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ON THE DEFINITION OF A CONFOUNDER1

BY TYLER J. VANDERWEELE AND ILYA SHPITSER

Harvard University

The causal inference literature has provided a clear formal definition of
confounding expressed in terms of counterfactual independence. The liter-
ature has not, however, come to any consensus on a formal definition of a
confounder, as it has given priority to the concept of confounding over that of
a confounder. We consider a number of candidate definitions arising from var-
ious more informal statements made in the literature. We consider the proper-
ties satisfied by each candidate definition, principally focusing on (i) whether
under the candidate definition control for all “confounders” suffices to control
for “confounding” and (ii) whether each confounder in some context helps
eliminate or reduce confounding bias. Several of the candidate definitions do
not have these two properties. Only one candidate definition of those consid-
ered satisfies both properties. We propose that a “confounder” be defined as
a pre-exposure covariate C for which there exists a set of other covariates X

such that effect of the exposure on the outcome is unconfounded conditional
on (X,C) but such that for no proper subset of (X,C) is the effect of the
exposure on the outcome unconfounded given the subset. We also provide a
conditional analogue of the above definition; and we propose a variable that
helps reduce bias but not eliminate bias be referred to as a “surrogate con-
founder.” These definitions are closely related to those given by Robins and
Morgenstern [Comput. Math. Appl. 14 (1987) 869–916]. The implications
that hold among the various candidate definitions are discussed.

1. Introduction. Statisticians and epidemiologists had traditionally con-
ceived of a confounder as a pre-exposure variable that was associated with ex-
posure and associated also with the outcome conditional on the exposure, possi-
bly conditional also on other covariates [Miettinen (1974)]. The developments in
causal inference over the past two decades have made clear that this definition
of a “confounder” is inadequate: there can be pre-exposure variables associated
with the exposure and the outcome, the control of which introduces rather than
eliminates bias [Greenland, Pearl and Robins (1999), Glymour and Greenland
(2008), Pearl (2009)]. The literature has moved away from formal language about
“confounders” and instead places the conceptual emphasis on “confounding.” See
Morabia (2011) for historical discussion of this point. The causal inference liter-
ature has provided a formal definition of “confounding” in terms of dependence
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of counterfactual outcomes and exposure, possibly conditional on covariates. The
absence of confounding (independence of the counterfactual outcomes and the
exposure) has been taken as the foundational assumption for drawing causal infer-
ences. Such absence of confounding is alternatively referred to as “ignorability” or
“ignorable treatment assignment” [Rubin (1978)], “exchangeability” [Greenland
and Robins (1986)], “no unmeasured confounding” [Robins (1992)], “selection on
observables” [Barnow, Cain and Goldberger (1980), Imbens (2004)] or “exogene-
ity” [Imbens (2004)]. Today, at least within the formal methodological literature on
causality, language concerning “confounders” is generally used only informally, if
at all. The priority that has been given to “confounding” over “confounders” has
arguably brought clarity and precision to the field. Nevertheless, among practic-
ing statisticians and epidemiologists, language concerning both “confounders” and
“confounding” is common. This raises the question as to whether a formal defini-
tion of a “confounder” can also be given within the counterfactual framework that
coheres with how the word seems to be used in practice.

In this paper we will consider various definitions of a confounder proposed
either formally or informally by a number of prominent statisticians and epidemi-
ologists. For each potential definition we will consider the properties satisfied by
the candidate definition. Specifically, we state and prove a number of propositions
showing whether under each candidate definition (i) control for all “confounders”
suffices to control for “confounding” and (ii) whether each confounder in some
context helps eliminate or reduce confounding bias. As we will see below, only
one candidate definition of those considered satisfies both properties. We consider
also the implications that hold between the various definitions themselves.

2. Notation and framework. We let A denote an exposure, Y the outcome,
and we will use C, S and X to denote particular pre-exposure covariates or sets
of covariates (that may or may not be measured). As noted in the penultimate
section of the paper, the restriction to pre-exposure covariates could, in the context
of causal diagrams [Pearl (1995, 2009)], be replaced to that of nondescendents of
exposure A. Within the counterfactual or potential outcomes framework [Neyman
(1923), Rubin (1978)], we let Ya denote the potential outcome for Y if exposure
A were set, possibly contrary to fact, to the value a. If the exposure is binary, the
average causal effect is given by E(Y1) − E(Y0). Note that the potential outcomes
notation Ya presupposes that an individual’s potential outcome does not depend
on the exposures of other individuals. This assumption is sometimes referred to
as SUTVA, the stable unit treatment value assumption [Rubin (1990)] or as a no-
interference assumption [Cox (1958)].

We use the notation E ⊥⊥ F |G to denote that E is independent of F conditional
on G. For exposure A and outcome Y , we say there is no confounding conditional
on S (or that the effect of A on Y is unconfounded given S) if Ya ⊥⊥ A|S. We will
refer to any such S as a sufficient set or a sufficient adjustment set. If the effect of A

on Y is unconfounded given S, then the causal effect can be consistently estimated
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by E(Y1) − E(Y0) = ∑
s{E(Y |A = 1, s) − E(Y |A = 0, s)}pr(s) [Rosenbaum and

Rubin (1983)]. We will say that S = (S1, . . . , Sn) constitutes a minimally sufficient
adjustment set if Ya ⊥⊥ A|S but there is no proper subset T of S such that Ya ⊥
⊥ A|T , where “proper subset” here is understood as T being a strict subset of the
coordinates of S = (S1, . . . , Sn).

Some of the candidate definitions of a confounder below define “confounder”
in terms of “confounding” via reference to “sufficient adjustment sets” or “mini-
mally sufficient adjustment sets.” Such definitions give conceptual priority to “con-
founding,” as has generally been done in the causal inference literature [Greenland
and Robins (1986), Greenland and Morgenstern (2001), Hernán (2008)]. Often af-
ter formal definitions of “confounding” are given, a “confounder” is defined as
a derivative and sometimes informal concept. For example, in papers by Green-
land, Pearl and Robins (1999) and Greenland and Morgenstern (2001), formal
definitions are given for “confounding” and then a “confounder” is simply de-
scribed as a variable that is in some sense “responsible” [Greenland, Robins
and Pearl (1999), page 33] for confounding. Although priority arguably has and
should be given to the concept of “confounding” over “confounder,” applied re-
searchers will often use the word “confounder” to refer to a single variable that
is perhaps a member of a sufficient adjustment set but does not by itself consti-
tute a sufficient adjustment set and this raises the question of whether this use of
“confounder” can be given a coherent definition within the counterfactual frame-
work.

Most of the definitions and properties we discuss make reference only to coun-
terfactual outcomes. However, one of the definitions and several propositions make
reference to causal diagrams. We will thus restrict attention in this paper to causal
diagrams. We review concepts and definitions for causal diagrams in the Ap-
pendix; the reader can also consult Pearl (1995, 2009). For expository purposes
we follow Pearl (1995), but the results in the paper are equally applicable to all
of the alternative graphical causal models considered, for example, by Robins and
Richardson (2010). In short, following Pearl (1995), a causal diagram is a very
general data generating process corresponding to a set of nonparametric struc-
tural equations where each variable Xi is given by its nonparametric structural
equation Xi = fi(pai, εi), where pai are the parents of Xi on the graph and the
εi are mutually independent such that the structural equations encode one-step
ahead counterfactual relationships among the variables with other counterfactuals
given by recursive substitution [Pearl (1995, 2009)]. The assumption of “faithful-
ness” is said to be satisfied if all of the conditional independence relationships
among the variables are implied by the structure of the graph; see the Appendix
for further details. A backdoor path from A to Y is a path to Y which begins with
an edge into A. Pearl (1995) showed that if a set of pre-exposure covariates S

blocks all backdoor paths from A to Y , then the effect of A on Y is unconfounded
given S.
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The definitions given below will be stated formally in terms of potential out-
comes and causal diagrams. It is assumed that there is an underlying causal dia-
gram which may contain both measured and unmeasured variables; all variables
considered in the definitions are variables on the diagram. Whether a variable sat-
isfies the criteria of a particular definition will be relative to the causal diagram.
In Section 6 we will consider settings with multiple causal diagrams where one
diagram may have variables absent on another.

3. Candidate definitions for a confounder. Here we give a number of candi-
date definitions of a confounder motivated by statements made in the methodologi-
cal literature. We will cite specific statements from the methodologic literature; we
do not necessarily believe these statements were intended as formal definitions of a
“confounder” by the authors cited. We simply use these statements to motivate the
candidate definitions. As noted above, we believe statements about “confounders,”
as opposed to “confounding,” have generally been used only informally and intu-
itively.

As already noted, the traditional conception of a confounder in statistics and epi-
demiology has been a variable associated with both the treatment and the outcome.
Miettinen (1974) notes that whether such associations hold will depend on what
other variables are controlled for in an analysis. This motivates our first candidate
definition for a confounder.

DEFINITION 1. A pre-exposure covariate C is a confounder for the effect of
A on Y if there exists a set of pre-exposure covariates X such that C �⊥⊥ A | X and
C �⊥⊥ Y | (A,X).

Definition 1 is essentially a generalization of the traditional conceptualization
of a confounder.

Pearl (1995) showed that if a set of pre-exposure covariates X blocks all back-
door paths from A to Y , then the effect of A on Y is unconfounded given X.
Hernán (2008) accordingly speaks of a confounder as a variable that “can be used
to block a backdoor path between exposure and outcome” (page 355). A similar
definition of a confounder is given in Greenland and Pearl [(2007), page 152] and
in Glymour and Greenland [(2008), page 193]. This motivates a second candidate
definition.

DEFINITION 2. A pre-exposure covariate C is a confounder for the effect of
A on Y if it blocks a backdoor path from A to Y .

The second definition is perhaps one that would arise most naturally within the
context of causal diagrams; the definition itself of course presupposes a framework
of causal diagrams or variants thereof [Spirtes, Glymour and Scheines (1993),
Dawid (2002)].
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Pearl (2009) speaks of a confounder as “a variable that is a member of every suf-
ficient [adjustment] set” (page 195), that is, control for it must be necessary. Like-
wise, Robins and Greenland (1986) write, “We will call a covariate a confounder
if estimators which are not adjusted for the covariate are biased” (page 393) and
Hernán (2008) speaks of a confounder as “any variable that is necessary to elimi-
nate the bias in the analysis” (page 357). Note that a variable is a member of every
sufficient adjustment set if and only if it is a member of every minimal sufficient
adjustment set. This motivates our third candidate definition.

DEFINITION 3. A pre-exposure covariate C is a confounder for the effect of
A on Y if it is a member of every minimally sufficient adjustment set.

Definition 3 captures the notion that controlling for a confounder might be nec-
essary to eliminate bias. The definition makes reference to “every minimally suf-
ficient adjustment set;” this will be relative to a particular causal diagram, a point
to which we will return below.

Kleinbaum, Kupper and Morgenstern (1982), in a textbook on epidemiologic
research, gave as a definition of a “confounder” a variable that is “a member of
a sufficient confounder group” where a sufficient confounder group is defined as
“a minimal set of one or more risk factors whose simultaneous control in the anal-
ysis will correct for joint confounding in the estimation of the effect of interest”
(page 276). Kleinbaum, Kupper and Morgenstern (1982), however, define “con-
founding” in terms of association rather than counterfactual independence. As a
variant of the Kleinbaum, Kupper and Morgenstern proposal, we could retain the
definition “a member of a minimally sufficient adjustment set” but use the counter-
factual definition of “confounding.” This motivates the fourth candidate definition.

DEFINITION 4. A pre-exposure covariate C is a confounder for the effect of
A on Y if it is a member of some minimally sufficient adjustment set.

Definition 4 can be restated as follows: a pre-exposure covariate C is a con-
founder for the effect of A on Y if there exists a set of pre-exposure covariates
X (possibly empty) such that Ya ⊥⊥ A|(X,C) but there is no proper subset T of
(X,C) such that Ya ⊥⊥ A|T . Robins and Morgenstern (1987) and Dawid (2002)
likewise conceive of a confounder in terms of the presence or absence of con-
founding in such a way that coincides with Definition 4 when there is a single
confounder; when there are multiple sets that are sufficient or sets that are suffi-
cient but not minimally sufficient, it is not clear how the definition of Dawid (2002)
generalizes; the definitions of Robins and Morgenstern (1987) can be adapted to
coincide with Definition 4. Robins and Morgenstern [(1987), Section 2H] say that
C is a confounder conditional on F if causal effects are computable given data on
C and F , but not on F alone. In the framework of Robins and Morgenstern, if one
were to take as the (unconditional) definition of a confounder that “there exists
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some set F such that C is a confounder conditional on F [in the sense of Robins
and Morgenstern (1987), Section 2H],” then this would coincide with Definition 4.

Miettinen and Cook (1981) conceive of a confounder as any variable that is
helpful in reducing bias. Hernán (2008) likewise speaks of a confounder as “any
variable that can be used to reduce [confounding] bias” (page 355). Geng, Guo and
Fung (2002) use a similar definition for confounding. As noted by other authors
[Greenland and Morgenstern (2001), Hernán (2008)], whether a variable is helpful
in reducing bias will depend on what other variables are being conditioned on in
the analysis; a confounder should be helpful for reducing bias in some context.
This motivates our fifth definition.

DEFINITION 5. A pre-exposure covariate C is a confounder for the effect of
A on Y if there exists a set of pre-exposure covariates X such that |∑x,c{E(Y |A =
1, x, c)−E(Y |A = 0, x, c)}pr(x, c)−{E(Y1)−E(Y0)}| < |∑x{E(Y |A = 1, x)−
E(Y |A = 0, x)}pr(x) − {E(Y1) − E(Y0)}|.

Definition 5 captures the notion that controlling for C along with X results
in lower bias in the estimate of the causal effect than controlling for X alone.
A number of variants of Definition 5 could also be considered. Geng, Guo and
Fung (2002), for example, considered the analogous definition for the effect of
the exposure on the exposed rather than the overall effect of the exposure on the
population; one could likewise consider the analogue of Definition 5 for effects
conditional on X rather than standardized over X or, alternatively, for different
measures of effect, for example, risk ratios or odds ratios rather than causal effects
on the difference scale. Definition 5, unlike other definitions, is inherently scale-
dependent. Thus, under Definition 5, a variable C might be a confounder for Y but
not for log(Y ) or vice versa. This is an important limitation of Definition 5. Note,
however, that some authors also consider “confounding” to be scale-dependent
[Greenland and Robins (1986, 2009), Greenland and Morgenstern (2001)] and use
“ignorability” to refer to the notion of unconfoundedness in the distribution of
counterfactuals as given above.

Confounders have also sometimes been defined in terms of empirical collapsi-
bility [Miettinen (1976), Breslow and Day (1980)], that is, if one obtains the same
estimate with or without adjustment for a variable, then it is not a confounder. In
the applied literature the approach is sometimes encapsulated in the “10 percent
rule,” that is, discard a covariate if adjustment for it does not change an estimate
by more than 10 percent. It is well documented in the literature that collapsibility-
based definitions do not work for all effect measures, such as the odds ratio or
hazard ratios, for which marginal and conditional may differ even in the absence
of confounding [Greenland, Robins and Pearl (1999)]. Such effect measures are
sometimes referred to as noncollapsible. However, for at least the risk difference
scale (or the risk ratio scale) a collapsibility-based definition of a confounder could
be entertained and for completeness we consider it also here. Such a collapsibility-
based definition could be formalized as follows.
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DEFINITION 6. A pre-exposure covariate C is a confounder for the ef-
fect of A on Y if there exists a set of pre-exposure covariates X such that
∑

x,c{E(Y |A = 1, x, c) − E(Y |A = 0, x, c)}pr(x, c) �= ∑
x{E(Y |A = 1, x) −

E(Y |A = 0, x)}pr(x).

Definition 6, like Definition 5, is scale-dependent.
Although not the focus of the present paper, in the Appendix we give some

further remarks on the possibility of empirical testing for each of Definitions 1–6
and for confounding and nonconfounding more generally. However, for the most
part, notions of confounding and confounders, under these six definitions, are not
empirically testable without further experimental data or strong assumptions.

4. Properties of a confounder. Language about “confounders” occurs of
course not simply in methodologic work but in substantive statistical and epidemi-
ologic research. In the design and analysis of observational studies in the applied
literature the task of controlling for “confounding” is often construed as that of
collecting data on and controlling for all “confounders.” In this section we pro-
pose that when language about “confounders” is generally used in statistics and
epidemiology, two things are implicitly presupposed: first, that if one were to con-
trol for all “confounders,” then this would suffice to control for “confounding”
and, second, that control for a “confounder” will in some sense help to reduce or
eliminate confounding bias. We would propose that if a formal definition is to be
given for a “confounder,” it should in some sense satisfy these two properties. If
it does not, it arguably does not cohere with what is typically presupposed when
language about “confounders” is used in practice. We give a formalization of these
two properties and in the following section we will discuss which of these two
properties are satisfied by each of the candidate definitions of the previous section.

We could formalize the first property as follows.

PROPERTY 1. If S consists of the set of all confounders for the effect of A

on Y , then there is no confounding of the effect of A on Y conditional on S, that
is, Ya ⊥⊥ A|S.

The definition makes reference to “all confounders;” to make reference to all
such variables, the domain of the variables considered needs to be specified. The
domain here will be all pre-exposure variables on a particular causal diagram that
qualify as confounders according to whatever definition is in view. See Section 6
for some extensions.

The second property is that control for a confounder should help either reduce
or eliminate bias. The reduction and the elimination of bias are not equivalent and,
thus, we will formally give two alternative properties, 2A and 2B.
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PROPERTY 2A. If C is a confounder for the effect of A on Y , then there exists
a set of pre-exposure covariates X (possibly empty) such that Ya ⊥⊥ A|(X,C) but
Ya �⊥⊥ A | X.

PROPERTY 2B. If C is a confounder for the effect of A on Y , then there exists
a set of pre-exposure covariates X (possibly empty) such that |∑x,c{E(Y |A =
1, x, c)−E(Y |A = 0, x, c)}pr(x, c)−{E(Y1)−E(Y0)}| < |∑x{E(Y |A = 1, x)−
E(Y |A = 0, x)}pr(x) − {E(Y1) − E(Y0)}|.

Property 2A captures that notion that in some context, that is, conditional on X,
the covariate C helps eliminate bias. Property 2B captures the notion that in some
context, that is, conditional on X, the covariate C helps reduce bias. Note that
Property 2B, like Definition 5, is inherently scale-dependent and in this sense per-
haps less fundamental than Property 2A. For now we simply propose that for a
candidate definition of a confounder to adequately capture the intuitive sense in
which the word is used, it should satisfy Property 1 and should also satisfy either
Property 2A or 2B. It would be peculiar if a confounder were defined in a way that
it did not satisfy these two properties. In the next section we consider whether each
of the candidate definitions, Definitions 1–6, satisfy Properties 1, 2A and 2B. Of
course, one possible outcome of this exercise is that none of the candidate defini-
tions satisfy Property 1 and either Properties 2A or 2B (or even that no candidate
definition could). However, as we will see in the next section, this turns out not to
be the case.

5. Properties of the candidate definitions. Definition 1 was a generalization
of the traditional epidemiologic conception of a confounder as a variable associ-
ated with exposure and outcome. For this definition we have the following result.

PROPOSITION 1. Under faithfulness, for every causal diagram, Definition 1
satisfies Property 1. Definition 1 does not satisfy Properties 2A or 2B.

PROOF. We first show that Definition 1 satisfies Property 1 in faithful models.
Let G∗ = GNd(A)∪An(Y ) be the subgraph of G that has only the nodes in Nd(A)

or An(Y ); see the Appendix. Let Pa∗ be the subset of Pa(A) in G∗ such that every
element P ∈ Pa∗ contains some path in G∗ to Y not through A. Since we consider
faithful models, we can use d-connectedness to represent dependence. First we
note that every element in Pa∗ satisfies Definition 1. Indeed, any element of Pa(A)

is dependent on A conditioned on any set. For any member of Pa∗, we fix some
path π to Y (not through A). We are now free to pick any set X to make this path
d-connected (e.g., we can pick the smallest X that opens all colliders in π ). This
set X satisfies Definition 1 for Pa∗ with respect to A and Y . Thus, the set of all
nodes in Nd(A) satisfying Definition 1 will include Pa∗. Next, we show that any
superset of Pa∗ in Nd(A) will be a valid adjustment set for (A,Y ). Assume this is
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FIG. 1. Definition 1 does not satisfy Property 2A or 2B.

not the case for a particular S, and fix a backdoor path from A to Y which is open
given S. Then the first node on this path after A must be in Pa∗. But this means the
path is blocked by S. Our conclusion follows.

We now show Definition 1 does not satisfy Properties 2A or 2B. Consider the
causal diagram in Figure 1. The variable C3 is unconditionally associated with A

and Y ; the variables C1 and C2 are each associated with A and Y conditional on
C3. Thus, under Definition 1, all three would qualify as “confounders.” However,
there is no set of pre-exposure covariates X on the graph such that control for C3
helps eliminate or reduce bias. To see this, note that if X includes C1 or C2, then
the effect estimate is unbiased irrespective of whether adjustment is made for C3.
If X includes neither C1 nor C2, then the estimand without adjustment for C3 is
unbiased whereas the estimand adjusted for C3 is not. Therefore, Definition 1 does
not satisfy Properties 2A or 2B. This completes the proof. �

Intuitively, Definition 1 does not satisfy Properties 2A or 2B because in the
causal diagram in Figure 1, the variable C3 is unconditionally associated with A

and Y and thus would be a confounder under Definition 1, but control for it will
only either not affect bias (if control is not made for C1 and C2) or increase bias (if
control is not made for C1 and C2). The causal structure in Figure 1 and the bias
resulting from controlling for C3 is sometimes referred to in the literature as “M-
bias” or “collider-stratification” [Greenland (2003), Hernán et al. (2002), Hernán
(2008)]. We note that if faithfulness is violated, Definition 1 does not satisfy Prop-
erty 1 either [Pearl (2009)].

Under Definition 2, a confounder was defined as a pre-exposure covariate that
blocks a backdoor path from A to Y .

PROPOSITION 2. For every causal diagram, Definition 2 satisfies Property 1.
Definition 2 does not satisfy Properties 2A or 2B.

PROOF. If S consists of the set of all confounders under Definition 2, then
this set S will include all pre-exposure covariates that block a backdoor path from
A to Y . From this it follows that S blocks all backdoor paths from A to Y and
by Pearl’s backdoor path theorem, the effect of A on Y is unconfounded given S.
Thus, Definition 2 satisfies Property 1.

We now show that it does not satisfy Properties 2A and 2B. Consider the causal
diagram in Figure 2. Under Definition 2 both C1 and C2 block a backdoor path
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FIG. 2. Definition 2 does not satisfy Property 2A or 2B.

from A to Y and thus would qualify as confounders. However, for C2 there is no
set of pre-exposure covariates X on the graph such that control for C2 helps elimi-
nate since if X = C1, there is no bias without controlling for C2; if X = ∅, there is
bias even with controlling for C2. Thus, Definition 2 does not satisfy Property 2A.
We now show that it does not satisfy Property 2B. Suppose Figure 2 is a causal di-
agram for (C1,C2,A,Y ) where all variables are binary and suppose that P(C1 =
1) = 1/2, P(C2 = 1|c1) = 1/5+3c1/5, P(A = 1|c1, c2) = 1/10+3c1/5+ c2/10,
P(Y = 1|a, c1, c2) = 1/2 + (1/2)(a − 1/2)c1. One can then verify that E(Y1) −
E(Y0) = ∑

c1,c2
{E(Y |A = 1, c1, c2) − E(Y |A = 0, c1, c2)}pr(c1, c2) = 0.25 =

∑
c1

{E(Y |A = 1, c1)−E(Y |A = 0, c1)}pr(c1), that E(Y |A = 1)−E(Y |A = 0) =
0.266 and that

∑
c2

{E(Y |A = 1, c2)−E(Y |A = 0, c2)}pr(c2) = 0.269. Under Def-
inition 2, C2 would be considered a confounder since C2 blocks the backdoor
path A ← C2 ← C1 → Y . However, there is no set X of pre-exposure covariates
such that |∑x,c2

{E(Y |A = 1, x, c2) − E(Y |A = 0, x, c2)}pr(x, c2) − {E(Y1) −
E(Y0)}| < |∑x{E(Y |A = 1, x)−E(Y |A = 0, x)}pr(x)−{E(Y1)−E(Y0)}|. This
is because if X is taken as C1, then the expressions on both sides of the in-
equality are equal to 0 (controlling for C2 in addition to C1 does not reduce
bias); if X is taken as the empty set, we have |∑c2

{E(Y |A = 1, c2) − E(Y |A =
0, c2)}pr(c2) − {E(Y1) − E(Y0)}| = |0.269 − 0.250| = 0.019 > 0.016 = |0.266 −
0.250| = |{E(Y |A = 1) − E(Y |A = 0)} − {E(Y1) − E(Y0)}| and again controlling
for C2 does not reduce (but rather increases) bias. Definition 2 thus does not satisfy
Property 2B. This completes the proof. �

If we consider the causal diagram in Figure 2, then under Definition 2 both C1
and C2 block a backdoor path from A to Y and thus would qualify as confounders.
However, for C2 there is no set of pre-exposure covariates X on the graph such
that control for C2 helps eliminate bias (Property 2A) since if X = C1, there is no
bias without controlling for C2; if X = ∅, there is bias even with controlling for
C2. Likewise, examples can be constructed as in the proof above in which control
for C2 will only increase bias, that is, control for C2 does not help reduce bias
(Property 2B).

Under Definition 3, a confounder was defined as a member of every minimally
sufficient adjustment set.

PROPOSITION 3. Definition 3 does not satisfy Property 1. Definition 3 satis-
fies Property 2A.
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FIG. 3. Definition 3 does not satisfy Property 1.

PROOF. Consider the causal diagram in Figure 3. Here, either C1 or C2 would
constitute minimally sufficient adjustment sets and thus neither are a member of
every minimally sufficient adjustment set and under Definition 3, neither would be
confounders. If we control for nothing, there is still confounding for the effect of
A on Y and, thus, for Figure 3, controlling for all confounders under Definition 3
would not suffice to control for confounding. Thus, Definition 3 does not satisfy
Property 1. If C is a member of every minimally sufficient adjustment set, then it is
a member of a minimally sufficient adjustment set and from this it trivially follows
that it satisfies the requirements in Property 2A. This completes the proof. �

A variable C that is a confounder under Definition 3 will in general satisfy
Property 2B as well but may not always because there are cases in which there is
confounding in the distribution of counterfactual outcomes conditional on C and so
that C is a confounder under Definition 3 but with the average causal effect on the
additive scale not confounded [Greenland, Robins and Pearl (1999)]. Intuitively,
to see that Definition 3 does not satisfy Property 1, consider the causal diagram in
Figure 3. Here, either C1 or C2 would constitute minimally sufficient adjustment
sets and thus neither are a member of every minimally sufficient adjustment set.
Under Definition 3, there would thus be no confounders for the effect of A on Y ;
clearly, however, if we control for nothing, there is still confounding for the effect
of A on Y .

Under Definition 4, a confounder was defined as a member of some minimally
sufficient adjustment set.

PROPOSITION 4. For every causal diagram, Definition 4 satisfies Property 1.
Definition 4 satisfies Property 2A.

PROOF. We will show that Definition 4 satisfies Property 1. We first claim
that any minimally sufficient adjustment set for (A,Y ) must lie in GAn(A)∪An(Y ),
the subgraph of G that has only the nodes in Nd(A) or An(Y ); see the Appendix.
Assume this is not true, and pick some minimally sufficient set S with elements
outside An(A) ∪ An(Y ). This means S ∩ (An(A) ∪ An(Y )) is not sufficient. Note
that any ancestor of a node in the set An(A) ∪ An(Y ) will also be in An(A) ∪
An(Y ). From this it follows that any backdoor path from A to Y which has a node
outside An(A) ∪ An(Y ) will require a collider to get back into An(A) ∪ An(Y ).
However, those colliders must be open by elements in S. We have a contradiction.
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We have shown that any minimally sufficient adjustment set must be a subset of
An(A) ∪ An(Y ) and, thus, any variable that is a confounder under Definition 4
must be in An(A) ∪ An(Y ).

Next we note that Pa(A) is a sufficient adjustment set for (A,Y ). Pick a minimal
subset Pa+ of Pa(A) that is sufficient. Our claim is that every element P in Pa(A)\
Pa+ is such that P is not connected to Y in the graph (GAn(A)∪An(Y ))a except by
paths that are blocked conditional on Pa+. Assume this is not true, and fix a path
ω from P to Y that is not blocked by Pa+ in (GAn(A)∪An(Y ))a . If this path has
no colliders, then appending ω with the edge P → A produces a backdoor path
from A to Y not blocked by Pa+, contradicting the earlier claim that Pa+ is a valid
adjustment set.

If ω only contains colliders ancestral of Pa+, then either ω has a noncollider
triple blocked by Pa+ (in which case we are done with that path) or ω appended
with P → A produces a backdoor path open conditional on Pa+, which is a con-
tradiction. If ω contains collider triples ancestral of Pa(A) \ Pa+ (but not ancestral
of Pa+), let W be the central node of the last such collider triple on the path from
P to Y . Let P ′ be a member of Pa(A) \ Pa+ of which W is an ancestor. Consider
instead of ω a new path: A ← P ′ ← · · · ← W appended with the subpath of ω

that begins with the node on ω after W and ends with Y . This path either has a
noncollider triple blocked by Pa+ (in which case so does ω and we are done with
ω) or it is open conditional on Pa+, in which case we have a contradiction, or it
contains collider triples ancestral of Y not through Pa(A). In the last case, let Z

be the central node of the first such collider triple on the currently considered path
from A to Y . Consider instead a new path which appends a subpath of the currently
considered path extending from A to Z, and the segment Z → ·· · → Y . This path
has no blocked colliders by construction, and thus must either have a noncollider
triple blocked by Pa+ (in which case so does ω and we are done with ω) or it is
open conditional on Pa+, in which case we have a contradiction.

Our final claim is that any superset S of Pa+ in Nd(A) ∩ (An(A) ∪ An(Y )) is a
valid adjustment set for (A,Y ). Assume this were not so and fix an open backdoor
path ρ from A to Y given S. The first node on ρ after A must lie either in Pa+
or in Pa(A) \ Pa+. In the first case, the path is blocked. In the second case, we
have shown above that every path from Pa(A) \ Pa+ to Y in (GAn(A)∪An(Y ))a is
blocked by Pa+ and, thus, the path must be blocked in the second case as well.
There thus cannot be an open backdoor path from A to Y given S and we have a
contradiction. We have that Pa+ is a sufficient adjustment set; any variable that is a
confounder under Definition 4 will be a member of Nd(A)∩(An(A)∪An(Y )) and,
thus, we have that the set of variables that are confounders under Definition 4 will
be a sufficient adjustment set. Definition 4 thus satisfies Property 1. Definition 4
satisfies Property 2A trivially. This completes the proof. �

A variable that is a confounder under Definition 4 will in general satisfy Prop-
erty 2B as well but may not always because, as before, there may be confounding
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in distribution without the average causal effect on the additive scale being con-
founded. Definition 4 thus satisfies Property 2A, generally Property 2B, and, as
shown in the proof above, also satisfies Property 1 for all causal diagrams. That
Definition 4 satisfies Property 1 can be restated as the proposition that the union
of all minimally sufficient adjustment sets is itself a sufficient adjustment set. Def-
inition 4 thus satisfies the properties which arguably ought to be required for a
reasonable definition of a “confounder.”

Under Definition 5, a confounder was essentially defined as a pre-exposure co-
variate, the control for which helped reduce bias.

PROPOSITION 5. Definition 5 does not satisfy Property 1. Definition 5 satis-
fies Property 2B but not 2A.

PROOF. Suppose that Ya ⊥⊥ A|C, that (C,A,Y ) are all binary and that P(C =
1) = 1/2, P(A = 1|c) = 1/4 + c/2, P(Y = 1|a, c) = 4/10 − 4c/10 − 3a/10 +
8ac/10. One can then verify that E(Y1) = ∑

c E(Y |A = 1, c)pr(c) = 3/10,
E(Y |A = 1) = 4/10, E(Y0) = ∑

c E(Y |A = 0, c)pr(c) = 2/10, E(Y |A = 0) =
3/10. Thus, |∑c{E(Y |A = 1, c) − E(Y |A = 0, c)}pr(c) − {E(Y1) − E(Y0)}| =
0 = |{E(Y |A = 1) − E(Y |A = 0) − {E(Y1) − E(Y0)}| and so under Definition 5,
C would not be a confounder. The set of variables defined as confounders un-
der Definition 5 would thus be empty. However, it is not the case that adjust-
ment for the empty set suffices to control for confounding since, for example,
E(Y1) = 3/10 �= 4/10 = E(Y |A = 1). Thus, Definition 5 does not satisfy Prop-
erty 1. We now show that Definition 5 does not satisfy Property 2A. Consider the
causal diagram in Figure 4. Although control for C2 might reduce bias compared
to an unadjusted estimate and thus satisfy Definition 5 with X = ∅, there is no
X such that the effect of A on Y is unconfounded conditional on (X,C2) but not
on X alone. Thus, Definition 5 does not satisfy Property 2A. Definition 5 satisfies
Property 2B trivially. This completes the proof. �

Definition 5 does not satisfy Property 1 because an unadjusted estimate of the
causal risk difference may be correct, even in the presence of confounding, be-
cause the bias due to confounding for E(Y1) may cancel that for E(Y0); said an-
other way, there may be confounding in the distribution of counterfactual outcomes
without their being confounding in a particular measure. That Definition 5 satisfies
Property 2B is essentially embedded in Definition 5 itself. Intuitively, to see that

FIG. 4. Definition 5 does not satisfy Property 2A.
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Definition 5 does not satisfy Property 2A, consider the causal diagram in Figure 4.
Although control for C2 might reduce bias compared to an unadjusted estimate
and thus satisfy Definition 5 with X = ∅, there would be no X such that the effect
of A on Y is unconfounded conditional on (X,C2) but not on X alone.

Under Definition 6, a confounder was defined as a pre-exposure covariate, the
control for which in some context changed the effect estimate.

PROPOSITION 6. Definition 6 does not satisfy Property 1. Definition 6 does
not satisfy Properties 2A or 2B.

PROOF. In the first example in the proof of Proposition 5, the set of con-
founders under Definition 6 would be empty because with X empty we have
∑

x,c{E(Y |A = 1, x, c) − E(Y |A = 0, x, c)}pr(x, c) = 0 = ∑
x{E(Y |A = 1, x) −

E(Y |A = 0, x)}pr(x). However, the effect of A on Y is not unconfounded condi-
tional on the empty set. Thus, Definition 6 does not satisfy Property 1.

We now show Definition 6 does not satisfy Properties 2A or 2B. Consider the
causal diagram in Figure 1. If we let X denote the empty set, then C3 will satisfy
Definition 6 and so would be a confounder under Definition 6. However, if we
consider Properties 2A and 2B, there is no set of pre-exposure covariates X on the
graph such that control for C3 helps eliminate or reduce bias. To see this, note that
if X includes C1 or C2, then the effect estimate is unbiased irrespective of whether
adjustment is made for C3. If X includes neither C1 nor C2, then the estimand
without adjustment for C3 is unbiased whereas the estimand adjusted for C3 is
not. Therefore, Definition 1 does not satisfy Properties 2A and 2B. This completes
the proof. �

As with Definition 5, Definition 6 does not satisfy Property 1 because of the
possibility of cancellations: there may be confounding in the distribution of coun-
terfactual outcomes without their being confounding in a particular measure. Def-
inition 6 also fails to satisfy Properties 2A or 2B. It fails because of the possibility
of “M-bias” or “collider-stratification” structures as in Figure 1 [Greenland (2003),
Hernán et al. (2002)]. Controlling for a variable such as C3 may change the esti-
mate, but it may be that it is the estimate without control for that variable (e.g.,
C3 in Figure 1) that is unbiased. Also, as noted above, the collapsibility-based def-
initions fail for odds ratio and hazard ratio measures for others reasons, namely,
because marginal and conditional measures are not comparable even in the absence
of confounding. See Greenland, Robins and Pearl (1999), Geng et al. (2001) and
Geng and Li (2002) for further discussion of the relationship between, and general
nonequivalence of, confounding and collapsibility.

Candidate definitions for a confounder might thus include Definition 4 and, if
the issue of scale dependence is set aside, Definition 5. Note, however, that a vari-
able that satisfies Definition 5 but not Definition 4 will never help to eliminate con-
founding bias, only to reduce such bias. Such a variable reduces bias essentially
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by serving as a proxy for a variable that does satisfy Definition 4. We therefore
propose that a confounder be defined as in Definition 4, “a pre-exposure covariate
that is a member of some minimally sufficient adjustment set” and that any vari-
able that satisfies Definition 5 but not Definition 4 be referred to as a “surrogate
confounder.” The terminology of a “surrogate confounder” or “proxy confounder”
appears elsewhere [Greenland and Morgenstern (2001), Hernán (2008)]; here we
have provided a formal criterion for such a “surrogate confounder.” See Greenland
and Pearl (2011) and Ogburn and VanderWeele (2012) for properties of such sur-
rogate confounders.

Interestingly, Definition 4 is closely related to definitions concerning con-
founders proposed by Robins and Morgernstern (1987), though their definitions
were not universally adopted by the epidemiologic community over the ensuing
25 years. Robins and Morgenstern (1987) were not principally concerned with
how the word “confounder” is employed in practice when used in an unqualified
sense, but rather with whether a particular variable would still, in some sense, be a
confounder if data were also available on other variables. As noted above, Robins
and Morgenstern [(1987), Section 2H] say that C is a confounder conditional on F

if causal effects are computable given data on C and F , but not on F alone. In the
framework of Robins and Morgenstern, if one were to take as the (unconditional)
definition of a confounder that “there exists some set F such that C is a confounder
conditional on F [in the sense of Robins and Morgenstern (1987), Section 2H],”
then this would coincide with Definition 4. Note that Robins and Morgenstern, in
their definitions, in some sense go further than Definition 4 in having the inves-
tigator explicitly specify the other variables F for which control might be made.
This would indeed be useful in practice, though current use of language has not
generally adopted this convention. It might in the future be helpful to distinguish
between the unqualified use of the word “confounder” as defined in Definition 4,
and “confounder in the context of having data also on F ” as in Robins and Mor-
genstern (1987). The former is arguably how the word “confounder” is often used
in practice; the latter would be useful in making decisions about data collection
and confounder control.

6. Some extensions, implications and further results. In the discussion
above we have considered whether a covariate is a “confounder” in an uncon-
ditional sense. However, we might also speak about whether a variable C is a
confounder for the effect of A on Y conditional on some set of covariates L which
an investigator is going to condition on irrespective of whether control is made
for C. Definition 4 above, the definition for an “unconditional confounder” could
be restated as follows: a pre-exposure covariate C is a confounder for the effect of
A on Y if there exists a set of pre-exposure covariates X such that Ya ⊥⊥ A|(X,C)

but there is no proper subset T of (X,C) such that Ya ⊥⊥ A|T . The conditional
analogue would then be as follows: we say that a pre-exposure covariate C is a
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confounder for the effect of A on Y conditional on L if there exists a set of pre-
exposure covariates X such that Ya ⊥⊥ A|(X,L,C) but there is no proper subset
T of (X,C) such that Ya ⊥⊥ A|(T ,L). Consider again the causal diagram in Fig-
ure 3. Here, C2 would be a confounder under Definition 4. However, C2 is not a
confounder for the effect of A on Y conditional on L = C1. Consider once more
the causal diagram in Figure 1. Here, neither C1 nor C2 would be a confounder
under Definition 4. However, conditional on L = C3, both C1 and C2 would be
confounders.

An analogue of Definition 4 could also be given for a particular causal parameter
of interest rather than for the condition of nonconfounding in distribution Ya ⊥⊥
A|S. For example, C could be defined to be a confounder for a particular causal
parameter (e.g., the causal risk difference or causal risk ratio) if there exists a set of
pre-exposure covariates X such the parameter is identified by adjusting for (X,C)

and if for no proper subset, T of (X,C) is the parameter identified by adjusting
for T [cf. Robins and Morgenstern (1987)]. However, when we restrict attention to
particular parameters we reintroduce some of the complications with cancellations
that were noted above. For example, due to cancellations, a variable C may be
a confounder for the causal risk difference but not for the causal risk ratio [cf.
VanderWeele (2012)].

We have restricted our attention in this paper thus far to pre-exposure covariates
as potential confounders. We have done so in order to correspond as closely as
possible to the discussion in the epidemiologic and potential outcomes literatures.
However, within the context of causal diagrams, a somewhat broader range of vari-
ables could be considered as “confounders” in that all of the discussion above is
applicable if we consider all nondescendents of A as potential confounders rather
than simply considering pre-exposure covariates.

Throughout the paper we have given all definitions with respect to a particular
underlying causal diagram. However, for a given exposure A and a given out-
come Y , there will be multiple causal diagrams that correctly represent the causal
structure relating these variables to one another and to covariates. One diagram
may be an elaboration of another and contain variables that the other does not. It
is straightforward to verify that if a variable C is classified as a confounder under
Definitions 1, 2, 4, 5 or 6, then C will also be a confounder under each of those
definitions respectively on any expanded causal diagram with additional variables.
In the case of Definition 1, this is because associations that hold conditional on
covariates X for one diagram will clearly also hold for the other. In the case of
Definition 2, if C blocks a backdoor path on one causal diagram, it will block a
backdoor path on any larger diagram that also correctly describes the causal struc-
ture. In the case of Definition 4, if there is some minimally sufficient adjustment
set S of which C is a member, then that set will also be minimally sufficient on
any larger diagram that also correctly describes the causal structure. In the case of
Definitions 5 and 6, if the inequalities in these definitions hold for some covariate
set X for one diagram, they will clearly also hold for the other. Only Definition 3
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does not share this property. To see this, consider Figure 3; if in Figure 3, we col-
lapsed over C2 so that the causal diagram involved only C1, A and Y , then C1
would be a member of every minimally sufficient adjustment set for this diagram
and thus a confounder under Definition 3. However, as we saw above, C1 is not a
confounder under Definition 3 for Figure 3 itself which includes the extra variable
C2. This failure is a serious problem with Definition 3, but, as we also saw above,
Definition 3 suffers from other limitations as well.

Several fairly trivial implications follow from Definition 4 and may be worth
noting for the sake of completeness. First, if a causal diagram had a variable C

with an arrow to log(C) (or vice versa) and if C were a member of a minimally
sufficient adjustment set, then, under Definition 4, both C and log(C) would be
considered “confounders,” though log(C) would not be a confounder conditional
on C, and likewise C would not be a confounder conditional on log(C). We believe
that this is in accord with epidemiologic usage, though it would be peculiar to
consider both C and log(C) simultaneously, just as it would be peculiar to include
both C and log(C) on a causal diagram. Second, if a variable C is measured with
error, taking value C∗, and if the measurement error term ε = C∗ − C were also
represented on the causal diagram, then, if C were a confounder under Definition 4,
C∗ and ε would also both be confounders under Definition 4. We believe this
is also in accord with standard epidemiologic usage of “confounder,” though we
would in practice rarely refer to ε as a “confounder” since we rarely have access
to ε. Once again, however, neither C∗ nor ε would be confounders conditional
on C. Finally, suppose C1 were height in meters and C2 were weight in kilograms
and that C1 and C2 together sufficed to control for confounding but neither alone
did; let C3 = C1/C2

1 be body mass index (BMI) and suppose that controlling for
C3 alone sufficed to control for confounding. Then under Definition 4, C1, C2 and
C3 would each be confounders, though C3 would not be a confounder conditional
on (C1,C2) and likewise neither C1 nor C2 would be a confounder conditional on
C3. Once again, we believe this is in accord with traditional epidemiologic usage
of “confounder.”

Several implications hold between the different definitions of a confounder as
stated in the following result.

PROPOSITION 7. On a causal diagram, if a variable is a confounder under
Definition 3, then it is a confounder under Definitions 4, 2 and 1; if under Defi-
nition 4, then under Definitions 2 and 1; if under Definition 5, then under Defini-
tions 6 and 1; if under Definition 6, then under Definition 1. No other implications
hold without further assumptions.

PROOF. On a causal diagram, if a variable is a member of every minimally
sufficient adjustment set, it must be a member of a minimally sufficient adjust-
ment set (the existence of a minimally sufficient adjustment set is guaranteed by
the variables lying on a causal diagram). Thus, if a variable is a confounder under
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Definition 3, then it is a confounder under Definition 4. Suppose a variable C sat-
isfies Definition 4, that is, is a member of some minimally sufficient adjustment set
(X,C), but that it does not satisfy Definition 2, that is, it is not on a backdoor path
from A to Y . By Theorem 5 of Shpitser, VanderWeele and Robins (2010), (X,C)

blocks all backdoor paths from A to Y . If C does not lie on a backdoor path from
A to Y , then X alone would block all backdoor paths from A to Y , which would
contradict that (X,C) is a minimally sufficient adjustment set. Thus, if C is a
confounder under Definition 4, it is a confounder under Definition 2. That C be-
ing a confounder under Definition 4 implies C is a confounder under Definition 1
follows from the contrapositive of Corollary 4.1 of Robins (1997). If C is a con-
founder under Definition 5, it must be a confounder under Definition 6 because the
only way C can be a confounder under Definition 5 is if

∑
x,c{E(Y |A = 1, x, c) −

E(Y |A = 0, x, c)}pr(x, c) and
∑

x{E(Y |A = 1, x)−E(Y |A = 0, x)}pr(x) are not
equal. If C is not a confounder under Definition 1, then for every X, C is indepen-
dent of Y conditional on (A,X) or of A conditional on X and from this it easily
follows that

∑
x,c{E(Y |A = 1, x, c) − E(Y |A = 0, x, c)}pr(x, c) = ∑

x{E(Y |A =
1, x) − E(Y |A = 0, x)}pr(x) and thus that C is not a confounder under Defini-
tion 6. Thus, if C is a confounder under Definition 6, it must be a confounder
under Definition 1.

We now argue that without further assumptions no other implications between
the definitions hold. The variable C2 in Figure 4 could satisfy Definition 1 but does
not satisfy Definition 2, so Definition 1 does not imply Definition 2. The variable
C3 in Figure 1 could satisfy Definition 1, but does not satisfy Definitions 3, 4 or 5;
thus, Definition 1 does not imply Definitions 3, 4 or 5. If C is a confounder under
Definition 1, in general it will be under Definition 6 as well, but it may not because
of cancellations due to scale-dependence.

If C satisfies the conditions for Definition 2 (i.e., lies on a backdoor path from A

to Y ), it will generally do so for Definitions 1 and 6 but may fail to do so because
of failure or faithfulness or cancellations due to scale-dependence. In the example
given concerning Property 2B in Proposition 2, the variable C2 in Figure 2 satisfied
Definition 2 but does not satisfy Definitions 3, 4 or 5; thus, Definition 2 does not
imply Definitions 3, 4 or 5.

It was shown above that if C satisfies the conditions for Definition 3, it will
satisfy the conditions for Definitions 4, 2 and 1. If C satisfies the conditions for
Definition 3, it will generally satisfy the conditions for Definitions 5 and 6, but it
may not do so due to scale-dependence.

It was shown above that if C satisfies the conditions for Definition 4, it will sat-
isfy the conditions for Definitions 2 and 1. In Figure 3, C2 satisfies the conditions
for Definition 4 but not Definition 3, therefore, Definition 4 does not imply Defi-
nition 3. If C satisfies the conditions for Definition 4, it will generally satisfy the
conditions for Definitions 5 and 6, but it may not do so due to scale-dependence.

It was shown above that if C satisfies the conditions for Definition 5, it will
satisfy the conditions for Definitions 6 and 1. In the example given concerning
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FIG. 5. Logical relationships that hold among definitions. Dashed arrows indicate implications
that will generally hold but may fail due to scale dependence of definitions.

Property 2B in Proposition 5, the variable C2 in Figure 4 satisfied Definition 5 but
does not satisfy Definitions 2, 3 or 4; thus, Definition 5 does not imply Defini-
tions 2, 3 or 4.

It was shown above that if C satisfies the conditions for Definition 6, it will
satisfy the conditions for Definition 1. The variable C2 in Figure 4 could satisfy
Definition 6 but does not satisfy Definition 2, so Definition 6 does not imply Defi-
nition 2. The variable C3 in Figure 1 could satisfy Definition 6, but does not satisfy
Definitions 3, 4 or 5; thus, Definition 6 does not imply Definitions 3, 4 or 5. �

The implications between the definitions are plotted in Figure 5. Those impli-
cations that will generally hold but may not hold because of cancellations due to
scale-dependence are indicated with dashed arrows.

The properties themselves that we have been considering also bear certain rela-
tions to one another insofar as it is not difficult to show that if Property 2A is itself
taken as the definition of a confounder, then, on causal diagrams, this definition
of a confounder also satisfies Property 1. This is because if S denotes the set of
all nodes C which obey Property 2A and if S is not a sufficient adjustment set (so
there is open backdoor path π from A to Y ), then if we let W be all nondescendants
of A other than A and noncolliders nodes on π , if we choose a node K on π that
does not contain descendants of A, then it is the case that K satisfies Property 2A,
and is not a part of S, which would be a contradiction.

Although it is the case that if Property 2A is itself taken as the definition of a
confounder then this definition also satisfies Property 1 on causal diagrams, this
does not hold generally within a counterfactual framework. Note also that, even
on causal diagrams, it is not the case that Property 2A implies Property 1; a coun-
terexample to this was given in Proposition 3 for Definition 3 which satisfies Prop-
erty 2A but not Property 1. Rather, if Property 2A is itself taken as the definition
of a confounder, then, on causal diagrams, this definition would satisfy Property 1
as well. This raises the question as to whether Property 2A itself could be taken as
the definition of a confounder, as such a definition would satisfy Property 2A (by
definition) and Property 1 on causal diagrams. Although such a definition would
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satisfy Properties 1 and 2A on causal diagrams, it would also follow from this def-
inition that C1 is a confounder for the effect of A on Y in Figure 1, even though
the effect A on Y is unconfounded without controlling for any covariates. This is
because if Property 2A is taken as the definition of a confounder, then C1 satisfies
Property 2A with X taken as C3. In general, however, if the effect A on Y is un-
confounded without controlling for any covariates, we would probably simply say
that there are no confounders for the unconditional effect of A on Y .

7. Concluding remarks. The causal inference literature has provided a for-
mal definition of confounding with reference to distributions of counterfactual out-
comes. The literature now rightly emphasizes the concept of confounding control
over that of a “confounder.” Nonetheless, the word “confounder” is often still used
among applied researchers and in this paper we have shown that at least one formal
counterfactual-based definition coheres with the way in which the word is gener-
ally used. We have considered a number of candidate proposals often arising from
more informal statements made in the literature. We have considered whether each
of these definitions satisfies two properties, namely, (i) that on any causal diagram,
control for all confounders so defined will control for confounding and (ii) any
variable qualifying as a confounder under this criterion will in some context re-
move confounding. Only one of the definitions considered here satisfied both of
these two properties. We thus proposed that a pre-exposure covariate C be con-
sidered a confounder for the effect of A on Y if there exists a set of covariates X

such that the effect of the exposure on the outcome is unconfounded conditional
on (X,C) but for no proper subset of (X,C) is the effect of the exposure on the
outcome unconfounded given the subset. Equivalently, a confounder is a “member
of a minimally sufficient adjustment set.” This is closely related to the definitions
concerning confounders given in Robins and Morgenstern (1987), though Robins
and Morgenstern suggest specifying the other variables for which control might
be made as well. We have further provided a conditional analogue of the proposed
definition of a confounder; and we have proposed that a variable that helps reduce
bias but not eliminate bias be referred to as a “surrogate confounder.” The defini-
tion of a “confounder” above is given rigorously in terms of counterfactuals and,
we believe, is also in accord with the intuitive properties of a “confounder” im-
plicitly presupposed by practicing statisticians and epidemiologists. From a more
theoretical perspective, Definition 4, unlike the other definitions, gives rise to ele-
gant and useful results which itself lends further support for its being taken as the
definition of a confounder.

APPENDIX

Review of causal diagrams. A directed graph consists of a set of nodes and
directed edges among nodes. A path is a sequence of distinct nodes connected by
edges regardless of arrowhead direction; a directed path is a path which follows the
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edges in the direction indicated by the graph’s arrows. A directed graph is acyclic
if there is no node with a sequence of directed edges back to itself. The nodes
with directed edges into a node A are said to be the parents of A; the nodes into
which there are directed edges from A are said to be the children of A. We say
that node A is an ancestor of node B if there is a directed path from A to B; if A

is an ancestor of B , then B is said to be a descendant of A. If X denotes a set of
nodes, then An(X) will denote the ancestors of X and Nd(X) will denote the set
of nondescendants of X. For a given graph G, and a set of nodes S, the graph GS

denotes a subgraph of G containing only vertices of G in S and only edges of G

between vertices in S. On the other hand, the graph GS denotes the graph obtained
from G by removing all edges with arrowheads pointing to S. A node is said to be
a collider for a particular path if it is such that both the preceding and subsequent
nodes on the path have directed edges going into that node. A path between two
nodes, A and B , is said to be blocked given some set of nodes C if either there is
a variable in C on the path that is not a collider for the path or if there is a collider
on the path such that neither the collider itself nor any of its descendants are in C.
For disjoint sets of nodes A, B and C, we say that A and B are d-separated given
C if every path from any node in A to any node in B is blocked given C. Directed
acyclic graphs are sometimes used as statistical models to encode independence
relationships among variables represented by the nodes on the graph [Lauritzen
(1996)]. The variables corresponding to the nodes on a graph are said to satisfy
the global Markov property for the directed acyclic graph (or to have a distribution
compatible with the graph) if for any disjoint sets of nodes A,B,C we have that
A ⊥⊥ B|C whenever A and B are d-separated given C. The distribution of some
set of variables V on the graph is said to be faithful to the graph if for all disjoint
sets A,B,C of V we have that A ⊥⊥ B|C only when A and B are d-separated
given C.

Directed acyclic graphs can be interpreted as representing causal relationships.
Pearl (1995) defined a causal directed acyclic graph as a directed acyclic graph
with nodes (X1, . . . ,Xn) corresponding to variables such that each variable Xi is
given by its nonparametric structural equation Xi = fi(pai, εi), where pai are the
parents of Xi on the graph and the εi are mutually independent. For a causal di-
agram, the nonparametric structural equations encode counterfactual relationships
among the variables represented on the graph. The equations themselves represent
one-step ahead counterfactuals with other counterfactuals given by recursive sub-
stitution [see Pearl (2009) for further discussion]. A causal directed acyclic graph
defined by nonparametric structural equations satisfies the global Markov property
as stated above [Pearl (2009)]. The requirement that the εi be mutually indepen-
dent is essentially a requirement that there is no variable absent from the graph
which, if included on the graph, would be a parent of two or more variables [Pearl
(1995, 2009)]. Throughout we assume the exposure A consists of a single node.
A backdoor path from A to Y is a path to Y which begins with an edge into A.
A set of variables X is said to satisfy the backdoor path criterion with respect to
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(A,Y ) if no variable in X is a descendant of A and if X blocks all backdoor paths
from A to Y . Pearl (1995) showed that if X satisfies the backdoor path criterion
with respect to (A,Y ), then the effect of A on Y is unconfounded given X, that is,
Ya ⊥⊥ A|X.

Empirical testing for confounders and confounding. The absence of con-
founding conditional on a set of covariates S, that is, Ya ⊥⊥ A|S, is not a prop-
erty that can be tested empirically with data. One must rely on subject matter
knowledge, which may sometimes take the form of a causal diagram. Nonethe-
less, a few things can be said about empirical testing concerning confounding
and confounders. For the sake of completeness, we will consider each of Defi-
nitions 1–6. It is possible to verify empirically whether a variable is a confounder
under Definition 1 since the definition refers to observed associations; however,
it is not possible, without further knowledge, to empirically verify that a variable
does not satisfy Definition 1 because a variable may satisfy Definition 1 for some
X that involves an unmeasured variable U . One would have to know that data
were available for all variables on a causal diagram to empirically verify that a
variable was a nonconfounder under Definition 1. Because of this, even though
Definition 1 satisfies Property 1 under faithfulness, this cannot be used as an em-
pirical test for confounding since (i) we cannot empirically verify that a variable is
a nonconfounder under Definition 1 and (ii) we cannot empirically verify whether
faithfulness holds.

Without further assumptions, we cannot empirically verify that a variable is a
confounder or a nonconfounder under Definition 2 because Definition 2 makes
reference to backdoor paths. Whether a variable lies on a backdoor path cannot
be tested empirically without further assumptions; one would have to know the
structure of the underlying causal diagram. Likewise, for Definitions 3 and 4, one
would need to know all minimally sufficient adjustment sets, which itself would
require checking the “no confounding” condition Ya ⊥⊥ A|S, which is, as noted
above, not empirically testable; though see below for some qualifications. For
Definition 5, we could empirically reject the inequality in Definition 5 for ob-
served X if

∑
x,c{E(Y |A = 1, x, c) − E(Y |A = 0, x, c)}pr(x, c) = ∑

x{E(Y |A =
1, x) − E(Y |A = 0, x)}pr(x). However, we cannot empirically reject the inequal-
ity in Definition 5 for unobserved X and we, moreover, cannot empirically verify
the inequality in Definition 5 because E(Y1) − E(Y0) will not in general be em-
pirically identified if there are unobserved variables. We can verify empirically
whether a variable is a confounder under Definition 6 since the definition refers to
only observed variables; however, it is not possible, without further knowledge, to
empirically verify that a variable does not satisfy Definition 6 because a variable
may satisfy Definition 6 for some X that involves an unmeasured variable U . One
would have to know that data were available for all variables on a causal diagram
to empirically verify that a variable was a nonconfounder under Definition 6. Be-
cause of this we cannot empirically verify that a variable is a nonconfounder under
Definition 6.
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Determining whether a variable is a confounder requires making untestable as-
sumptions. The only real progress that can be made with empirical testing for
confounders is by making other untestable assumptions that logically imply a test
for assumptions we care about. For example, suppose we assume we have some
set S that we are sure constitutes a sufficient adjustment set. In this case, we can
sometimes remove variables as unnecessary for confounding control. In particu-
lar, Robins (1997) showed that if we knew that for covariate sets S1 and S2 we
had that Ya ⊥⊥ A|(S1, S2), then we would also have that Ya ⊥⊥ A|S1 if S2 can
be decomposed into two disjoint subsets T1 and T2 such that A ⊥⊥ T1|S1 and
Y ⊥⊥ T2|A,S1, T1. Both of these latter conditions are empirically testable. Geng
et al. (2001) provide some analogous results for the effect of exposure on the ex-
posed. VanderWeele and Shpitser (2011) note that if for covariate set S we have
that Ya ⊥⊥ A|S, then if a backward selection procedure is applied to S such that
variables are iteratively discarded that are independent of Y conditional on both
exposure A and the members of S that have not yet been discarded, then the re-
sulting set of covariates will suffice for confounding control. They also show that
under an additional assumption of faithfulness, if, for covariate set S, we have that
Ya ⊥⊥ A|S, then if a forward selection procedure is applied to S such that, start-
ing with the empty set, variables are iteratively added which are associated with
Y conditional on both exposure A and the variables that have already been added,
then the resulting set of covariates will suffice for confounding control. Note, how-
ever, all of these results require knowledge that for some set S, Ya ⊥⊥ A|S, which
is not itself empirically testable without experimental interventions.
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