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SADDLEPOINT APPROXIMATIONS FOR LIKELIHOOD RATIO
LIKE STATISTICS WITH APPLICATIONS TO

PERMUTATION TESTS

BY JOHN KOLASSA1 AND JOHN ROBINSON2

Rutgers University and University of Sydney

We obtain two theorems extending the use of a saddlepoint approxima-
tion to multiparameter problems for likelihood ratio-like statistics which al-
low their use in permutation and rank tests and could be used in bootstrap
approximations. In the first, we show that in some cases when no density
exists, the integral of the formal saddlepoint density over the set correspond-
ing to large values of the likelihood ratio-like statistic approximates the true
probability with relative error of order 1/n. In the second, we give multi-
variate generalizations of the Lugannani–Rice and Barndorff-Nielsen or r∗
formulas for the approximations. These theorems are applied to obtain per-
mutation tests based on the likelihood ratio-like statistics for the k sample and
the multivariate two-sample cases. Numerical examples are given to illustrate
the high degree of accuracy, and these statistics are compared to the classical
statistics in both cases.

1. Introduction. In parametric problems where distributions are specified ex-
actly, the likelihood ratio is generally used for hypothesis testing whenever possi-
ble. In multiparameter problems, the distribution of twice the log likelihood ratio
is approximated by a chi-squared distribution. Refinements of this approximation
were obtained by Barndorff-Nielsen [2] for parametric problems. In a nonpara-
metric setting the empirical exponential likelihood is described in Chapter 10 of
[6] and discussed in a number of references cited there. Saddlepoint approxima-
tions for empirical exponential likelihood statistics based on multiparameter M-
estimates are given, for example, in [12] and for tests of means in [10], under the
strong assumption that the density of the M-estimate exists and has a saddlepoint
approximation. They used methods based on those of [3] to obtain an approxi-
mation analogous to the Lugananni–Rice approximation for the one-dimensional
case.

It is the purpose of this paper to show that, under conditions which will allow
the application of the approximations in bootstrap, permutation and rank statis-
tics used for multiparameter cases, the integral of the formal saddlepoint density
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approximation can be used to give an approximation with relative error of order
n−1 to the tail probability of a likelihood ratio-like statistic. This then permits
the approximation to be put in the Lugananni–Rice form as in [12] and also in a
form analogous to the r∗ or Barndorff-Nielsen form given in [2] and [8] for the
one-dimensional case. These results are then applied to two multiparameter non-
parametric cases. We require the existence of a moment generating function. This
may be too strong an assumption in the case of tests concerning means considered
here, but robust versions of these, as in [12], can be used to make the results widely
applicable.

The statistic used is obtained by using the conjugate distribution approach of
[5] and is the log likelihood ratio in the parametric case of exponential families.
It can be written as a convex function of X̄, the mean of n independent random
variables. This statistic can be approximated to first order by a quadratic form
in the means X̄. However, it does not seem to be possible to approximate tail
probabilities for quadratic forms with relative errors of order n−1, as are obtained
for our statistic. Cramér large deviation results for the case of quadratic forms in
multivariate means were obtained by [9] and a number of earlier authors cited in
that paper, but the relative errors for the approximation to the probability of the
statistic, a random variable of order 1/n, exceeding λ is of order

√
nλn−1/4. So

the relative error is at best of order n−1/4. The same problem arises in the case of
an empirical likelihood statistic, where we know of no saddlepoint approximation.

In the next section we introduce the notation and assumptions necessary to ob-
tain the likelihood ratio-like statistic, tail probabilities of which can be used for
hypothesis testing in multivariate nonparametric settings. We reduce certain con-
ditional cases given lattice variables to a more convenient notation and state the
main result in a theorem showing that tail probabilities for the statistic can be
approximated, to relative order n−1, by an integral of a formal saddlepoint den-
sity. We then state and prove a theorem giving the integrals in forms like those of
Lugananni–Rice and Barndorff-Nielsen in the one-dimensional case. In Section 3
we consider two examples of permutation tests, for the k-sample problem and for
a two sample multivariate permutation test, using the results of the previous sec-
tion to obtain explicit formulas for test statistics and for the approximations of the
tail probabilities of these statistics under permutations. We then present numerical
examples illustrating the accuracy of the approximations and comparing results to
those obtained using the standard sum of squares test statistics for the k-sample
permutation and rank tests and the Mahalanobis D2 test for the 2-sample multi-
variate test. In the final section we give the proof of the main result.

2. Notation and main result. For a sample of size n with mean vector x̄
from a parametric canonical exponential family with density fτ (x) = exp(τ�x −
κ(τ ))g(x), the maximum likelihood estimate of τ is τ̂ , the solution of κ ′(τ ) = x̄,
and, taking κ ′(0) = 0, the log likelihood ratio statistic is �(x̄) = τ̂�x̄ − κ(τ̂ ).
This is used to test the hypothesis that τ = 0, or equivalently, that κ ′(τ ) = 0. For
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the nonparametric case an empirical exponential family is taken, and it is shown,
for example, in [12], page 1163, that the empirical exponential likelihood ratio
statistic for a test that the expectation is zero is �(x̄) = −β�

0 x̄ + κn(β0), where
κn(β) = log[∑n

i=1 exp(β�xi )]/n and β0 is the solution of κ ′
n(β) = 0. In [12] a

bootstrap approximation can be based on the statistic �(x̄∗) = τ̂�x̄∗ − κn(β0 +
τ̂ ) + κn(β0), where the bootstrap is taken from the tilted empirical distribution
F̂0(x) = ∑n

i=1 exp(β�
0 xi − κn(β0))I {xi ≤ x}/n. A saddlepoint approximation to

this bootstrap is given, but it is noted that the relative errors of this approximation
could not be proven from the theorem of that paper. The theorems of this section
permit this proof. We use an analogous approach to give the likelihood ratio-like
statistics for the two permutation test examples in the next section.

Consider independent d-dimensional random vectors X1, . . . ,Xn, with the first
d0 components X1j , . . . ,Xd0j confined to a lattice with unit spacings, for d0 < d ,
and with the average cumulant generating function

κ(τ ) = n−1 log(Eeτ�Sn) = n−1
n∑

i=1

log(Eeτ�Xi ),(1)

where Sn = X1 + · · · + Xn. For some x we can define

�(x) = τ̂�x − κ(τ̂ )(2)

for τ̂ satisfying

κ ′(τ̂ ) = x(3)

and

r(x) = e−n�(x)(2πn)−d0/2(2π/n)−d1/2|Vτ̂ |−1/2.(4)

In the case when the last d1 components of X1, . . . ,Xn have densities, this is the
saddlepoint density approximation for X̄ = Sn/n, obtained in the case of identi-
cally distributed random vectors in [4]. In many cases when these last components
lack a density, the theorem below will imply that their distribution may be well
approximated by a continuous distribution.

Let μ denote the distribution of X̄ = Sn/n, let �∗ = {τ :κ(τ ) < ∞}, and let
μτ (dy) = exp(−n(κ(τ ) − τ�y))μ(dy) define the distribution of X̄τ , the mean
of X1τ , . . . ,Xnτ , the associated independent random vectors. These conjugate
distributions, first introduced in [5], permit us to consider large deviations. Let
Vτ = κ ′′(τ ), and, taking ‖x‖ = (x�x)1/2, let

ηj (τ ) = n−1
n∑

i=1

E
[‖V −1/2

τ (Xiτ − E[Xiτ ])‖j ]
.

Let

qτ (T ) = sup
{∣∣eκ(τ+iξ)−κ(τ )

∣∣ :‖V 1/2
τ ξ‖ > (3/4)η3(τ )−1,

(5)
|ξi | < π for i ≤ d0, |ξi | < T, i > d0

}
.
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We consider the following conditions, essentially from [11], where, throughout,
c and C are generic positive constants, and |A| denotes the determinant of a square
matrix A. The complexity of these conditions is due to the fact that we need to
consider conditional distributions of independent, but not identically distributed,
random variables.

• (A1) There is a compact subset, �, of the interior of �∗, with 0 in the interior
of �.

• (A2) |Vτ | > c > 0 for τ ∈ �.
• (A3) ηj (τ ) < C for j = 1, . . . ,5 and τ ∈ �.

• (A4) n2d1+2qτ (n−2) < C.

Here the first condition asserts that there is an open neighborhood of the origin
where the cumulative generating function exists. The second condition bounds the
average variance of the associated random variables away from zero, and the third
gives upper bounds the first 5 standardized moments in this neighborhood. The
fourth condition is a smoothness condition introduced first for the univariate case
in [1] and which is sufficient to allow Edgeworth expansions for many statistics
based on ranks and applications to bootstrap and permutation statistics when the
original observations are from a continuous distribution.

Let X = κ ′(�); then we are able to obtain equations (2), (3) and (4) for
x ∈ X . Also, if d0 > 0, let �0(x0) = τ̂�

0 x0 − κ0(τ̂ 0) for τ̂ 0 satisfying κ ′
0(τ̂ 0) = x0,

where the subscript 0 denotes a reduction to the first d0 elements of the d-
vectors, and we will use the subscript 1 to denote the last d1 elements. If
r0(x0) = (2πn)−d0/2|Vτ̂ 0 |−1/2 exp(−n�0(x0)), then from [4], we have P(X̄0 =
x0) = μ0(x0) = r0(x0)(1 + O(1/n)). For d0 > 0, we will consider x� = (x�

0 ,x�
1 )

and replace r(x) by

r(x1|x0) = r(x)/r0(x0) = |Vτ̂ 0 |1/2e−n(�(x)−�0(x0))

(2π/n)d1/2|Vτ̂ |1/2 ,(6)

and replace μ by the distribution of X̄1 conditional on X̄0 = x̄0, so that we consider
conditional probabilities of X̄1 given X̄0 = x0, associated with sets of form

F = {x1 :�(x) − �0(x0) ≥ λ,x� = (x�
0 ,x�

1 )}.
The main result is the following theorem, whose proof is deferred to a later

section.

THEOREM 1. Under conditions (A1)–(A4),∣∣∣∣μ(F ) −
∫

F
r(x1|x0) dx1

∣∣∣∣ =
[∫

F
r(x1|x0) dx1

]
O(1/n).(7)
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Note that if the nonlattice subvectors of X1, . . . ,Xn have densities, the variables
are identically distributed and (A1) and (A2) hold, then the theorem follows from
Theorem 1 of [4].

The following theorem is a corollary whose derivation we include here. This is
the form that will be used in examples.

THEOREM 2. Under the conditions of Theorem 1, if u = √
2λ,∫

F
r(x1|x0) dx1 = Q̄d1(nu2)[1 + O(1/n)] + cn

n
ud1e−nu2/2 G(u) − 1

u2(8)

and ∫
F

r(x1|x0) dx1 = Q̄d1(nu∗2)[1 + O(1/n)],(9)

where Q̄d(x) = P(χ2
d ≥ x),

u∗ = u − log(G(u))/nu,(10)

cn = nd1/2

2d1/2−1
(d1/2)
,(11)

δ(
√

2λ, s) = 
(d1/2)|Vτ̂ 0 |1/2|Vτ̂ |−1/2|V0|1/2rd1−1

2πd1/2ud1−2|s�V
1/2
0 τ̂ 1|

,(12)

G(u) =
∫
Sd1

δ(u, s) ds(13)

for Sd1 the d1-dimensional unit sphere centered at zero, and where, for each s ∈
Sd1 , r is chosen so �(x0, rs) − �0(x0) = λ and V −1

0 = [κ ′′(0)−1]11, with the final
subscripts denoting the lower right d1 × d1 submatrix.

PROOF. The derivation of (8), given Theorem 1, is given in [12]. To get (9),
we use a related method. After making the transformations y = V

−1/2
0 x1,

y → (r, s) and (r, s) → (u, s), where the first is the polar transformation with
‖x‖ = r and s ∈ Sd , the unit sphere in d-dimensions, and the second has u =√

2(�(x0, rs) − �0(x0)), we have∫
F

r(x1|x0) dx1 = cn

∫ ∞
u

vd−1e−nv2/2G(v)dv

= cn

∫ ∞
u

vd−1e−n(v−logG(v)/nv)2/2 dv
(
1 + O(1/n)

)
.

Then make the transformation v∗ = v − logG(v)/nv. The final equality follows
since G(v) = 1 + v2k(v) and G′(v) = vk∗(v), where k(v) and k∗(v) are bounded
as shown in [12]. �
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REMARK. The integral (13) can be approximated by a Monte Carlo method,
for example, by approximating

∫
Sd

h(s) ds as

2πd/2


(d/2)

1

M

M∑
�=1

h(U�),

where U1, . . . ,UM are i.i.d. uniformly distributed on Sd . Here the number of repli-
cates in the Monte Carlo simulation can be small with little loss of accuracy. We
discuss this in the examples where it was found that M = 10 was sufficient. It
would be possible to use a method such as that in [7] to get a numerical approx-
imation to the integral, but the Monte Carlo method is much simpler to use and
easily gives the required accuracy.

3. Two examples of permutation tests. We consider a k sample permutation
test in a one-way design and a multivariate two-sample permutation test. In both
cases we consider hypotheses that the populations of random variables or vectors
are exchangeable. In the first case the observations are generated either by sam-
pling n1, . . . , nk independent random variables from distributions F1, . . . ,Fk , and
we test H0 :F1 = · · · = Fk , or they are generated from an experiment in which
k treatments are allocated at random to groups of sizes n1, . . . , nk , and we test
H0: treatments have equal effects. We choose a statistic suitable for testing with
respect to differences in means. The standard choices of test statistic are the F -
statistic from the analysis of variance or, for a nonparametric test based on ranks,
the Kruskal–Wallis statistic. In the second case the observations are generated by
sampling from two populations of l-dimensional random vectors, and we test for
equality of the distributions, or they are generated by experimental randomization,
and we test for equality of two treatments. Here the test statistic arising from an
assumption of multivariate normality is the Mahalanobis D2 test.

3.1. Permutation tests for k samples. Suppose that a1, . . . , aN are the ele-
ments of a finite population, such that

∑N
m=1 am = 0 and

∑N
m=1 a2

j = N . Let

n1, . . . , nk be integers, such that N = ∑k
i=1 ni . Suppose that R1, . . . ,RN is an

equiprobable random permutation of 1, . . . ,N . Let Xij = aRn1+···+ni−1+j
, and let

X̄i = ∑ni

j=1 Xij/ni .
For i = 1, . . . , k −1, let ei have k −1 components, with component i equal to 1,

and other components zero. Let Im,m = 1, . . . ,N be independent and identically
distributed random vectors with P(Im = ei ) = ni/N = pi for i < k and P(Im =
0) = nk/N = pk . Let S� = (

∑N
m=1 I�

m,
∑N

m=1 amI�
m) = (S�

0 ,S�
1 ). We have

P(nX̄ ≤ x) = P(S1 ≤ x|S0 = Np),
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where X̄,x,p are k −1 vectors corresponding to the first k −1 samples. Under H0,
the cumulant generating function of S is

Nκ(τ 0,τ 1) = logEe
∑N

m=1(τ
�
0 Im+τ�

1 Imam) =
N∑

m=1

log

(
pk +

k−1∑
i=1

pie
τ0i+τ1iam

)
.

Let (τ̂�
0 , τ̂�

1 ) be the solution of

κ ′(τ 0,τ 1) = (p,x).

Let B = {x :�(x) ≥ u2/2}, where �(x) = τ̂�
0 p+ τ̂�

1 x−κ(τ̂ 0, τ̂ 1), and note that
κ ′(0,0) = (p,0) and κ(0,0) = 0. Now from Theorem 1, if qτ (n−2) = O(n−2k),

P
(
�(X̄) ≥ u2/2

) =
∫
B

r(x|p) dx
(
1 + O(1/N)

)
,

where

r(x|p) = (2π/N)−(k−1)/2|κ00(0,0)|1/2|κ ′′(τ̂ 0, τ̂ 1)|−1/2e−N�(x).

Then from Theorem 2, G(u) is given in (12) and (13) with d0 = d1 = k − 1. Now
we can use (8) and (9) to get the two approximations.

3.2. Numerical results for k-sample test. Consider first the rank test based
on the statistic �(X̄) where a1 = 1, . . . , aN = N , with N = 20 for 4 groups of
size 5; in the standard case the Kruskal–Wallis test would be used. The following
table gives the results of tail probabilities from a Monte Carlo simulation of �(X̄)

(MC �) and of the Kruskal–Wallis statistic (MC K–W) using 100,000 permu-
tations, the chi-squared approximation (χ2

3 ) and the saddlepoint approximations
using (8) (SP LR �) and (9) (SP BN �), using M = 1000 Monte Carlo sam-
ples from S3. Inspection of the table comparing the saddlepoint Lugananni–Rice
and Barndorff-Nielsen approximations with the Monte Carlo approximation for �

shows the considerable accuracy of these approximations throughout the range.
The chi square approximations to the distribution of the Kruskal–Wallis statistic
does not have this degree of accuracy. We note that good approximations for the
saddlepoint approximations are achieved by M as small as 10. We obtained the
standard deviation of individual random values of the integrand and noted that for
Table 1 this was 0.003 for û = 0.6 and 0.0007 for û = 0.9, indicating that M = 10
gives sufficient accuracy in this example.

Also consider the permutation test based on a single sample of 40 in 4 groups of
10 from an exponential distribution, comparing as above each of the saddlepoint
approximations with the Monte Carlo approximations in this case and with the
standard test based on the sum of squares from an analysis of variance. The same
pattern of accuracy as reported above is apparent from inspection of Table 2.
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TABLE 1
The 4-sample rank tests with ni = 5

û 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MC � 0.6758 0.4328 0.2365 0.1087 0.0423 0.0142 0.0041
MC K–W 0.6583 0.4027 0.1921 0.0652 0.0135 0.0012 0.0000
χ2

3 0.6149 0.3618 0.1718 0.0658 0.0203 0.0051 0.0010
SP LR � 0.6811 0.4446 0.2454 0.1151 0.0464 0.0164 0.0052
SP BN � 0.6753 0.4380 0.2387 0.1101 0.0434 0.0148 0.0045

3.3. A two-sample multivariate permutation test. Let a1, . . . ,aN be l-vectors
regarded as elements of a finite population such that

∑N
i=1 ai = 0 and

∑N
i=1 aiaT

i =
NI . Let R1, . . . ,RN be obtained by an equiprobable random permutation of
1, . . . ,N , let Xj = aRj

, j = 1, . . . ,N and let X̄1 = ∑n
j=1 Xj /n for n = Np

with 0 < p < 1. Let I1, . . . , IN be i.i.d. Bernoulli variables with EI1 = p. If
ST = (S0,ST

1 ) with S0 = ∑N
i=1 Ii and S1 = ∑N

i=1 aiIi , then for any Borel set F ,

P(X̄ ∈ F ) = P(S1/N ∈ F |S0/N = p).(14)

Let τ� = (τ0,τ
�
1 ) with τ0 ∈ � and τ 1 ∈ �d and let

κ(τ ) = N−1 logE exp(τ0S0 + τ�
1 S1)

= N−1
N∑

i=1

log(q + peτ0+τ�
1 ai ).

Let τ̂ be the solution of κ ′(τ ) = (p,x�)�, and let �(p,x) = τ̂0p + τ̂�
1 x − κ(τ̂ ).

Consider sets F = {x :�(p,x) ≥ λ}. Then from Theorem 2, we can approximate
(14) by (8) or (9) where G(u) is given by (12) and (13) with d0 = 1 and d1 = l.

3.4. Numerical results for two-sample test. Consider the test based on two
samples of size 40 from a 3-variate exponential distribution with mean 1 and
covariance matrix I . After standardizing the combined sample we consider tests

TABLE 2
The 4-sample permutation tests with exponentially distributed errors and ni = 10

û 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MC � 0.9456 0.6837 0.3434 0.1160 0.0275 0.0043 0.0004
MC ANOV 0.9455 0.6784 0.3273 0.0971 0.0164 0.0015 0.0004
χ2

3 0.9402 0.6594 0.3080 0.0937 0.0186 0.0024 0.0002
SP LR � 0.9491 0.6888 0.3456 0.1174 0.0272 0.0043 0.0004
SP BN � 0.9486 0.6877 0.3441 0.1164 0.0268 0.0042 0.0004
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TABLE 3
The 3-dimensional two sample parmutation test

û 0.3 0.4 0.5 0.6 0.7

MC � 0.3543 0.1249 0.0276 0.0041 0.0006
χ2

3 0.3080 0.0937 0.0186 0.0024 0.0002
SP LR � 0.3528 0.1207 0.0282 0.0045 0.0005
SP BN � 0.3507 0.1194 0.0278 0.0043 0.0005
Quadratic 0.3325 0.0939 0.0135 0.0004 0.0001

based on the statistic �(X̄) or X̄X̄T , equivalent to the usual normal theory based
statistic. We calculate the tail probabilities based on Theorem 2 in this case and
Monte Carlo approximations to the permutation tests based on 10,000 random
permutations. Table 3 demonstrates the accuracy of the two saddlepoint approxi-
mations throughout the range. It also shows that the chi-squared approximation is
not satisfactory either for � or for the classical quadratic form statistic. However,
while we have accurate tail probability approximations for the new statistic, such
approximations are not available for the classical quadratic form.

4. Proofs of the main results. For notational convenience we will restrict
attention to the case d0 = 0, as details of the case conditional on lattice variables
follow in a straightforward manner. The following theorem is a simplified version
of Theorem 1 of [11], taking s = 5, d0 = 0 and A as a d-dimensional cube in X
with center a and side δ = n−1. As in (1.10) of [11], let

e2(y,μτ ) = (
1 + Q1(y∗) + Q2(y∗)

)
(2π/n)−d/2|Vτ |−1/2e−y∗�y∗/2

with y∗ = n1/2V
−1/2
τ (y − κ ′(τ )), be the formal Edgeworth expansion of order 2

for X̄τ = ∑n
i=1 Xiτ/n, and let

e2
(
τ , E ,x − κ(τ )

) =
∫

E
enτ�(x−y)e2(y,μτ ) dy.

The terms Q1 and Q2 are given explicitly in (1.11) of [11], and are terms of order
n−1/2 and n−1, respectively.

THEOREM 3. For any set E ⊂ A and ε > 0, take Eε = {z :∃y ∈ E ,‖z − y‖ <

ε}. Choose ε ∈ (0, c/n2), and let T = 1/ε. For x ∈ E ⊂ X ,∣∣μ(E ) − e−n(τ�x−κ(τ ))e2
(
τ , E ,x − m(τ )

)∣∣ ≤ e−n(τ�x−κ(τ ))|Vτ |−1/2R

for

R = C
[
Vol(E2ε)

(
η5(τ )n−3/2 + |Vτ |1/2n1/2T dqτ (T )

) + Vol(E2ε − E−2ε)
]
.
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Note that this follows, since

χ̂τ ,E2ε
(0) =

∫
E2ε

enτ�(u−a) du < C Vol(E2ε)

as E ⊂ A implies that ‖u − a‖ < c(δ + 2ε) < cn−1.
We give a preliminary lemma before proceeding to the proof of Theorem 1,

using the notation κ(τ (x)) = x and �(x) = τ (x)�x − κ(τ (x)) for x ∈ X .

LEMMA 1. For x ∈ E ⊂ A ⊂ X ,∫
E
r(y) dy − en(κ(τ (x))−τ (x)�x)e2(τ , E ,0) =

∫
E
r(y) dyO(1/n).(15)

PROOF. Ignoring for the moment the terms involving Q1 and Q2, the left-
hand side in (15) is

∫
E
r(y)

[
1 − e

n(�(y)−�(x)−τ (x)�(y−x)−(y−x)�V −1
τ (x)(y−x)/2)

|Vτ (x)|1/2/|Vτ (y)|1/2

]
dy.(16)

Noting that ‖y − x‖ = O(1/n), and using a Taylor series expansion about x, we
see that the exponent in (16) is O(1/n2), and the denominator is 1 + O(1/n). So
in (15) the first term on the left is as given by the expression on the right. Noting
that Q1(0) = 0, we see that the term involving Q1 is of the same form. The proof
is completed by noting that the term Q2 is also of this form. �

PROOF OF THEOREM 1. The proof will proceed by dividing X into small
rectangles, applying Theorem 3 on each of these rectangles, and summing the
results in a manner similar to that of [9]. For j ∈ Zd

1 , let Aj = {x ∈ Rd :xl ∈
((jl−d0 − 1

2)δ, (jl−d0 + 1
2)δ]}, and let E j = Aj ∩ F . By the intermediate value the-

orem, on each E j, there is an xj such that∫
E j

r(x) dx = r(x(j))Vol(E j).

Note that F = ⋃
j∈J E j and E j are disjoint. Define τ̂ j so that xj = κ ′(τ̂ j). Write

J = {j : Vol(E j) > 0}. Then

μ(F ) −
∫

F
r(x) dx = ∑

j∈J

[μ(E j) − r(xj)Vol(E j)]

= E1 + E2,

where

E1 = ∑
j∈J

[μ(E j) − r(xj)(2π/n)d/2|Vτ̂ j |1/2e2(τ̂ j, E j,0)]
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and

E2 = −∑
j∈J

[∫
E j

r(y) dy − enκ(τ̂ j)−τ̂�
j xje2(τ̂ j, E j,0)

]
.

Using Lemma 1 on each E j and summing, we have

E2 =
∫

F
r(y) dyO(1/n).

Now consider E1. Apply Theorem 3 to each E j, and sum to get

|E1| ≤
∑
j∈J

r(xj)(R1j + R2j),(17)

where

R1j = C Vol(E j
2ε)[η5(τ j)n

−1 + |Vτ̂ j |1/2nd/2T qτ̂ j(T )]
and

R2j = Vol(E j
2ε − E j

−2ε).

The summation of these terms is complicated by the fact that the sets are not dis-
joint and not all are subsets of F . So introduce sets Hj = Aj ∩ F2ε . Consider the
set H∗

j , the union of Hj and the 3d − 1 sets formed by reflections of Hj in each of
the lower-dimensional faces of Aj. Then Ej ⊂ H∗

j so

Vol(Ej2ε)/Vol(Hj) ≤ 3d .

So ∑
j∈J

r(xj)R1j ≤ ∑
j∈J

r(xj)Vol(Hj)O(1/n) =
∫

F2ε

r(y) dyO(1/n).

Also

Vol(E j
2ε − E j

−2ε)/Vol(Hj) ≤ Cε/δ = O(1/n).

Using this to bound the second sum on the right-hand side of (17) and the previous
bound for the first term gives

|E1| =
∫

F2ε

r(y) dyO(1/n).

Note that for any x such that �(x) = λ and any z ∈ F2ε ,

�(z) ≥ �(x) − |(z − x)��′(x)| ≥ λ − Cε.

So the theorem follows by noting that∫
F2ε

r(y) dy =
∫

F
r(y) dy

(
1+O(1/n)

)
. �
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