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Let Y, satisfy the stochastic difference equation
Y. =YY+ 301y, Y, + ey

where the {{,,} are fixed sequences and (or) weakly stationary time series and
the e; are independent random variables, each with mean zero and variance
o2 The form of the limiting distributions of the least squares estimators of a,
and v, depend upon the absolute value of the largest root of the characteristic
equation, m? — Y7-; yymP~ = 0. Limiting distributions of the least squares
estimators are established for the situations where the largest root is less than
one, equal to one, and greater than one in absolute value. In all three situations
the regression ¢-type statistic is of order one in probability under mild
assumptions. Conditions are given under which the limiting distribution of the
t-type statistic is standard normal.

1. Introduction. Let the time series Y, satisfy
(1) Y=Yl Yuai + 3517, Y + e t=1,2,.--,

where the {;} are fixed sequences and (or) weakly stationary time series, and the e; are
independent (0, 0°) random variables. If any {yu} are stationary time series, then we
assume {e;} to be independent of such {y:}. The model (1) is of order p and the polynomial
equation

@) mP = i ymP =0

is the characteristic equation of the model. The roots m;, ms, ---, m, of (2) are the
characteristic roots of the process (1).

Mann and Wald (1943) considered estimation of the parameters of the model with {¢x}
restricted to the constant function and the roots of the characteristic equation less than
one in absolute value. White (1958) obtained the limiting joint moment generating function
of the numerator and denominator of the least squares estimator of y; for the first order
case and no y-variables. The moment generating function had three forms, according as
the root of the characteristic equation was less than one, equal to one, or greater than one
in absolute value.

Anderson (1959), Rao (1961), and Stigum (1974) have studied estimation of the model
when at least one of the roots of the characteristic equation is greater than one in absolute
value. Venkataraman (1967) and Narasimham (1969) studied the model with p = 2 and at
least one root greater then one in absolute value. Rao (1978) considered the case p = 1 and
v1 = 1. None of these studies permitted y-variables in the equation. Venkataraman (1968,
1973) studied the second order explosive model (at least one root greater than one) with a
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constant term.

If the set {yu} contains the constant function and a stationary vector autoregressive
time series and if all of the roots of the characteristic equation are less than one in modulus,
then the limiting distribution of the estimator is normal; see, for example, Hannan (1970
page 329), and Nicholls (1976).

The limiting behavior of the estimator for a model with fixed y-variables and roots of
the characteristic equation less than one in absolute value has been investigated by several
authors. Among the first to consider the statistical properties of this model were workers
at the Cowles Commission; see Anderson and Rubin (1950), Koopmans, Rubin, and Leipnik
(1950), and Rubin (1950). Hannan (1965), Amemiya and Fuller (1967), Hatanaka (1974),
and Fuller (1976, page 435) studied the situation in which there are nonlinear restrictions
on the parameters arising from the specification of autocorrelated errors and lagged
dependent variables in the equation. Hannan and Nicholls (1972), Reinsel (1976), and
Fuller (1976) considered estimation of model (1) with the roots of (2) less than one in
absolute value.

The assumptions of Hatanaka and Fuller would permit polynomials in time to be among
the explanatory variables, but the normalization used in their formal theorems must be
modified if there is a nonzero coefficient for the time trend. Hannan and Nicholls (1972)
mentioned that their results were applicable to deviations from time trends. Rao (1967)
discussed the estimation of equation (1) when the set {} contains only polynomials in
time and the roots of the characteristic equation are less than one in absolute value.

Dickey (1976), Fuller (1976), and Dickey and Fuller (1979) considered the estimation of
equation (1) assuming one of the roots of the characteristic equation to be one and
permitted the set {yx} to include the constant function and time. Hasza (1977) discussed
the estimation of equation (1) with one of the roots of the characteristic equation greater
than one in absolute value. Hasza permitted a set {{:;} composed of polynomial functions
of time to enter the equation.

We present the limiting distribution of the least squares estimator for equation (1)
under three situations. If all of the roots of the characteristic equation are less than one in
absolute value, we demonstrate that the limiting distribution of the estimator is normal
under mild regularity conditions. If one of the roots of the characteristic equation is one
and the others are less than one in absolute value, we demonstrate that the limiting
distribution depends upon the nature of the set {{»} and upon the parameters in the
model. When one of the roots of the characteristic equation is greater than one in absolute
value and the remaining roots are less than one in absolute value, the least squares
estimators normalized by the square roots of the sums of squares of the explanatory
variables are normal if and only if the e; are normal independent random variables.

2. The model. We consider the least squares estimation of the parameters of model
(1) assuming the e, to be independent (0, %) random variables such that E{|e|**"} <L
for some real L and » > 0. The parameters o, and y; are fixed unknown constants and the
Y are fixed functions of time. We assume Yo, Y_1, -+, Y_,41 to be known and fixed.

The difference equation (1) may be solved to obtain

3) Y. =S+ u, U = Z;;(l) vje:—j,
S = 375 v Yoy + X726 U Do ey

and the v; satisfy the homogeneous difference equation with characteristic equation (2)
and initial conditions v, = 1 and v; = 0 for j < 0. The sequence S; defines the fixed or
systematic part of Y;, where we set S_, = Y_,for¢=0, 1, ---, p — 1. The random portion
of Y, is u,.

We shall consider the limiting distribution of the least squares estimators of the
parameters of (1) for sequences {{»} in a relatively broad class. In particular we permit
S, Y2 to increase at a slower rate or at a faster rate than the sample size n. Such
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possibilities complicate the normalization of the estimators required to obtain nonsingular
limiting distributions for situations of practical interest. To illustrate the normalization
problem, consider ¢ = 2 and ¥ = (i1, Yr2) = (¢ + N1, £ + Ne2), Where lim, e 27" T 01 iy
= 8, and §; is Kronecker’s delta. Define D, = diag{(Y % y#)/*}, then H, = D;'[Y 7
Y/y,]D," approaches singularity as n increases. On the other hand, if we define x;; = 2¢
+ M1 + M2 and x;2 = M1 — Ms2 with mild assumptions on e; and 7., then the vector D’
Y #-1 x;e, converges in distribution to a nonsingular bivariate normal random variable.
Regression variables with behavior similar to that of (Y1, {:2) seem common in economics.

A similar problem arises with the matrix of sums of squares and products of ¥, and
Y,_,. For example, let the model be

Y. = (¢ Yi1)(a1, 1) + e,

where Yo =0, a; # 0, and | y1 | < 1. In this case S; approaches a1 (1 — y1) 't — a1 y1(1 — y1) 2
as t increases, and the matrix .

G, =D;' [T (¢ Y1) (¢, Yeer)IDR?

converges to a singular matrix as n — o, where D,, = diag {(3 71 5" (371 Yi-1)?}. Let
Wi =Y —ai(l — y1)7', B1 = au[1 + (1 — v1)7'], and consider the reparameterized
model

Y: = (¢, Wa)(B1, 1)’ + €.

Let (81, 71)’ denote the least squares estimator of (81, y1)’. Then the limiting distribution
of

[(Zn t )1/2 ,31) z;‘=1 Wtzl)l/z(f’l —Yl)]'

is bivariate normal.

A third item to consider in the parameterization of the model is m,, the root of (2) with
largest absolute value. For p > 1 and | m,| = 1, a degenerate asymptotic distribution for
the estimator of m,; can be avoided by considering

(4) Y, = 2?=1 \Pttai + Zf-:ll ,8q+j( Yt-j —m Yt-—j—l) + Bq+th-—1 + ey,
where B,+, = m; and the roots of
(5) mPt— YR B mPT I =0

are msg, ms, -, Mp.

We use the Gram-Schmidt orthogonalization procedure to reparameterize model (1)
and the equivalent model (4). The reparameterization is not introduced for computational
purposes but to facilitate the proofs of this paper. Applications of the theorems to the
original parameters are noted in the text. Given n observations (n > g + p), let

Xe1n = Y1
(6) Xan = ‘l/ti - Z;;% CiynXyn l = 2) 3’ RN
Xtin = rSt+q_,~ - St+q—¢—1 - Z;-_—-} CijinXyn, i= q + ]-) q + 2’ e q +p -1

= p+g—1 ox:
Xepran = St-1 = LI Cprq,jnXijn,

where r = 0 if [m;| <1 and r = mi" if [m:| = 1, and the c;, are the multiple regression
coefficients obtained by the least squares regression of ¥, and rS;+q—, — Si+q—i—1 ON Xyn,
j=12 ...,i—1land ¢t =12, ---, n. The cp+q,» are obtained by the least squares
regression of S;—; on Xy, j = 1,2, -++, p + ¢ — 1. It is understood that cy, = 0 if Yt=1 x5
= 0. Define for p > 1

Win=rYy1— Yo — Z?:l Cq+1,jnXtjn,
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(7) Wiin = rYei — Yeeic1 — D=1 Cqriyjn¥iin — 3521 Cqrrgriin Wins i=23.---,p—1
Wion = Yee1 — Lot CqupnXin — L5 Carpgtin Won.
Let A, be the nonsingular transformation matrix defined by (6) and (7) so that
Xin = (Xt1n, Xezn, + 5 Xtgns Weiny o+, Wipn)’
= An(e1, Yu2, + v oy Yigy Yeo1, oo 0, Yiop)'.
Then
(8) Wiin = Xtgvin + 2i=1 Qgrigejnlbi—j,
where a;n is the (ij)th element of A,, and model (1) can be written as
9) Y, = Xun0. + e,
where 87, = (a1, az, -+ +, dg, Y1, =+ +, Yp)AR".
3. The stationary case. In this section we assume that the roots mi, ms, .- -, m, of
(2) are less than one in absolute value. We apply a version of the central limit theorem for
martingale differences given by Scott (1973) to obtain limiting properties of the least

squares estimator and associated test statistics. See also Brown (1971) and Dvoretzky
(1972).

THEOREM 1. Let model (1) hold with the roots of the characteristic equation (2) less
than one in absolute value. Let {e;} be a sequence of independent (0, o*) random
variables with E {| e;|**"} < L for some real L and v greater than zero. Considering the
parameterization in (9), define

071 = (Z?=l X;nxtn)_l z;;l XY,

Should the matrix be singular, the inverse is replaced by the Moore-Penrose generalized
tnverse. Assume

(10) Limy, o0 SUP1=t=n (Fom1 x5in) 250 = 0, i=1,2---,q,
and
(11) lim, e SUP1<s=n (R + Y2y x2,) ', = 0, i=q+1,qg+2 ---,q+p.

Let D, be the diagonal matrix whose elements are the square roots of the diagonal
elements of Y-, Xi» Xin and define

G, =D;' i Xi.X,D5'.

Let G;/* be the symmetric positive definite square root of G, (see Bellman, 1960, page 92).
Then

¢ 'GY*D, (0, — 0,) >+« NO,I) as n—x.

Proor. The probability that | G.| # 0 converges to one as n increases. We have
D.(@. - 0,) = [D7' T2 X0 X DR 17'DR T Xier.
Consider
Yiet Wi = Yie1 (Regron + 251 Qqrisgsnlbe—s) .
By the definition of u,,
(12) n7 T wette; —p vu(J),
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where u; = 0 for ¢ = 0 and v,(j) is the covariance function of a stationary autoregressive
process with characteristic equation (2). It follows that [n ™" Y& Wi.] ™" is O,(1). Now
(13) (n+ Yhix3.) 2 Var{S e xyattey} = (0 + i x5n) > D1 Yomt XynXginE (et}

and the right side of this equation converges to zero because | E {u.u,} | is bounded by a
multiple of A“7! for some |A| < 1. Therefore, forj=1,2, ---,p ~

(e E{Wi} 12 Wi ]2 > 1.
Let
H, = [E{D}}] [Tt XinXen + nFLJ[E (DR},
Xen = (Xe1n, Xezny ++ 5 Xegrpin)s
F, = A,,<g l‘,’n)A;, ‘
T.=E{n"' Y& (W1, Uz, ++ ) Ue—p) (Ue-1, Ue—z, +++, Urp)}.
Note that H,' is well defined because I, is positive definite and that
p lim, .. (G;*—H,"?) =0.
Consider the linear combination '
HV*D;t i X e
where 7 is a vector of arbitrary real numbers such that 'y # 0. Because
E(Sr Wine, 321 Waner} = 0% Y1 E{(Wiuin Wy},
we can write
WH;2D5! By Xinee = Y1 Zin + 05(1) = Sun + 0,(1),
where S, = Yie1 Zin,

Zin = (8m + Un)er,

(14) &= Y1 (X1 x20) 2 %hin + Tt Ngin(T o=t E{W 5 }) " *X0.g4).ns
Uin = z€=l 7]q+i,n( Zg-l E{Wim} )_1/2( §=1 aq+;’q+j,nut_j),

=5\ (=1/2)
Ng+in = 21=1 R gif grinMars

and A{;,? is the (ji)th element of H,"/% Observe that {gw: ¢t =1, 2, ---, n} is fixed and
that the v;, are fixed linear combinations of {u,—;: j =1, 2, -- -, p} for a particular n.

Because Yo, Y_1, -+, Y ;.1 are fixed, the sigma field %, generated by (Zi., Zon, -,
Z») is the sigma field generated by (ei, e, - - -, ex). Therefore,

E{thnl gat—l,n} = 8t2n = (gtn + vtn)zoz-

e

By the definition of the v, and by (12) and (13), V2,s,2 converges in probability to one as
n — o, where

Vtzm = 27=1 (gtn + vtn)zaz, and slzm = Z?=l (g%n + E{v?n})az-

To apply the results of Scott (1973) it is sufficient to show that {Z,.} satisfies the
Lindeberg type condition

S;r% Z?=1 E{thnI(lzml = Esnn)} d 0,
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where I(A) is the indicator function for the set A. We have
Sne 01 E{Z3.1(| Zin | = €Snn)}
(15) = Smn Sim1 E{(&m + V)€ 1(| (8in + Uin)e:| = €5nn))
< $:27%L2% (XM |gm | + 21 E{| v |*)).

By (14), we can write U, = Y21 &nlts—;, Where &jn = O(n ™) and it follows that E {| v | >}
= O(n~'""?). By the definitions of H, and H,"%, s%, = #'no® and

Sn T T | 8| P = 07 (0™'M) ™ SUPi=t=n | gin "
Now
2 = 2 q n 2 1,2 2
SUPi<t<n 8tn = Suplstsn(q + P) [2L=1 (Zs=l xsm) XtinMi
+ 25 (B51 E{W5a}) ™" Xl qujnNgesnl,

which converges to zero by (10) and (11). It follows that s nSnn converges in distribution
to a N(0, 1) random variable. The conclusion follows because n was arbitrary. [

For a particular n, the elements of 8, are fixed linear combinations of the parameters of
the original problem. Therefore, for large samples, Theorem 1 justifies the use of the
ordinary regression statistics in making inferential statements concerning the parameters
of regression model (1).

In our proof we assumed the e; to be independent with bounded (2 + »)th moment. The
result can also be obtained under the assumption that the e; are independent and identically
distributed; see Lemma 2 of Brown (1971).

In our derivation we treated y; as fixed. Condition (10) holds almost surely for stationary
processes satisfying mild conditions; see Hannan and Heyde (1972). Therefore, Theorem
1 holds if such stationary processes are included in the set {{.} and if {e;} is independent
of such {ys;}. The theorem also holds for processes that are the sum of a fixed sequence
satisfying condition (10) and a zero mean weakly stationary process.

4. The unit root case. In this section we assume that model (1) holds and that one
of the roots of the characteristic equation (2) is of unit absolute value with the remaining
roots less than one in absolute value. In this case the nature of the limiting distribution of
the estimators and test statistics depends upon the parameters of the model and upon the
nature of the Y4, included in model (1). Only in special circumstances will the limiting
distribution of the least squares regression coefficients be normal.

We first consider two cases of practical interest in which the standard hypothesis testing
procedures are not applicable in large samples. In case (a) we consider the situation in
which the ¢ of model (1) satisfy ¢, = 1 while condition (17) of Theorem 2 holds for i =
2,3, .-, q. In case (b) we consider the situation in which s =1, g2 = ¢, and condition (17)
holds fori =3, 4, ---, q.

We introduce an additional modification of the parameterization of (9), letting

W};m = w/tpn - n_l 2:=1 Wspn = m;m - W-pn

for case (a) and

WIpn = WItpn - W.pn - bwn[t - l/z(n + ].)]

for case (b), where W, is the sample mean of Wy, and b, is the least squares coefficient
obtained by regressing Wy, on ¢ — %(n + 1). This transformation differs from that used in
Section 2 because the coefficients for xu, and xu, defining W, are functions of the
random variables {u;}7-1.

Let A be the matrix whose first ¢ + p — 1 rows are the first ¢ + p — 1 rows of A, and
whose last 10w A(p+q,..» is given by the above transformation so that
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W;rpn = A(u)p+q,~,n(\l/t1y iz, =y Yugy Yeo1, 0, Yt-—p),-
Assuming m; = 1, we write our transformed regression equation as
(16) Y, = Xwiunbom + €,
where
Xfu)m = A(u)n(\l/tl, \Pzz, ey ‘I/zq, Yt—l, ) Yl-—p)/
02u)tn = (aly 02, = *°, dq, Y1, ** Yp)A(_ul)no

The asymptotic distributions obtained in Theorem 2 involve the distributions of two
statistics, say 7, and 7., that were characterized by Dickey and Fuller (1979). See also
Fuller (1976, Section 8.5).

THEOREM 2. Let model (1) hold with m, = 1 and my, ms, -, m, less than one in
absolute value, where the m; are the roots of (2). Let e; be independent (0, %) random
variables such that E{|e,|**'} < L for some real L and v > 0. Let

0(u)n = (ZLI x(u)tnx(u)m)_l Z?=1 X(u)tn Yty

where Xuym is defined in (16). Let D, be the diagonal matrix whose elements are the
square roots of the diagonal elements of ¥ /-1 XX wym. Let

—1 —1

G(u)n = D(u)n Z?=l X(u)tnx(u)tnD(u)n,
-1M1/2 )

8,, =0 G(lf)nD(u)n(a(u)n = Own),

where G/}, is the positive definite square root of Gy.. Assume that (10) and (11) are
satisfied and that

(17) limy,,w(n? Sie1 Xhin) 7t Diet TAZ6 EXtinXeah,in = 0

fori=2,3, ..., qwith case (a) and for i = 3, 4, - - -, q with case (b). Assume that for i =
q+1yq+2y "‘;Q+P;

(18) limy e n 2 Tt x5 = 0,

(19) lim, e n 720 + g X5n) " Y1 Y Azb tXtinXern,in = 0.

Then the last element of §, converges in distribution to the statistic 7 for case (a) and to
7. for case (b), where 7, and 7, are characterized in Dickey and Fuller (1979). The
limiting distribution of the vector of the remaining q + p — 1 elements of 8, is normal
with zero mean and identity covariance matrix for both cases.

Proor. We have
U= Nie1 Do U} e — Y1 X i1 U e
= At + Bg,

where the v} satisfy the homogeneous difference equation with characteristic equation (5).
It follows that 3,70 | v} | < 0 and ¥ Fr—iv1 | v | < MA™** for some M < » and some 0 < A
<1

. Let A%, and B}, denote the portions of A, and B, that are orthogonal to yx; under(a) and
orthogonal to Y and yi» under (b). Then Y7, (B.)*> = O,(n) because E{|B},|?} is
bounded. Also

) xl,p+q,nB;rn = Op(nz/z)

because
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Var (Y1 Xip+gnBlh} = n Y1 xipign Var{B},} = o(n®)
Therefore,
Y1 (Wh)? = Skt [Xepran + Al + Bl1?
= Y1 [Kepran + ALT" + 0, (n7).
By construction, for i =2, 3, ..., g under (a) and for i = 3, 4, - .-, ¢ under (b),
Z?al W;rpnxnn = Z?=1 Vthnxun
and, therefore,
E{Y1 WhnXin} = E{Tim1 $510qupqrinlle—Xein) = 0
Also
(20) Var {$i1 de-mein} < 2 6*(L 20 |0} )2 Tie1 T EXtinXernn
form =1,2, -.., p. By (19), the first ¢ elements of the last row of G, converge in
probability to zero because[Y%: (A},)*]™ = O,(n"%).Forj=1,2,---,p— 1
Wiin = Xegain + a1 Qguj grin(Uemi — Urmicr)
= Xegrjn + Lie1 Qgrjgrin Xj=0 V] €ry

where ¥ /2t v} e, is converging to a stationary autoregressive process with characteristic
equation (5). Therefore,

phm [Z‘— (thn) t]"] 2 zl— m;m Wtjn =0

forj=1,2, ---,p — 1, and the first ¢ + p — 1 elements of the last row of G.)» converge in
probability to zero.
The first ¢ elements of

(21) D(_ul)n Z?=l Xiu)tnet

are linear combinations of the e; where the coefficients are fixed. The next (p — 1) elements
are of the form

[T W52 it Woner,

where the W, are linear combinations of stationary processes. Because the x., satisfy
assumptions (10) and (11), the limiting distribution of the vector composed of the first ¢
+ p — 1 elements of (21) is multivariate normal by Theorem 1.

The last element of DS, Y1 Ximme: is

iy Whne 21 (Kegapn t ut—l)et n Yiaul e + 0,(1)
= (1),

[2 =1 (thn 2]1/2 [Z¢=1 (xt g+on T+ ut 1) 2]1/2 [n_2 2?=1 (u;r—l)z]l/2
where u}_; = Al + B}. The limiting distribution of this element is that of the,-statistic
for case (a) and that of 7, for case (b). See Dickey (1976), Hasza (1977), and Dickey and
Fuller (1979). O

We have presented the theorem for the positive unit root. A similar theorem holds for
a root of negative one. The kinds of fixed sequences that alter the distribution for the
negative unit root differ from those that alter the distribution for the positive unit root.
For example, the presence of the function cos « ¢ will produce a limiting distribution of the
t-type statistic for the negative unit root case that is the limiting distribution of —7,, and
the presence of cos 7 ¢ and ¢ cos = ¢ will produce a limiting distribution for the Z-type
statistic that is the limiting distribution of —7,.

Theorem 2 gives the limiting distribution of coefficients that are random linear combi-
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nations of the original coefficients of model (3). Under the assumptions of Theorem 2, the
estimated intercept and regression coefficient of ¢, the a; and &; of model (1), are not
normally distributed in the limit. Dickey (1977) has tabulated the distribution of the ¢-
type statistic associated with the estimated intercept @;. The limiting distribution is
bimodal and symmetric with 5 percent points well beyond 2.

We now consider a situation where the limiting distribution of the least squares
estimator is normal.

THEOREM 3. Let model (1) hold with m, = 1 and ms, ms, ---, m, less than one in
absolute value. Let e; be independent (0, 6*) random variables such that E{|e;|**"} < L
for some real L and v > 0. Assume that (10) and (11) are satisfied. Assume

limy e 2 " Xigipn = ®
and ‘
(22) Hmy o[ Yt Xin Tom1 X2 gapin] ™" Vet Thoo t XeinXern,in = 0
fori=2,-.-,9+p—1.1f D,,0,, 0., and GY*? are as in Theorem 1, then

¢ 'GY?D, (0, — 6,) ->£N(O, ) as n— oo.

Proor. We have

27=1 Wine: _ Z'z‘=1 Xt,p+q,n€t + 0,(1)
[T Wonl” [T apeqn]® 7

because Y; u,—;e; = Op(n'?) fori =1, 2, - - -, p. Also

27=1 mpn Wtjn - Z;l=1 (2€=1 aq+i,q+p,nut—i) (211;1 aq+i,q+j,nut—i)
(X Win Xima Wia]'”? (X1 Wion Yoo Win]'”?
= Op(l)
forj=1,2, ---, p — 1 because Yiu1 Ui (ts—j — tr—j—1) = Op(n) for i,j=1,2, . - -, p. Similarly
Z7=1 WipnXtin 27=1 25‘;1 Qq+p,q+j,nUt—jX tin
= = Op(l)

(2 W St 250]72 [Nt X2 gipn Dt Xon] 2

fori=1,2, ---, q by (20) and assumption (22). Therefore, D, (8, — 6,) = G.* d + 0,(1),
where

d = 2?=1 Xt1n €t Z'z‘=1 Wip-1ne: 27=1 Xt,q+p,n€t
(X 20l 7 (B Wip-1al”? " [Bi1 22 genn] ]

The result follows by an argument similar to that of Theorem 1. 0

Under the conditions of Theorem 3 the fixed portion of Y; dominates the behavior of Y;
and we obtain the limiting normal distribution. Under the conditions of Theorem 2 the
random portion of Y, dominates the behavior of Y, and we do not obtain the normal
distribution in the limit.

Neither theorem covers the situation in which the fixed and random portions of Y,
grow at the same rate, for example, where

: -2 2
limyon™ Y1 Xipian = K,

and 0 < K < . Because x;,+4,» depends upon the parameters of the model there seems no
simple general characterization of the limiting distribution when the fixed and random
portions grow at the same rate. It does seem that the percentiles of the limiting distribution
of the regression ¢-type statistics would fall between those of Theorem 2 and those of
Theorem 3.
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5. The explosive case. We now consider equation (1) assuming the roots m,;, ms,
«+.,my of (2) satisfy |m;| >1and |m;| < 1forj=2,3, ..., p. In this section we assume
the e, to be normal independent (0, %) random variables.

Using the difference equation (4) we obtain

(23) Yt - Yt_l = Zf;oz Ut*+j( Y_f - mIY—J—l) + Z‘EI=I at\l/?i + u;.‘k)

where the v;f are weights satisfying the homogeneous difference equation with character-
istic equation (5) and initial conditions v§ = 1 and v} = 0 for j <0,

vE=YSvfd,s and uwf=Yibvie.
The solution of difference equation (23) is
Y. =miYo+miYim 32 mi/vfi(Yoi — miY_i))
+mi YL i miyk + mh 2‘;‘:1 miuf.
Lemma 1 demonstrates that, given assumption (10), the quantity ¥ ‘-, m7y}f converges

as t increases.

LEMMA 1. Let {x.}#, be a sequence of real numbers. Let |m| > 1 and suppose

(24) My, cSUpP1<r=n (X1 22) 2} = 0.
Then Yi-s m™'x; converges and ¥, m ‘x; = O(\") for some 0 <\ < 1.

PrOOF. Let S, = Y% x7. Condition (24) implies that given € > 0, there exists an N
such that for n > N, x2 < € S,_1. Therefore, S, < (1 + €)S,_; for all n > N. Choose € > 0
and N1 > Nsothat 1 + e<p <|m| and S, < p" for all n > N;. Then | x.| < p" for all n
> N;. This implies that ¥/, m™'x; converges and that ¥ <,.1 m™“x; < m™"p"(1 — m 'p) for

n>N 1. D
On the basis of Lemma 1 we define the quantities

u = plim, ,.it; and ¢, = lim..{y,
where
@ =Yiimi'uf and Y, = Y miY}.
Then we may write Y; as

(25) Y, =mi(A: + &) = miH,

where A, = Y, + Z‘,":_oz Yia ml_jvj*n( Y i—mY_iq)+3Y4 .
We now obtain the probability limit of the properly normalized sum of squares of Y,_;.

LEMMA 2. Let the model of this section hold. Then

plim, e mi?* Yoo Yi, = (m} — 1) 'H?,

where H = plim H, and H, is defined in (25).

PRrOOF. The sum of squares

iy Y, =Yr mi?H? + 2 Y2, m¥*H(H,-, — H)
+ Y mi~%(H,, — H)~
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We have
E{(H- — H)*} = E{(emTu} + Y23 Y remvvil Yoi— miY )
+ YL ¥ aimy})? = ONY)
for some 0 < A < 1. It follows that
Yoy mi TP (H, — H)? = 0, (Ti=1 mi™2" N%) = 0,(A*").

Therefore, m7%" Yy Y71 = (m}— 1) H? + 0,(A*"). O

We next establish the asymptotic behavior of the normalized sum of the cross products
of Y,—1 with x4p,.

LEMMA 3. Let the model of this section hold. Then, fori=1,2, ---,q,

2 2 1-1/2
[mln 27=1 xtm] / 71 Xtin Y1 —p 0.

Proor. We have
S0t Xun Yo = Yoy Xenm T H + Yie1 xuin(Heoy — H)mi
By the proof of Lemma 2, E{(H., — H)*} = O(\*), where |A| <1, and
S Xiin(Hi—1 — HYmi™' = Op(Tier xunA'mi™).
By Lemma 1
(Br1 x2n) 72 Tit XA

= [(Th1 5in) /% SUP1=t=n | Xein | J(1 = [A]) 7}

which converges to zero as n — . 0

THEOREM 4. Let model (1) hold with |m:| > 1 and mq, ms, - - -, mp less than one in
absolute value. Let the e, be normal independent (0, %) random variables. Let

: 2 1-1,..2
lim,, e SUP1<t<n[Yo=1 Xsin]  Xiin = 0
fori=12,.--,q and
: 2 1-1,..2
lim,, e SUP1<t=n [P + Yo=1 X5in] Xtin = 0

fori=q+1,q+2 ---,q+p—1 Let 0,,0,, X, G, D, and G/* be as defined in
Theorem 1. Then

07'Gy*Dn(0, — 0,) >+N(O, 1).

Proor. We have
D.(0. — 8,) = G.'D;" Y1 Xiner.

By Lemmas 2 and 3, the last row of G, is converging to the vector (0,0, - - -, 0, 1). Now the
last element of D;,' Y7, X, e, is

[ Y?—l]_lﬂ Y1 Yiae + 0p(1).
By Lemma 2 and by arguments similar to those used in the proof of Lemma 2,
mi[ S, Y 2 = (mi — 1)’ H ™' + 0,(\*")

forsomeQ<}\<land
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(26) m1_" Znt——l Yt_let =H 2};1 mfje,,_j+1 + Op(].).
It follows that
(X Yl 2 Y Yiree =2 N(O, 1).

By the arguments of Theorem 1, the vector of the first ¢ + p — 1 elements of
D,' Y71 X}, e: converges to a multivariate normal random variable. From (26) it is clear
that the last element is independent of the first ¢ + p — 1 elements in the limit. 0

It follows from Theorem 4 that the usual regression test statistics associated with model
(1) are applicable in large samples if the e; are normally distributed. The assumption of
normal e, was necessary to obtain the normal limiting distribution for (¥i, YZ,) /2
Y i1 Y,1e,. This quantity is O,(1) under the milder assumptions on the e; used in Section
3. .
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