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REGULARIZATION IN KERNEL LEARNING

BY SHAHAR MENDELSON1 AND JOSEPH NEEMAN

The Australian National University and Technion,
I.I.T. and University of California, Berkeley

Under mild assumptions on the kernel, we obtain the best known error
rates in a regularized learning scenario taking place in the corresponding re-
producing kernel Hilbert space (RKHS). The main novelty in the analysis is
a proof that one can use a regularization term that grows significantly slower
than the standard quadratic growth in the RKHS norm.

1. Introduction. Let F be a family of functions from a probability space
(�,μ) to R. A classical problem of learning theory is the following: we set ν

to be an (unknown) probability measure on � × R whose marginal distribution on
� is μ. Given n independent samples (X1, Y1), . . . , (Xn,Yn) ∈ � × R, distributed
according to ν, our task is to find a function f̂ ∈ F such that

E
(
f̂ (X1) − Y1

)2 − inf
f ∈F

E
(
f (X1) − Y1

)2(1.1)

is very small. In other words, we want to approximate the distribution ν by a func-
tion from F as closely as possible. Specifically, we want to find a method of choos-
ing f̂ as a function of the sample (Xi, Yi)

n
i=1 such that, with high probability, (1.1)

is smaller than a function of n that tends to zero as n grows. In this paper, we will
consider the case where � is a compact Hausdorff space and Yi is bounded almost
surely.

A widely used approach to solving this problem is to consider a function f̂ ∈ F

that minimizes the functional
n∑

i=1

(
f (Xi) − Yi

)2

over all f ∈ F . Such a function is called an empirical minimizer and its properties
have been widely studied (see, e.g., [2, 3, 8, 16, 19] and references therein). It turns
out that the complexity and geometry of F play a large part in determining whether
(1.1) is small. Roughly speaking, if F is a small family of functions, then (1.1) will
be, with high probability, a function of n that decreases polynomially fast.
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Of course, there is a disadvantage to having a small family of functions, namely,
that inff ∈F E(f (X1)−Y1)

2 becomes larger as F becomes smaller. This trade-off is
known as the bias-variance problem. The expression (1.1) is known as the sample
error and inff ∈F E(f (X1) − Y1)

2 is called the approximation error.
One major issue that needs to be addressed when using the empirical minimiza-

tion algorithm is overfitting. Since all of the information that one has is on the
behavior of the minimizer on the sample, there is no way to distinguish a “sim-
ple” minimizer from a more complicated one. The regularized learning model is a
method of solving the bias-variance problem while addressing the overfitting prob-
lem. We take F to be a very large function class (so that the approximation error
is small) and consider a function f̂ that minimizes the functional

n∑
i=1

(
f (Xi) − Yi

)2 + γn(f ),

where γn(f ) measures, in some sense, the “complexity” of the function of f and,
for a fixed f , γn(f ) → 0 as n → ∞. Thus, if two functions have the same empiri-
cal behavior, then the algorithm will choose the simpler function of the two.

A common example of the regularized learning problem, and the situation we
will be considering in this article, is the case where the class of functions is a repro-
ducing kernel Hilbert space (RKHS), which is defined below and will be denoted
throughout this article by H . All of the error bounds in this situation (with the ex-
ception of one result, discussed later, in the classification setting) were restricted to
a regularization term of the form γn(f ) = ηn‖f ‖2

H , with the goal being to choose
ηn so that the error is as small as possible. As far as we know, it has not even
been conjectured that one could improve the power of ‖f ‖H in the regularization
process. Doing just that is the main goal of this article.

One can motivate the regularized learning model by looking at it as a collection
of empirical minimization problems. Indeed, let BH be the unit ball of the space H

and consider the empirical minimization problem in rBH for some r > 0. As r in-
creases, the approximation error for rBH decreases and its sample error increases.
We could achieve a small total error by choosing the correct value of r and per-
forming empirical minimization in rBH . The role of the regularization term γn(f )

is to force the algorithm to choose the correct value of r for empirical minimiza-
tion. We will explain later why this motivation can be made rigorous and that the
regularization problem may be solved by a solution to a hierarchy of minimization
problems.

It should be clear from this motivation that the choice of γn is critical for the
success of the regularized learning model. There has been some significant work
done recently on finding explicit formulas for γn that provide low error rates with
high probability. Of particular importance to us, because their results are directly
comparable to ours, are the works of Caponnetto and De Vito [7], Smale and Zhou
[31] and Wu, Ying and Zhou [36]. We will mention these results in Section 3,
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in order to compare them to ours. Recent work on regularization parameters for
support vector machines includes that of Blanchard, Bousquet and Massart [5];
and Steinwart and Scovel [29]. Although there are important differences between
our problem and that of support vector machines, there are certain similarities,
and some tools—model selection results and localized complexity parameters, for
example—are useful for both subjects.

Our starting point is the realization that analysis based on L∞-bounds (even
if done in a subtle way) is too loose and is the sole source of a quadratic regu-
larization term. Using L∞-bounds is very tempting in our case because of a con-
venient fact about reproducing kernel Hilbert spaces: if the kernel is bounded,
then there is a constant cK such that ‖f ‖∞ ≤ cK‖f ‖H . This allows one to bound
‖(f − Y)2‖∞ � ‖f ‖2

H , which can be used to control the “complexity” of the loss
class through concentration inequalities (such as Bernstein’s for a single function
or Talagrand’s for a class of functions) that depend on the L∞-norm of functions.
What is more significant is that it allows one to apply contraction inequalities at
the cost of a multiplicative factor—the Lipschitz constant of the loss function on
its domain—which is, for the squared loss, twice the maximal L∞-norm of a class
member. This approach leads to a regularization term of ‖f ‖2

H and it is by avoiding
gratuitous use of L∞-bounds that we improve that term.

It should be noted that in the classification setting (to be more precise, in the ex-
ample of support vector machines), Blanchard, Bousquet and Massart [5] showed
that a regularization term of the form ηn‖f ‖H was possible. Their approach un-
fortunately does not extend to the regression case: they still rely on L∞-bounds
and they obtain a linear regularization term because the loss function in a support
vector machine setup is �(x, y) = max{0,1 − xy} and ‖max{0,1 − f (X)Y }‖∞ is
linear in ‖f ‖H (instead of quadratic, as is the case for the squared loss). On the
other hand, it is conceivable that our technique could be applied to the classifica-
tion setting, lowering the exponent of ‖f ‖H further still.

The starting point of our analysis is the notion of isomorphic coordinate pro-
jections, introduced in the context of learning theory in [3]. Suppose that F is a
family of functions for which the infimum inff ∈F E(f (X) − Y)2 is achieved; call
the minimizer f ∗ and define the excess loss function to be, for any f ∈ F ,

LF
f (X,Y ) = (

f (X) − Y
)2 − (

f ∗(X) − Y
)2

.

When the underlying class is clear from the context, we will omit the superscript F .
Denote by P the conditional expectation with respect to the sample,

P Lf = E(Lf |X1, Y1, . . . ,Xn,Yn)

and let PnLf = ∑n
i=1 Lf (Xi, Yi). One can show (see [3] or Theorem 2.2) that

there is some (small) number ρn such that, with probability at least 1 − e−x , every
f ∈ F satisfies

1
2PnLf − ρn ≤ P Lf ≤ 2PnLf + ρn.(1.2)
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We will refer to equations like (1.2) as giving “almost isomorphic coordinate pro-
jections” because (1.2) tells us that the structures imposed on F by P and Pn are,
up to a small additive term, isomorphic. This is a useful approach for bounding the
error of the empirical minimizer. Indeed, it is not hard to see that it implies that

E
(
f̂ (X) − Y

)2 − inf
f ∈F

E
(
f (X) − Y

)2 = P L
f̂

≤ ρn.

It turns out that this isomorphic coordinate projection approach applies to reg-
ularized learning as well as to empirical minimization. The main result in this di-
rection is due to Bartlett [1] and implies that if every ball rBH satisfies an almost-
isomorphic condition, then it is possible to establish a regularized learning bound.
This is an example of a model selection result because it proves that the regularized
learning procedure somehow selects an appropriate model (rBH for a good choice
of r) from a family of models (the set of models {rBH : r ≥ 1}). Of course, model
selection results have been used previously in the study of regularized learning;
the use of an almost-isomorphic coordinate projection condition, however, first
occurred in [1] and it is crucial here. Some examples of model selection results for
problems similar to ours can be found in [5] (Theorem 4.3), [16] and [21].

THEOREM 1.1 [1]. For each f ∈ H , let Lf denote the loss of f relative to the
ball ‖f ‖BH :

Lf (X,Y ) = L‖f ‖BH

f (X,Y ) = (
f (X) − Y

)2 − (
f ∗(X) − Y

)2
,

where f ∗ = arg min‖g‖≤‖f ‖ E(g(X)−Y)2. Under some conditions on γn(·), if, for
every f ∈ H ,

1
2PnLf − γn(f ) ≤ P Lf ≤ 2PnLf + γn(f ),

then the regularized minimizer satisfies

E
(
f̂ (X) − Y

)2 ≤ inf
f ∈H

((
f (X) − Y

)2 + cγn(c
′f )

)
,

where c and c′ are absolute constants.

Thus, if one could establish sharp “isomorphic coordinate projections”-type es-
timates for every excess loss class {Lf :f ∈ rBH }, then this would yield regular-
ization bounds.

It is important to emphasize that although at first glance, the problem of ob-
taining isomorphic bounds for kernel classes has been solved in the past (based
on, e.g., estimates from [2, 22]), this is far from being the case. The isomorphic
bounds for kernel classes have been studied for the base class F = BH (i.e., r = 1),
using an L∞-based argument that includes contraction inequalities. In contrast, the
essential ingredient required for our analysis (and which determines the regular-
ization parameter) is the way in which these bounds scale with the radius r . In
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all of the previous isomorphic results obtained in the context of kernel classes, the
way that the bounds depend on r was not important and thus never addressed. And,
moreover, the analysis used to obtain those results gives a suboptimal estimate as
a function of r : an estimate that scales like r2 because of the L∞-based method.
Indeed, one factor of r in this quadratic growth follows from a contraction argu-
ment combined with the fact that the maximal L∞-norm of functions in rBH is r .
The second factor of r appears because the “complexity” of the class rBH grows
linearly in r .

The consequences of this are clear: since one can identify the regularization
term with the way isomorphic coordinate projection estimates for the class rBH

scale with r , the regularization term of ‖f ‖2
H is an artifact of the L∞-based method

of analysis that leads to a bound that grows like r2.
Let us mention that if the Lipschitz constant of the loss is bounded by an ab-

solute constant, as is the case for support vector machines and the hinge loss, one
factor of r can be removed by the L∞-based method because the Lipschitz con-
stant of the loss is uniformly bounded. Thus, one can use contraction inequalities
freely for that problem and obtain a linear regularization term; this is the result
in [5].

Our analysis will show that the standard regularization bounds, which grow
like r2, where r = ‖f ‖H , are very pessimistic and may be improved considerably.
Moreover, if we set the regularization term as ηnν(‖f ‖H), we will establish the
best known bounds on ηn as well (both results will require mild assumptions on
the kernel).

There are two reasons for the improved bounds. The first is a method that allows
one to bypass the whole L∞-based mechanism and this is presented in Section 4.
We shall present a general bound on the empirical process indexed by the localized
excess squared loss class associated with a base class consisting of linear function-
als on �2 of norm at most r . This step will lead to a removal of one factor of r from
the r2 term—the one that was due to an L∞-based method and a contraction argu-
ment.

Second, the ability to employ the “isomorphic” approach allows one to use lo-
calization techniques. Thus, the effective complexity of the excess loss class is
caused only by excess loss functions with a relatively small variance; by virtue of
the geometry of rBH , that set of excess loss functions happens to come from a
rather small subset of rBH . Recall that, intuitively, the second factor of r comes
from the linear growth of the “complexity” of rBH . However, the actual “isomor-
phic” estimate for rBH is determined by the complexity of the intersection bodies
xB2 ∩ rBH , rather than by that of rBH [where B2 is the unit ball of L2(μ)]. It
turns out that for a reasonable RKHS, the complexity of such an intersection body
grows at a much slower rate as a function of r . Indeed, the number of “meaningful
directions” in rBH (when considered as a subset of L2) is small and decreases
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quickly with r . Therefore, the true complexity of rBH will be sublinear in r be-
cause, as r increases, an ever smaller number of directions will actually grow with
r and influence the complexity.

Formally, we will show that if the eigenvalues of the integral operator TK decay
like O(t−1/p) for some 0 < p < 1, then one can obtain an isomorphic bound with
ρn that scales like

max
{
θ2/(1+p), θ2/p}

for θ ∼ rpn−1/2 logn. This translates to a regularization term of

max
{
r2p/(1+p)

(
log2 n

n

)1/(1+p)

,
r2

n

}
,

where, again, r = ‖f ‖H .
In this result, one still has a regularization term that grows like r2; nevertheless,

this is a considerable improvement on the L∞-based result. Because it decays
faster as a function of the sample size n, the r2/n term seems superfluous because
one would expect it to be dominated by the first term. Indeed, in Section 5, we
will show that it can be removed: under the same assumption on the decay of the
eigenvalues of TK as above, one may use a regularization term (up to logarithmic
term) of

r2p/(1+p)

n1/(1+p)
,

which is the best known dependency on r and n.
We will end this introduction with the formulation and a short discussion of our

main result. To avoid defining them twice, let us mention that the space �p,∞ and
its norm ‖ · ‖p,∞ are included in Definition 3.3.

ASSUMPTION. Assume that ‖K(x,x)‖∞ ≤ 1 and that the eigenvalues of the
integral operator TK satisfy (λn)

∞
n=1 ∈ �p,∞ for some 0 < p < 1. Assume, fur-

ther, that there is a constant A such that the eigenfunctions (ϕn)n≥1 of TK satisfy
supn‖ϕn‖∞ ≤ A < ∞.

THEOREM A. Let K be a continuous, symmetric, positive definite kernel
on �, a compact Hausdorff space, and set H to be the corresponding reproduc-
ing kernel Hilbert space. If Y is bounded almost surely and the assumption above
is satisfied, then there exist constants c1, c2 and c3 that depend only on A, p and
‖(λi)‖p,∞, a constant cY that depends only on ‖Y‖∞ and a constant N depending
only on ‖Y‖∞ and p for which the following holds. Let

Ṽ (f,u) = c3
(
1 + u + cY lnn + ln log(‖f ‖H + e)

)((‖f ‖H + 1)p logn√
n

)2/(1+p)

.
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If n ≥ N and c1 log logn ≤ u ≤ c2(logn)2/(1−p), then, with probability at least
1 − exp(−u/2), every minimizer f̂ of

Pn�f + κ1Ṽ (f,u)

satisfies

P�
f̂

≤ inf
f ∈H

(
P�f + κ2Ṽ (f, u)

)
,

where κ1 and κ2 are absolute constants and �f = (f − Y)2 is the squared loss
function.

Let us begin our discussion with the assumptions. The assumption that ‖K‖∞ ≤
1 is purely cosmetic: any continuous kernel on a compact space is bounded and the
assumption only prevents unnecessary constants from appearing. The assumption
on the decay of the eigenvalues is essentially a smoothness condition for the kernel;
the existence, for example, of a continuous derivative would be enough. We will
discuss the eigenvalue assumption in more detail later. For now, let us just say that
it has been used before [7] in discussing the way in which smoothness of the kernel
affects the learning rates.

The assumption that the eigenfunctions ϕn are uniformly bounded is more se-
rious. It has been made before—in [35], for example, in which it was mistakenly
claimed that such an assumption holds for all Mercer kernels. Zhou, [37], how-
ever, argues against this assumption and provides an example of a C∞ kernel
without uniformly bounded eigenfunctions. Let us remark, therefore, that we do
not need the full strength of this assumption. Indeed, as the proof will reveal, it is
enough to have some 0 < ε < 1/2 such that supn λε

n‖ϕn‖∞ is bounded. The the-
orem then remains true if we assume that (λ1−2ε

n ) ∈ �p,∞ instead of (λn) ∈ �p,∞.
Note that supn

√
λn‖ϕn‖∞ < ∞; for our assumption to hold, we need to be able to

take a power of λn that is strictly smaller than 1/2. This is a considerably weaker
assumption than that of uniformly bounded eigenfunctions. For instance, the ex-
ample given in [37] of a C∞ kernel without uniformly bounded eigenfunctions
satisfies our weaker condition for any ε > 0: the eigenvalues decrease exponen-
tially faster than the L∞-norms of the eigenfunctions.

For an example of a kernel satisfying our assumption, let k be an even function
of period 1 and set K(x,y) = k(x − y). If μ is the Lebesgue measure on [0,1],
then it is easily seen, via a cosine expansion of k, that the eigenfunctions of K are
sine and cosine functions and hence bounded uniformly. The periodic Gaussian
kernel is an example of such a kernel.

As a final remark on the assumptions, let us point out that one can trivially con-
struct examples of kernels that satisfy them: just take ϕn to be a suitably smooth
orthonormal basis of L2(μ) and choose λn to be a sequence that decreases suffi-
ciently rapidly. Then K(x,y) = ∑∞

n=1 λnϕn(x)ϕn(y) satisfies our assumptions.
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Regarding the theorem, there are some aspects of practical interest that we do
not address. First, there are constants in the theorem that we have made no at-
tempt to compute. Furthermore, these constants depend on quantities that may
not be known (e.g., ‖Y‖∞). One might hope, however, to use applied statistical
techniques—cross-validation, for example—to find plausible values for the con-
stants. In that case, one should note that the constant cY in the definition of Ṽ can
be moved to the front of the definition without changing the validity of the theorem
(see Remark 2.6); that way, the applied statistician has only one unknown constant
to worry about.

We conclude this introduction with a brief discussion of the error rate of The-
orem A; more detailed discussions follow at the ends of Sections 3 and 5. The
formulation of Theorem A is attractive because it shows that we find the almost-
minimizer (in some sense) regardless of how well our hypothesis class approxi-
mates the regression function E(Y |X). To be concrete, however, we can make an
assumption about how the approximation error behaves and derive explicit error
bounds as a function of n. The assumption made in [9] (and elsewhere) is that
there exists some 0 < σ ≤ 1/2 such that E(Y |X) is in the range of T σ

K on L2(μ).
For σ = 1/2, this implies that E(Y |X) ∈ H ; for smaller σ , it somehow says that
E(Y |X) can be approximated reasonably well by elements in H . Under this as-
sumption, we obtain an error rate of (ignoring logarithmic factors and the confi-
dence term, u) n−2σ/(p+2σ). As stated above, a detailed discussion follows in later
sections; for now, we will just mention that the above rate is significantly faster
than the rate of n−σ/2 that was obtained in [31].

Regarding the optimality of this error rate, we have very little to say. Minimax
lower bounds on the error rate are given in [7], but only when the regression func-
tion E(Y |X) belongs to H (and their proof does not easily extend to the more gen-
eral case considered here). In a very specific case (when σ = 1/2 and one cannot
take σ > 1/2), our rates match those in [7]. We can claim, therefore, that our results
are optimal in a very specific sense; in the more interesting region 0 < σ < 1/2,
however, we cannot make any such claim.

2. Preliminaries. We begin with a word about notation. We will denote ab-
solute constants (i.e., fixed, positive numbers) by c, c1, . . . , etc. Their values may
change from line to line. Absolute constants whose values will remain unchanged
are denoted by κ1, κ2, . . . . By c(a), we mean that the constant c depends only on
the parameter a. We write a ∼ b if there exist absolute constants c1 and c2 such
that c1a ≤ b ≤ c2a, and a ∼p b if the equivalence constants depend on the param-
eter p.

Arguably the most important tool in modern empirical processes theory is Ta-
lagrand’s concentration inequality for an empirical process indexed by a class of
uniformly bounded functions [18, 33]. The version of this concentration result
which we shall use here is due to Massart [20].
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THEOREM 2.1. There exists an absolute constant C for which the following
holds. Let F be a class of functions defined on (�,μ) such that for every f ∈ F ,
‖f ‖∞ ≤ b and Ef = 0. Let X1, . . . ,Xn be independent random variables distrib-
uted according to μ and set σ 2 = n supf ∈F Ef 2. Define

Z = sup
f ∈F

n∑
i=1

f (Xi) and Z̄ = sup
f ∈F

∣∣∣∣∣
n∑

i=1

f (Xi)

∣∣∣∣∣.
Then, for every x > 0 and every ρ > 0,

Pr
({

Z ≥ (1 + ρ)EZ + σ
√

Cx + C(1 + ρ−1)bx
}) ≤ e−x,

Pr
({

Z ≤ (1 − ρ)EZ − σ
√

Cx − C(1 + ρ−1)bx
}) ≤ e−x

and the same inequalities hold for Z̄.

Throughout this article, we denote by �(x, y) = (x − y)2 the squared loss
function. When f is a function � → R and Y is some target random vari-
able, we define �f = �f (X,Y ) = (f (X) − Y)2. If F is a class of functions, let
LF

f = Lf (X,Y ) = (f (X) − Y)2 − (f ∗(X) − Y)2, where f ∗ = arg minf ∈F E�f

(we will usually drop the superscript F ). Of course, we assume that this minimizer
exists and is unique, which is the case, for example, if F is compact (in L2) and
convex. LF denotes the class of functions{LF

f :f ∈ F }.
For a class of functions F on a probability space (�,μ), we set

‖Pn − P‖F = sup
f ∈F

∣∣∣∣∣1

n

n∑
i=1

f (Xi) − Ef

∣∣∣∣∣,
where (Xi)i=1 are independent, distributed according to μ.

For any x ≥ 0, define the localized excess loss class

Lx = {Lf : ELf ≤ x}
and set

V = star(LF ,0) = {θ Lf : 0 ≤ θ ≤ 1, f ∈ F },
Vx = {θ Lf : 0 ≤ θ ≤ 1,E(θ Lf ) ≤ x} = {h ∈ star(LF ,0) : Eh ≤ x}

[where, for a set T , star(T ,0) = {θt : 0 ≤ θ ≤ 1, t ∈ T } is the star-shaped hull of T

and 0].
The following “isomorphic” result is similar in nature to the one proved in [3].

The bound from Theorem 2.2 normally leads to an estimate on the error of the
empirical minimizer, but in [4] and here, it will serve a different purpose. This
isomorphic result will enable us to control the solution of the regularized learning
problem in the context of kernel learning.
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THEOREM 2.2. There exists an absolute constant c for which the following
holds. Let LF be a squared loss class associated with a convex class F and a
random variable Y . If b = max{supf ∈F ‖f ‖∞,‖Y‖∞} and x > 0 satisfies

E‖Pn − P‖Vx ≤ x/8,

then, with probability 1 − exp(−u), for every f ∈ F ,

1

2
PnLf − x

2
− c(1 + b2)

u

n
≤ P Lf ≤ 2PnLf + x

2
+ c(1 + b2)

u

n
.(2.1)

PROOF. By Talagrand’s inequality, there exists an absolute constant C such
that, for every α > 0, with probability at least 1 − e−u,

‖Pn − P‖Vα ≤ 2E‖Pn − P‖Vα +
(

Cu

n

)1/2

sup
g∈Vα

√
Varg + Cbu

n
.

It is standard to verify (see, e.g., [19]), that there exists an absolute constant C

such that, for a convex class F , every Lf ∈ LF satisfies EL2
f ≤ Cb2

ELf . Thus,

every g ∈ Vα satisfies Varg ≤ Cb2α. Fix x satisfying E‖Pn − P‖Vx ≤ x/8 and set

α = max
{
x,25C

(1 + b2)u

n

}
.

Note that, because V is star shaped, α ≥ x implies that Vα ⊂ α
x
Vx and so E‖Pn −

P‖Vα ≤ α
x
E‖Pn − P‖Vx ≤ α/8. Therefore, with probability at least 1 − e−u,

‖Pn − P‖Vα ≤ α

4
+

(
C

b2αu

n

)1/2

+ Cbu

n

≤ α

4
+ α

5
+ α

25
(2.2)

≤ α

2
.

Consider the event in which (2.2) holds. Fix some Lf ∈ LF . If P Lf ≤ α, then
Lf ∈ Vα and so

PnLf − α

2
≤ P Lf ≤ PnLf + α

2
,

and (2.1) holds. If, on the other hand, P Lf = β > α, then let g = α
β

Lf and note
that g ∈ Vα . Thus, by (2.2),

1

2
Pg = Pg − α

2
≤ Png ≤ Pg + α

2
≤ 2Pg.

Since Lf is a constant multiple of g, we have

1

2
P Lf ≤ PnLf ≤ 2P Lf
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and so (2.1) holds once again.
To conclude, (2.2) implies that (2.1) holds for all Lf ∈ LF . Thus, (2.1) holds

with probability at least 1 − e−u. �

REMARK 2.3. The claim of Theorem 2.2 holds under milder assumptions.
Note that the assumption that F is convex is there to ensure that P�f attains a
unique minimum in F and that the excess loss class satisfies a Bernstein-type
condition: that for every f ∈ F , EL2

f ≤ CELf . One can show that if F is convex,

then, for any function f ∈ F , EL2
f ≤ c‖f ‖2∞ELf . Hence, if F is convex and

G is a subset of F that contains the minimizer in F of P�f , then the analog of
Theorem 2.2 will be true for {Lg :g ∈ G}.

The first part of our analysis will be to show that this isomorphic information
can be used to derive estimates in regularized learning.

2.1. From isomorphic information to regularized learning. The regularized
learning model provides a method for learning in a very large class of functions
without suffering a large statistical error. As we mentioned in the Introduction,
obtaining an “isomorphic” result for a hierarchy of classes can lead to estimates
in the regularized learning model. This approach was introduced in [1] and was
formulated in the way we will use here in [4]. Since this last article has not yet
appeared, we present a proof of the result we need in the Appendix.

Let F be a class of functions and suppose that there is a collection of subsets
{Fr; r ≥ 1} with the following properties:

1. {Fr : r ≥ 1} is monotone (i.e., whenever r ≤ s, Fr ⊆ Fs );
2. for every r ≥ 1, there exists a unique element f ∗

r ∈ Fr such that P�f ∗
r

=
inff ∈Fr P �f ;

3. the map r → P�f ∗
r

is continuous;
4. for every r0 ≥ 1,

⋂
r>r0

Fr = Fr0 ;
5.

⋃
r≥1 Fr = F .

DEFINITION 2.4. Given a class of functions F , we say that {Fr; r ≥ 1} is an
ordered, parameterized hierarchy of F if the above conditions 1–5 are satisfied.
Define, for f ∈ F ,

r(f ) = inf{r ≥ 1;f ∈ Fr}.

Note that, from the semicontinuity property of an ordered, parameterized hier-
archy (property 4), it follows that f ∈ Fr(f ) for all f ∈ F .

From the second property of an ordered, parameterized hierarchy, we can, for
r ≥ 1 and f ∈ Fr , define Lr,f = (f − Y)2 − (f ∗

r − Y)2. That is, Lr,f is the excess
loss function with respect to the class Fr .
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THEOREM 2.5. There exist absolute constants κ1 and κ2 such that the follow-
ing holds. Suppose that {Fr; r ≥ 1} is an ordered, parameterized hierarchy and
that ρn(r, u) : [1,∞) × (0,∞) → (0,∞) is a continuous function (possibly de-
pending on the sample) that is increasing in both r and u. Suppose, also, that for
every r ≥ 1 and every u > 0, with probability at least 1 − exp(−u),

1
2PnLr,f − ρn(r, u) ≤ P Lr,f ≤ 2PnLr,f + ρn(r, u)

for all f ∈ Fr .
Then, for every u > 0, with probability at least 1−exp(−u), any function f̂ ∈ F

that minimizes the functional

Pn�f + κ1ρn(2r(f ), θ(r(f ), u))

also satisfies

P�
f̂

≤ inf
f ∈F

(
P�f + κ2ρn(2r(f ), θ(r(f ), u))

)
,

where

θ(r, x) = x + ln
π2

6
+ 2 ln

(
1 + P�f ∗

1

ρn(1, x + log(π2/6))
+ log r

)
.

REMARK 2.6. In fact, the proof of Theorem 2.5 reveals something slightly
stronger: if ρ̃n(r, u) is a continuous, increasing function in both variables such that

ρ̃n(r, u) ≥ ρn(2r, θ(r, u))

for every r , u and n, then every function f̂ that minimizes the functional

Pn�f + κ1ρ̃n(r, u)

satisfies

P�
f̂

≤ inf
f ∈F

(
P�f + κ2ρ̃n(r, u)

)
.

In other words, we can always regularize with a larger regularization term; we
will obtain a correspondingly larger error bound. We will use this fact later.

The conclusion of Theorem 2.5 can be reformulated in a way that makes the
traditional distinction between the approximation and sample errors more explicit.
We begin by defining an approximation error term by

A(r) = inf
f ∈Fr

P �f .

Then A(r) − inff ∈F P�f tends to zero as r → ∞ and the rate of this convergence
measures how well the ordered, parameterized hierarchy approximates Y . Smale
and Zhou [30] study this approximation error in a variety of contexts, including the
case in which we are interested: when Fr is the ball of radius r −1 in a reproducing
kernel Hilbert space.
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COROLLARY 2.7. Under the assumptions of Theorem 2.5, with probability at
least 1 − exp(−u),

P�
f̂

≤ inf
r≥1

(
A(r) + κ2ρn(2r, θ(r, u))

)
.

PROOF. Let u > 0, fix ε > 0 and choose an s ≥ 1 such that

A(s) + κ2ρn(2s, θ(s, u)) ≤ inf
r≥1

(
A(r) + κ2ρn(2r, θ(r, u))

) + ε

2
.

Consider g ∈ Fs such that P Lg ≤ A(s) + ε/2. Since ρn is increasing in both of its
arguments, we have

P Lg + κ2ρn(2r(g), θ(r(g), u)) ≤ inf
r≥1

(
A(r) + κ2ρn(2r, θ(r, u))

) + ε.

However, we can find such a function g for every ε > 0. Therefore,

inf
f ∈F

(
P Lf + κ2ρn(2r(f ), θ(r(f ), u))

) ≤ inf
r≥1

(
A(r) + κ2ρn(2r, θ(r, u))

)
and the conclusion follows from Theorem 2.5. �

3. Regularization in kernel classes. The case that we will be interested in is
when Fr is a multiple of the unit ball of an RKHS. For more details on properties
of an RKHS that are relevant in the context of learning theory, we refer the reader
to, for example, [8].

Let � be a compact Hausdorff space, consider K :� × � → R, a positive def-
inite, continuous function and, without loss of generality, assume that ‖K‖∞ ≤ 1.
Let TK be the corresponding integral operator, TK :L2(μ) → L2(μ), defined by

(TKf )(x) =
∫
�

K(x, y)f (y) dμ(y).

By Mercer’s theorem [8], there is an orthonormal basis of eigenfunctions (ϕi)
∞
i=1

of TK , corresponding to the eigenvalues (λi)
∞
i=1 arranged in a nonincreasing order,

such that

K(x,y) =
∞∑
i=1

λiϕi(x)ϕi(y),

where the convergence is uniform and absolute on the support of μ × μ [10] (and
hence there is also convergence in L2).

The RKHS, which will be denoted throughout by H , can be identified with
linear functionals in �2. Indeed, consider the function � :� → �2 defined by
�(x) = (

√
λiϕi(x))∞i=1. For every t ∈ �2, define the corresponding element of H

by ft (x) = 〈�(x), t〉; we define the RKHS H to be the image of �2 under the map
t �→ ft with the induced inner product 〈ft , fs〉H = 〈t, s〉. This definition of H is
phrased differently from those given in [8, 10], but it is easily checked that the
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resulting Hilbert space of functions is the same. Hence, to study properties of a
subset of H , it is enough to study the corresponding set of linear functionals, as
a set T ⊂ �2 uniquely determines FT = {ft : t ∈ T }. Here, we will mostly be con-
cerned with T = rB2, corresponding to F = rBH , where BH is the unit ball of the
RKHS and B2 is the unit ball of �2. In this case, the measure endowed on �2 is
given by �(Z), where Z is distributed in � according to μ.

3.1. Classes of linear functionals: The L∞ approach. Our first approach to
the problem of regularized learning in an RKHS will lead to a regularization term
of ‖f ‖2

H . As stated in the Introduction, this is over-regularization, which is an
artifact of the analysis of the learning problem. It stems from the way that the L∞-
bound on functions in LF is used and the fact that the only way to bound ‖Lf ‖L∞
is by ‖Lf ‖L∞ ≤ c‖f ‖2

H . In this section, we will use this (loose) approach, but still
obtain better error estimates than those previously known—although still using
a regularization term of ‖f ‖2

H . We will obtain considerably better results in the
following sections.

The idea we will use is to obtain an isomorphic result for the hierarchy Fr =
rBH (in our �2 representation, Fr corresponds to rB2). We then use Corollary 2.7
for the function ρn given by the isomorphic analysis.

In our presentation, we will study the following, more general, situation. Let
T ⊂ �2 be a compact, convex, symmetric set and consider a random vector ξ on �2
[distributed, recall, according to �(Z)]. Denote by ft = 〈t, ·〉 the linear functional
defined by t and put

D = {t : Eft (X)2 ≤ 1} = {t : E〈t, ξ〉2 ≤ 1}.
Thus, D is the image of the L2 unit ball in the parameter space �2.

Our first, L∞-based, approach to the problem of learning in an RKHS relies
on the following bound, which was implicit in [22] (to be precise, Theorem 3.1
follows from the proof of Theorem 3.3 in [22] if one keeps track explicitly of the
constants Cb and C′

b).

THEOREM 3.1. There exist constants c and c′ depending only on ‖Y‖∞ for
which the following holds. Let Vr,x = {αLf ;0 ≤ α ≤ 1, f ∈ rBH ,ELf ≤ x}. Then
for every r ≥ 1 and every x > 0,

E‖P − Pn‖Vr,x ≤ crE sup
{t∈rB2∩√

xD}

∣∣∣∣∣1

n

n∑
i=1

gift (Xi)

∣∣∣∣∣,
where the gi are independent standard Gaussian variables. In the case where r =
1, we have

E sup
{t∈B2∩√

xD}

∣∣∣∣∣
n∑

i=1

gift (Xi)

∣∣∣∣∣ ≤ c′
(

1

n

∞∑
i=1

min{x,λi}
)1/2

.
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The proof of the first part of Theorem 3.1 uses a comparison theorem, relat-
ing the Gaussian process t → ∑n

i=1 gi Lft (Xi, Yi), conditioned on (Xi, Yi)
n
i=1, to

the conditioned Gaussian process t → ∑n
i=1 gift (Xi). This is done using an L∞-

bound since
n∑

i=1

(Lft − Lfs )
2(Xi, Yi) =

n∑
i=1

(ft − fs)
2(Xi) · (

(ft + fs)(Xi) − 2Yi

)2

≤ 4(r + ‖Y‖∞)2
n∑

i=1

(ft − fs)
2(Xi),

which will turn out to be the main source of the quadratic regularization term
‖f ‖2

H .
From Theorem 3.1, one obtains the following.

COROLLARY 3.2. There exists a constant c̃, depending only on ‖Y‖∞, such
that if z > 0 satisfies

z ≥ c̃

(
1

n

∞∑
i=1

min{z,λi}
)1/2

,

then, for all r ≥ 1,
x

8
≥ E‖P − Pn‖Vr,x ,

where x = r2z.

PROOF. Define

ψr(x) = rE sup
{t∈rB2∩√

xD}

∣∣∣∣∣
n∑

i=1

gift (Xi)

∣∣∣∣∣.
By the second part of Theorem 3.1, we can choose c̃ such that ψr(x) ≤ x

8c
(where c

is the constant from Theorem 3.1). Furthermore, it is easily checked that ψr(x) =
r2ψ1(xr−2) for any x and r . That is, ψr(r

2x) = r2ψ1(x) ≤ r2x
8c

. The claim now
follows from the first part of Theorem 3.1. �

With this corollary and Theorem 2.2, we can obtain an isomorphic condition on
the unit ball of an RKHS using information on the decay of the eigenvalues. For
the sake of concreteness, we will make the following assumption on this rate of
decay; this assumption will allow us to compute an error bound explicitly.

DEFINITION 3.3. For 0 < p < 1 and a nonincreasing, nonnegative sequence
(λi)

∞
i=1, define

‖(λi)‖p,∞ = sup
i≥1

i1/pλi.
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Hence, for any x > 0,

|{λi ≥ x}| ≤ ‖(λi)‖p,∞x−p.(3.1)

If ‖(λi)‖p,∞ < ∞, we will say that (λi) ∈ �p,∞.

ASSUMPTION 3.1. Let K be a kernel on a compact probability space (� ×
�,μ×μ) where μ is a Borel measure and � ⊂ R

d . Assume that ‖K(x,x)‖∞ ≤ 1
and that the eigenvalues of the integral operator TK satisfy (λn)

∞
n=1 ∈ �p,∞ for

some 0 < p < 1.

Since
∫

K(x,x) dμ(x) = ∑∞
i=1 λi , we have (λi) ∈ �1,∞ when K(x,x) ∈ L1(μ).

The stronger Assumption 3.1 is satisfied under some smoothness condition on the
kernel. Suppose, for example, that the kernel K belongs to some Besov space Bα

2,∞
[in particular, this is the case if α ∈ N and K ∈ Cα(� × �)]. If � ⊂ R

d is locally
the graph of a Lipschitz function and μ is a Borel (probability) measure on �,
then, by Theorems 4.1 and 4.7 of [6] (see also [17]), the sequence (λi) belongs to
�p,∞ for

p = 1

α/d + 1/2
.

A similar assumption on the decay of the eigenvalues was made in [7]. The L∞
assumption on K(x,x) is only to simplify the presentation and any uniform bound
instead of 1 would do.

The assumption on the rate of decay of the eigenvalues allows us to obtain the
following bound.

LEMMA 3.4. For 0 < p < 1, there is a constant cp depending only on p such
that for all x > 0 and all r > 0,

∞∑
i=1

min{x, r2λi} ≤ cp‖(λi)‖p,∞x1−pr2p.

PROOF. It suffices to prove the lemma for r = 1 and the result will follow for
all r by homogeneity. Set Nx = |{λi ≥ x}| and observe that for all x > 0,

∞∑
i=1

min{x,λi} = xNx +
∞∑

i=Nx+1

λi ≤ ‖(λi)‖p,∞x1−p +
∞∑

i=Nx+1

λi.

The first term is in the required form. Let us deal with the second term:
∞∑

i=Nx+1

λi ≤ ‖(λi)‖p,∞
∞∑

i=Nx+1

i−1/p

≤ cp‖(λi)‖p,∞N1−1/p
x

≤ cp‖(λi)‖p,∞xp−1
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as required. �

With the preceding bound on 1
n

∑
i min{x, r2λi}, we can rewrite Corollary 3.2 in

a nicer form that is specialized to our application; recall that Vr,x is the localization
at level x of the star-shaped hull of the shifted loss class of rBH :Vr,x = {αLf : 0 ≤
α ≤ 1, f ∈ rBH ,ELf ≤ x}.

COROLLARY 3.5. Let K be a kernel that satisfies Assumption 3.1 for some
0 < p < 1. There exists a constant cp depending only on p such that if z =
cp(

‖(λi)‖p,∞
n

)1/(1+p), then, for all r > 1,

x

8
≥ E‖P − Pn‖Vr,x ,

where x = r2z.

Having controlled the quantity, E‖P −Pn‖Vr,x , that can give us the “isomorphic
coordinate projection” result we wanted, we are almost in a position to prove our
first result; it only remains to show that we can apply the model selection result.

LEMMA 3.6. Let H be the reproducing kernel Hilbert space associated with a
continuous, symmetric, positive definite kernel K . Set F = H and define, for every
r ≥ 1, Fr = (r − 1)BH , where BH is the closed unit ball of H . Then {Fr; r ≥ 1} is
an ordered, parameterized hierarchy and r(f ) = ‖f ‖ + 1.

PROOF. The first, fourth and fifth properties of an ordered, parameterized hier-
archy are immediate. The second property follows from the fact that BH is convex
and compact with respect to the L2-norm (because it is an ellipsoid whose prin-
cipal lengths decrease to zero). For the third property, fix 1 ≤ q < r < s and let
β = q−1

r−1 , α = r−1
s−1 . Note that αf ∗

s ∈ Fr and βf ∗
r ∈ Fq . Thus,

0 ≤ P�f ∗
r

− P�f ∗
s

≤ P�αf ∗
s

− P�f ∗
s

= (α2 − 1)P (f ∗
s )2 + 2(1 − α)Pf ∗

s Y.

As s → r , the right-hand side tends to zero (because the candidates for f ∗
s are

uniformly bounded in L2) and so r → P�f ∗
r

is upper semicontinuous (the same
argument works for r = 1). In the other direction,

0 ≤ P�f ∗
q

− P�f ∗
r

≤ P�βf ∗
r

− P�f ∗
r

≤ (β2 − 1)P (f ∗
r )2 + 2(1 − β)Pf ∗

r Y

and the right-hand side tends to zero for the same reason as before. �

Combining Theorem 2.2 with Corollaries 3.5 and 2.7, we obtain the following
error bound for regularized learning in an RKHS.



REGULARIZATION IN KERNEL LEARNING 543

THEOREM 3.7. There exist absolute constants κ1 and κ2, constants cY and
c′
Y depending only on ‖Y‖∞ and a constant cp depending only on p such that the

following holds. Let K be a kernel satisfying Assumption 3.1 and define

ρn(r, u) = cpr2
(‖(λi)‖p,∞

n

)1/(1+p)

+ cY (1 + r2)
u

n
.

Then, for every u > 0, with probability at least 1 − exp(−u), any function f̂ ∈ F

that minimizes the functional

Pn�f + κ1ρ̃n(r(f ), u)

also satisfies

P�
f̂

≤ inf
r≥1

(
A(r) + κ2ρ̃n(r, u)

)
,

where

ρ̃n(r, u) = ρn

(
2r, u + ln

π2

6
+ 2 ln(1 + c′

Y n + log r)

)
.

In particular,

P�
f̂

≤ inf
r≥1

(
A(r) + c

(
r2

n1/(1+p)
+ 1 + r2

n

(
u + logn + log log(r + e)

)))
,

where c = c(p,‖Y‖∞,‖(λi)‖p,∞).

PROOF. By Theorem 2.2 and Corollary 3.5, the function ρn(r, x) satisfies the
condition of Theorem 2.5 [where we set cY = c(1 + ‖Y‖2∞)]. We can then apply
Corollary 2.7 to obtain the result. Since 0 ∈ Fr for any r > 0, we have P�f ∗

1
≤

P�0 = ‖Y‖2
L2(μ) and ρn(1, u + ln(π2/6)) ≥ c′′

Y /n so that

P�f ∗
1

ρn(1, x + ln(π2/6))
≤ c′

Y n,

to which we apply Remark 2.6. �

Let us compare the estimate on the regularization term and the resulting error
rate that follows from this theorem to previously obtained bounds on regularized
learning in an RKHS. Since all of the results we consider have exponentially good
confidence, we will simplify this comparison by ignoring the confidence term and
focusing on the decay of the error bound as the sample size increases. In order to
facilitate our comparison further, we will make an assumption that allows us to
control the approximation error A(r).

ASSUMPTION 3.2. Suppose that there exists 0 < σ < 1 such that T −σ
K E(Y |X)

belongs to L2.
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Recall that TK is the integral operator that defines our RKHS H . Note that for
σ = 0, the assumption is trivial and for σ ≥ 1

2 , the assumption states that E(Y |X) ∈
H [and so A(r) = 0 for large enough r]. For 0 < σ < 1

2 , the assumption tells us the
degree to which E(Y |X) can be approximated by functions in H . Indeed, a result
of Smale and Zhou [30] (see also [10]) allows us to bound the approximation error
in terms of σ , as follows.

THEOREM 3.8 [30]. If Assumption 3.2 holds for 0 < σ < 1
2 , then

A(r − 1) − inf
f ∈H

P�f ≤
(

1

r

)4σ/(1−2σ)

‖T −σ
K E(Y |X)‖2/(1−2σ)

2 .

Our main points of comparison are the rates from [31], Corollary 5:

P�
f̂

− inf
f ∈H

P�f �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

n

)σ/(1+2σ)

, if σ ≥ 1

2
,(

1

n

)σ/2

, if σ <
1

2
.

(3.2)

Suppose, first, that Assumption 3.2 holds for σ ≥ 1
2 . As we already mentioned,

this implies that the approximation error is eventually zero and so our result gives
an error rate like

P�
f̂

− inf
f ∈H

P�f �
(

1

n

)1/(1+p)

,

which is an improvement over (3.2), even if p = 1. In fact, [7] shows that this
rate is optimal in some sense. Interestingly, [7] also shows that one can get even
better rates for σ > 1

2 , that is, when the regression function not only belongs to the
hypothesis class, but also satisfies some extra smoothness properties.

For σ < 1
2 , set k = 4σ/(1 − 2σ). We can then choose r = n1/((1+p)(2+k)) and

our error bound becomes

P�
f̂

− inf
f ∈H

P�f � A
(
n1/((1+p)(2+k))) + n2/((1+p)(2+k))

(
1

n

)1/(p+1)

�
(

1

n

)2σ/(1+p)

.(3.3)

Once again, this improves on (3.2), even when p = 1.
The situation p < 1 is more interesting because the kernels used in learning

theory often have some smoothness properties. If K ∈ C∞, for example, then we
can choose p arbitrarily small and recover the following result of Wu, Ying and
Zhou [36]:

P�
f̂

− inf
f ∈H

P�f �
(

1

n

)2σ−ε
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for any ε > 0. We will see, however, that the techniques of the next section will
improve on this for σ < 1

2 .

4. Toward a smaller regularization parameter. The bound (3.3) would be
substantially improved if we could remove the r2 term and replace it by a smaller
power of r—which is the main source of novelty in this article. As mentioned
before, the most significant source for this improvement comes from bypassing
L∞-based bounds. In recent years, there has been considerable progress made
on bounding various empirical processes that are indexed by sets that are either
not bounded or very weakly bounded in L∞. Most of these results were moti-
vated by questions in asymptotic geometric analysis, most notably, sampling from
an isotropic, log-concave measure (e.g., [15, 25, 28]) and the approximate recon-
struction problem [14, 23]. The fact that such an approach is called for here seems
strange because we are dealing with a learning problem relative to a class of uni-
formly bounded functions, so it would seem that there is no reason to employ
techniques designed to handle an unbounded situation. Even more so, because in a
standard learning analysis, the way the error bounds depend on the L∞-diameter
of the class is usually of no real importance. In contrast, here, the way the isomor-
phic results scale with the L∞-bound is extremely important because one is trying
to obtain a result for the entire hierarchy and the L∞-diameter of Fr is directly
linked to the hierarchy parameter r . Thus, the standard, and very loose, approach
which is commonly used in a single class situation can cause real damage in our
case because the regularization term will be strongly influenced by the way that
the L∞-diameter enters into the bounds.

To see where one can improve upon the standard L∞ analysis (in a very
“hand-waving” way), let us return to the localized Gaussian process indexed by
{t : ELft ≤ x} ∩ rB2, conditioned on the data (Xi, Yi), that is,

t →
n∑

i=1

gi Lft (Xi, Yi) =
n∑

i=1

gi〈t − t∗,Xi〉(〈t + t∗,Xi〉 − 2Yi),

where ft∗ minimizes the loss in rB2. For every t , the variance of each conditioned
Gaussian variable satisfies

σ 2

(
n∑

i=1

gi Lft (Xi, Yi)

)
=

n∑
i=1

〈t − t∗,Xi〉2(〈t + t∗,Xi〉 − 2Yi)
2.

Consider some t for which ELft ≤ x. One can show that in this case, ‖t − t∗‖ ≤√
x (see Lemma 4.1 below). Now, if one has a very strong concentration phenom-

enon and if D = B2, then(〈
t + t∗

2
,Xi

〉
− Yi

)2

=
(〈

t − t∗

2
,Xi

〉
+ (〈t∗,Xi〉 − Yi)

)2

≈c x + E�ft∗ .
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Since the expected loss of the best in the class only decreases with r , this term is
of the order of x, rather than a factor that grows quadratically in r , which is the
estimate that results from the L∞ approach. This at least hints at the fact that the
L∞ approach is likely to lead to very loose estimates.

Despite the fact that the above paragraph is totally unjustified as stated and
very optimistic, it turns out that this scenario is very close to the actual situation
(although the proof requires a rather delicate analysis).

4.1. Further preliminaries. For technical reasons, we will make an additional
assumption on the eigenfunctions of the kernel. We should emphasize that it is
possible that this assumption may not be necessary to obtain the improved regular-
ization term, although we were not able to remove it here and it has a crucial role
in our analysis.

ASSUMPTION 4.1. Let K be a kernel on a compact probability space (� ×
�,μ × μ) with � ⊂ R

d . Assume that there is a constant A such that the eigen-
functions of K satisfy supn ‖ϕn‖∞ ≤ A < ∞.

Let us recall from the Introduction that we still obtain a result if we assume
instead that there exists ε > 0 with supn λε

n‖ϕn‖∞ ≤ A < ∞. As discussed in the
Introduction, our results hold with this weaker assumption if we modify Assump-
tion 3.1 so that (λ1−2ε

n )∞n=1 ∈ �p,∞.
Recall that the feature map � defines an isometry from an RKHS into �2. Let

T ⊂ �(H) be a centrally symmetric, convex, compact subset of �2. The first step
in our analysis is to relate the localized sets Lx (corresponding to the class {ft : t ∈
T }) to subsets of T . Since this fact appeared implicitly in several places (see, e.g.,
[24], Corollary 3.4) and in more general situations, for example, loss functions that
are uniformly convex rather than the squared loss, we omit its proof.

LEMMA 4.1. Let t∗ = arg mint∈T E�ft . For every x > 0,

{t − t∗ : t ∈ T , Lft ∈ Lx} ⊂ 2
√

xD ∩ 2T .

Lemma 4.1 shows that it is sufficient to consider the complexity of the sets√
xD ∩ T . The complexity parameters we shall use come from a generic chaining

argument (defined below) and thus a significant part of our analysis will be based
on covering numbers.

DEFINITION 4.2. Let A,B ⊂ �2. Denote by N(A,B) the smallest number of
translates of B needed to cover A. If εB is a ball of radius ε with respect to some
norm, then N(A,εB) is the minimal cardinality of an ε-cover of A with respect
to that norm. If (A,d) is a metric space (rather than a normed one), we denote the
cardinality of a minimal ε-cover of A by N(A,ε, d).
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The generic chaining mechanism (see [34] for the most recent survey on this
topic) is used to relate probabilistic properties of a random process indexed by
a metric space to the metric structure of the underlying space. This mechanism
originated in the study of Gaussian processes t → Xt , where it was proven that
E supt∈T Xt is equivalent to a metric invariant of (T , d) for d(s, t) = (E|Xs −
Xt |2)1/2. This so-called majorizing measures theorem (in which the upper bound
of the equivalence was proven by Fernique [12] and the lower by Talagrand [32])
was later developed into a more general theory with many interesting applica-
tions [34]. The metric invariant that is at the heart of this theory is the γ2 functional,
which we define as follows.

Let (T , d) be a metric space. An admissible sequence of T is a collection of
subsets of T , {Ts : s ≥ 0}, such that for every s ≥ 1, |Ts | = 22s

and |T0| = 1.

DEFINITION 4.3. For a metric space (T , d), define

γ2(T , d) = inf sup
t∈T

∞∑
s=0

2s/2 d(t, Ts),

where the infimum is taken with respect to all admissible sequences of T and
d(t, T ) = infu∈T d(t, u).

DEFINITION 4.4. A random process t → Xt indexed by a metric space (T , d)

is sub-Gaussian relative to d if, for every s, t ∈ T and every u ≥ 1,

Pr
(|Xs − Xt | ≥ ud(s, t)

) ≤ 2 exp
(
−u2

2

)
.

The generic chaining mechanism can be used to show that if {Xt : t ∈ (T , d)} is
sub-Gaussian, then there is an absolute constant c such that for every t0 ∈ T ,

E sup
t∈T

|Xt − Xt0 | ≤ cγ2(T , d)

and similar bounds hold with high probability.
Note that one choice for sets Ts that constitute a potential (yet, usually subop-

timal) admissible sequence are εs -covers of T , where each εs is selected in a way
that ensures that N(T , εs, d) ≤ 22s

. An easy computation [34] then shows that

γ2(T , d) ≤ c

∫ diam(T ,d)

0

√
logN(T , ε, d)dε,(4.1)

where c is an absolute constant. This is a generalization of Dudley’s entropy in-
tegral (see, e.g., [11, 34]), used in the study of Gaussian processes. As will be
explained later, this integral bound can be improved under certain assumptions on
the geometry of T if d is endowed with a norm.
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The metric d we will focus on here is a random one and depends on the sample
X1, . . . ,Xn ⊂ �2. For every X1, . . . ,Xn, set

d∞,n(f, g) = max
1≤i≤n

|f (Xi) − g(Xi)|.

Recall that our function class H is isometric to �2 under the map t �→ ft . Thus,
d∞,n defines a random norm on a projection of �2 which is given, with some abuse
of notation, by

d∞,n(s, t) = max
1≤i≤n

|〈Xi, s − t〉|.

Next, let Un(T ) = (Eγ 2
2 (T , d∞,n))

1/2 and, for every x > 0, set

φn(x) = Un(Kx)√
n

· max
(√

x,
√

ELt∗,
Un(Kx)√

n

)
,

where Kx = T ∩ √
xD ⊂ �2 and t∗ is the parameter in T for which inft∈T ELft is

attained.
Recall that

Lx = {Lf : ELf ≤ x}
and that

Vx = {θ Lf : 0 ≤ θ ≤ 1,E(θ Lf ) ≤ x} = {h ∈ star(LF ,0) : Eh ≤ x}.
From Theorem 2.2, it is clear that in order to obtain a useful “isomorphic” result,

one has to bound E‖Pn − P‖Vx as a function of x; this is done in the following
theorem. Since it is a modification of a result that was proven in [4], we will only
present an outline of its proof.

THEOREM 4.5. There exists an absolute constant c for which the following
holds. If T ⊂ �2 and H = {ft : t ∈ T }, then, for every x > 0,

E‖Pn − P‖Vx ≤ c

∞∑
i=0

2−iφn(2
i+1x).

The proof of Theorem 4.5 relies on the following “peeling” lemma, which
shows that one can control E‖Pn − P‖ on the star-shaped hull of a class of func-
tions if one can control E‖Pn − P‖ on “shells” of the original class.

LEMMA 4.6. For every x > 0,

E‖Pn − P‖Vx ≤ 2
∞∑
i=0

2−i
E‖Pn − P‖L2i+1x

.
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PROOF. Note that for every x > 0,

Wx = {θ Lf : 0 ≤ θ ≤ 1,E(θ Lf ) ≤ x,ELf ≥ x}

=
{

t Lf

ELf

: ELf ≥ x,0 ≤ t ≤ x

}

=
∞⋃
i=0

{
t Lf

ELf

: 2ix ≤ ELf ≤ 2i+1x,0 ≤ t ≤ x

}
≡

∞⋃
i=0

Wi,x.

If t Lf /ELf ∈ Wi,x , then t/ELf ≤ 2−i and Lf ∈ L2i+1x . Thus, ‖Pn − P‖Wi,x
≤

2−i‖Pn − P‖L2i+1x
.

Finally, let W0,x = star(Lx,0). Note that ‖Pn − P‖W0,x
≤ ‖Pn − P‖Lx and that

Vx ⊂ W0 ∪ W0,x , from which our claim follows. �

OUTLINE OF THE PROOF OF THEOREM 4.5. Fix x > 0. First, one can ver-
ify that the Bernoulli process indexed by Lx , given by t → ∑n

i=1 εi Lft (Xi, Yi)

conditioned on (Xi, Yi)
n
i=1 is sub-Gaussian with respect to the metric

d(ft1, ft2) = d∞,n(ft1, ft2)

(
sup

v∈√
xD∩T

n∑
i=1

〈Xi, v〉2 +
n∑

i=1

Lt∗(Xi, Yi)

)1/2

.

This follows from Hoeffding’s inequality [which says that the process is sub-
Gaussian with respect to d(Lft , Lgt )] and a computation to show that d(Lft , Lgt )

is smaller than the above quantity. Hence, if we set K = √
xD ∩ T , then, by the

Giné–Zinn symmetrization method [13], followed by a generic chaining argument,
we have

E‖Pn − P‖Lx ≤ c1

n
E

(
γ2(K,d∞,n)

(
sup
t∈K

n∑
i=1

〈t,Xi〉2 +
n∑

i=1

Lt∗(Xi, Yi)

)1/2)
.

Moreover, one can show (see, e.g., [14]) that if H is a class of functions, then

E sup
h∈H

∣∣∣∣∣
n∑

i=1

h2(Xi) − Eh2

∣∣∣∣∣ ≤ c2 max
{√

nσHUn(H),U2
n (H)

}
,

where σ 2
H = suph∈H Eh2. In particular, for H = {〈t, ·〉 : t ∈ K},

E sup
t∈K

n∑
i=1

〈t,Xi〉2 ≤ nx + c2 max
{√

nxUn(K),U2
n (K)

}
,

because E〈t, ·〉2 ≤ x. Now, a straightforward computation shows that

E‖Pn − P‖Lx ≤ φn(x).

To conclude the proof, note that by Lemma 4.6, it is possible to estimate E‖Pn −
P‖Vx using E‖Pn − P‖L2i x

. �
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Observe that the sets T we will be interested in are rB2 since they are the images
of rBH in �2. The rest of this section will be devoted to finding a bound on φn(x)

for these sets T .

4.2. Controlling φn for T = rB2. It is clear that φn is determined by the struc-
ture of the sets Kx,r = √

xD ∩ 2rB2 ⊂ �2. To study the metric properties of these
sets, we first have to identify D.

Consider the random variable Z on � distributed according to μ and let X =
�(Z) = ∑∞

i=1
√

λiϕi(Z)ei ∈ �2 be the random feature map. Clearly,

D = {t ∈ �2 : E〈t,X〉2 ≤ 1} = {t ∈ �2 : E〈t,�(Z)〉2 ≤ 1}.
Since (ϕi)

∞
i=1 is an orthonormal system in L2(μ), we have

E〈t,�(Z)〉2 = E

∑
i,j

ti tj

√
λiλjϕi(Z)ϕj (Z) =

∞∑
i=1

λit
2
i .

Hence, D is an ellipsoid in �2 with the standard basis (ei)
∞
i=1 as principal direc-

tions, and lengths 1/
√

λi .
It is straightforward to verify that for every x, r > 0, there is an ellipsoid Ex,r

such that Kx,r = 2rB2 ∩ √
xD satisfies 1

2 Ex,r ⊂ Kx,r ⊂ Ex,r . The principal direc-
tions of Kx,r and Ex,r coincide and the principal lengths of Ex,r are

c min

{√
x

λi

, r

}
,

where c is an absolute constant.
The structure of the ellipsoids Ex,r indicates that it should be possible to obtain

a sublinear dependency on the radius r and the fact that we were not able to do
so in Section 3.1 is an artifact of the suboptimal analysis that was used there. The
sublinearity occurs because for α > 1, Ex,αr is much smaller than αEx,r ; since it is
an intersection body, it only grows in some directions and the number of directions
in which it grows decreases quickly with r .

Now that we have identified the intersection body, we are ready to estimate

Un = (Eγ 2
2 (Ex,r , d∞,n))

1/2.

THEOREM 4.7. There exists an absolute constant c for which the following
holds. Suppose supn ‖ϕn‖∞ ≤ A and set

Q(x, r) = A

( ∞∑
i=1

min{x, r2λi}
)1/2

.

Then

(Eγ 2
2 (Ex,r , d∞,n))

1/2 ≤ cQ(x, r) logn.
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Before proving the theorem, we need two additional facts. The first is an im-
proved “Dudley entropy integral” bound, due to Talagrand.

THEOREM 4.8 [34]. There exists an absolute constant c for which the follow-
ing holds. If E ⊂ R

m is an ellipsoid and B is the unit ball of some norm ‖·‖ on R
m,

then

γ2(E ,‖ · ‖) ≤ c

(∫ ∞
0

ε logN(E , εB)dε

)1/2

.

Another standard fact we need is the dual Sudakov inequality [26].

LEMMA 4.9. There exists an absolute constant c for which the following
holds. Let BE be the unit ball of some norm on R

m and let Bm
2 be the Euclid-

ean ball on R
m. Then, for every ε > 0,

logN(Bm
2 , εBE) ≤ c

(
E‖G‖E

ε

)2

,

where G = (g1, . . . , gm) is a standard Gaussian vector on R
m.

PROOF OF THEOREM 4.7. Fix X1, . . . ,Xn and note that in order to bound
γ2(Ex,r , d∞,n), it suffices to consider the projection of the (infinite-dimensional)
ellipsoid Ex,r onto the subspace spanned by X1, . . . ,Xn. Hence, one can ap-
ply Lemma 4.9. Set ‖v‖E = max1≤i≤n|〈v,Xi〉| and let BE be the unit ball
{v ∈ �2 :‖v‖E ≤ 1}. Consider the ellipsoid Ex,r ⊂ �2 with principal directions
(ei)

∞
i=1 and lengths θi = c1 min{√x/λi, r}. Let T be the operator T ei = θiei so

that T B2 = Ex,r . For every ε > 0,

N(T B2, εBE) = N(B2, εT
−1BE)

and v ∈ εT −1BE if and only if max1≤i≤n|〈v,T ∗Xi〉| = max1≤i≤n|〈v,T Xi〉| ≤ ε.
Hence, if we set Wi = T Xi and ‖v‖Ē = max1≤i≤n|〈v,Wi〉| (with the correspond-
ing unit ball BĒ = {v :‖v‖Ē ≤ 1}), then

N(T B2, εBE) = N(B2, εBĒ) = N(Bn
2 , εBĒ),

where, here, by Bn
2 , we mean the unit ball in the subspace of �2 spanned by

(Wi)
n
i=1.

Let G be a standard Gaussian vector on R
n. Then, by Slepian’s lemma [11, 27],

E‖G‖Ē = E max
1≤i≤n

|〈G,T Xi〉| ≤ c2

√
logn max

1≤i≤n
‖T Xi‖2.

Since T is a diagonal operator and Xj = ∑∞
i=1

√
λiϕi(Zj )ei , we have

‖T Xj‖2
2 =

∞∑
i=1

θ2
i λiϕ

2
i (Zj ) ≤ A2

∞∑
i=1

θ2
i λi = A2

∞∑
i=1

min{x, r2λi}.
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Hence, setting

Q = Q(x, r) = A

( ∞∑
i=1

min{x, r2λi}
)1/2

,

it is evident that

E‖G‖Ē ≤ c2

√
lognQ(4.2)

and by Lemma 4.9, for every ε > 0,

logN(Bn
2 , εBĒ) ≤ c3

Q2 logn

ε2 .

In particular, the diameter of Bn
2 with respect to the norm ‖ · ‖Ē is at most cQ ×√

logn, and we denote this diameter by D2.
This estimate for the covering numbers will be used for “large” scales of ε. For

smaller scales, we need a different argument. Applying a volumetric estimate (see,
e.g., [27]) for every norm ‖ · ‖X on R

n and every ε > 0, we have N(BX, εBX) ≤
(5/ε)n. Thus, for every 0 < ε < δ,

logN(Bn
2 , εBĒ) ≤ logN(Bn

2 , δBĒ) + logN(δBĒ, εBĒ)

≤ c3
Q2 logn

δ2 + n log
(

δ

ε

)
.

If we take δ2 = c3Q
2 logn

n
, then it follows that for ε ≤ c4Q

√
logn/n = ε0,

logN(Bn
2 , εBĒ) ≤ n log(ε0/ε).

Now, by Theorem 4.8, for every X1, . . . ,Xn,

γ 2
2 (Ex,r , d∞,n) ≤ c5

∫ ∞
0

ε logN(T B2, εBE)dε = c5

∫ ∞
0

ε logN(Bn
2 , εBĒ) dε

≤ c6

∫ ε0

0
nε log

(
ε0

ε

)
dε + c6

∫ D2

ε0

Q2 logn

ε
dε.

Using the change of variables η = ε/ε0, the first integral is bounded by c6nε2
0 ×∫ 1

0 η log(η−1) dη = c7Q
2 logn. Noting that ε0 = c8D2n

−1/2, the second integral is
just

c7Q
2 logn(logD2 − log ε0) = c7Q

2 logn
(1

2 logn − log c8
) ≤ c9Q

2 log2 n. �

We will now bound φn(x) using a parameter that describes the decay of the
eigenvalues (λi). By Assumption 3.1, the sequence of eigenvalues has a bounded
weak �p-norm for some 0 < p < 1, implying that for all x > 0,

|{λi ≥ x}| ≤ ‖(λi)‖p,∞x−p.(4.3)
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Set Q̃2(x, r) = cpA2x1−pr2p‖(λi)‖p,∞ and define the function Ũn(x, r) by

Ũn(x, r) = c′
pQ̃(x, r) logn,

where c′
p is an appropriate constant that depends only on p. Then, by Lemma 3.4,

Un(Ex,r ) ≤ Ũn(x, r) and setting

φ̃n(x, r) = Ũn(x, r)√
n

· max
(√

x,
√

ELt∗,
Ũn(x, r)√

n

)
,

it follows that for T = rB2, we have φn(x) ≤ φ̃n(x, r).

LEMMA 4.10. Suppose that K satisfies Assumptions 3.1 and 4.1. There then
exists a constant cp , depending only on p, for which the following holds. Let
Tr = rB2 and set Vr to be the star-shaped hull of {Lf :f ∈ Tr}. If Vr,x = {Lf ∈
Vr : ELf ≤ x}, then

E‖Pn − P‖Vr,x ≤ cpφ̃n(x, r).

PROOF. In view of Theorem 4.5, it is enough to show that the sum

∞∑
i=0

2−i φ̃n(2
i+1x, r)

is dominated by a multiple of the first term in the sum.
For any α ≥ 1 and any x > 0, it is evident from the definition of Ũn that

Ũn(αx, r) ≤ α1/2−p/2Ũn(x, r);
therefore, one can verify that φ̃n(αx, r) ≤ α1−p/2φ̃n(x, r). In particular,

∞∑
i=0

2−i φ̃n(2
i+1x, r) ≤ 21−p/2

∞∑
i=0

2−ip/2φ̃n(x, r) ≤ cpφ̃n(x, r).
�

Let us pause and explain why this analysis indeed yields a far better result than
the L∞ approach. We will show later that the dominant factor in E‖Pn − P‖Vr,x is
Ũn/

√
n, which is, up to a logarithmic term and appropriate constants,

A

(
1

n

∞∑
i=1

min{x, r2λi}
)1/2

= (∗).

In comparison, the L∞ approach leads to a bound of the order of

r

(
1

n

∞∑
i=1

min{x, r2λi}
)1/2

= (∗∗)
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on E‖Pn − P‖Vr,x —which is considerably larger as r tends to infinity.
If x is a “fixed point” of (∗∗) (as required in the “isomorphic” result of Theo-

rem 2.2), then (
1

n

∞∑
i=1

min
{

x

r2 , λi

})1/2

= c
x

r2

and thus x scales quadratically in r . On the other hand, the fixed point of (∗)

satisfies

rA

(
1

n

∞∑
i=1

min
{

x

r2 , λi

})1/2

= cx.

Hence, if (λi) decays quickly, then the fixed point will scale like a smaller power
of r—in the worst case, linearly in r .

The estimate on the fixed point in the alternative approach we presented in this
section is the following.

THEOREM 4.11. There exists a constant cp,Y depending only on p and ‖Y‖L2

such that the following holds. If Assumptions 3.1 and 4.1 are satisfied, then for
every r > 1, if

� = A‖(λi)‖1/2
p,∞rp logn√

n

and

x ≥ cp,Y max
{
�2/(1+p),�2/p}

,

then one has

E‖Pn − P‖Vx,r ≤ x/8.

PROOF. Fix r > 1. From the definition of φ̃n, it suffices to find x for which
Ũn(x, r)/

√
n ≤ cY min{x,

√
x}, where cY ≤ c1 min{1, (ELt∗)−1/2}, for a suitable

absolute constant c1. Note that since t = 0 is a potential minimizer, cY ≤ c1(1 +
(EY 2)1/2).

The definition of � ensures that Ũn(x, r)/
√

n = c′
px1/2−p/2�. To have

Ũn(x, r)/
√

n ≤ cx, therefore, it is enough to have x ≥ (cp,Y �)2/(1+p). Similarly,
to have Ũn(x, r)/

√
n ≤ cx1/2, it is enough that cx ≥ (cp,Y �)2/p . �

COROLLARY 4.12. Suppose that Assumptions 3.1 and 4.1 hold. There then
exists a constant cp,Y,A,λ depending on p, ‖Y‖∞, ‖(λi)‖1/2

p,∞ and A such that the
function ρn defined by

ρn(r, u) = cp,Y,A,λ(1 + u)max
{
r2p/(1+p) log2/(1+p)

n1/(1+p)
,
r2

n

}
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satisfies the hypothesis of Theorem 2.5.
In particular, for every u > 0, with probability at least 1 − exp(−u), any func-

tion f̂ ∈ F that minimizes the functional

Pn�f + κ1ρ̃n(r(f ), u)

also satisfies

P�
f̂

≤ inf
r≥1

(
A(r) + κ2ρ̃n(r, u)

)
,

where

ρ̃n(r, u) = ρn

(
2r, u + ln

π2

6
+ 2 ln(1 + c′

Y n + log r)

)
.

PROOF. The corollary follows directly from Theorems 4.11 and 2.2. We are

able to remove the �2/p term from Theorem 4.11 because �2/p ≤ cp,Y,A,λ
r2

n
. �

The feature of this new bound that makes it better than our previous one is the
fact that the term with the worst asymptotic behavior in n has the best asymptotic
behavior in r . Indeed, the r2 term in ρn(r, u) has a dependence on n that scales
like 1/n, a much better rate than in the previous section. The significance of this is
the suggestion that a regularization term of ‖f ‖2

H will result in over-regularization
when n is large. In fact, a study similar to the one at the end of Section 3 shows
that Corollary 4.12 is indeed far better (we delay the details of this comparison
until after Corollary 5.5, in which we improve the bound even further). In the
following section, we will show that one can improve Corollary 4.12 even further
by completely removing the r2 term.

5. Removing the r2 term. The function ρn from Corollary 4.12 is al-
most the function we would have liked to have. Its leading term is �2/(1+p) ∼
(r2pn−1 log2 n)1/(1+p), while the other term scales like r2/n and is dominant only
for very large values of r . Here, we will show that the latter does not influence
the minimization problem we are interested in and can be removed. Since some
of the technical details of the proof of that observation are rather tedious and have
already been presented in previous sections, certain parts of the argument will only
be outlined.

Let us return to Theorem 2.2. The isomorphic condition we have established
there holds in the set F = rBH with the functional

ψ(f,u) = cp,Y

(
max

{
�2/(1+p),�2/p} + cY (1 + u)

‖f ‖2∞
n

)
.

That is, for every u > 0, with probability at least 1 − exp(−u), for every f ∈ F ,

1
2PnLf − ψ(f,u) ≤ P Lf ≤ 2PnLf + ψ(f,u).
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Consider the minimization problem one faces when performing regularized
learning. The problem is always to minimize a functional �̂ = Pn�f + κ1Vn, hop-
ing that the minimizer f̂ will satisfy

P�
f̂

≤ inf
f

�(f ) = inf
f

(P �f + κ2Vn),

where the functional Vn :H × R+ → R+ is nonnegative. In addition, all of the
functionals we are interested in have the property that, for a fixed f ∈ H and
u ∈ R+, Vn(f,u) tends to zero as n → ∞.

We will specify our choice for the functional Vn later, but, as a starting point,
observe that since f = 0 is a potential minimizer, it follows that (assuming
‖Y‖∞ ≤ 1) any minimizer of �̂ will satisfy �̂(f̂ ) ≤ �̂(0) ≤ 1 + Vn(0), and the
same will hold for �. Since Vn(0) tends to zero as n grows, we can take n suffi-
ciently large (depending on ‖Y‖∞) to ensure that Vn(0) ≤ 1. Therefore, for these
values of n, any minimizer f̂ of �̂ satisfies

�̂(f̂ ) ≤ 2

and any minimizer f ∗ of � satisfies

�(f ∗) ≤ 2.

Thus,

{f :f minimizes �} ⊂ {f : E(f − Y)2 ≤ 2} ⊂ {f : Ef 2 ≤ 9}
and

{f :f minimizes �̂} ⊂ {f : �̂(f ) ≤ 2} ⊂ {f :Pnf
2 ≤ 9}.

Having this in mind, we will decompose H into two subsets. The first, H1, will
contain {f : Ef 2 ≤ 9}. In addition, we will show that F̄r = H1 ∩ (r − 1)BH is an
ordered, parameterized hierarchy of H1 and that the assumptions of Theorem 2.5
will be satisfied with respect to a functional V (r, x) for which the dominant term
is �2/(1+p).

Thus, by Theorem 2.5, with high probability, any minimizer of �̂ in H1 will
satisfy

P�
f̂

≤ inf
f ∈H1

(
P�f + κ2Ṽ (‖f ‖H ,u)

)
,(5.1)

where Ṽ is defined in a similar way to ρ̃n in Corollary 4.12.
The next step will be to extend the result beyond H1 to H . Indeed, since

{f : Ef 2 ≤ 9} ⊂ H1, the infimum in H of the right-hand side of (5.1) is actually
attained in H1. Hence, the infimum in (5.1) is really over all functions in H . To
conclude this line of reasoning, we will then show that with high probability, every
empirical minimizer of �̂ is in H1, by proving that if f ∈ H \ H1, then Pnf

2 ≥ 9.
The correct decomposition of H is attained using the following estimate for the

ratio between the ‖f ‖H and ‖f ‖∞ for any function in H .
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LEMMA 5.1. Suppose that Assumptions 3.1 and 4.1 are satisfied. There is
then a constant κ3 = κ3(A,p,‖(λi)‖p,∞) such that, for every f ∈ H ,

Ef 2 ≥ κ3

(‖f ‖∞
‖f ‖p

H

)2/(1−p)

.

PROOF. Recall that ‖K(x,x)‖∞ ≤ 1 and let r > 0. Set f (x) = ∑∞
i=1 ti

√
λi ×

ϕi(x), where ‖t‖2 = r , and observe that ‖f ‖∞ ≤ ‖K‖∞r ≤ r . Also, since
‖(λi)‖p,∞ < ∞ and (λi)

∞
i=1 is nonnegative and nonincreasing, it follows that for

every i, λi ≤ (‖(λi)‖p,∞/i)1/p .
Fix N (to be specified later) and observe that

‖f ‖∞ ≤ A

(
N∑

i=1

|ti |
√

λi + r

( ∞∑
N+1

λi

)1/2)

≤ A

(
N∑

i=1

|ti |
√

λi + r‖(λi)‖1/2p
p,∞

(
1

N

)(1−p)/2p
)

≤ A

N∑
i=1

|ti |
√

λi + ‖f ‖∞
2

,

provided that N(1−p)/2p ≥ 2Ar‖(λi)‖1/2p
p,∞/‖f ‖∞. Hence, A

∑N
i=1 ti

√
λi ≥

‖f ‖∞/2. Note that r/‖f ‖∞ is bounded below by 1 and so we can choose an
integer N such that

2Ar‖(λi)‖1/2p
p,∞

‖f ‖∞
≤ N(1−p)/2p ≤ cAr‖(λi)‖1/2p

p,∞
‖f ‖∞

for some constant c depending on p and ‖(λi)‖p,∞. Clearly, for any v ∈ R
N ,

‖v‖�N
2

≥ ‖v‖�N
1
/
√

N and thus,

N∑
i=1

t2
i λi ≥ c′ ‖f ‖2∞

N
= c1

(‖f ‖∞
rp

)2/(1−p)

,

where c1 is a constant depending on A, p and ‖(λi)‖p,∞.
On the other hand, since (ϕi)

∞
i=1 is an orthonormal family, we have

Ef 2 = E

∑
i,j

ti ti

√
λiλjϕiϕj ≥

N∑
i=1

t2
i λi ≥ c1

(‖f ‖∞
rp

)2/(1−p)

.
�

Let

H1 = {0} ∪
{
f :κ3

(‖f ‖∞
‖f ‖p

H

)2/(1−p)

≤ 50
}
.
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Since the set of minimizers of any functional � we will be interested in is con-
tained in {f : Ef 2 ≤ 9}, it follows, by Lemma 5.1, that the set of such minimizers
is contained in H1.

The set H1 has additional properties. There is a constant c, depending on p

and κ3, such that on H1,

‖f ‖∞ ≤ c‖f ‖p
H .(5.2)

Moreover, for every r ≥ 1, if one considers F̄r = H1 ∩ (r − 1)BH , then the min-
imizer of P�f in Fr = (r − 1)BH actually belongs to F̄r (again, by comparing
to f = 0). Therefore, it is straightforward to show that F̄r is an ordered, parame-
terized hierarchy of H1 with r(f ) = ‖f ‖H + 1, implying that one can obtain the
desired isomorphic result on H1, with the ‖f ‖2∞/n term replaced by ‖f ‖2p

H /n.
Indeed, we can combine Theorem 2.2 with (5.2) and the fact that the localized

averages E‖Pn − P‖ indexed by {star(LF̄r
,0) : Eh ≤ x} are smaller than the lo-

calized averages indexed by the larger set {star(LFr ,0) : Eh ≤ x} to show that for
every r ≥ 1, with probability at least 1 − exp(−u), for every f ∈ F̄r ,

1

2
PnLr,f − x

2
− c(1 + r2p)

u

n
≤ P Lr,f ≤ 2PnLr,f + x

2
+ c(1 + r2p)

u

n
,

where Lr,f is the excess loss associated with f relative to F̄r .
Using Theorem 4.11, one obtains the following result.

COROLLARY 5.2. There exists a constant κ ′
4 that depends on p,A,‖(λi)‖p,∞

and ‖Y‖∞, for which the following holds. If ϒ = rp/
√

n, then the function

V ′(r, u) = κ ′
4(1 + u)max

{
(ϒ logn)2/(1+p), (ϒ logn)2/p,ϒ2}

satisfies the hypothesis of Theorem 2.5 for the hierarchy {F̄r : r ≥ 1}.
In particular, if we set �̂′(f, x) = Pn�f + κ1Ṽ

′(f,u), then, with probability at
least 1 − exp(−u), every f that minimizes �̂′ in H1 also satisfies

P�
f̂

≤ inf
f ∈H

(
P�f + κ2Ṽ

′(r(f ), u)
)
,

where Ṽ ′ is defined analogously to ρ̃n in Corollary 4.12.

Next, we will show that the (ϒ logn)2/p and ϒ2 terms are nonessential. In-
deed, for sufficiently large n, the minimal value in H of �̂ will be at most 2
(by comparing it to f = 0). Hence, if f ∈ H satisfies κ ′

5κ1ϒ logn ≥ 2 [i.e., if
‖f ‖H ≥ κ5(n/ log2 n)1/2p], then it is not a potential minimizer of �̂′ in H . (Note
that we can, by increasing κ ′

4, take κ5 as small as we like; this will be used later.)
Therefore, on the set of potential minimizers, ϒ logn ≤ c, where c depends on κ1,
κ ′

4 and p. Hence, on this set of minimizers, we can bound

V ′(r, u) ≤ κ4(1 + u)(ϒ logn)2/(1+p).
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Denoting the right-hand side by V (r,u), we can invoke Remark 2.6 to show that
V (r,u) is a valid functional.

Note that we can increase H by adding every function f ∈ H for which ‖f ‖H ≥
(n/ log2 n)(1/2p); we have already argued that such functions cannot minimize �̂.

To conclude, if

H ′
1 = H1 ∪ {f :‖f ‖H ≥ κ5(n/ log2 n)1/2p},

then, with probability at least 1 − exp(−u), every f that minimizes

Pn�f + κ1Ṽ (r(f ), u)

in H ′
1 also satisfies

P�
f̂

≤ inf
f ∈H

(
P�f + κ2Ṽ (r(f ), u)

)
.

Next, let us consider the set H2 = H \H ′
1. Clearly, each function in H2 satisfies

‖f ‖H ≤ c1‖f ‖1/p∞ and Ef 2 ≥ 50. We will show that, with high probability, any
f ∈ H2 satisfies Pnf

2 ≥ 9 and thus is not a potential minimizer of �̂ in H .

LEMMA 5.3. There exists a constant κ6 that depends on A, p, and ‖(λi)‖p,∞
and an absolute constant κ7 for which the following holds. If 0 ∈ F and F ⊂
κ6(n/ log2 n)1/2pBH , then, for every u > 0, with probability at least 1 − exp(−u),
for every f ∈ F ,

Pnf
2 ≥ 1

2
Ef 2 − 1 − κ7(1 + ‖F‖2∞)

u

n
,

where ‖F‖∞ = supf ∈F ‖f ‖∞.

PROOF. Apply Theorem 4.11 with Y ≡ 0, noting that, in this case, Lf = f 2.
It follows that we can set

Wx,r = {f 2 :‖f ‖H ≤ r,Ef 2 ≤ x}
and E‖Pn − P‖Wx,r ≤ x/8, provided that

x ≥ c1 max
{
(ϒ logn)2/(1+p), (ϒ logn)2/p}

,

where c1 depends on A, p and ‖(λi)‖p,∞. We will apply this fact for x = 2. That
is, we need to ensure that r is chosen in such a way that

c1 max
{
(ϒ logn)2/(1+p), (ϒ logn)2/p} ≤ 2,

which is the case, for example, if r ≤ c2(n/ log2 n)1/2p .
The result now follows from Theorem 2.2. �

Set rH = κ6(n/ log2 n)1/2p and recall that κ5 can be taken as small as we like.
In particular, we may assume that κ5 ≤ κ6 and so H2 ⊂ rHBH .
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The final preliminary step we take is to decompose H2 into L∞-shells in the
following way. Fix u > 0 and set r0 such that κ7u(1+ r2

0 )/n < 9. Define (ri)
m
i=0 by

ri = 2ir0, where m is the smallest number such that rm ≥ rH . Thus, m ≤ c1(logn+
logu). Let

B =
{
f :‖f ‖∞ ≥ κ8‖f ‖H

(
u

n

)(1−p)/2p}
,(5.3)

where κ8 is some constant that will be named in the proof of the following lemma.
We will consider the sets F0 = H2 ∩ r0B∞ and

Fi = H2 ∩ {f : ri ≤ ‖f ‖∞ ≤ ri+1} ∩ B.

Since
⋃m

i=0(H2 ∩ {f : ri ≤ ‖f ‖∞ ≤ ri+1}) = H2, any f ∈ H2 \ ⋃m
i=0 Fi satisfies

‖f ‖∞ ≤ κ8‖f ‖H

(
u

n

)(1−p)/2p

and because ‖f ‖H ≤ rH , we have

‖f ‖∞ ≤ κ6κ8

(
n

log2 n

)1/2p

·
(

u

n

)(1−p)/2p

= c1u
(1−p)/2p n1/2

log1/p n
.

Therefore,

‖H2 \ ⋃m
i=0 Fi‖2∞
n

≤ c2
1
u(1−p)/p

log2/p n
.

LEMMA 5.4. There exist constants c1 and c2, depending only on A, p and
‖(λi)‖p,∞, for which the following holds. Fix n and 0 < u < c1n, and perform the
above decomposition. For every 0 ≤ i ≤ m, with probability at least 1 − exp(−u),
every f ∈ Fi satisfies Pnf

2 ≥ 9. Also, if u ≤ c2(logn)2/(1−p), then, with probabil-
ity 1 − exp(−u), for every f ∈ H2 \ ⋃m

i=0 Fi , Pnf
2 ≥ 9.

PROOF. First, fix 1 ≤ i ≤ m and apply Lemma 5.3 to the set Fi . For every
f ∈ Fi , ‖f ‖∞ ≤ ‖Fi‖∞ ≤ 2‖f ‖∞, and thus, with probability at least 1−exp(−u),

Pnf
2 ≥ 1

2
Ef 2 − 1 − κ7

u(1 + ‖Fi‖2∞)

n
≥ 1

2
Ef 2 − 1 − 2κ7

u(1 + ‖f ‖2∞)

n
.

On the other hand, for every f ∈ B ,

1

4
Ef 2 ≥ κ3

4

(‖f ‖∞
‖f ‖p

H

)2/(1−p)

≥ 2κ7
u‖f ‖2∞

n
,

provided that κ8 ≥ (8κ7/κ3)
(1−p)/2p . Therefore, with probability at least 1 −

exp(−u), for every f ∈ Fi ,

Pnf
2 ≥ 1

4
Ef 2 − 1 − 2κ7u

n
≥ 10 − 2κ7

c1
≥ 9
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for a suitably large choice of c1.

Turning to F0, since κ7
u(1+‖F0‖2∞)

n
≤ 9, we have, by Lemma 5.3, with probabil-

ity at least 1 − exp(−u), for every f ∈ F0,

Pnf
2 ≥ 1

2
Ef 2 − 1 − κ7

u(1 + r2
0 )

n
≥ 9.

Finally, since n−1‖H2 \ ⋃m
i=0 Fi‖2∞ ≤ c u(1−p)/p

log2/p n
, it follows that for our choice of u,

κ7u
‖H2 \ ⋃m

i=0 Fi‖2∞
n

≤ 9

from which our claim follows, using the same argument as for F0. �

We can now prove our main result, which is the second part of the following
claim and was formulated as Theorem A in the Introduction.

COROLLARY 5.5. If Assumptions 3.1 and 4.1 are satisfied, then there exist
constants c1, c2 and c3 that depend only on A, p and ‖(λi)‖p,∞, a constant N0
that depends on ‖Y‖∞ and p and a constant cY that depends only on ‖Y‖∞, for
which the following holds.

If n ≥ N0, c1 log logn ≤ u ≤ c2(logn)2/(1−p), then, with probability at least
1 − exp(−u/2), for every f ∈ H2, Pnf

2 ≥ 9. Thus, all of the minimizers in H of

Pn�f + κ1Ṽ (f,u)(5.4)

belong to H1. In particular, for such values of u, with probability at least 1 −
2 exp(−u/2), every minimizer f̂ in H of (5.4) satisfies

P�
f̂

≤ inf
f ∈H

(
P�f + κ2Ṽ (f, u)

)
,

where

Ṽ (f,u) = c3
(
1 + u + cY lnn + ln log(‖f ‖H + e)

)((‖f ‖H + 1)p logn√
n

)2/(1+p)

.

Let us (briefly) repeat the analysis that we carried out at the end of Section 3.
Recall Assumption 3.2: we assume the existence of 0 < σ < 1 such that the regres-
sion function E(Y |X) belongs to T σ

KL2. Recall, also, that under this assumption,
the approximation error A(r) behaves like r−4σ/(1−2σ). Under Corollary 5.5, the
error of the empirical minimizer is like (ignoring logarithmic terms)

inf
r≥1

(
A(r) + r2p/(1+p)

n1/(1+p)

)
� inf

r≥1

(
1

r4σ/(1−2σ)
+ r2p/(1+p)

n1/(1+p)

)
,
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which can be optimized by choosing r = n−k/(2p+kp+k). This gives us a final error
rate of (

1

n

)2σ/(p+2σ)

,

which is, as promised, better by a polynomial factor than the previous error rate of
n−2σ/(p+1) whenever σ < 1/2.

APPENDIX: PROOFS

The starting point in the proof of Theorem 2.5 is the following theorem by
Bartlett [1].

THEOREM A.1. Suppose that {Fr; r ≥ 1} is an ordered, parameterized hier-
archy and that ρn(r) is a positive, continuous, increasing function. If, for all r ≥ 1
and all f ∈ Fr ,

1
2PnLr,f − ρn(r) ≤ P Lr,f ≤ 2PnLr,f + ρn(r),(A.1)

then

P�
f̂

≤ inf
f ∈F

(
P�f + c1ρn(r(f ))

)
,

where f̂ is any function that minimizes the functional Pn�f + c2ρn(r(f )).

PROOF. Let (ri)
∞
i=1 be an increasing sequence (to be determined later) such

that r1 = 1 and ri → ∞ as i → ∞. Define, for each i ≥ 1, ui = u + ln(π2/6) +
2 ln i. Then

∞∑
i=0

e−ui = e−u

and so, by the union bound, with probability at least 1 − e−u, for every i ≥ 1,
1
2PnLri ,f − ρn(ri, ui) ≤ P Lri ,f ≤ 2PnLri ,f + ρn(ri, uj ).

If we only cared about a sequence of ri , this would be enough for our result.
However, we need an almost-isomorphic condition for all r ≥ 1 and so the next
step must be to find an almost-isomorphic condition for Fr when r ∈ [rj−1, rj ]. In
one direction, we have

P Lr,f = P Lrj ,f − P Lrj ,f ∗
r

≤ 2PnLrj ,f + ρn(rj , uj ) − P Lrj ,f ∗
r

= 2PnLr,f + 2PnLrj ,f ∗
r

+ ρn(rj , uj ) − P Lrj ,f ∗
r

(A.2)

≤ 2PnLr,f + 5ρn(rj , uj ) + 3P Lrj ,f ∗
r

≤ 2PnLr,f + 5ρn(rj , uj ) + 3P Lrj ,f ∗
rj−1

,
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while in the other direction, we get

2P Lr,f = 2P Lrj ,f − 2P Lrj ,f ∗
r

≥ PnLrj ,f − 2ρn(rj , uj ) − 2P Lrj ,f ∗
r

= PnLr,f + PnLrj ,f ∗
r

− 2ρn(rj , uj ) − 2P Lrj ,f ∗
r

(A.3)

≥ PnLr,f − 5
2ρn(rj , uj ) − 3

2P Lrj ,f ∗
r

≥ PnLr,f − 5
2ρn(rj , uj ) − 3

2P Lrj ,f ∗
rj−1

.

We can now choose our sequence ri : recall that r1 = 1 and set ri , for all i ≥ 2,
to be the largest number satisfying both of the following inequalities:

ri ≤ 2ri−1,
(A.4)

P Lri ,f
∗
ri−1

≤ ρn(ri, ui).

Note that choosing the largest number is not a problem because both ρn(r, u) and
P Lr,f ∗

rj−1
are continuous functions of r ; that is, the supremum of the set of r

satisfying (A.4) is attained.
Our choice of ri ensures that, for all i ≥ 1,

i ≤ P�(f ∗
r1

, Y )

ρn(r1, u1)
− P�(f ∗

ri
, Y )

ρn(ri, ui)
+ log(2ri) ≤ P�(f ∗

r1
, Y )

ρn(r1, u1)
+ log(2ri).(A.5)

Indeed, for i = 1, this is trivial. For larger i, we can proceed by induction: our
definition of ri ensures that either ri = 2ri−1 or P�(f ∗

ri−1
, Y ) = P�(f ∗

ri
, Y ) +

ρn(ri, ui). In the first case, log ri = log ri−1 + 1 and the inductive step follows.
In the second case, assuming that

i − 1 ≤ P�(f ∗
r1

, Y )

ρn(r1, u1)
− P�(f ∗

ri−1
, Y )

ρn(ri−1, ui−1)
+ log ri−1,

it follows that

i ≤ P�(f ∗
r1

, Y )

ρn(r1, u1)
− P�(f ∗

ri−1
, Y )

ρn(ri−1, ui−1)
+ 1 + log(2ri)

≤ P�(f ∗
r1

, Y )

ρn(r1, u1)
− P�(f ∗

ri−1
, Y )

ρn(ri, ui)
+ 1 + log(2ri)

= P�(f ∗
r1

, Y )

ρn(r1, u1)
− P�(f ∗

ri
, Y )

ρn(ri, ui)
+ log(2ri),

which proves (A.5) by induction. In particular, for any i ≥ 1 and any r ≥ ri , ui ≤
θ(r, u). Therefore,

ρn(ri, ui) ≤ ρn(2r, θ(r, u))
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for any r ∈ [ri−1, ri].
Note that (A.5) implies that the sequence ri tends to infinity with i. Then, by

(A.2), (A.3) and (A.4), with probability at least 1 − e−u, for all r ≥ 1 and all
f ∈ Fr ,

1
2PnLr,f − 4ρn(2r, θ(r, u)) ≤ P Lr,f ≤ 2PnLr,f + 8ρn(2r, θ(r, u)).

We conclude the proof by applying Theorem A.1. �
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