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LINEAR SERIAL RANK TESTS FOR RANDOMNESS AGAINST
ARMA ALTERNATIVES

By MARc HALLIN,! JEAN-FRANCOIS INGENBLEEK AND MADAN L. PuURr?

Université Libre de Bruxelles and Indiana University

In this paper we introduce a class of linear serial rank statistics for the
problem of testing white noise against alternatives of ARMA serial depend-
ence. The asymptotic normality of the proposed statistics is established, both

~under the null as well as alternative hypotheses, using LeCam’s notion of
contiguity. The efficiency properties of the proposed statistics are investi-
gated, and an explicit formulation of the asymptotically most efficient score-
generating functions is provided. Finally, we study the asymptotic relative
efficiency of the proposed procedures with respect to their normal theory
counterparts based on sample autocorrelations. .

1. Introduction. Nonparametric methods have been developed for the
analysis of univariate, and, much later, for the analysis of multivariate observa-
tions as a reaction against the distributional assumptions (mostly, that of
normality) on which much of the classical inference relies.

The need for nonparametric procedures is even stronger in the area of
(univariate and multivariate) time-series analysis: indeed, while there are several
quite tractable inference procedures for independently distributed nonnormal
observations, almost nothing exists, in time series, except for methods based on
the normal theory likelihood ratio approach.

Although many rank-based procedures have been developed in (non-time-
series context) for testing randomness against different types of trend alternatives
(see, e.g., Dufour et al. (1982)), one of the most significant problems for practical
applications, viz. the problem of testing randomness against serial dependence
using rank methods has not received much attention—apart from some scattered
results here and there. Of course, even if not always specifically time series-
oriented, some of the “historical” nonparametric tests, such as the run test and
the turning point test can be used for testing the hypothesis of an independent
time series against serial dependence—in fact, the history of the problem can be
traced back to Hotelling and Pabst (1936), and Wald and Wolfowitz (1943) who
proposed tests based on serial versions of Spearman’s correlation coefficient
referred to below as Spearman’s autocorrelation coefficient (see Section 5.3).
Jogdeo (1968)—also in a non-time-series context—studied the distribution (un-
der independence) of a class of statistics which is not unrelated with our S,
statistics (to be defined below); however, because of the restrictions he puts on
the score functions, his statistics are not adapted to time-series situations.
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Moreover, in none of these early papers is any particular alternative of serial
dependence considered, nor any optimality question addressed.

The first attempt to investigate the power of serial rank procedures against
specific alternatives of serial dependence is due to Knoke (1977), who studies the
asymptotic relative efficiency of several tests based on rank statistics (e.g.,
Spearman’s first-order autocorrelation coefficient or the turning point statistic)
with respect to the first-order sample autocorrelation coefficient, for autoregres-
sive alternatives of order one. This, in some sense, was the first step towards the
application of rank methods in time-series analysis problems—Dbut the statistics
that he studies are not new, and are not specifically devised for the alternative
considered. Recently, in a rather restrictive set-up, Gupta and Govindarajulu
(1980) considered the first-order autoregressive and moving average normal
alternatives, and derived a locally most powerful rank statistic which is a
particular case of our linear serial rank statistic (cf. (1.1)). Aiyar (1981) proposed,
on heuristic considerations, a test (still for first-order alternatives) based on a
statistic which is also a particular case of an extended van der Waerden statistic
which we arrive at in (5.4). Bartels (1982) introduces a rank version of von
Neumann’s ratio test, still for first-order autoregressive alternatives, which he
shows to be more efficient than the run test and parametric von Neumann test
(under normality).

In a somewhat different direction, a highly systematic and theoretically-based
approach is provided in Bell et al. (1970), where the Pitman functions generating
the most powerful distribution-free tests are derived for a null hypothesis of
randomness against the alternative of a process with stationary independent
increments and several other alternatives of dependence.

More recently, letting Z, = X, X,—;, where (X; - .- X,) denotes the observed
series, Dufour (1982) applied to Z, some well-known procedures, such as the sign,
Wilcoxon, signed rank and van der Waerden tests for symmetry about zero.
Although the statistics he introduces are new, they still are an adaptation of
existing ones: no optimality considerations are made and whether multivariate
extensions are possible is unknown. A sign test of the type studied in Dufour
(1982) was also considered by Govindarajulu and Dwass (1983). An overall review
of some of these procedures is given in Govindarajulu (1983).

In spite of the growing interest in time-series problems, there exists thus no
systematic, coherent and unified rank order theory, on the model of the one
developed in Hajek and Sidak (1967) and Puri and Sen (1971) for independent
observations; the few available results constitute only a very incomplete and
piecemeal approach, and the subject remains, to a large extent, unexplored.

The purpose of this paper is to undertake a first systematic time-series oriented
study of this important problem of testing for randomness against the types of
serial dependence usually considered in time-series analysis (autoregressive,
moving average or mixed ARMA dependence). We propose to do so by considering
the statistics of the form

(1.1) Sn=(n = p)7" Tipsr an(R”, R, -+, R,

where a,(- - -) is some given score function and Rﬁ'” is the rank of the observation
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made at time ¢ in an observed series of length n. These statistics are what we
call linear serial rank statistics. There are many reasons for considering this class
of statistics. For example,

(a) it ie intuitively a quite natural idea to account for serial dependence (of
order 1 through p) by considering the ranks of successive (p + 1)-tuples
of observations;

(b) special cases of the score functions a, give traditional test statistics, such
as the run statistic (with respect to the median)

ain iy = 41 i i, —n—-1)Qh—n—-1)<0
P 2= 0 i (2 —n— 1), —n—1) =0,

the turning point statistic
1 if >i:<13
a,,(il, iz, 1«3) =41 if il < i2 > i3
10 elsewhere,

Spearman’s rank correlation coefficient of order p (up to additive and
multiplicative constants)

an(ly, g, + - -, ip+1) = ilip+l/(n + 1)2, etc.;

(c) it can be shown that the locally most powerful rank statistic for testing
randomness against autocorrelation (AR(1)) alternatives belongs to this
class of statistics (cf. Ingenbleek (1980));

(d) multivariate versions can be considered (hence, among others, multivariate
extensions of the run, turning point, . . . statistics); this latter argument is
very important, since the need for results is particularly strong in the
multivariate case.

We mainly develop here the asymptotic theory of the class of tests based on
linear serial rank statistics, and our approach largely relies on Hajek’s projection
method and LeCam’s results on contiguous sequences of hypotheses.

Denote by H{” the null hypothesis under which the observed series (of length
n) is white noise, and by H®™ the alternative under which it is generated by an
ARMA(p,, pz) model of the form

(1.2) X, — nV? naXei =&+ n~\? X2 bigri.

Under fairly mild assumptions (Section 2), we show in Section 3 (Proposition
3.1) that the sequence of hypotheses H{" is contiguous to H{".

This result, together with a lemma by LeCam, allows us to derive the asymp-
totic distribution of S, under the alternatives H\® from the knowledge of the
asymptotic joint distribution of S, and the log-likelihood ratio under H{®; these
distributions are obtained (Section 4) by introducing an adequate U-statistic.

The last section (Section 5) is devoted to efficiency considerations. We inves-
tigate the asymptotic relative efficiency (ARE) of linear serial rank statistics and
provide (Proposition 5.1) an explicit form of the asymptotically most efficient
one—hence, for particular density types (normal, logistic, double exponential,
...), time-series versions of Wilcoxon’s, van der Waerden’s, median, ... tests.
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Next, we (Proposition 5.3) compare our nonparametric statistics with their
classical (normal theory) competitors, based on autocorrelation coefficients. This
comparison seems to be quite favorable to serial rank statistics: the ARE of the
“optimal” linear serial rank test with respect to that based on its “optimal”
normal theory competitor depends on the Fisher information associated with the
white noise density type, taking value one in the case of normal distribution,
72/9 in the case of logistic distribution and two in the case of double exponential
distribution. Finally, a more detailed study of the first-order case (ARMA(1, 1),
AR(1) or MA(1) alternatives) is given, the “optimal” serial rank statistic (in the
sense of Proposition 5.1) having then the important additional property that it
is uniformly “optimal” (over the whole range of ARMA(1, 1), AR(1) and MA(1)
alternatives, and within the class of linear serial rank statistics).

2. Notation and basic assumptions. Throughout the paper, we denote
by Z = {0, 1, £2, ...}, R and C, respectively, the sets of integer, real and
complex numbers.

Let {e; t € Z} be a discrete-time stationary white noise, i.e., a sequence of
independent and identically distributed random variables with means E[e;] = 0,
t € Z; assume that it has a density f(x), and that the following conditions are
satisfied.

(i) ¢, has finite moments up to the third order; denote its variance by o2.
(ii) f(x) is a.e. derivable, and its derivative f’(x) satisfies [¥a | f'(x) | dx < oo.
(iii) f(x) has finite Fisher’s information I(f), i.e., f(x) is absolutely continuous
on finite intervals, and

0<I(f)=j_‘m (%%) f(x) dx < o0

(as usual, I(f) is the Fisher information related to the location parameter
family {fo(x) = f(x — 0) | 0 € R}).

(iv) Let F(x) be &’s distribution function, and F~'(u) = inf{x| F(x) = u},
O<u<l. Put

d(FYw) = —f' (F (w)/fF'(u) 0<u<l.

This function can also be written a.e. as ¢(x) = —f’(x)/f(x), x € R. Assume
¢(x) is a.e. derivable, and its derivative ¢’(x) satisfies (a.e.) a Lipschitz
condition | ¢'(x) — ¢’ (y) | < A|x — y].

These conditions are satisfied by most of the densities considered in the theory
of rank tests. However, they do not include Cauchy and stable distributions.
Under these conditions, we have (Hajek and Sidak (1967) Chapter I)

(2.1) L” ¢(x)f(x) dx =0
and

(2.2) J:w o*(x)f(x) dx = I(f).
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It is also easy to check that

(2.3) J: xp(x)f(x) dx =1
and
(2.4) J:m ¢ (0)f(x) dx = I(f).

Note also that a2I(f) is independent of the scale transformation (i.e., if we put

fo(x) = (1/0)fr(x/0), then o*I(f,) = I(f,)).

3. Asymptotic distribution of likelihood ratios.

3.1. The hypotheses. Let a;, ---, ap,, b1, -- -, by, be an arbitrary (p, + p,)-
tuple of real numbers, and consider the sequence
(31 X" —n2yn X" =g +nV2YP by, t€Z n=12 ...

of stochastic difference equations. For n sufficiently large, all the roots of the
characteristic equation

2P —nVEYR gzPi=0, zEC

lie inside the unit-circle, and (3.1) (see, for example, Wold, 1954, page 99)
generates a sequence of stationary processes {X™; t € Z}. Denote by x™ =

(=", -, ) an observed realization of X™ = (X\", ..., X").
Ifa,=ay=--- =@, =b; =by=--. b, =0, the processes {X{} of course all

coincide with the generating white noise process {e;}. The likelihood function of
the observation x™ is then

(3.2) Z0(x™) = [I&1 flxf™).

Denote by H the sequence of simple (null) hypotheses consisting of these
densities.

If (at least) @, and b,, are both different from zero, the processes {X\"} are
stationary autoregressive-moving average processes of order p; and p. (shortly,
ARMA(p,, ps) processes). Denote then by G‘ ™ (Xeg1, - - - Xt+p,) the distribution
function of p, successive values of {X'™}. The hkehhood function of x™ is

i) = Tl el = n 5, i + B2 g0, — o 32, et )
(3.3)

+ Zf‘t‘? (")et—u) dG ")(x-p,+1, -y Xo)f(e—pgrny, + -+, fleo) de_pyu1, -+, dey,

where the coefficients g™ are the Green’s functions associated with the moving
average difference operator (L denotes the lag operator) 1 + n™*/2 Y22 b,L' (cf.
Appendix 1). Denote by H\™ the corresponding sequence of hypotheses: H\™ will
be our sequence of alternatives (ARMA dependence); H" is the sequence of null
hypotheses (randomness).
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Particular cases of H\™ are
(a) the autoregressive case of order p, (by = by = .- = by, = 0; @, # 0)
(b) the moving average case of order p; (a; = az = - - - = @, = 0; b, # 0).

The corresponding likelihood functions can be obtained by letting, respectively,
gM=0Vn,u=1,2,.---0ora;=0,i=1, ---, p, in (3.3).

As we shall see, however, the asymptotic behaviour of the likelihood function
/1(x™) is quite similar under the three types of dependence considered (mixed
ARMA, pure AR or pure MA).

3.2. Contiguity. In what follows, we shall omit the superscripts (n), and write
X, %, X and X, for x™, x{”, X™ and X' respectively. Consider the likelihood
ratio

[ 7N x)/2%x) if Z%x) >0
(3.4) L,(x) =41 if 7ZLx)=/%x)=0
100 if 7Zi(x) > /%x) =0.

It follows from LeCam’s first lemma (we adopt here Hajek and Sidak’s (1967)
terminology) that, in order to establish that a sequence of hypotheses H'” is
contiguous to a sequence H f)"), it is sufficient to show that log L,(X) is asymptot-
ically normal (under H\"), with mean —d?/2 and variance d>.

The following proposition therefore implies that H'™ is contiguous to H m,

PROPOSITION 3.1. Under H, log L.(X,, ---, X,) = Z%X;, -+, X,) —
d?*/2 + op, where
(3.5) ZUX) =n"12 Yipr1 0(Xe) XL, diXe
a;i+b 1=<i=<min(p,, po)
(3.6) di = qa; D2 <i=< D1 lf D2 < D1
bi p1<i5p2 if pl <p2
3.7 p =max(p;, p;) and d?= Y2, d?¢%(f).

Moreover, #%(X) is asymptotically normal, with mean zero and variance d2.
PROOF. See Appendix 2.

The form of this asymptotic distribution shows that, for n sufficiently large,
there will be little difference, from a statistical point of view, between AR, MA
and ARMA models; as an example, the samples x™ generated by the models

-1/2 — —_ -1/2 .
Xy —n / 5):1 aiXt—,' = &, Xg = & +n / 2€=1 Q;&t—i,
-1/2 —_ -1/2
Xt - n / 5’=1 aiXt—i/2 =& +n / 25’:1 aict—i/z

have the same asymptotic behaviour.
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4. Asymptotic distribution of linear serial rank statistics. In this
section, we study the asymptotic distribution under H\™ of the linear serial rank
statistics S, defined in (1.1). To this end, we derive the joint asymptotic normality

of
nl/z(sn - mn)
log L,

1 ) ‘
R an l , .. " .
(n - 1) e (n — p) 15§¢“~¢ip+215n ( 1 lp+1)

under H{™, where

m, = E[S,| HY"] = -

The asymptotic normality under H'” will then follow from LeCam’s third lemma
(Proposition 4.2). )

Put U, = F(X,) and U = (Uy, ---, U,). We assume that the score functions
ax(- - -) are such that there exists a function J = J(vp+1, Up, - - -, U1), defined over
[0, 1]P*}, such that

(4.1) o< f J2(Up+1 o Ul) dvp+1 ] dl)l <
[0,1)7*1

and

42)  limyE[(JUpss, -+, U) = auB, -+, R | H = 0

(this assumption is satisfied most of the time when a, is of the form
nlin, Bz, -+, ips1) = J(i/(n + 1), in/(n + 1), -+, ir/(n + 1)).

Such a function J will be called a score-generating function (associated with the
serial rank statistic S,).

We proceed as follows. First (Section 4.1), we establish the asymptotic equiv-
alence of (n — p)3(S, — m,) with %, — &,, where

(4.3) F(X) = (n — p)™2 Fipn J(F(X)), F(Xim), -, F(Xip)

and

12
(n —p) y... ¥ J(F(le) ce F(X‘pﬂ));

(44) &X) = n(n—1) -+ (n — p) 1stp= -2t =n

then (Section 4.2) we show that n™Y3(.%, — &,) and n "2.%Y are themselves
asymptotically equivalent to U-statistics. An appropriate convergence theorem
for U-statistics finally establishes (Section 4.3) the desired result.

4.1. Asymptotic equivalence of (n — p)V*(S, — m,) and (% — &) (under
H{"). Let :

(4.5) AX) = (n — p)VASH(X) — mn) — (A(X) — &(X)).
Then it suffices to show that lim,_.E[A%(X)] = 0.
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First, note that
(n—p)"*Sn = F=(n—p) ™ Tips1 [an(R{”, - - -, RD) = I(Uigy, - - -, U, )]
can be written as
(n — P2 $ipir aJORM, -, RM) = SHX; Uw),

where U,., is the vector (U, Uy, - - -, Uwmy). Conditionally, given the vector U..),
ale(...) = ap(---) — J(---) is indeed a score function, and, consequently,
S*(X; U.) is a linear serial rank statistic.

Now

E[AYX)] = Ey [E[((n — p)*S%(X; U) — ((n — p)"*m, — &(X)))*| Un],
and
El(n — p)/*S3%(X; Uw) | U]
= (n — p)"*[Ean(Ry},, - -+, RY) — EJ(Urg,, -+, Ur)]

1 Y I, - Ut,”,)]

=(n-p" [m,, T nn—=1)--- (n—p) 1<§¢ ;e:,,ﬂs,z
= (n - p)""’m, — &.
Hence, denoting by D2(S¢| U.)) the conditional variance of S&(X; U,.)), we have
E[A%] = (n — p)Ey,[D*S%| Uw)).
In view of Lemmas 2 and 4 (Appendix 3), we obtain
E[A%] < Ey, [D*a | Ue)(2p + 1)
+ n Cov(a(RY,, RS, -+, RY), ay(Rips, Ropys -+, RE,) | U]
< @p + 1+ K)Eu, [E[@U(R,, -, R™)?| Uull
= (2p + 1 + K)E[(a;"(R,, -+, RT)),
which by (4.2) converges to 0 (as n — x).
4.2. We now show that n™%(.%, — &,) and n™2.%9 are asymptotically equiv-

alent to U-statistics.
Define the (p + 1)-dimensional random variables

Yiu U,
(4.6) Y, = = , p+1l=<t=<n.
Yt,p+1 Ut—p

The Y/s are identically distributed (uniformly over [0, 1]7*", under H{"); of
course, they are not independent—but, being p-dependent, they constitute an
absolutely regular process (Yoshihara, 1976).
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Consider the function G(y)(of (p + 1) arguments Y=y, -+ Yp+1) €
[0, 1]7*1) where
4.7 G(y) = G(y,, -- *y yp+1) = ¢(F_1(y1)) Z‘i’=1 diF‘l(ym)-

G(Y) could serve as a kernel (of degree 1) converting the variables n=/2%? into
a sequence of U-statistics. However, in order to obtain a U-statistic approxima-
tion of n~"/2%, we shall need a kernel of degree (p + 1). Therefore, put

48) (Y, -, Y,,) = I G(Y,)/(p + 1),

p+1

then the corresponding U-statistic is
n - |
<p + 11)) P+1§<. . '<t2 = QY(YH’ Tt Ytp+1) = n_l/2g(r); + Op(n_1/2).
=01 p+1_n

In a similar way, the kernel
49) (Y, -+, Yy,,) = 32 J(Y,)/(p + 1)
=X IV, -+, Yopu)/(p + 1)
defines a U-statistic which is asymptotically equivalent to n " 2%

-1

n—p & — -1/2 -1/2

<p + 1) p+1<2tl<..'...<:21<n ® (Yfl’ Tt Y‘pﬂ) =n"AZ + 0, (n 7).
= 1=

As for &,, let us consider the kernel
(4.10) (Y, -, Y, )=/ (p+ 1) T, (Y, - -, Y ..1),

where the summation Y; extends over all possible (p + 1)! permutations
(J1, -+, Jp+1) of (t1, -+ -, tp+1). The corresponding U-statistic is

-1
?/§=<n_p> T T eN(Y,, -, Y, )
prl=sg<--

D +1 <tppy=n p+1
=l/n=p)---(n—=2p)) ¥ ---F JU,- - Ug,).

pHlsty#- - -#t,=<n
From (4.4), we obtain

(n—p) & =(n—=p) - (n=2p))/(n(n—1) -- (n — p)¥" + 5,
where

on=(1/n(n=1)--- (n=p)) ¥, ¥---%

1=ji#- - -#j,<p 1=ki<-.-<k,<p+1 p+lst;#*- - -#t,1_,<n

J( U‘l’ ) Utkl—l Uvleik,? ] Ulkz—zljsztkz—l’ B Ulk,—/ l]j/ Utk,—/+1? B Utp+1—/ )
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The number of terms, in é,, is

Pap(p—1) .-

(p+1) ---(p+2—-7)
/!

(p—7+1) (n—p)---(n—2p+7)

splp+1D!(n—-p)--- (n—2p+1).
Thus,

(n-p)---(n—2p+1)

< p! !
E|é,| =p!(p+1)! nn—1) - (1=p)

E I J(Up+1 cte Ul) | = O(n_1)7

and
n~V2& = %% + o0,(n7V?).
4.3. Asymptotic normality. It follows from the conclusions of the preceding

section that, « and B being arbitrary coefficients, #% = n™a(% — &) +
B Z]is (up to o,(n""?) terms) a sequence of U-statistics, with kernel

(4.11) b= a(® — &%) + &7,

A number of results are available concerning the asymptotic behaviour of
U-statistics in case the sample observations (here, the Y,’s) are not independent.
The one we are using in Proposition 4.1 below is a theorem established by
Yoshihara (1976) for the class of stationary absolutely regular processes—from
which the p-dependent processes constitute a subclass.

Let

J*(up+1’ R ul) = J(up+17 ] ul)

(4'12) - i:%‘f[;l]p(](vp’ c oy Uky Uty Up—1, * - ',Ul) dvl cet dUP

+pf J(Up+1, - -+, 1) Aoy -+ - dUps1.
[0’1]p+1
Obviously, E[J*(Up+1, - -+, U1)] = 0. We have then the following results.

PROPOSITION 4.1. Under HS?,

\/;L—(Sn - mn)
log L,

is asymptotically normal, with mean

o)
—% XL, dia’I(f)

V2 2% diC
Y21 diC; X diCI(f))

and covariance matrix
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where
(4.13) V= (0,171 I (Upr1, -+, 1) dvy - -+ dUpa

+ 2 Z]F';l J[:)llpﬂ"‘i J*(Up+l9 ) vl)J*(Up+1+j’ M) U1+j) dvl e dvp+1+j
and

(414) C = J[; o W1 ooy 1) 2520 $F 7 (Vp1-))F " (Upr1—ji) vy - -+ dUpas.

PROPOSITION 4.2. Under H", ¥n(S, — m,) is asymptotically normal, with
mean Y*_, d;C; and variance V2.

The proof of Proposition 4.1 is given in Appendix 4; Proposition 4.2 follows
immediately from Proposition 4.1, by application of LeCam’s third lemma. Note
that the asymptotic variance V2 depends only on the score-generating function
J(--+), not on the ARMA model coefficients a; and b; (cf. (3.7)), nor on the white
noise density f. The mean, on the contrary, depends on both f and the coefficients
a; and b;; however, it remains invariant under scale transformations because of
its dependence on f only through ¢ (F~(u))F~'(v).

5. Asymptotic efficiency of linear serial rank statistics.

5.1. ARE of two linear serial rank statistics—Optimal scores. The results of
Proposition 4.2 allow for an explicit form of the asymptotic relative efficiency of
two linear serial rank statistics.

Let S and S have asymptotic normal distributions under H\”, with means
> d;C{" and ¥ d,C{” and with variances V%, and V?%,. Then, the ARE of S
with respect to S is

(5.1) ey, 82) = (Vi B8y diC/Viy iy diCE)2.

A test statistic S, such that e(S,, S,) = 1 for any linear serial rank statistic
S, will be asymptotically the most efficient statistic (in Pitman’s sense) within
the class of linear serial rank statistics for testing randomness (i.e., H, o) against
ARMA dependence (i.e., H{”). (A test based on S, will be called the asymptoti-
cally optimal test against H{”.) We shall denote by Hf,”’, a sequence of alterna-
tives characterized by the coefficients d = (d;, - - -, d,) (cf. (1.2) and (3.6)).

The following result provides an explicit formulation of the optimal test
statistic.

(n)
1

PROPOSITION 5.1. An asymptotically optimal linear serial rank test for H®
against HY" is provided by any statistic S with score-generating function (up to

additive and multiplicative constants) given by
(6.2) I Ups1, -+ +,01) =T, (dif (P +1=10)) T84 ¢ (F 7 (Ups1-1)) F 7 (Uprr—jmi)-
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Under H{”(h € RP), nV* (S — m#) is asymptotically normal, with mean
b hid;oc’I(f) and variance V4 = Y2, d?c*I(f).

This optimality result relies on the following lemma whose proof is given in
Appendix 5.

LEMMA 5.1. Let S, be a linear rank statistic with score-generating function
J*(Up+1, - - -, U1)(ct. (4.12)), and let
(5'3) J:)k(vp+1’ ] vl)
= (0'21(}())_1 =1 (Cl/(p + 1 - l)) Z ¢(F l(vp+1—1))F (Up+1—-1 l)
Denote by S% a linear serial rank statistic associated with J§. Then e(S,, S%) <1

for any alternative HE.

JE(WUps1, -+, 1) 18 actually the projection of J* (vp+1, .- vl) onto the linear
L*-space spanned by {¥5% ¢ (F  (Upr1-))F (Ups1-j-i); i = 1, ---, p}. This im-
mediately follows from (4.14) and

J}y”¢w”wMH»F%%ﬂTJ1dwﬂ~-mn=m+1—ﬂfﬂﬂ~

Similarly, (SS — m9) is the projection (under H§” and up to o,(n""?) terms)
of (S, — m,) onto the second-order linear space spanned by p linear serial rank
statistics of orders 1 through p, associated with the score-generating functions

EJ ¢(F l(UP+1—J))F (vp+1—] 1), i= 1 .-, D-

PROOF OF PROPOSITION 5.1. Because of Lemma 5.1, we may restrict our
attention to score functions of the form (5.3). The corresponding statistic has an
asymptotic variance

Vi= 3k H&fmmﬂwFWWW@

+2 35 X2 35 k-1 306 cica f ¢ (F 7 (0pr1-))F 7 (Vp1-j-:)

. ¢(F_l(vp+1+s—/))F_l(vp+l+s—/—k) dv

where ¢; = (¢2I(f))'Ci/(p + 1 — ).
Omitting routine computations, we obtain

Vi=a I(AIZL, (p+ 1=+ 232, I3 (p+1—j—1i)]
= o’I(f) Txa ci(p + 1 — i) = (¢*I(f)) " Tk CF.
The values of the C;’s that maximize
(Xhar diC)?/VE = (o I(f))(Zho diCi)?/ 3% CF
are thus proportional to the d;’s, and this establishes the desired result. 0

(5.4)
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Note that the optimal scores (5.2) could also be taken as
I (Vpr1, - -+, U1) = Xy (dif(p + 1 = 1)) T84 F 7 (0pr1-)) (F " (Ups1--1))-
This is in accordance with the fact that, due to stationarity, if {x,} is generated

by an ARMA model of the form (3.1), it can also be seen as generated by an
ARMA model of the form

X — n~2 2 aiXevi =+ n~? Efil bies+i.
An additional consequence of Proposition 5.1 is that the “optimal” serial rank
statistic against an ARMA(p,, p:) alternative is a serial rank statistic of order

p = max(p, p2). Using a statistic of the wrong order—whether too low or too
high—always results into a loss of efficiency.

ExAMPLES. The optimal score functions in (5.2) depend only on the type of
the density of the generating white noise; examples are:

(i) Gaussian white noise (van der Waerden scores)

J(vp+l1 M) vl) = Z€=l (dz/(p + 1 _l)) Ef;(; (I)_I(Up+1—j)q)_1(vp+l—j—i)

(5.5) .
<with &(x) = (2r) 72 j: e w2 du).

(ii) Logistic white noise (Wilcoxon scores)
J(U y =ty U )
e ' o
=¥ (di/(p + 1 -1)) Zf=5 (2 Up+1—j — 1)10g(vp+1—j—i/(l - vp+1—j—i))~
(iii) Double exponential white noise (median test scores)

J(Upt1, -+, 1) = X1 dif/(p + 1 i) 2;:5 $gN(Ups1—j — Y)F o (Vps1-j-i)

(5:7) ‘ <with Fe(x)=-21- J: el du).

As an example of an optimal test statistic, let us consider the problem of
testing randomness against the sequence of ARMA(2, 1) alternatives

Xt + (1.4)n_1/2Xt_1 + (0.5)n_1/2Xt—2 =g + (0.2)n_1/28t_1, tez

where {¢;} has a logistic density (with unspecified variance). The following serial
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version of Wilcoxon’s test is then optimal:

=(n-2)7'30 12 2 B 1) ———iﬁ)‘
n- t=3 n+1 g -R" +
(n) 27_1)2
+(2 RS 1)log(————R(,,) )]
Rin) R(n)
0.5<2n+ 1 l)log< "R, ¥
R(n) R(")
_ — - -1 n - et et S
(1.2)(n 1) 2t—2< n+1 1)103< gr_t)l_l_ 1

(n) (n)
—(05)(n—2)" Y (2 R _ 1>log<—£————) +0,(n™).

n+1 n—R",

5.2. Comparison with classical parametric procedures. 'The parametric version
of our problem is treated, in the Gaussian case, by Anderson (1971, Chapter 6).
For the problem of testing for randomness against an alternative of AR(p)
dependence

(5.8) Xt - 2€=1 ,BiXt—i =g, tEZ

(with 3, # 0), Anderson (1971, page 266) shows that the most powerful similar
test is based on a test statistic

(5.9) HER £
where
(5.10) Ve =Br + T2 BiBires

& being a serial correlation coefficient of order k. These coefficients are such
that

(5.11) PP =4 0,(n7V3),
where r{” is the sample autocorrelation’coefficient of order &, i.e.,

(5.12) r = (n/(n — k) T XeXeop/Sin X3

It is therefore natural to compare our linear serial rank statistics (1.1) with linear
combinations of the autocorrelation coefficients (also, time-series analysts gen-
erally give much attention to the correlogram of their series). In order to do this,
we need the asymptotic joint distribution of those linear combinations and log
L, under H".
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PROPOSITION 5.2.  Under H”, (n*2r{"”, - .., n"2r{”,log L,) " is asymptotically
normal, with mean (0, - - -, 0, =% Y5, d?¢%I(f))’ and covariance matrix

d,
I :
dp
di---d, Ydic’I(f)
(I being the p X p identity matrix).

COROLLARY 5.1. Under H”, n'? 2_, a,ri® is asymptotically normal with

mean Y2, «;d; and variance Y2, o?.

COROLLARY 5.2. The asymptotically most efficient (in Pitman’s sense) linear

combination of the ri”’s against H" is Y5, dpri”.

PrROOF. See Appendix 6.0

Letting 8; = 8" = n™"2g; in (5.10), and by denoting by v" the corresponding

values of v, we obtain in the pure AR(p) case, that
hodwrk” =n2 Bh_ v + o,

The asymptotically optimal test statistic in Corollary 5.2 is thus asymptotically
equivalent to the one providing the most powerful similar test (which is of course
not surprising !).

Now, if we denote by e the ARE of the asymptotically optimal serial rank
statistic defined in Proposition 5.1 with respect to the asymptotically optimal
combination of autocorrelations ¥?_, d.ri”, we obtain the following result.

PROPOSITION 5.3.
(5.13) e=a2I(f).

PROOF. On account of Proposition 5.1 and Corollary 5.1, we have

o = (Zim1 dia’I(f))*/ 381 dia’I(f) _

(S7or d2)2/ 30 dF o’I(f). D

This efficiency thus depends on the density f. For normal, logistic, and double
exponential densities, it takes the values 1, 72/9, and 2, respectively.
A more detailed study for the case p = 1 is given in the next section.

5.3. The first-order case (AR(1), MA(1) or ARMA(1, 1) alternatives). The
asymptotic mean of any linear serial rank statistic has the form of an inner
product Y%, d;C;; any of these statistics has thus the drawback that, when
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p = 2, there exists, for any type of density f, a family of alternatives against
which this statistic has a zero efficiency—namely, the alternatives characterized
by a vector of coefficients d = (d;) (cf. 3.7)) orthogonal to C = (C;) (4.14) (recall
that C; depends only on J and f).

This does not happen, however, in the first-order case (p = 1); indeed the
ARE of a linear serial rank statistic S$ with respect to another S is given by

oS, 8) = (MY

Ca/ Vi
and hence does not depend on the alternative. As a consequence, the statistic
Rﬁn) :")1
f=(n—1)"1%3"2 -1 Lv¢ —1f 2vt-1
o0 e sea{r (2] o(22)

is uniformly asymptotically most efficient against the whole family of
ARMAC(1, 1) alternatives where f is a strongly unimodal density (cf. Hajek and
Sidak, 1967).

The classical parametric test statistic in this problem is the first-order auto-
correlation coefficient r{”. Under the usual gaussian assumptions, this statistic
(cf. Anderson, 1971, Chapter 6) provides the (one-sided) uniformly most powerful
similar and (two-sided) unbiased tests. It is therefore interesting to investigate
the AREs e(S%) of (5.14) with respect to r{®.

In Table 1, we give, for various score functions (van der Waerden, Wilcoxon,
median test, Spearman) and various density types (normal, logistic and double
exponential), the values of e(S%).

Because of its popularity, we also include in this comparative study the
Spearman autocorrelation coefficient of order 1, viz.

(n—1)"' YL, BRI — (n+1)/2)?
(n?-1)/12 )
r§ is equivalent (for strongly unimodal densities f(-)) to the linear serial rank

statistic S5 induced by the score-generating function J(u, v)= uv. Indeed, it can
be shown that

rs=

ré= (S5 —%)/(Y2(n — 1)/(n + 1)),
with
ma=E(S3)=@Bn*>—n-2)/12(n*-1)

2
V2=f uv_“+”+1> dudv = (144) 7",
[0,1)2 2 4

Consequently, n*/%(S5 — m5) is asymptotically normal, with mean 0 and variance
1/144 (under H{”). This confirms a classical result (cf., for example,
Kendall and Stuart, 1968) that n'/?r% is asymptotically normal, with mean 0
and variance 1.

and
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APPENDIX 1

The Green’s functions. Denoting by L the lag operator (Ly; = ¥:-1), consider
the linear difference operator of order p: C(L) = 1 + Y2, ¢;L’, where the ¢/’s are
real and ¢, # 0. The Green’s function g, associated with this operator is (cf.
Miller, 1968, Chapter 2.2 or Hallin, 1984) the value in ¢t = u of the solution of
the homogeneous difference equation ¢, + Y2, c;i¥—; = 0, t € Z, taking on initial
valuesyo=1,¢y_1=-.. =¢Y_p1 =0.

Let g be the Green’s function associated with the operator B™(L) =
1 + n¥2 ¥2  b,L'. The following lemma will be helpful for the proof of
Proposition 3.1.

LEMMA 1.

Zu—v |g(n)| = 2:=l(v—1)/P]+1 (prn_l/Z)u YVwzvz=0

where by = max;| b;|

COROLLARY 1. For n > 4(pby)?,
(A1) Yoo | 8P| = 2(pbun VA = o(n™?*) Vv = 0.

PRrOOF. g™ is a sum of terms of the form
(A2) (= Dk(b'm ig) *° l(k))n_h/z’

where the indexes i), - - -, ix € {1, - - -, p} need not be distinct, and [(x — 1)/p]
+ 1 < k < u ([2] stands for the largest integer < z). Each of these terms is
absolutely bounded by (byn~?)%

Denote by vX the maximal (some might collapse) number of these terms in
g" . p% does not depend on n. Put vE = 84, and v = 0 for u <Oork¢
[[(w — 1)/p] + 1; u] Obviously, uu = f’ 1 vhl, Hence lettmg vt = Yo vt =

Pk vk we get vF =32 Y= vEl = py*! and, since »° =1, v* = pk; it follows
that

Y18 = Siw-nyp Y(bun T2k = 3 (pbunTV2)k

The proof of Corollary 1 is straightforward. 0

APPENDIX 2

PRrOOF OF PROPOSITION 3.1. To avoid unnecessary details of computations
involved in the proof for the general ARMA(p;, p2) case, we successively consider
the pure AR(p) and MA(p) cases, since these two cases cover all the problems
raised in the general case.

A2.1. The AR(p) case. Let Xo= (X_p41, - - -, Xo), and
Ht—l f(Xt -n 172 1 ath—z) = )\(n)(X XO)
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Then, we have (a.e.)
log \™(X; X,)
(A3) = Y1 log X)) + n™2 Ty 6(X)) T2, X
- 2n)7 Y ¢ (X, — n7VERE L aiX, ) 3P i1 00 X X,
with 0 = 0(X,,, - - -, X_p+1) € [0, 1]. The ﬁrst-order term in (A3) is
(A4) ZuX) + n2 ¥ 6(X) I, aiX,; = ZUX) + 0,.
&5 is itself of the form n™"/2 Y2 ., Z,, where the Zs are p-dependent. It is

therefore (cf., for example, Anderson, 1971, page 427) asymptotically normal with
mean E[Z,] = 0 and variance

E[Z} + 2 X2, E[Z,Z,.)] = (3%, a?)e*I(f) + 0 = d2.

Now consider the second-order term in (A3). Put |ay| = max;|a;| and
Q=YY a0 X i Xsj. ¢’ be1ng Lipschitzian (assumption (iv)), we have

| Y1 Qo' (X: — on~12 1 ;X)) — Y1 Qo' (Xo) |
=nAlay| T |1 Q] T2 | X

=n"Alam|® I, ik | XemiXe i X

Since its summands are p-dependent, and since (assumption (i)) E | X, X, X, | <
o Vr, s, t, this upper bound is O,(n'/?). It follows that the second-order term in
(A3) can be written as —(2n)™' Y&, ¢’ (X)) X* o1 a;,0;X;—;X,—; + 0p, and hence
converges in probability to =% Y2, a?E[¢’(X;)X?-;] = —d?/2. Summing up,

log N(X; Xo) = log #{(X) + Z2(X) — (d%/2) + R™(X,,, - - -, Xo, - -, X-pu1),
where R™ is o,. Hence

log L™ (X) = log E[exp(log \(X; X,) — log #{”(X)) | X]
= (Z2(X) — d%/2) + log E[exp(R™) | X] = (Z%X) — d?/2) + op,

where the latter expectation is to be taken with respect to the joint distribution
Gt(z',lb) Of X—p+1y ] X().
Proposition 3.1 now readily follows from the asymptotic normality of .Z%(X).

A2.2 The MA(p) case. Define here log (X, &) where ey = (e_p+1, - - -, €0)
as
log >\(n)(X, e) = Y1 log (X, + Eu—l 8. (n)Xt— + ZHP_I g Ln)et—u)

u=t

(A5) =Yt log (X)) — Yt (Tih g f;"} -+ Zf;:_l 8 Ln)ct—u)¢(Xt)
- Et—l (Zu—l gl(ln)Xt—u + Zt;:; ! ggtn)et—u)2

¢ (Xt 0 T 8 X + 0 20T 80081)

with 8 = 0(X, ¢) € [0, 1].
The first-order term in (A5) is

i 8 Bheuwnt $X)Xemw — TiE 8P Yk pir d(XDerw = Ty — ooy
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Considering Y1), decompose
_2(1) =n1? P=1 b; 2?=i+1 ¢(Xt)Xt—i - z=1 (gfzn) + bun_l/z) Z?=u+1 ¢(Xt)Xt—u

- Zu_P+1 gan) 2?=u+1 ¢(Xt)Xt—u - 23;5p+1 gl(ln) Z?=u+l ¢(Xt)Xt—u

= Yan — 2az — 2a3) — 2ay-

Up to a finite number of 0,’s Ya1 = Z%X) (as in (A4), replacing the a/s

with b/s), and is therefore asymptotically normal, with mean 0 and variance

d?=Y?  b?c*I(f). For 1 < u <p, g is a finite sum of terms of the form
—b,n7V2, by bi,n Y2, e, (=1)4by by -+ bi,n Y

i) Vi) imVie) )

(g — b,n™Y?) is thus O(n™?), and, since E[¢(X)X.-.] = 0, Y2 converges to 0
in probability. Identical arguments apply to the case of Yu3). As for Yuy), it
follows from Lemma 1 that

E|Yay| = 3ihn 1871 (n — 2D)E| X, | E| (X)) |
< 2(gby)*n™**(n — 2p)E| X, | E| (X)) |.

Hence Y14 also converges to 0.

Similar arguments can be used to show that ¥ is also op.

Let Q = | X5 g™X, , + Y71 gMe,_, |, and consider the second-order term
in (A5). Since X, and ¢, have, under H{”, exactly the same distribution, and since
our purpose is to prove that this second-order term converges in probability
to a constant, we may write @, under the more convenient form Q. =
| t+p— (n) Xt—u |

¢ bemg (assumption (iv)) Lipschitzian, this second-order term is of the form

Y Y, Qi¢'(X) + %Tu(X, ¢) where |T.(X;e)| < A0 T Q.
Now
Y EQE = Yr E| S5 8P X |® = M T (T 18071)°
= nM(T2-1 187 1)? < M(2pby)*n~'/?
Hence T,.(X, ¢) is 0,. Finally,
% Y Q' (X)) = =% Y5, (8)? Tieupn Xiud' (X))
= Zﬁiﬁﬁ (8) Thouprs Xi-ud' (X))
> Yol 8 gl) Yiupr1 XeuXi-09' (X0)
Tt Yuct 808 Yiuprr XemuXimud' (X)
==Y Yo — % Yea — Zeny — Zew-
Yoy = Loy (0u/VN)? Tiupn Xiud' (X))
+ 3P (8 = bun ) Yo XPu9'(Xe)
+2 Y51 @ — bun )b B prr Xiud (X0,
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but g&* — b2n", as we already know, is O(n"2), and thus
Yoy = Y&, bIE[XTIE[¢"(X)] + 0, = 35, b¥e’I(f) + 0p.

Also
E|Yen| = Z081 (87)2%(n — u + p)a’I(f)

< 2(n — 1)o™L(f)(Pbun 2>,
EI 2(24)' = (EIXtI)zI(f)(n +p-— 2) Z::g—l zg;% lg&")gf,"’l
< (E| X, VI(f)(n + p = 2)4(pbyn )",

and, since gV g is O(n™?), Y (23) is 0p.
So far, we have proved that log A”(X, ¢) = log #{(X) + Z%X) — (d%/2) +
R.(X, ¢) where R"(---) is o,. Since L™ is again a conditional expectation, viz.

L™ = E,[exp(log A"(X, ¢) — log #{"(X)) | X],
the proof follows as in the AR(p) case.
A2.3. The ARMA(p,, p;) case. We briefly sketch here the proof; it is easy to
see that it will lead to the same problems as in the AR and MA cases treated
above.

Assume p, < p; = p. Denoting by A™”(X; Xy; ¢), the integrand in (3.3),
we have

log A = ¥, log f(X,)
+ Y $X)TE, Xe-in™%a; — ") + 2 5P g ¥2 aiXemu
= Yo 80X — 02 TR X)) — T gPen]
Y Y [ 3 aiXe i — 3 8P (Xe-w — V2 38 X, )
= T2 gPe e’ (X, — 0] - -]).

The term Y&, ¢(Xe) T2, Xe—i(n™2a; — g{™) is of the form (3.5), up to o, terms.
The second-order term converges in probability to —%[¥2, (a; + b)? +

P py+1 @fl. The proof follows. O

APPENDIX 3

Some properties of linear serial rank statistics.
LEMMA 2. The variance of (n — p)S, = Yipr1 a(R”, R, -, Riﬁ;) is
D*(n—p)S,) =(n—p)Var(a(R,, - -, R{™)
+232, (n—p—i)Cov(a(RY), i, - - -, R{D), a(RTY, - - -, R™))
+[(n—3p)(n—3p—1) +p(2n—5p—1)]
- Cov(a(R{,z, - - -, RY,),a(RYY,, - - - ,R™)).
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COROLLARY 2.
D*((n—p)S,) = Var(a(Ry), - - -,R)(n—p)(2p+1)

+n Cov(a(Ré';,’,rz, . -,R,‘,’fz), a(R,‘,’i’l, -++,R{M).
PRrOOF. The proof is straightforwardly obtained by expanding E[Y a(- - -)]%. 0

LEMMA 3.
E[a(R%, -+, R{M)]
_-p-1)(n—-p—-2)---(n—-2p—1)
n(n—1).--(n—p)

+ 3 (n-p—-D(n-p—-2)---(n—2p—14+7)

E[a(R::z]y R R(ln)) I R(z';;i.zy ] R,f)':-)zl

n(n—1)---(n—p) PHESjiR e DAL 1<hy<hg<. . <k, <p+1
(n) (n) (n) p(n) (n) (n) p(n) (n) (n) (n)
. E[a(Rp-f-l’ L) Rk,+1Rj, Rh,—u AR Rhl+1le Rkl—u < RYY) | Rypigs -+ o RpYo)

PROOF. Again, the proof follows from a tedious enumeration of the n(n — 1)
.. (n —p) terms of ¥ --- Y a(, ---, ip), which contains (n —p — 1) --.

1<iy#. .- #iy<n
(n—2p — 1) terms with # {i; # --- # i)} N {R;’fz, ceey Ré’,’,ﬁz} =0, (n—p-1),
coe, (n — 2p) terms with # {iy # - # i} N {RY,, -, RO =1, .-+, (n —
p—1), -, (n—2p— 1+ /) terms with # {i, # - - #i,)} N {RT),, ---, RS} =
4 -+, and (n — p + 1) terms with # {i, # --- # i)} N (R, ---, RY,,} =
p+1.0

LEMMA 4.
n|Cov(a(Rf,'31, .o, R™), a(R‘gﬁ’w - Rggzm < KE[a2(R;’31, -+, R

(where the constant K does not depend on n).

PROOF. Applying Lemma 3,
E[a(R®,, -, R)a(RE,,, -+, R™,)]
= E[a(R.s, -+, RE)ERY,, -+, R™) Ry, -+, RO
_ nn—=1) --- (n —p)

n-p-1)---(n—2p—1

P (n— 2 —2+7) - (n—2p — 1)}

) E2[a(R}(7r21’ ) Rgn))]

pH2s<ji#. . -#j,<2p+2 1=k<...<k,=p+l
(n) ) pm () p) Q) (n) (n)
E[a(Rp+1’ tt Rk/+1Rj, 9 0y R“n Rk':—l’ MY Rln )a(R2:+2’ Tty Rpr-ll-Z)]'
For every fixed value of / this latter sum contains

(p+1) -~ (p+2=2)/(n—2p—=2+7) --- (n—2p — 1)/!
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terms and since | E[a(- - -)a(- - -)] | < E[a?(- - -)], this sum is bounded by

- (p+1)--- (p+2—2r))?
Tn-20-2+7)---(n—2p— 1))

E[e* Ry, ---, R™M),
= C.E[a*(R(),, ---, R™)],
where C, is O(n™1). Thus
Covia(Ry, -+, RY"), alREs, -+, R

<( nin—1) --- (n—p)
“\(n=-p-1)---(n—-2p-1

= 1)<Ea<R;;21, o RO
+ C.E[a*(RY,, - -+, R™M)]
= CLE[¢*(R}),, ---, R,
with C} another O(n™1).0

APPENDIX 4

PrOOF OF PROPOSITION 4.1. The g; function in Yoshihara’s (1976) Theorem
1 is here

gaB(Yt) e f (I’aﬂ(Yt’ Y2, * 05 Yo+l dyy - dyp+1,
[0,1]PtP+1)
where dy; stands for dy; 1, dyiz, - - -, dyip+1. Since
j[:),up(pﬂ) Qg(Yt’ Y ---, Yp+1) dy; --- dyp+1
= (p + 1)™G(Y,) + pEG(Y,)) = (p + D) 9(FY(U,) Y2 d;F YUy,

J[;l]p(ml) ’I’y(Yn Y2, -, Yp+1) dys --- de+1

=(p+1)'J(Y) +p f - J(WUps1, - -+, W) duy - -+ dupi),

[0,1]

and

f ‘I’Z(Yt, Yo, -, Yp+1) dys - -- de+1

1
= (p + 1) ‘]::% ‘I[:)l]p J(upy sy Up, Uty Up—1, * ul) dul e dup’

we obtain
gaB(Yt) = gatﬂ(Uty Tty Ut—p)
= (p + 1)_1[01J*(Ut, ctty Ut—p) + .345(F_1(Ut)) 2’;';1 diF—l(Ut—i)]-
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Clearly, E[g.5(Y:)] = 0; the variance of g.5(Y,) is
D?*(g.5(Y))

= (p + 1)_2{a2 Ll]ml J*2(0p+l’ ey vl) dvl PP dvp+1 + 208 2?:1 di
. J[:“]pﬂ J*(Vp41, -+ -, Ul)¢(F‘1(vp+1))F‘1(vp+1_i) dvy -+ dupn

+ 62 3L, d?a“‘I(f)]f :
the covariances between g.5(Y;) and g,5(Y:;), 1 = j < p, are
E[8.5(Y 1) gap(Yes))]

=(p+ 1)_2[02 J[; " J*(Upﬂ, Tty UI)J*(vp+l+jy tey v1+j) dv, --- dUp+1+j

+ af 2{:{ d; J[; - F—I(Up+1—i)¢(F_l(Up+1))J*(Uj+1+p, tey Uj+1) de+1 e de+1+p:'
(with the convention that, for j = p, the sum f;{ vanishes). On account of
assumption (iii) and (4.1),
o5 = D*(8us(Y)) + 2 Y5, E[8ap(Y1)Eap(Y14y)]
=(p + 1) %a®V? + 2a8 X5, d;C; + 82 32, d?e’I(f)}

(with V% and C; given in (4.13) and (4.14)) is never zero; the conditions of
Yoshihara’s (1976) Theorem 1 are therefore satisfied; and n'/2(% s — E%") is
asymptotically normal, with mean zero and variance (p + 1)?¢%5. This completes
the proof, since

2%ty — E¥ %) = avn(S, — m,) + B(log L, + % Y d?¢?I(f)) + 0,. O

APPENDIX 5
PrROOF OF LEMMA 5.1. It is easy to see that
(3220 ¢(F (Upr1-))F " Wpr1—jmi); i = 1, - -+, D}
constitutes a p-tuple of L*-orthogonal functions, with norms
[(p+ 1= i=1,---,p.

Any square-integrable score-generating function J* can therefore be decomposed
into J*(Up+1, «+ +, U1) = JF(Ups1, -+ -5 V1) + J ¥ (Vps1, - -+, V1), Where J§ is given by
(5.3) and
(A6) f T Wpr, -5 01) D72 SF " Wpr )F  Wpirjod) dvpra, -+, don = 0,

i:l’...’p_
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Denote by S,,, S?, and S; linear serial rank statistics associated with J * J§, and

I, respectively; denote by V? Vg, and V3% the asymptotic variances of
n**(S, — m,), n¥*(SS — m%) and n'%(Sx — mi), respectively. Then, it is easy to
check that

n*(S, — my) = n'*(S5 — m%) + nVX(SE — m¥) + 0,(1),

with lim,_.nE[(SS = m3)(SE — m#)] = 0 (under H).
Thus, we have V? = V§ + V3. Now, since using J* or J# in (4.14) leads to the
same values of the C/’s, we have

(X2, diC)*/(VE + VI)
0) — =1
e(Sn, Sn) (25):1 d,C,)2/V(2) = 1’

which completes the proof. 0

APPENDIX 6
Asymptotic normality of (n*?r{, ..., n"?r( log L,)’.
PrOOF OF PROPOSITION 5.2. Consider the linear combination (with
Liai=1)
Vn 3P, ar™ + Blog L"
=[07? Z0, ain™An— k)7 Tiins X X, + 2YUX)] — V2826 %(f) T2, d?
(A7) = X% a0 = ((1/n) Tt XDV (n— i)n"? $iin X Xemi + 0p

=Y — %8 Tidic’I(f) — T

Since n'* ¥, X, X, is asymptotically normal, and since (¢~ — ((1/n) ¥, XH™
converges to 0 in probability, ¥, is 0,. Hence

S =0 P X (072 $2, aiXew + BdipXin)] + 0p = 72 Yt Ze + op.
An immediate computation gives
(A8) E(ZY) = T8, of + 82 22, die’I(f) + 28 32, diew
and
E(Z,Z.x) = 0.
Consequently, (A7) is asymptotically n(;rmal, with mean —%48% ¥ d?¢2I(f) and

variance (A8). This proves Proposition 5.2.0

Corollary 5.1 is an immediate consequence of LeCam’s third lemma and
Corollary 5.2 follows from the Cauchy-Schwarz inequality. O
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