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We propose a new penalized method for variable selection and estima-
tion that explicitly incorporates the correlation patterns among predictors.
This method is based on a combination of the minimax concave penalty and
Laplacian quadratic associated with a graph as the penalty function. We call
it the sparse Laplacian shrinkage (SLS) method. The SLS uses the minimax
concave penalty for encouraging sparsity and Laplacian quadratic penalty for
promoting smoothness among coefficients associated with the correlated pre-
dictors. The SLS has a generalized grouping property with respect to the
graph represented by the Laplacian quadratic. We show that the SLS pos-
sesses an oracle property in the sense that it is selection consistent and equal
to the oracle Laplacian shrinkage estimator with high probability. This re-
sult holds in sparse, high-dimensional settings with p � n under reasonable
conditions. We derive a coordinate descent algorithm for computing the SLS
estimates. Simulation studies are conducted to evaluate the performance of
the SLS method and a real data example is used to illustrate its application.

1. Introduction. There has been much work on penalized methods for vari-
able selection and estimation in high-dimensional regression models. Several im-
portant methods have been proposed. Examples include estimators based on the
bridge penalty [Frank and Friedman (1993)], the �1 penalty or the least abso-
lute shrinkage and selection operator [LASSO, Tibshirani (1996), Chen, Donoho
and Saunders (1998)], the smoothly clipped absolute deviation (SCAD) penalty
[Fan (1997), Fan and Li (2001)] and the minimum concave penalty [MCP, Zhang
(2010)]. These methods are able to do estimation and automatic variable selection
simultaneously and provide a computationally feasible way for variable selection
in high-dimensional settings. Much progress has been made in understanding the
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theoretical properties of these methods. Efficient algorithms have also been devel-
oped for implementing these methods.

A common feature of the methods mentioned above is the independence be-
tween the penalty and the correlation among predictors. This can lead to unsatis-
factory selection results, especially in p � n settings. For example, as pointed out
by Zou and Hastie (2005), the LASSO tends to only select one variable among a
group of highly correlated variables; and its prediction performance may not be as
good as the ridge regression if there exists high correlation among predictors. To
overcome these limitations, Zou and Hastie (2005) proposed the elastic net (Enet)
method, which uses a combination of the �1 and �2 penalties. Selection proper-
ties of the Enet and adaptive Enet have also been studied by Jia and Yu (2010)
and Zou and Zhang (2009). Bondell and Reich (2008) proposed the OSCAR (oc-
tagonal shrinkage and clustering algorithm for regression) approach, which uses a
combination of the �1 norm and a pairwise �∞ norm for the coefficients. Huang et
al. (2010a) proposed the Mnet method, which uses a combination of the MCP and
�2 penalties. The Mnet estimator is equal to the oracle ridge estimator with high
probability under certain conditions. These methods are effective in dealing with
certain types of collinearity among predictors and has the useful grouping property
of selecting and dropping highly correlated predictors together. Still, these com-
bination penalties do not use any specific information on the correlation pattern
among the predictors.

Li and Li (2008) proposed a network-constrained regularization procedure for
variable selection and estimation in linear regression models, where the predictors
are genomic data measured on genetic networks. Li and Li (2010) considered the
general problem of regression analysis when predictors are measured on an undi-
rected graph, which is assumed to be known a priori. They called their method
a graph-constrained estimation procedure or GRACE. The GRACE penalty is a
combination of the �1 penalty and a penalty that is the Laplacian quadratic asso-
ciated with the graph. Because the GRACE uses the �1 penalty for selection and
sparsity, it has the same drawbacks as the Enet discussed above. In addition, the
full knowledge of the graphical structure for the predictors is usually not avail-
able, especially in high-dimensional problems. Daye and Jeng (2009) proposed
the weighted fusion method, which also uses a combination of the �1 penalty and a
quadratic form that can incorporate information among correlated variables for es-
timation and variable selection. Tutz and Ulbricht (2009) studied a form of correla-
tion based penalty, which can be considered a special case of the general quadratic
penalty. But this approach does not do variable selection. The authors proposed a
blockwise boosting procedure in combination with the correlation based penalty
for variable selection. Hebiri and van de Geer (2010) studied the theoretical proper-
ties of the smoothed-Lasso and other �1 + �2-penalized methods in p � n models.
Pan, Xie and Shen (2011) studied a grouped penalty based on the Lγ -norm for
γ > 1 that smoothes the regression coefficients over a network. In particular, when
γ = 2 and after appropriate rescaling of the regression coefficients, this group Lγ
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penalty simplifies to the group Lasso [Yuan and Lin (2006)] with the nodes in the
network as groups. This method is capable of group selection, but it does not do
individual variable selection. Also, because the group Lγ penalty is convex for
γ > 1, it does not lead to consistent variable selection, even at the group level.

We propose a new penalized method for variable selection and estimation in
sparse, high-dimensional settings that takes into account certain correlation pat-
terns among predictors. We consider a combination of the MCP and Laplacian
quadratic as the penalty function. We call the proposed approach the sparse Lapla-
cian shrinkage (SLS) method. The SLS uses the MCP to promote sparsity and
Laplacian quadratic penalty to encourage smoothness among coefficients associ-
ated with the correlated predictors. An important advantage of the MCP over the �1
penalty is that it leads to estimators that are nearly unbiased and achieve selection
consistency under weaker conditions [Zhang (2010)].

The contributions of this paper are as follows.

• First, unlike the existing methods that use an �1 penalty for selection and a ridge
penalty or a general �2 penalty for dealing with correlated predictors, we use
the MCP to achieve nearly unbiased selection and proposed a concrete class of
quadratics, the Laplacians, for incorporating correlation patterns among predic-
tors in a local fashion. In particular, we suggest to employ the approaches for
network analysis for specifying the Laplacians. This provides an implementable
strategy for incorporating correlation structures in high-dimensional data analy-
sis.

• Second, we prove that the SLS estimator is sign consistent and equal to the ora-
cle Laplacian shrinkage estimator under reasonable conditions. This result holds
for a large class of Laplacian quadratics. An important aspect of this result is that
it allows the number of predictors to be larger than the sample size. In contrast,
the works of Daye and Jeng (2009) and Tutz and Ulbricht (2009) do not contain
such results in p � n models. The selection consistency result of Hebiri and
van de Geer (2010) requires certain strong assumptions on the magnitude of the
smallest regression coefficient (their Assumption C) and on the correlation be-
tween important and unimportant predictors (their Assumption D), in addition
to a variant of the restricted eigenvalue condition (their Assumption B). In com-
parison, our assumption involving the magnitude of the regression coefficients
is weaker and we use a sparse Riese condition instead of imposing restriction on
the correlations among predictors. In addition, our selection results are stronger
in that the SLS estimator is not only sign consistent, but also equal to the oracle
Laplacian shrinkage estimator with high probability. In general, similar results
are not available with the use of the �1 penalty.

• Third, we show that the SLS method is potentially capable of incorporating
correlation structure in the analysis without incurring extra bias. The Enet and
the more general �1 + �2 methods in general introduces extra bias due to the
quadratic penalty, in addition to the bias resulting from the �1 penalty. To the
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best of our knowledge, this point has not been discussed in the existing literature.
We also demonstrate that the SLS has certain local smoothing property with
respect to the graphical structure of the predictors.

• Fourth, unlike in the GRACE method, the SLS does not assume that the graphi-
cal structure for the predictors is known a priori. The SLS uses the existing data
to construct the graph Laplacian or to augment partial knowledge of the graph
structure.

• Fifth, our simulation studies demonstrate that the SLS method outperforms the
�1 penalty plus a quadratic penalty approach as studied in Daye and Jeng (2009)
and Hebiri and van de Geer (2010). In our simulation examples, the SLS in gen-
eral has smaller empirical false discovery rates with comparable false negative
rates. It also has smaller prediction errors.

This paper is organized as follows. In Section 2, we define the SLS estimator. In
Section 3 we discuss ways to construct graph Laplacian, or equivalently, its corre-
sponding adjacency matrix. In Section 4, we study the selection properties of the
SLS estimators. In Section 5, we investigate the properties of Laplacian shrinkage.
In Section 6, we describe a coordinate descent algorithm for computing the SLS
estimators, present simulation results and an application of the SLS method to a
microarray gene expression dataset. Discussions of the proposed method and re-
sults are given in Section 7. Proofs for the oracle properties of the SLS and other
technical details are provided in the Appendix.

2. The sparse Laplacian shrinkage estimator. Consider the linear regres-
sion model

y =
p∑

j=1

xjβj + ε(2.1)

with n observations and p potential predictors, where y = (y1, . . . , yn)
′ is the vec-

tor of n response variables, xj = (x1j , . . . , xnj )
′ is the j th predictor, βj is the j th

regression coefficient and ε = (ε1, . . . , εn)
′ is the vector of random errors. Let

X = (x1, . . . ,xp) be the n × p design matrix. Throughout, we assume that the
response and predictors are centered and the predictors are standardized so that∑n

i=1 x2
ij = n, j = 1, . . . , p. For λ = (λ1, λ2) with λ1 ≥ 0 and λ2 ≥ 0, we propose

the penalized least squares criterion

M(b;λ,γ ) = 1

2n
‖y − Xb‖2 +

p∑
j=1

ρ(|bj |;λ1, γ )

(2.2)

+ 1

2
λ2

∑
1≤j<k≤p

|ajk|(bj − sjkbk)
2,

where ‖ · ‖ denotes the �2 norm, ρ is the MCP with penalty parameter λ1 and reg-
ularization parameter γ , |ajk| measures the strength of the connection between xj
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and xk , and sjk = sgn(ajk) is the sign of ajk , with sgn(t) = −1,0 or 1, respec-
tively, for t < 0,= 0 or > 0. The two penalty terms in (2.2) play different roles.
The first term promotes sparsity in the estimated model. The second term encour-
ages smoothness of the estimated coefficients of the connected predictors. We can
associate the quadratic form in this term with the Laplacian for a suitably defined
undirected weighted graph for the predictors. See the description below. For any
given (λ, γ ), the SLS estimator is

β̂(λ, γ ) = arg min
b

M(b;λ,γ ).(2.3)

The SLS uses the MCP, defined as

ρ(t;λ1, γ ) = λ1

∫ |t |
0

(
1 − x/(γ λ1)

)
+ dx,(2.4)

where for any a ∈ R, a+ is the nonnegative part of a, that is, a+ = a1{a≥0}. The
MCP can be easily understood by considering its derivative,

ρ̇(t;λ1, γ ) = λ1
(
1 − |t |/(γ λ1)

)
+ sgn(t).(2.5)

We observe that the MCP begins by applying the same level of penalization as the
�1 penalty, but continuously reduces that level to 0 for |t | > γλ. The regularization
parameter γ controls the degree of concavity. Larger values of γ make ρ less
concave. By sliding the value of γ from 1 to ∞, the MCP provides a continuum
of penalties with the hard-threshold penalty as γ → 1+ and the convex �1 penalty
at γ = ∞. Detailed discussion of MCP can be found in Zhang (2010).

The SLS also allows the use of different penalties than the MCP for ρ, including
the SCAD [Fan (1997), Fan and Li (2001)] and other quadratic splines. Because
the MCP minimizes the maximum concavity measure and has the simplest form
among nearly unbiased penalties in this family, we choose it as the default penalty
for the SLS. Further discussion of the MCP and its comparison with the LASSO
and SCAD can be found in Zhang (2010) and Mazumder, Friedman and Hastie
(2009).

We express the nonnegative quadratic form in the second penalty term in (2.2)
using a positive semi-definite matrix L, which satisfies

b′Lb = ∑
1≤j<k≤p

|ajk|(bj − sjkbk)
2 ∀b ∈ R

p.

For simplicity, we confine our discussion to the symmetric case where akj =
ajk,1 ≤ j < k ≤ p. Since the diagonal elements ajj do not appear in the
quadratic form, we can define them any way we like for convenience. Let A =
(ajk,1 ≤ j, k ≤ p) and D = diag(d1, . . . , dp), where dj = ∑p

k=1 |ajk|. We have∑
1≤j<k≤p |ajk|(bj − sjkbk)

2 = b′(D − A)b. Therefore, L = D − A. This ma-
trix is associated with a labeled weighted graph G = (V , E ) with vertex set
V = {1, . . . , p} and edge set E = {(j, k) : (j, k) ∈ V × V }. Here the |ajk| is the
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weight of edge (j, k) and dj is the degree of vertex j . The dj is also called the
connectivity of vertex j . The matrix L is called the Laplacian of G and A its signed
adjacency matrix [Chung (1997)]. The edge (j, k) is labeled with the “+” or “−”
sign, but its weight |ajk| is always nonnegative. We use a labeled graph to accom-
modate the case where two predictors can have a nonzero adjacency coefficient but
are negatively correlated. Note that the usual adjacency matrix can be considered
a special case of signed adjacency matrix when all ajk ≥ 0. For simplicity, we will
use the term adjacency matrix below.

We usually require that the adjacency matrix to be sparse in the sense that many
of its entries are zero or nearly zero. With a sparse adjacency matrix, the main
characteristic of the shrinkage induced by the Laplacian penalty is that it occurs
locally for the coefficients associated with the predictors connected in the graph.
Intuitively, this can be seen by writing

λ2
∑

1≤j<k≤p

|ajk|(bj − sjkbk)
2 = 1

2
λ2

∑
(j,k) : ajk �=0

|ajk|(bj − sjkbk)
2.

Thus for λ2 > 0, the Laplacian penalty shrinks bj − sjkbk toward zero for ajk �= 0.
This can also be considered as a type of local smoothing on the graph G associated
with the adjacency matrix A. In comparison, the shrinkage induced by the ridge
penalty used in the Enet is global in that it shrinks all the coefficients toward zero,
regardless of the correlation structure among the predictors. We will discuss the
Laplacian shrinkage in more detail in Section 5.

Using the matrix notation, the SLS criterion (2.2) can be written as

M(b;λ,γ ) = 1

2n
‖y − Xb‖2 +

p∑
j=1

ρ(|bj |;λ1, γ ) + 1

2
λ2b′(D − A)b.(2.6)

Here the Laplacian is not normalized, meaning that the weight dj is not standard-
ized to 1. In problems where predictors should be treated without preference with
respect to connectivity, we can first normalized the Laplacian L∗ = Ip − A∗ with
A∗ = D−1/2AD−1/2 and use the criterion

M∗(b;λ,γ ) = 1

2n
‖y − Xb‖2 +

p∑
j=1

ρ(|bj |;λ1, γ ) + 1

2
λ2b′(Ip − A∗)b.

Technically, a normalized Laplacian L∗ can be considered a special case of a gen-
eral L. We only consider the SLS estimator based on the criterion (2.6) when
studying its properties. In network analysis of gene expression data, genes with
large connectivity also tend to have important biological functions [Zhang and
Horvath (2005)]. Therefore, it is prudent to provide more protection for such genes
in the selection process.
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3. Construction of adjacency matrix. In this section, we describe several
simple forms of adjacency measures proposed by Zhang and Horvath (2005),
which have have been successfully used in network analysis of gene expression
data. The adjacency measure is often defined based on the notion of dissimilarity
or similarity.

(i) A basic and widely used dissimilarity measure is the Euclidean distance.
Based on this distance, we can define adjacency coefficient as ajk = φ(‖xj −
xk‖/√n), where φ : [0,∞) �→ [0,∞). A simple adjacency function is the thresh-
old function φ(x) = 1{x ≤ 2r}. Then

ajk =
{

1, if ‖xj − xk‖/√n ≤ 2r ,
0, if ‖xj − xk‖/√n > 2r .

(3.1)

It is convenient to express ajk in terms of the Pearson’s correlation coefficient
rjk between xj and xk , where rjk = x′

j xk/(‖xj‖‖xk‖). For predictors that are stan-

dardized with ‖xj‖2 = n,1 ≤ j ≤ p, we have ‖xj − xk‖2/n = 2 − 2rjk. Thus in
terms of correlation coefficients, we can write ajk = 1{rjk > r}. We determine the
value of r based on the Fisher transformation zjk = 0.5 log((1+ rjk)/(1− rjk)). If
the correlation between xj and xk is zero,

√
n − 3zjk is approximately distributed

as N(0,1). We can use this to determine a threshold c for
√

n − 3zjk . The corre-
sponding threshold for rjk is r = (exp(2c/

√
n − 3) − 1)/(exp(2c/

√
n − 3) + 1).

We note that here we use the Fisher transformation to change the scale of the
correlation coefficients from [−1,1] to the normal scale for determining the thresh-
old value r , so that the adjacency matrix is relatively sparse. We are not trying to
test the significance of correlation coefficients.

(ii) The adjacency coefficient in (3.1) is defined based on a dissimilarity mea-
sure. Adjacency coefficient can also be defined based on similarity measures. An
often used similarity measure is Pearson’s correlation coefficient rjk . Other corre-
lation measures such as Spearman’s correlation can also be used. Let

sjk = sgn(rjk) and ajk = sjk1{|rjk| > r}.
Here r can be determined using the Fisher transformation as above.

(iii) With the power adjacency function considered in Zhang and Horvath
(2005),

ajk = max(0, rjk)
α and sjk = 1.

Here α > 0 and can be determined by, for example, the scale-free topology crite-
rion.

(iv) A variation of the above power adjacency function is

ajk = |rjk|α and sjk = sgn(rjk).
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For the adjacency matrices given above, (i) and (ii) use dichotomized measures,
whereas (iii) and (iv) use continuous measures. Under (i) and (iii), two covariates
are either positively or not connected/correlated. In contrast, under (ii) and (iv),
two covariates are allowed to be negatively connected/correlated.

There are many other ways for constructing an adjacency matrix. For example,
a popular adjacency measure in cluster analysis is ajk = exp(−‖xj − xk‖2/nτ 2)

for τ > 0. The resulting adjacency matrix A = [ajk] is the Gram matrix associated
with the Gaussian kernel. For discrete covariates, the Pearson correlation coef-
ficient can still be used as a measure of correlation or association between two
discrete predictors or between a discrete predictor and a continuous one. For ex-
ample, for single nucleotide polymorphism data, Pearson’s correlation coefficient
is often used as a measure of linkage disequilibrium (i.e., association) between
two markers. Other measures, such as odds ratio or measure of association based
on contingency table can also be used for rjk .

We note that how to construct the adjacency matrix is problem specific. Dif-
ferent applications may require different adjacency matrices. Since construction
of adjacency matrix is not the focus of the present paper, we will only consider
the use of the four adjacency matrices described above in our numerical studies in
Section 6.

4. Oracle properties. In this section, we study the theoretical properties
of the SLS estimator. Let the true value of the regression coefficient be βo =
(βo

1 , . . . , βo
p)′. Denote O = {j :βo

j �= 0}, which is the set of indices of nonzero
coefficients. Let do = |O| be the cardinality of O. Define

β̂o(λ2) = arg min
b

{
1

2n
‖y − Xb‖2 + 1

2
λ2b′Lb, bj = 0, j /∈ O

}
.(4.1)

This is the oracle Laplacian shrinkage estimator on the set O. Theorems 1
and 2 below provide sufficient conditions under which P(sgn(β̂) �= sgn(βo) or
β̂ �= β̂o) → 0. Thus, under those conditions, the SLS estimator is sign consistent
and equal to β̂o with high probability.

We need the following notation in stating our results. Let � = n−1X′X. For any
A ∪ B ⊆ {1, . . . , p}, vectors v, the design matrix X and V = (vij )p×p , define

vB = (vj , j ∈ B)′, XB = (xj , j ∈ B),

VA,B = (vij , i ∈ A,j ∈ B)|A|×|B|, VB = VB,B.

For example, �B = X′
BXB/n and �O(λ2) = �O + λ2LO . Let |B| denote the car-

dinality of B . Let cmin(λ2) be the smallest eigenvalue of � + λ2L. We use the
following constants to bound the bias of the Laplacian:

C1 = ‖�−1
O (λ2)LOβo

O‖∞,
(4.2)

C2 = ‖{�Oc,O(λ2)�
−1

O (λ2)LO − LOc,O}βo
O‖∞.

We make the following sub-Gaussian assumption on the error terms in (2.1).
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CONDITION (A). For a certain constant ε ∈ (0,1/3),

sup
‖u‖=1

P {u′ε > σt} ≤ e−t2/2, 0 < t ≤
√

2 log(p/ε).

4.1. Convex penalized loss. We first consider the case where �(λ2) = � +
λ2L is positive definite. Since (4.1) is the minimizer of the Laplacian restricted to
the support O, it can be explicitly written as

β̂o
O = (�O + λ2LO)−1X′

O y/n, β̂o
Oc = 0,(4.3)

provided that �O(λ2) is invertible. Its expectation β∗ = Eβ̂o, considered as a tar-
get of the SLS estimator, must satisfy

β∗
O = (�O + λ2LO)−1�Oβo, β∗

Oc = 0.(4.4)

CONDITION (B). (i) cmin(λ2) > 1/γ with ρ(t;λ1, γ ) in (2.2).
(ii) The penalty levels satisfy

λ1 ≥ λ2C2 + σ

√
2 log

(
(p − do)/ε

)
max
j≤p

‖xj‖/n

with C2 in (4.2).
(iii) With {vj , j ∈ O} being the diagonal elements of �−1

O (λ2)�O{�−1
O (λ2)},

min
j∈O

{|β∗
j |(n/vj )

1/2} ≥ σ
√

2 log(do/ε).

Define β∗ = min{|βo
j |, j ∈ O}. If O is an empty set, that is, when all the regres-

sion coefficients are zero, we set β∗ = ∞.

THEOREM 1. Suppose Conditions (A) and (B) hold. Then

P({j : β̂j �= 0} �= O or β̂ �= β̂o) ≤ 3ε.(4.5)

If β∗ ≥ λ2C1 + maxj

√
(2vj/n) log(do/ε) instead of Condition (B)(iii), then

P
(
sgn(β̂) �= sgn(βo) or β̂ �= β̂o) ≤ 3ε.(4.6)

Here note that p,do, γ and cmin(λ2) are all allowed to depend on n.

The probability bound on the selection error in Theorem 1 is nonasymptotic. If
the conditions of Theorem 1 hold with ε → 0, then (4.5) implies selection con-
sistency of the SLS estimator and (4.6) implies sign consistency. The conditions
are mild. Condition (A) concerns the tail probabilities of the error distribution and
is satisfied if the errors are normally distributed. Condition (B)(i) ensures that the
SLS criterion is strictly convex so that the solution is unique. The oracle estimator
β̂o is biased due to the Laplacian shrinkage. Condition (B)(ii) requires a penalty
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level λ1 to prevent this bias and noise to cause false selection of variables in Oc.
Condition (B)(iii) requires that the nonzero coefficients not be too small in order
for the SLS estimator to be able to distinguish nonzero from zero coefficients.

In Theorem 1, we only require cmin(λ2) > 0, or equivalently, � + λ2L to be
positive definite. The matrix � can be singular. This can be seen as follows. The
adjacency matrix partitions the graph into disconnected cliques Vg,1 ≤ g ≤ J , for
some J ≥ 1. Let node jg be a (representative) member of Vg . A node k belongs to
the same clique Vg iff (if and only if) ajgk1ak1k2 · · ·akmk �= 0 through a certain chain
jg → k1 → k2 → ·· · → km → k. Define x̄g = ∑

k∈Vg
ajgk1ak1k2 · · ·akmkxk/|Vg|,

where |Vg| is the cardinality of Vg . The matrix � + λ2L is positive definite iff
b′�b = b′Lb = 0 implies b = 0. Since b′Lb = 0 implies

∑
k∈Vg

bkxk = bjg |Vg|x̄g ,
� + λ2L is positive definite iff the vectors x̄g are linearly independent. This does
not require n ≥ p. In other words, Theorem 1 is applicable to p > n problems as
long as the vectors x̄g are linearly independent.

4.2. The nonconvex case. When �(λ2) = � + λ2L is singular, Theorem 1 is
not applicable. In this case, further conditions are required for the oracle property
to hold. The key condition needed is the sparse Reisz condition, or SRC [Zhang
and Huang (2008)], in (4.9) below. It restricts the spectrum of diagonal subblocks
of �(λ2) up to a certain dimension.

Let X̃ = X̃(λ2) be a matrix satisfying X̃′X̃/n = �(λ2) = X′X/n + λ2L and
ỹ = ỹ(λ2) be a vector satisfying X̃′ỹ = X′y. Define

M̃(b;λ,γ ) = 1

2n
‖ỹ − X̃b‖2 +

p∑
j=1

ρ(|bj |;λ1, γ ).(4.7)

Since M(b;λ,γ ) − M̃(b;λ,γ ) = (‖y‖2 − ‖ỹ‖2)/(2n), the two penalized loss
functions have the same set of local minimizers. For the penalized loss (4.7) with
the data (X̃, ỹ), let

β̂(λ) = δ(X̃(λ2), ỹ(λ2), λ1),(4.8)

where the map δ(X,y, λ1) ∈ R
p defines the MC+ estimator [Zhang (2010)] with

data (X,y) and penalty level λ1. It was shown in Zhang (2010) that δ(X,y, λ1)

depends on (X,y) only through X′y/n and X′X/n, so that different choices of X̃

and ỹ are allowed. One way is to pick ỹ = (y′,0)′ and X̃ = diag(X, (nλ2L)1/2).
Another way is to pick X̃′X̃/n = �(λ2) and ỹ = (X̃′)†X′y of smaller dimensions,
where (X̃′)† is the Moore–Penrose inverse of X̃′.

CONDITION (C). (i) For an integer d∗ and spectrum bounds 0 < c∗(λ2) ≤
c∗(λ2) < ∞,

0 < c∗(λ2) ≤ u′
B�B(λ2)uB ≤ c∗(λ2) < ∞

(4.9)
∀B with |B ∪ O| ≤ d∗,‖uB‖ = 1,
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with d∗ ≥ do(K∗ + 1), γ ≥ c−1∗ (λ2)
√

4 + c∗(λ2)/c∗(λ2) in (2.2), and K∗ =
c∗(λ2)/c∗(λ2) − 1/2.

(ii) With C2 = ‖{�B,O(λ2)�
−1

O (λ2)LO − LB,O}βo
O‖∞,

max
{
1,

√
c∗(λ2)K∗/(K∗ + 1)

}
λ1 ≥ λ2C2 + σ

√
2 log(p/ε)max

j≤p
‖xj‖/n.

(iii) With {vj , j ∈ O} being the diagonal elements of �−1
O (λ2)�O{�−1

O (λ2)},
min
j∈O

{|β∗
j | − γ

(
2
√

c∗(λ2)λ1
)}

(n/vj )
1/2 ≥ σ

√
2 log(do/ε).

THEOREM 2. (i) Suppose Conditions (A) and (C) hold. Let β̂(λ) be as in
(4.8). Then

P({j : β̂j �= 0} �= O or β̂ �= β̂o) ≤ 3ε.(4.10)

If β∗ ≥ λ2C1 + γ (2
√

c∗(λ2)λ1) + maxj

√
(2vj/n) log(do/ε) instead of Condi-

tion (C)(iii), then

P
(
sgn(β̂) �= sgn(βo) or β̂ �= β̂o) ≤ 3ε.(4.11)

Here note that p, γ , do, d∗, K∗, ε, c∗(λ2) and c∗(λ2) are all allowed to depend
on n, including the case c∗(λ2) → 0 as long as the conditions hold as stated.

(ii) The statements in (i) also hold for all local minimizers β̂ of (2.6) or (4.7)
satisfying #{j /∈ O : β̂j �= 0} + do ≤ d∗.

If the conditions of Theorem 2 hold with ε → 0, then (4.10) implies selection
consistency of the SLS estimator and (4.11) implies sign consistency.

Condition (C), designed to handle the noncovexity of the penalized loss, is a
weaker version of Condition (B) in the sense of allowing singular �(λ2). The
SRC (4.9), depending on X or X̃ only through the regularized Gram matrix
X̃′X̃/n = �(λ2) = � + λ2L, ensures that the model is identifiable in a lower d∗-
dimensional space. When p > n, the smallest singular value of X is always zero.
However, the requirement c∗(λ2) > 0 only concerns d∗ × d∗ diagonal submatrices
of �(λ2), not the Gram matrix � of the design matrix X. We can have p � n but
still require d∗/do ≥ K∗ + 1 as in (4.9). Since p,d0, γ , d∗, K∗, c∗(λ2) and c∗(λ2)

can depend on n, we allow the case c∗(λ2) → 0 as long as Conditions (A) and
(C) hold as stated. Thus, we allow p � n but require that the model is sparse, in
the sense that the number of nonzero coefficients do is smaller than d∗/(1 + K∗).
For example, if c∗(λ2) � O(n−α) for a small α > 0 and c∗(λ2) � O(1), then we
require γ � O(n3α/2) or greater, K∗ � O(nα) and d∗/do � O(nα) or greater. So
all these quantities can depend on n, as long as the other requirements are met in
Condition (C).

By examining the Conditions (C)(ii) and (C)(iii), for standardized predictors
with ‖xj‖ = √

n, we can have log(p/ε) = o(n) or p = ε exp(o(n)) as long as
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Condition (C)(ii) is satisfied. As in Zhang (2010), under a somewhat stronger ver-
sion of Condition (C), Theorem 2 can be extended to quadratic spline concave
penalties satisfying ρ(t;λ1, γ ) = λ2

1ρ(t/λ;γ ) with a penalty function satisfying
(∂/∂t)ρ(t;γ ) = 1 at t = 0+ and 0 for t > γ .

Also, comparing our results with the selection consistency results of Hebiri and
van de Geer (2010) on the smoothed �1 + �2-penalized methods, our conditions
tend to be weaker. Notably, Hebiri and van de Geer (2010) require an condition
on the Gram matrix which assumes that the correlations between the truly relevant
variables and those which are not are small. No such assumption is required for our
selection consistency results. In addition, our selection results are stronger in the
sense that the SLS estimator is not only sign consistent, but also equal to the oracle
Laplacian shrinkage estimator with high probability. In general, similar results are
not available with the use of the �1 penalty for sparsity.

Theorem 2 shows that the SLS estimator automatically adapts to the sparseness
of the p-dimensional model and the denseness of a true submodel. From a sparse
p-model, it correctly selects the true underlying model O. This underlying model
is a dense model in the sense that all its coefficients are nonzero. In this dense
model, the SLS estimator behaves like the oracle Laplacian shrinkage estimator
in (4.1). As in the convex penalized loss setting, here the results do not require a
correct specification of a population correlation structure of the predictors.

4.3. Unbiased Laplacian and variance reduction. There are two natural ques-
tions concerning the SLS. First, what are the benefits from introducing the Lapla-
cian penalty? Second, what kind of Laplacian L constitutes a reasonable choice?
Since the SLS estimator is equal to the oracle Laplacian estimator with high proba-
bility by Theorem 1 or 2, these questions can be answered by examining the oracle
Laplacian shrinkage estimator (4.1), whose nonzero part is

β̂o
O(λ2) = �−1

O (λ2)X
′

O y/n.

Without the Laplacian, that is, when λ2 = 0, it becomes the least squares (LS)
estimator

β̂o
O(0) = �−1

O X′
O y/n.

If some of the predictors in {xj , j ∈ O} are highly correlated or |O| ≥ n, the LS
estimator β̂o

O(0) is not stable or unique. In comparison, as discussed below Theo-
rem 1, �O(λ2) = �O + λ2LO can be a full rank matrix under a reasonable condi-
tion, even if the predictors in {xj , j ∈ O} are highly correlated or |O| ≥ n.

For the second question, we examine the bias of β̂o
O(λ2). Since the bias of the

target vector (4.4) is βo
O − β∗

O(λ2) = λ2�
−1

O (λ2)LOβo
O , β̂o

O(λ2) is unbiased iff
LOβo

O = 0. Therefore, in terms of bias reduction, a Laplacian L is most appro-
priate if the condition LOβo

O = 0 is satisfied. We shall say that a Laplacian L is
unbiased if LOβo

O = 0. It follows from the discussion at the end of Section 4.1 that
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LOβo
O = 0 if βo

k = βo
jg

ajgk1ak1k2 · · ·akmk , where jg is a representative member of
the clique Vg ∩ O and {k1, . . . , km, k} ⊆ Vg ∩ O.

With an unbiased Laplacian, the mean square error of β̂o
O(λ2) is

E‖β̂o
O(λ2) − βo

O‖2 = σ 2

n
trace(�−1

O (λ2)�O�−1
O (λ2)).

The mean square error of β̂O(0) is

E‖β̂o
O(0) − βo

O‖2 = σ 2

n
trace(�−1

O ).

We always have E‖β̂o
O(λ2)−βo

O‖2 < E‖β̂o
O(0)−βo

O‖2 for λ2 > 0. Therefore, an
unbiased Laplacian reduces variance without incurring any bias on the estimator.

5. Laplacian shrinkage. The results in Section 4 show that the SLS estima-
tor is equal to the oracle Laplacian shrinkage estimator with probability tending
to one under certain conditions. In addition, an unbiased Laplacian reduces vari-
ance but does not increase bias. Therefore, to study the shrinkage effect of the
Laplacian penalty on β̂ , we can consider the oracle estimator β̂o

O . To simplify the
notation and without causing confusion, in this section, we study some other basic
properties of the Laplacian shrinkage and compare it with the ridge shrinkage. The
Laplacian shrinkage estimator is defined as

β̃(λ2) = arg min
b

{
G(b;λ2) ≡ 1

2n
‖y − Xb‖2 + 1

2
λ2b′Lb,b ∈ R

q

}
.(5.1)

The following proposition shows that the Laplacian penalty shrinks a coefficient
toward the center of all the coefficients connected to it.

PROPOSITION 1. Let r̃ = y − Xβ̃ .
(i)

λ2 max
1≤j≤q

dj |β̃j − a′
j β̃/dj | ≤ ‖r̃‖ ≤ ‖y‖.

(ii)

λ2|dj β̃j − a′
j β̃ − (dkβ̃k − a′

kβ̃)| ≤ 1

n
‖xj − xk‖‖y‖.

Note that a′
j β̃/dj = ∑q

k=1 ajkβ̃k/dj = ∑q
k=1 sgn(ajk)|ajk|β̃k/dj is a signed

weighted average of the β̃k’s connected to β̃j , since dj = ∑
k |ajk|. Part (i) of

Proposition 1 provides an upper bound on the difference between β̃j and the cen-
ter of all the coefficients connected to it. When ‖r̃‖/(λ2dj ) → 0, this difference
converges to zero. For standardized dj = 1, part (ii) implies that the difference be-
tween the centered β̃j and β̃k converges to zero when ‖xj − xk‖‖y‖/(λ2n) → 0.
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When there are certain local structures in the adjacency matrix A, shrinkage
occurs at the local level. As an example, we consider the adjacency matrix based
on partition of the predictors into 2r-balls defined in (3.1). Correspondingly, the
index set {1, . . . , q} is divided into disjoint neighborhoods/cliques V1, . . . , VJ . We
consider the normalized Laplacian L = Iq −A, where Iq is a q ×q identity matrix
and A = diag(A1, . . . ,AJ ) with Ag = v−1

g 1′
g1. Here vg = |Vg|,1 ≤ g ≤ J . Let

bg = (bj , j ∈ Vg)
′. We can write the objective function as

G(b;λ2) = 1

2n
‖y − Xb‖2 + 1

2
λ2

J∑
g=1

b′
g(Ig − v−1

g 1′
g1g)bg.(5.2)

For the Laplacian shrinkage estimator based on this criterion, we have the follow-
ing grouping properties.

PROPOSITION 2. (i) For any j, k ∈ Vg,1 ≤ g ≤ J ,

λ2|β̃j − β̃k| ≤ 1

n
‖xj − xk‖ · ‖y‖, j, k ∈ Vg.

(ii) Let β̄g be the average of the estimates in Vg . For any j ∈ Vg and k ∈ Vh,
g �= h,

λ2|β̃j − β̄g − (β̃k − β̄h)| ≤ 1

n
‖xj − xk‖ · ‖y‖, j ∈ Vg, k ∈ Vh.

This proposition characterizes the smoothing effect and grouping property of
the Laplacian penalty in (5.2). Consider the case ‖y‖2/n = O(1). Part (i) implies
that, for j and k in the same neighborhood and λ2 > 0, the difference β̃j − β̃k → 0
if ‖xj − xk‖/(λ2n

1/2) → 0. Part (ii) implies that, for j and k in different neigh-
borhoods and λ2 > 0, the difference between the centered β̃j and β̃k converges to
zero if ‖xj − xk‖/(λ2n

1/2) → 0.
We now compare the Laplacian shrinkage and ridge shrinkage. The discussion

at the end of Section 4 about the requirement for the unbiasedness of Laplacian can
be put in a wider context when a general positive definite or semidefinite matrix Q

is used in the place of L. This wider context includes the Laplacian shrinkage and
ridge shrinkage as special cases. Specifically, let

β̂Q(λ, γ ) = arg min
b

1

2n
‖y − Xb‖2 +

p∑
j=1

ρ(|bj |;λ1, γ ) + 1

2
λ2b′Qb.

For Q = Ip , β̂Q becomes the Mnet estimator [Huang et al. (2010a)]. With some
modifications on the conditions in Theorem 1 or Theorem 2, it can be shown that
β̂Q is equal to the oracle estimator defined as

β̂o
Q(λ2) = arg min

b

{
1

2n
‖y − Xb‖2 + 1

2
b′Qb, bj = 0, j /∈ O

}
.
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Then in a way similar to the discussion in Section 4, β̂Q is nearly unbiased iff
QOβo

O = 0. Therefore, for ‖βo
O‖ �= 0, QO must be a rank deficient matrix, which

in turn implies that Q must be rank deficient. Note that any Laplacian L is rank de-
ficient. This rank deficiency requirement excludes the ridge penalty with Q = Ip .
For the ridge penalty to yield an unbiased estimator, it must hold that ‖βo‖ = 0 in
the underlying model.

We now give a simple example that illustrates the basic characteristics of Lapla-
cian shrinkage and its differences from ridge shrinkage.

EXAMPLE 5.1. Consider a linear regression model with two predictors sat-
isfying ‖xj‖2 = n, j = 1,2. The Laplacian shrinkage and ridge estimators are
defined as

(b̂L1(λ2), b̂L2(λ2)) = arg min
b1,b2

1

2n

n∑
i=1

(yi − xi1b1 − xi2b2)
2 + 1

2
λ2(b1 − b2)

2

and

(b̂R1(λ2), b̂R2(λ2)) = arg min
b1,b2

1

2n

n∑
i=1

(yi − xi1b1 − xi2b2)
2 + 1

2
λ2(b

2
1 + b2

2).

Denote r1 = cor(x1,y), r2 = cor(x2,y) and r12 = cor(x1,x2). The Laplacian
shrinkage estimates are

b̂L1(λ2) = (1 + λ2)r1 − (r12 − λ2)r2

(1 + λ2)2 − (r12 − λ2)2 , b̂L2(λ2) = (1 + λ2)r2 − (r12 − λ2)r1

(1 + λ2)2 − (r12 − λ2)2 .

Let

b̂ols1 = r1 − r12r2

1 − r2
12

, b̂ols2 = r2 − r12r1

1 − r2
12

, b̂L(∞) = r1 + r2

2(1 + r12)
,

where (b̂ols1, b̂ols2) is the ordinary least squares (OLS) estimator for the bivari-
ate regression, b̂L(∞) is the OLS estimator that assumes the two coefficients are
equal, that is, it minimizes

∑n
i=1(yi − (xi1 + xi2)b)2. Let wL = (2λ2)/(1 − r12 +

2λ2). After some simple algebra, we have

b̂L1(λ2) = (1 − wL)b̂ols1 + wLb̂L(∞)

and

b̂L2(λ2) = (1 − wL)b̂ols2 + wLb̂L(∞).

Thus, for any fixed λ2, b̂L(λ2) is a weighted average of b̂ols and b̂L(∞) with
the weights depending on λ2. When λ2 → ∞, b̂L1 → b̂L(∞) and b̂L2 → b̂L(∞).

Therefore, the Laplacian penalty shrinks the OLS estimates toward a common
value, which is the OLS estimate assuming equal regression coefficients.
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Now consider the ridge regression estimator. We have

b̂R1(λ2) = (1 + λ2)r1 − r12r2

(1 + λ2)2 − r2
12

and b̂R2(λ2) = (1 + λ2)r2 − r12r1

(1 + λ2)2 − r2
12

.

The ridge estimator converges to zero as λ2 → ∞. For it to converge to a nontrivial
solution, we need to rescale it by a factor of 1 +λ2. Let wR = λ/(1 +λ− r2

12). Let
b̂u1 = r1 and b̂u2 = r2. Because n−1 ∑n

i=1 x2
i1 = 1 and n−1 ∑n

i=1 x2
i2 = 1, r1 and

r2 are also the OLS estimators of univariate regressions of y on x1 and y on x2,
respectively. We can write

(1 + λ2)b̂R1(λ2) = cλ2(1 − wR)b̂ols1 + cλwRb̂u1,

(1 + λ2)b̂R2(λ2) = cλ2(1 − wR)b̂ols2 + cλwRb̂u2,

where cλ2 = {(1 + λ2)
2 − (1 + λ)r2

12}/{(1 + λ2)
2 − r2

12}. Note that cλ2 ≈ 1. Thus,

(1 + λ2)b̂R is a weighted average of the OLS and the univariate regression esti-
mators. The ridge penalty shrinks the (rescaled) ridge estimates toward individual
univariate regression estimates.

6. Simulation studies. We use a coordinate descent algorithm to compute
the SLS estimate. This algorithm optimizes a target function with respect to a sin-
gle parameter at a time and iteratively cycles through all parameters until conver-
gence. This algorithm was originally proposed for criterions with convex penal-
ties such as LASSO [Fu (1998), Genkin, Lewis and Madigan (2004), Friedman
et al. (2007), Wu and Lange (2008)]. It has been proposed to calculate the MCP
estimates [Breheny and Huang (2011)]. Detailed steps of this algorithm for com-
puting the SLS estimates can be found in the technical report accompanying this
paper [Huang et al. (2010b)].

In simulation studies, we consider the following ways of defining the adjacency
measure. (N.1) ajk = I (rjk > r) and sjk = 1. Here the cutoff r is computed as
3.09 using the approach described in Section 3 with a p-value of 10−3; (N.2) ajk =
I (|rjk| > r) and sjk = sgn(rjk). Here the cutoff r is computed as 3.29 using the
approach described in Section 3 with a p-value of 10−3; (N.3) ajk = max(0, rjk)

α

and sjk = 1. We set α = 6, which satisfies the scale-free topology criteria [Zhang
and Horvath (2005)]; (N.4) ajk = rα

jk and sjk = sgn(rjk). We set α = 6.
The penalty levels λ1 and λ2 are selected using V -fold cross validation. In our

numerical study, we set V = 5. To reduce computational cost, we search over the
discrete grid of 2...,−1,−0.5,0,0.5,.... For comparison, we also consider the MCP esti-
mate and the approach proposed in Daye and Jeng (2009); referred to as D–J here-
after. Both the SLS and MCP involve the regularization parameter γ . For MCP,
Zhang (2010) suggested using γ = 2/(1 − maxj �=k |x′

j xk|/n) for standardized co-
variates. The average γ value of this choice is 2.69 in his simulation studies. The
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simulation studies in Breheny and Huang (2011) suggest that γ = 3 is a reason-
able choice. We have experimented with different γ values and reached the same
conclusion. Therefore, we set γ = 3.

We set n = 100 and p = 500. Among the 500 covariates, there are 100 clusters,
each with size 5. We consider two different correlation structures. (I) Covariates
in different clusters are independent, whereas covariates i and j within the same
cluster have correlation coefficients ρ|i−j |; and (II) covariates i and j have cor-
relation coefficients ρ|i−j |. Under structure I, zero and nonzero effects are inde-
pendent, whereas under structure II, they are correlated. Covariates have marginal
normal distributions with mean zero and variance one. We consider different lev-
els of correlation with ρ = 0.1,0.5,0.9. Among the 500 covariates, the first 25
(5 clusters) have nonzero regression coefficients. We consider the following sce-
narios for nonzero coefficients: (a) all the nonzero coefficients are equal to 0.5; and
(b) the nonzero coefficients are randomly generated from the uniform distribution
on [0.25,0.75]. In (a), the Laplacian matrices satisfy the unbiasedness property
Lβo = 0 discussed in Section 4. We have experienced with other levels of nonzero
regression coefficients and reached similar conclusions.

We examine the accuracy of identifying nonzero covariate effects and the pre-
diction performance. For this purpose, for each simulated dataset, we simulate an
independent testing dataset with sample size 100. We conduct cross validation (for
tuning parameter selection) and estimation using the training set only. We then
make prediction for subjects in the testing set and compute the PMSE (prediction
mean squared error).

We simulate 500 replicates and present the summary statistics in Table 1. We
can see that the MCP performs satisfactorily when the correlation is small. How-
ever, when the correlation is high, it may miss a considerable number of true pos-
itives and have large prediction errors. The D–J approach, which can also accom-
modate the correlation structure, is able to identify all the true positives. However,
it also identifies a large number of false positives, causing by the over-selection
of the Lasso penalty. The proposed SLS approach outperforms the MCP and D–J
methods in the sense that it has smaller empirical false discovery rates with com-
parable false negative rates. It also has significantly smaller prediction errors.

6.1. Application to a microarray study. In the study reported in Scheetz et al.
(2006), F1 animals were intercrossed and 120 twelve-week-old male offspring
were selected for tissue harvesting from the eyes and microarray analysis using
the Affymetric GeneChip Rat Genome 230 2.0 Array. The intensity values were
normalized using the RMA [robust multi-chip averaging, Bolstad et al. (2003),
Irizarry et al. (2003)] method to obtain summary expression values for each probe
set. Gene expression levels were analyzed on a logarithmic scale. For the probe
sets on the array, we first excluded those that were not expressed in the eye or that
lacked sufficient variation. The definition of expressed was based on the empirical
distribution of RMA normalized values. For a probe set to be considered expressed,
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TABLE 1
Simulation study: median based on 500 replicates. In each cell, the three numbers are positive findings, true positives and PMSE ×100, respectively

D–J SLS

Coefficient ρ MCP N.1 N.2 N.3 N.4 N.1 N.2 N.3 N.4

Correlation structure I

0.5 0.1 27 25 41.33 61 25 125.34 53 25 46.64 55 25 60.14 59 25 51.24 27 25 40.53 27 25 39.84 26 25 41.74 27 25 39.34
0.5 28 25 54.10 51 25 66.38 67 25 66.84 72 25 56.22 63 25 53.43 27 25 37.71 28 25 39.18 28 25 33.87 27 25 36.00
0.9 22 15 137.52 66 25 55.51 55 25 56.94 61 25 49.22 74 25 51.41 29 25 48.89 28 25 49.96 29 25 45.16 27 25 41.49

U [0.25, 0.1 37 25 52.24 72 25 54.28 61 25 88.00 59 25 70.00 78 25 60.51 33 25 51.80 36 25 52.19 30 25 53.03 30 25 52.22
0.75] 0.5 29 24 65.12 66 25 78.76 54 25 72.34 63 25 63.55 57 25 66.33 28 25 42.24 28 25 43.96 27 24 54.72 28 24 58.77

0.9 17 13 152.42 67 25 63.43 62 25 57.30 50 25 53.88 74 25 57.98 29 25 47.73 29 25 49.14 27 25 48.49 28 25 50.83

Correlation structure II

0.5 0.1 26 25 38.22 62 25 121.69 58 25 117.10 63 25 127.34 72 25 122.34 27 25 40.33 27 25 40.65 27 25 41.49 27 25 37.40
0.5 29 25 53.01 52 25 55.99 49 25 62.04 66 25 62.70 65 25 64.41 27 25 36.97 28 25 39.47 28 25 38.53 27 25 39.53
0.9 15 13 140.69 48 25 55.75 34 25 56.71 32 25 60.27 38 25 59.78 29 25 66.79 29 25 60.52 29 25 57.91 30 25 60.19

U [0.25, 0.1 37 25 54.31 77 25 60.02 72 25 66.14 74 25 78.32 66 25 74.50 29 25 50.05 32 25 51.34 37 25 50.74 29 25 49.47
0.75] 0.5 27 24 57.66 74 25 61.71 66 25 67.54 75 25 62.01 74 25 66.91 28 25 44.92 28 25 46.65 28 25 41.35 28 25 41.17

0.9 14 13 136.49 33 25 61.50 35 25 55.08 34 25 54.54 38 25 60.67 29 25 56.87 29 25 57.03 30 25 53.28 30 25 56.79



SPARSE LAPLACIAN SHRINKAGE ESTIMATOR 2039

the maximum expression value observed for that probe among the 120 F2 rats was
required to be greater than the 25th percentile of the entire set of RMA expression
values. For a probe to be considered “sufficiently variable,” it had to exhibit at least
2-fold variation in expression level among the 120 F2 animals.

We are interested in finding the genes whose expression are most variable and
correlated with that of gene TRIM32. This gene was recently found to cause
Bardet–Biedl syndrome [Chiang et al. (2006)], which is a genetically heteroge-
neous disease of multiple organ systems including the retina. One approach to find
the genes related to TRIM32 is to use regression analysis. Since it is expected
that the number of genes associated with gene TRIM32 is small and since we are
mainly interested in genes whose expression values across samples are most vari-
able, we conduct the following initial screening. We compute the variances of gene
expressions and select the top 1,000. We then standardize gene expressions to have
zero mean and unit variance.

We analyze data using the MCP, D–J, and proposed approach. In cross valida-
tion, we set V = 5. The numbers of genes identified are MCP: 23, D–J: 31 (N.1), 41
(N.2), 34 (N.3), 30 (N.4), SLS: 25 (N.1), 26 (N.2), 16 (N.3) and 17 (N.4), respec-
tively. More detailed results are available from the authors. Different approaches
and different ways of defining the adjacency measure lead to the identification of
different genes. As expected, the SLS identifies shorter lists of genes than the D–J,
which may lead to more parsimonious models and more focused hypothesis for
confirmation. As the proposed approach pays special attention to the correlation
among genes, we also compute the median of the absolute values of correlations
among the identified genes, which are MCP: 0.171, D–J: 0.201 (N.1), 0.207 (N.2),
0.215 (N.3), 0.206 (N.4), SLS: 0.247 (N.1), 0.208 (N.2), 0.228 (N.3), 0.212 (N.4).
The D–J and SLS, which incorporate correlation in the penalty, identify genes that
are more strongly correlated than the MCP. The SLS identified genes have slightly
higher correlations than those identified by D–J.

Unlike in simulation study, we are not able to evaluate true and false positives.
This limitation is shared by most existing studies. We use the following V -fold
(V = 5) cross validation based approach to evaluate prediction. (a) Randomly split
data into V -subsets with equal sizes; (b) Remove one subset from data; (c) Conduct
cross validation and estimation using the rest V − 1 subsets; (d) Make prediction
for the one removed subset; (e) Repeat Steps (b)–(d) over all subsets and compute
the prediction error. The sums of squared prediction errors are MCP: 1.876; D–J:
1.951 (N.1), 1.694 (N.2), 1.534 (N.3) and 1.528 (N.4); SLS: 1.842 (N.1), 1.687
(N.2), 1.378 (N.3) and 1.441 (N.4), respectively. The SLS has smaller cross vali-
dated prediction errors, which may indirectly suggest better selection properties.

7. Discussion. In this article, we propose the SLS method for variable selec-
tion and estimation in high-dimensional data analysis. The most important feature
of the SLS is that it explicitly incorporates the graph/network structure in pre-
dictors into the variable selection procedure through the Laplacian quadratic. It
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provides a systematic framework for connecting penalized methods for consistent
variable selection and those for network and correlation analysis. As can be seen
from the methodological development, the application of the SLS variable selec-
tion is relatively independent of the graph/network construction. Thus, although
graph/network construction is of significant importance, it is not the focus of this
study and not thoroughly pursued.

An important feature of the SLS method is that it incorporates the correlation
patterns of the predictors into variable selection through the Laplacian quadratic.
We have considered two simple approaches for determining the Laplacian based
on dissimilarity and similarity measures. Our simulation studies demonstrate that
incorporating correlation patterns improves selection results and prediction perfor-
mance. Our theoretical results on the selection properties of the SLS are applicable
to a general class of Laplacians and do not require the underlying graph for the pre-
dictors to be correctly specified.

We provide sufficient conditions under which the SLS estimator possesses an
oracle property, meaning that it is sign consistent and equal to the oracle Laplacian
shrinkage estimator with high probability. We also study the grouping properties
of the SLS estimator. Our results show that the SLS is adaptive to the sparseness of
the original p-dimensional model with p � n and the denseness of the underlying
do-dimensional model, where do < n is the number of nonzero coefficients. The
asymptotic rates of the penalty parameters are derived. However, as in many recent
studies, it is not clear whether the penalty parameters selected using cross valida-
tion or other procedures can match the asymptotic rate. This is an important and
challenging problem that requires further investigation, but is beyond the scope of
the current paper. Our numerical study shows a satisfactory finite-sample perfor-
mance of the SLS. Particularly, we note that the cross validation selected tuning
parameters seem sufficient for our simulated data. We are only able to experiment
with four different adjacency measures. It is not our intention to draw conclusions
on different ways of defining adjacency. More adjacency measures are hence not
explored.

We have focused on the linear regression model in this article. However, the
SLS method can be applied to general linear regression models. Specifically, for
general linear models, the SLS criterion can be formulated as

1

n

n∑
i=1

�

(
yi, b0 + ∑

j

xij bj

)
+

p∑
j=1

ρ(|bj |;λ1, γ )

+ 1

2
λ2

∑
1≤j<k≤p

|ajk|(bj − sjkbk)
2,

where � is a given loss function. For instance, for generalized linear models such
as logistic regression, we can take � to be the negative log-likelihood function.
For Cox regression, we can use the negative partial likelihood as the loss function.
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Computationally, for loss functions other than least squares, the coordinate descent
algorithm can be applied iteratively to quadratic approximations to the loss func-
tion. However, further work is needed to study theoretical properties of the SLS
estimators for general linear models.

There is a large literature on the analysis of network data and much work
has also been done on estimating sparse covariance matrices in high-dimensional
settings. See, for example, Zhang and Horvath (2005), Chung and Lu (2006),
Meinshausen and Bühlmann (2006), Yuan and Lin (2007), Friedman, Hastie and
Tibshirani (2008), Fan, Feng and Wu (2009), among others. It would be useful
to study ways to incorporate these methods and results into the proposed SLS
approach. In some problems such as genomic data analysis, partial external infor-
mation may also be available on the graphical structure of some genes used as pre-
dictors in the model. It would be interesting to consider approaches for combining
external information on the graphical structure with existing data in constructing
the Laplacian quadratic penalty.

APPENDIX

In this Appendix, we give proofs of Theorems 1 and 2 and Propositions 1 and 2.

PROOF OF THEOREM 1. Since cmin(λ2) > 1/γ , the criterion (2.2) is strictly
convex and its minimizer is unique. Let X̃ = X̃(λ2) = √

n(� + λ2L)1/2, ỹ =
ỹ(λ2) = X̃−1X′y and

M̃(b;λ,γ ) = (2n)−1‖ỹ − X̃b‖2 +
p∑

j=1

ρ(|bj |;λ1, γ ).

Since X̃′(X̃/n, ỹ) = (� + λ2L,X′y), M(b;λ,γ ) − M̃(b;λ,γ ) = (‖y‖2 − ‖ỹ‖2)/

(2n) does not depend on b. Thus, β̂ is the minimizer of M̃(b;λ,γ ).
Since |β̂o

j | ≥ γ λ1 gives ρ′(|β̂o
j |;λ1) = 0, the KKT conditions hold for M̃(b;

λ,γ ) at β̂(λ) = β̂o(λ) in the intersection of the events

�1 = {‖X̃′
Oc (ỹ − X̃β̂o)/n‖∞ ≤ λ1}, �2 =

{
min
j∈O

sgn(β∗
j )β̂o

j ≥ γ λ1

}
.(A.1)

Let ε̃∗ = ỹ − X̃β∗ = ε̃ + Eε̃∗ with ε̃ = ỹ − Eỹ. Since X̃′ỹ = X′y and both βo and
β∗ are supported in O,

X̃′
BEε̃∗/n = X′

BXβo/n − X̃′
BX̃β∗/n

= �B,Oβo
O − �B,O(λ2)�

−1
O (λ2)�Oβo

O(A.2)

= λ2{�B,O(λ2)�
−1

O (λ2)LO − LB,O}βo
O,

which describes the effect of the bias of β̂o on the gradient in the linear model
ỹ = X̃β∗ + ε̃∗. Since X̃′

OEε̃∗/n = 0, we have ‖X̃′Eε̃∗/n‖∞ = λ2C2.
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Since X̃′ε̃ = X̃′ỹ − EX̃′ỹ = X′y − EX′y = X′ε, (A.2) gives

�1 ⊆ {‖X′
Ocε/n‖∞ < λ1 − λ2C2}.(A.3)

Since β∗ = Eβ̂o, β̂o
O = �−1

O (λ2)X
′

O y/n can be written as β∗
O + ((vj /n)1/2u′

jε,

j ∈ O)′, where ‖uj‖ = 1 and {vj , j ∈ O} are the diagonal elements of �−1
O (λ2) ×

�O{�−1
O (λ2)}. Thus,

�c
2 ⊆ ⋃

j∈O

{
sgn(β∗

j )u′
jε ≥ (n/vj )

1/2|β∗
j | ≥ σ

√
2 log(|O|/ε)}.(A.4)

Since λ1 ≥ λ2C2 + σ
√

2 log(p/ε)maxj≤p ‖xj‖/n, the sub-Gaussian Condi-
tion (A) yields

1 − P {�1 ∩ �2} ≤ P
{
‖X′

Ocε/n‖∞ > σ

√
2 log

(
(p − |O|)/ε)

max
j≤p

‖xj‖/n
}

+ ∑
j∈O

P
{
sgn(β∗

j )u′
jε ≥ σ

√
2 log(|O|/ε)}

≤ 2|Oc|ε/(p − |O|) + |O|ε/|O| = 3ε.

The proof of (4.5) is complete, since β̂o
j �= 0 for all j ∈ O in �2.

For the proof of (4.6), we have ‖β∗
O − βo

O‖∞ = λ2C1 due to

β∗
O − βo

O = �−1
O (λ2)�Oβo

O − βo
O = −λ2�

−1
O (λ2)LOβo

O.(A.5)

It follows that the condition on β∗ implies Condition (B)(iii) with sgn(β∗
O) =

sgn(βo
O) = sgn(β̂o

O) in �2. �

PROOF OF THEOREM 2. For m ≥ 1 and vectors u in the range of X̃, define

ζ̃ (v;m, O, λ2)
(A.6)

= max
{‖(P̃B − P̃O)v‖2

(mn)1/2 : O ⊆ B ⊆ {1, . . . .p}, |B| = m + |O|
}
,

where P̃B = X̃B(X̃′
BX̃B)−1X̃′

B . Here ζ̃ depends on λ2 through P̃ . Since β̂(λ) is
the MC+ estimator based on data (X̃, ỹ) at penalty level λ1 and (4.9) holds for
�(λ2) = X̃′X̃/n, the proof of Theorem 5 in Zhang (2010) gives β̂(λ) = β̂o(λ) in
the event � = ⋂3

j=1 �j , where �1 = {‖X̃′
Oc (ỹ − X̃β̂o)/n‖∞ ≤ λ1} is as in (A.1)

and

�2 =
{
min
j∈O

sgn(β∗
j )β̂o

j > γ
(
2
√

c∗λ1
)}

,

�3 = {ζ(ỹ − X̃β∗;d∗ − |O|, O, λ2) ≤ λ1}.
Note that (λ1,ε, λ2,ε, λ3,ε, α) in Zhang (2010) is identified with (λ1,2

√
c∗λ1, λ1,

1/2) here.
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Let ε̃∗ = ỹ − X̃β∗ = ε̃ + Eε̃∗ with ε̃ = ỹ − Eỹ. Since X̃′ỹ = X′y, (A.2) still
holds with ‖X̃′Eε̃∗/n‖∞ = λ2C2. Since X̃′ε̃ = X′y − EX′y = X′ε, (A.2) still
gives (A.3). A slight modification of the argument for (A.4) yields

�c
2 ⊆ ⋃

j∈O

{
sgn(β∗

j )u′
jε ≥ (n/vj )

1/2(|β∗
j | − γ

(
2
√

c∗λ1
))

(A.7)
≥ σ

√
2 log(|O|/ε)}.

For |B| ≤ d∗, we have ‖P̃BEε̃∗‖/√n = ‖�−1/2
B (λ2)X̃

′
BEε̃∗‖/n ≤ ‖X̃′

BEε̃∗/
n‖∞

√|B|/c∗(λ2) and ‖P̃B ε̃‖/√n = ‖�−1/2
B (λ2)X̃

′
B ε̃‖/n ≤ ‖X′

Bε/n‖∞ ×√|B|/c∗(λ2). Thus, by (A.6)

ζ(ỹ − X̃β∗;d∗ − |O|, O, λ2) = ζ(ε̃ + Eε̃∗;d∗ − |O|, O, λ2)

≤ (‖X′ε/n‖∞ + λ2C2)
√

d∗
√

(d∗ − |O|)c∗(λ2)
.

Since |O| ≤ d∗/(K∗ + 1), this gives

�3 ⊆ {‖X′ε/n‖∞ <
√

c∗(λ2)K∗/(K∗ + 1)λ1 − λ2C2
}
.(A.8)

Since max{1,
√

c∗(λ2)K∗/(K∗ + 1)}λ1 ≥ λ2C2 + σ
√

2 log(p/ε)maxj≤p ‖xj‖/n,
(A.3), (A.7), (A.8) and Condition (A) imply

1 − P {�1 ∩ �3} + P {�c
2}

≤ P
{
‖X′ε/n‖∞ > σ

√
2 log(p/ε)max

j≤p
‖xj‖/

n
}

+ ∑
j∈O

P
{
sgn(β∗

j )u′
jε ≥ σ

√
2 log(|O|/ε)}

≤ 2p(ε/p) + |O|ε/|O| = 3ε.

The proof of (4.10) is complete, since β̂o
j �= 0 for all j ∈ O in �2. We omit the

proof of (4.11) since it is identical to that of (4.6). �

PROOF OF PROPOSITION 1. The β̃ satisfies

−1

n
x′
j (y − Xβ̃) + λ2(dj β̃j − a′

j β̃) = 0, 1 ≤ j ≤ q.(A.9)

Therefore, by Cauchy–Schwarz and using ‖xj‖2 = n, we have

λ2 max
1≤j≤q

|dj β̃j − a′
j β̃| ≤ 1

n
max

1≤j≤q
|x′

j (y − Xβ̃)| ≤ 1√
n
‖r̃‖.

Now because G(β̃;λ2) ≤ G(0;λ2), we have ‖r̃‖ ≤ ‖y‖. This proves part (i).
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For part (ii), note that we have

λ2
(
dj β̃j − a′

j β̃ − (dkβ̃k − a′
kβ̃)

) = 1

n
(xj − xk)

′r̃.

Thus

λ2|dj β̃j − a′
j β̃ − (dkβ̃k − a′

kβ̃)| ≤ 1

n
‖xj − xk‖‖r̃‖.

Part (ii) follows. �

PROOF OF PROPOSITION 2. The β̃ must satisfy

−1

n
x′
j (y − Xβ̃) + λ2(β̃j − v−1

g 1′
gβ̃g) = 0, j ∈ Vg,1 ≤ g ≤ J.(A.10)

Taking the difference between the j th and kth equations in (A.10) for j, k ∈ Vg ,
we get

λ2(β̃j − β̃k) = 1

n
(xj − xk)

′(y − Xβ̃), j, k ∈ Vg.

Therefore,

λ2|β̃j − β̃k| ≤ 1

n
‖xj − xk‖ · ‖y − Xβ̃‖, j, k ∈ Vg.

Part (i) follows from this inequality.
Define β̄g = v−1

g 1′
gβ̃g . This is the average of the elements in β̃g . For any j ∈ Vg

and k ∈ Vh,g �= h, we have

λ2
(
β̃j − β̄g − (β̃k − β̄h)

) = 1

n
(xj − xk)

′(y − Xβ̃), j ∈ Vg, k ∈ Vh.

Thus, part (ii) follows. This completes the proof of Proposition 2. �
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