) ≤ ‖σ‖∞‖K‖∞

h
max

x∈[a,b]

√√√√ n∑
i=1

I
(|Xi − x| ≤ 2h

)
(7.42)

≤ const.‖σ‖∞‖K‖∞(n/h)1/2.
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It is easy to see that maxx∈[a,b] V2n(x) ≤ ‖σ‖∞‖K‖∞h−1. This, combined with
(7.41) and (7.42) yields, on the event Dn(N,λ) ∩An with n large enough,

�n,N ≤ const.‖σ‖∞‖K‖∞
{√

λ/(nh) + λ/(nh)
}
.(7.43)

Next, we show that for properly chosen N and λ, P {Dn(N,λ)c} → 0 as n → ∞.
Observe that ŵX defined in (7.2) is a measurable function of {(Xi,Ui)}ni=1,
and thus is independent of {εi}ni=1. Conditional on {(Xi,Ui)}ni=1, taking a =
(a1, . . . , an)

T = (Kh(x − X̂i)σ (Xi), . . . ,Kh(x − X̂n)σ (Xn))
T in Lemma F.2 and

using Boole’s inequality, we obtain that for every λ ≥ 0, P [�n,N >

max1≤j≤N V1n(xj )
√

λ/n+max1≤k≤N V2n(xj )λ/n|{(Xi,Ui)}ni=1] ≤ 2N exp(−cλ)

where c > 0 is a constant independent of n and N . Taking expectations on both
sides of the inequality gives that for every λ ≥ 0, P {Dn(N,λ)c} ≤ 2N exp(−cλ).
Taking N = n and λ = 2c−1 logn, we get

P
{
Dn(n,λ)c} ≤ 2n−1.(7.44)

Combining (7.43) with N = n,λ = 2c−1 logn, (7.44) and the fact that P(Ac
n) → 0

proves (7.38) as claimed. �

PROOF OF (II). To prove the asymptotic normality, we need to use a more
refined argument. In what follows, x ∈ [a, b] is fixed and we deal with the sum in
(7.4) over each �̂0j (x) separately.

First, for �̂01(x), recall in (7.22) that f̂
X̂
(x)�̂01(x) = J1(x) + J2(x). By (7.25)

and condition (B6), |J2(x)| = oP {h−1δ0n(g1)δ0n(g2) logn} = oP (g2
1 + g2

2). For
J1(x), Lemma F.4 with g2n � n−β2 implies J1(x) = −1

2m(x)fX(x)E{ψ ′′(U)/

ψ(U)}μL,2g
2
2 + oP (g2

2). The last two displays and (7.12) imply

�̂01(x) = −m(x)E
{
ψ ′′(U)/ψ(U)

}
μL,2g

2
2/2 + oP

(
g2

1 + g2
2
)
.(7.45)

For �̂02(x), by a first-order Taylor’s expansion we obtain

f̂
X̂
(x)�̂02(x) = n−1

n∑
i=1

Kh(x − X̂i)
{
m(Xi) − m(x)

}

= n−1
n∑

i=1

Kh(x − Xi)
{
m(Xi) − m(x)

} + (
nh2)−1

n∑
i=1

K ′
(

x − Xi

h

)

× (w0 − ŵX)(Ui)Xi

{
m(Xi) − m(x)

} + (
2nh3)−1

n∑
i=1

K ′′(ξn)(7.46)

× (w0 − ŵX)2(Ui)X
2
i

{
m(Xi) − m(x)

}
I
(|X̂i − x| ≤ h

)
≡ I1(x) + I2(x) + I3(x),

where ξn is a random variable that lies between (x − Xi)/h and (x − X̂i)/h.
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A standard argument shows that I1(x) = OP {h2 + (nh)−1/2}. Together with
(7.12), this yields{

f̂
X̂
(x)

}−1
I1(x)

= {
fX(x)

}−1
I1(x) + OP

[
h−1δn,0(g1)

{
h2 + (nh)−1/2}](7.47)

= {
fX(x)

}−1
I1(x) + oP

{
h2 + (nh)−1/2}.

For I2(x), it follows from (F.12) in Lemma F.3 and (7.12) that {f̂
X̂
(x)}−1I2(x) =

xm′(x)E{ϕ′′(U)/ϕ(U)}μL,2g
2
1/2 + oP (g2

1). For I3(x), a similar argument to
that leading to (7.11) yields maxx∈[a,b] |I3(x)| = OP {h−1δ2

n,0(g1)} and hence,

{f̂
X̂
(x)}−1I3(x) = oP {(nh)−1/2}. Combining with (7.46), we get

�̂02(x) = {
fX(x)

}−1
I1(x) + xm′(x)E

{
ϕ′′(U)/ϕ(U)

}
μL,2g

2
1/2

(7.48)
+ oP

{
g2

1 + h2 + (nh)−1/2}
for I1(x) as in (7.46). Finally, for the stochastic error term �̂03(x), we shall use
an argument similar to that employed in Mammen, Rothe and Schienle (2012)
based on empirical process theory. Write β1 = (1 + ξ0)/5 for some ξ0 ≥ 0. First,
we argue that the estimator ŵX falls within a “nice” function space, the com-
plexity of which can be measured via covering numbers. Let M0n be the set of
functions [0,1] �→ R whose derivatives up to order two exist and are uniformly
bounded in order by (ng5

1/ logn)−1/2 � nξ0/2(logn)1/2. Since β1 ≥ 1/5, we have
λ1 = min(2β1,1/2 − β1/2) = 1/2 − β1/2. For some α ∈ (α0,1/2 − β1/2) to
be specified in the paragraph after (7.53), we define the following set of func-
tions:

N0n = {
w ∈M0n : ‖w − w0‖∞ ≤ n−α}

.(7.49)

By (7.6), using the same argument that we used to derive (7.9), we have P(ŵX ∈
N0n) → 1 as n → ∞.

Note that f̂
X̂
(x)�̂03(x) in (7.4) can be written as n−1 ∑n

i=1{Kh(x − X̂i) −
Kh(x − Xi)}σ(Xi)εi + n−1 ∑n

i=1 Kh(x − Xi)σ (Xi)εi . For the first term, by
Lemma F.1 we have, for any κ1 ∈ (0,1/2 + 3α/4 − 3α0/2 − ξ0/8), n−1 ×∑n

i=1{Kh(x − X̂i) − Kh(x − Xi)}σ(Xi)εi = OP (n−κ1). On the other hand, it
is straightforward to show that n−1 ∑n

i=1 Kh(x − Xi)σ (Xi)εi = OP {(nh)−1/2} =
OP (n−1/2+α0/2). Combining this and (7.12), we get

�̂03(x) = {
nfX(x)

}−1
n∑

i=1

Kh(x − Xi)σ (Xi)εi

+ OP

{
n−κ1 + n−1+β1/2+3α0/2(logn)1/2}(7.50)

= {
nfX(x)

}−1
n∑

i=1

Kh(x − Xi)σ (Xi)εi + OP

(
n−κ1

)
.
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Assembling (7.45), (7.48) and (7.50), we obtain that for any α ∈ (α0,1/2 −
β1/2) and κ1 ∈ (0,1/2 + 3α/4 − 3α0/2 − ξ0/8),

m̂NW(x) − m(x) = B̃(x) + {
fX(x)

}−1
I1(x) + √

V (x)N(x)
(7.51)

+ oP

(
n−κ1 + g2

1 + g2
2 + h2),

where B̃(x) and I1(x) are as in part (ii) of Theorem 4.1 and (7.46), respectively,
and N(x) ≡ {V (x)}−1/2{nfX(x)}−1 ∑n

i=1 Kh(x − Xi)σ (Xi)εi for V (x) is as in
part (ii) of Theorem 4.1. Further, for I1(x) = n−1 ∑n

i=1 Kh(x − Xi){m(Xi) −
m(x)}, proceeding as in (7.29) we derive that{

fX(x)
}−1

I1(x) = B0(x) + oP

{
h2 + (nh)−1/2}(7.52)

for B0(x) as in part (ii) of Theorem 4.1. For the third addend on the right-hand side
of (7.51), Lyapounov’s central limit theorem combined with Slutsky’s theorem
yield

N(x)
D−→N(0,1), as n → ∞.(7.53)

In particular, for h = hn � n−α0 with α0 ∈ (0,1/2 − β1), by taking α and κ1 in
such a way that 4

3α0 < α < 1
2 − 1

2β1 and 1
2 − 1

2α0 < κ1 < 1
2 + 3

4α − 3
2α0 − 1

8ξ0, we
have n−κ1 = o{(nh)−1/2}. This, together with (7.51)–(7.53) proves (4.1). �
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SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric covariate-adjusted regression” (DOI: 10.
1214/16-AOS1442SUPP; .pdf). This supplemental material contains more details
for the implementation of the proposed estimators, additional simulation results as
well as additional proofs omitted in the main text.
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