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A SEQUENTIAL PROBABILITY RATIO TEST USING A BIASED
COIN DESIGN

By Nancy E. HECKMAN'
State University of New York at Stony Brook

Consider a sequential probability ratio test comparing two treatments,
where each subject receives only one of the treatments. Each subject’s treat-
ment assignment is determined by the flip of a biased coin, where the bias
serves to balance the number of patients assigned to each treatment. The
asymptotic properties of this test are studied, as the sample size approaches
infinity. A renewal theorem is given for the joint distribution of the sample
size, the imbalance in treatment assignment at the end of the experiment,
and the excess over the stopping boundary. This theotem is used to calculate
asymptotic expressions for the test’s error probabilities.

1. Introduction. In a clinical trial in which two treatments are to be
compared, the determination of a suitable method of assigning treatments is an
important design problem. It is usually desirable to assign an equal number of
subjects to each treatment and to do so in a random manner, to diminish the
possibility of bias in the comparison. If subjects arrive one at a time, as in a
sequential test, achieving both balance and randomization may be difficult. Efron
(1971) and Wei (1978) have proposed the use of a biased coin design: the
treatment received by the (n + 1)st subject is determined by the flip of a coin
which is biased in favor of the treatment to which fewer of the n previous subjects
have been assigned. In this paper I study a sequential probability ratio test
(SPRT) in which Wei’s biased coin design is used. The SPRT’s asymptotic
properties are studied as the sample size approaches infinity.

The asymptotic properties of a SPRT are well known in the case of i.i.d.
observations (cf. Woodroofe, 1982) and in the case of “almost” i.i.d. observations
(Lai and Siegmund, 1977). However, in a biased coin design, the observations are
in general not i.i.d., nor are they close enough to those in the i.i.d design (flipping
a fair coin to determine treatment assignment) to apply the existing theory.

The allocation scheme and the SPRT are defined in Section 2, and the type I
and type II error probabilities are expressed in terms of a type of random walk
and a stopping time. Section 3 contains a local limit theorem for the joint
distribution of the stopping time, the imbalance in assignment at the time of
stopping, and the excess over the stopping boundary. This limit theorem is then
used to calculate asymptotic expressions for the error probabilities of the SPRT.
Sketches of the proofs are given. For details, see Heckman (1982).
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2. A sequential probability ratio test. Let V; and W; denote the ith
subject’s responses to the two treatments. Assume that (V;, W;), i = 1, are
independent and identically distributed and V; has distribution function F and
W, has distribution function G. By observing only one response per patient, we
will test

Hy:F=F,, G=G, versus H: F=F,, G=G,

where F, and F, are mutually absolutely continuous, as are G, and G,, with
Fy, # F,, Gy # G,. The allocation procedure is defined as follows. Let U;, i = 1, be
i.i.d., uniformly distributed on [0, 1] with {U;} i = 1 and {(V;, W)} i = 1
independent. Let h be a function from [—1, 1] to [0, 1] satisfying:

(i) h is nonincreasing,

(ii) h(x) =1- h(-x),
(iii) h(x) = % + h’(0)x + B(x)x* where sup|,<1| B(x)| < .
Let Dy = 0. Let 6,41 = 1 if U,y1 < h(D,/n), zero otherwise, where D, =
7 (26; — 1). If §; = 1, we observe V;, otherwise we observe W;. With this
allocation procedure, the nth log likelihood ratio statistic for testing H, versus
H. 1 is '
(2.1) S,=31aXi+(1-6)Y;

where X; = log dF,(V;)/dF, and Y; = log dG,(W;)/dG,.
Assume that X; and Y; have finite positive variance under H, and H;. For a

and b positive, let
T = T(a, b) = inf{n: S, > a or S, < —b}.

Since the expectations of X; and Y; are negative under H, and positive under
H,, T is finite almost surely under both hypotheses. The SPRT with boundaries
a and b continues testing until 7' subjects have entered the trial, rejecting H, if,
at that time, S, > a and rejecting H, if S, < —b.

Suppose that (U;, V;, W;), i = 1, are defined in the probability space
(Q, #, P) and that under Hy, P = P, and under H,, P = P,. Let . be the sigma
algebra generated by §,X; + (1 — §;)Y;, i = 1. #, is the sigma algebra generated
by 6:X;+(1—=6)Y;,, 1 <i=<n.Let

Fr=1{A € Fo: AN{T = n} € &, for all n}

and
PFT = P, restrictedto %7, i=0 or L.

Then, the probability of a type I error is

Py{Sr>a} = J;S

=

; (dP§/dPT) dP,

= f exp(—Sr) dP;.
{Sr>a}
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Let

(2.2) t=t(a) =inf{n: S,>a} and R,=S; —a.

t is finite almost surely P;. Since {Sy > a} C {t = T, S; = Sr} and P,{Sr > a}
— 1 as a and b approach infinity,

Py{St > a} ~ exp(—a) f exp(—R,) dP;.

Thus, determination of the asymptotic distribution of R, gives an asymptotic
expression for the type I error probability. An asymptotic expression for the type
II error probability can be calculated in the same way.

Let
69 =1 if U; <, zero othérwise,

(2.3) SO=316X;+ (1 -80)Y,,
u = (EX; + EY;)/2.

THEOREM 1. If X; + Y, is nonlattice, then
Pyfreject Hy} ~ v,exp(—a)
Py {reject Hi} ~ yoexp(—b)

as a and b approach infinity, where
yi=p! j;“ exp(—-r)Pi{c;S} = rforallj=1}dr, i=0 or 1,
withco=—-1andc, = 1.
The Theorem follows directly from Theorem 2 of Section 3.

3. A renewal theorem. Let h, U, §;, and D, be as defined in Section 2.
Let (X;, Y;), i = 1, be i.i.d. with the expectations of X; and Y; positive, and their
variances positive and finite. Suppose that {U.};>: and {(X;, Y:)}i>1 are inde-
pendent. Let S,, t(a), R., 67, SY, and u be as defined in 2.1 to 2.3. Let A =
(EY, — EX)/2, 0 = (var X, + var Y;)/2, and g.(m, n, A) = P{t(a) = n,
D, = m, R, € A} where A is a subinterval of the reals and m — n is an even
integer. Suppose that m, n, and a approach infinity in such a manner that

n = a/u ~ x(a/u)”?

1
(3.1) m ~ yn2

where —0 < x, y < oo,

THEOREM 2. If X, + Y is nonlattice, then
lim,_wng.(m, n, A) = po~'¢((Ay — px)/o)277 ¢ (y/7) J;p(r) dr
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where
p(r) = utP{SY = r for all j = 1}I{r = 0},

é is the standard normal density, and 72 = (1 — 4h’ (0))™%
Therefore ((t — a/u)(a/w)™? tY2D,, R,) converges in distribution to

((AD — ¢8)/u, D, R) where D, S, and R are independent, D and S are normally
distributed with zero means and variances one and 72, respectively, and R has

density p(r).

It is now easy to see the effect of the allocation scheme on the stopping rule.
For example, suppose that A is positive, that is EY > EX. Then the mean of
(AD — 6S)/u given D is positive if and only if there has been an imbalance in
favor of the X;’s. Observing an excess of the responses with smaller means causes
the test to stop later than expected.

Let 0 < r; < ry < oo, Write

ga(m, n, (r,, r2]) = P{S, € a+ (r1, r2), Sn-j<@a,1 < j=<n, D,=mj},

Thus,
falre) < ga(m, n, 11, 1) < fa(r1)

where
Fur) =P{S, €Ea + (r1, 12), Sn — Suj>r,1<j=n-1,D,=m}
and

1“(") =P{S,€Ea+ (r,r),Sn —Sn-j2zr,1<j=n-1D,= m}.

Theorem 2 follows directly from Proposition 1 below, the theory of Riemann
integration, and the fact that

fP{S}’eroralljZl}dr=fP{S}’>rforallj21}dr.
A A

PROPOSITION 1.

limgwn fo(r) = (rp — r)u  P{S? = r for all j = 1}
- po ' o((Ay — px)/o)2r ¢ (y/7)
limgonfa(r) = (ro = r1)u™*P{S} > r for all j = 1}
- uo T ((Ay — px)/0)27 7 ¢ (/7).
The proof of the proposition is sketched here. For a more detailed proof, see
Heckman (1982). Let
S =83 -89,

A

Dj = 2—j+1 (25? - 1) = D(,), - Dg—j-
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Then
L,(r) =P{S,x + St € a + (11, 12, Sj =rforallj<k Do+ Dy=m)}

+ ¢(a, k)

where lim_,», lim sup,_..n | ¢(a, k)| = 0.

Conditioning on (Dj, S;) and using the independence of {Dy, S;,j <k} and
{Dpn_x, Sn—x} and the stationarity of the process {S?}, the first term on the right-
hand side of the above equation is equal to

f ek P{S,-r€a—s+ (r, r]| Dok =m = Z}P{Dpr = m — 7}
szr,|/|=
.P{S%=rforallj<k—1|Dy=r 80 =s}dP{D =/, SY=s)

By a modified version of Stone’s theorem (1965) and Theorem 1 of Heckman
(1985)

lim, ,nP{S,-r € a — s + (r;, r2]|Dpp = m — Z}P{Dp—p, = m — 7}

= (r; — r)o ¢ ((Ay — ux)/o)2r 7 ¢(y/7)
ifn—k—(m—/)and :

SUDszr, |/ |<kNP{Sp-t €Ea — s + (r1, r2]| Dp-r =m — Z}P{Dpr=m — /} < @

The proposition then follows by the dominated convergence theorem.

4. Remarks. Analogues of Theorems 1 and 2 also hold in the following
case. Suppose that X;, Y1, and X; + Y; are arithmetic with the arithmetic spans
of X; and Y, integer multiples of the arithmetic span of X; + Y,. Suppose that
the arithmetic and lattice span of X; + Y, are both equal to A. (The arithmetic
span of a random variable Z is the largest A such that Y2, P{Z = kA} = 1. The
lattice span of Z is the largest A such that 2. P{Z = b + kA} = 1 for some b.
The two types of spans are not necessarily equal.) Then, if m, n, and a satisfy
(3.1) and a approaches infinity through multiples of A,

nP{t =n, D, =m, R, = J\} = po~'¢((Ay — ux)/e)277 ¢ (y/7)Ap(JN)
where p is as defined in Theorem 2. Thus, Theorem 1 holds with
vi= A"t 331 P{e;SY = J for all j = 1).
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