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OPTIMAL AGGREGATION OF CLASSIFIERS
IN STATISTICAL LEARNING

BY ALEXANDRE B. TSYBAKOV

Université Paris 6

Classification can be considered as nonparametric estimation of sets,
where the risk is defined by means of a specific distance between sets as-
sociated with misclassification error. It is shown that the rates of convergence
of classifiers depend on two parameters: the complexity of the class of can-
didate sets and the margin parameter. The dependence is explicitly given,
indicating that optimal fast rates approaching O(n−1) can be attained, where
n is the sample size, and that the proposed classifiers have the property of
robustness to the margin. The main result of the paper concerns optimal ag-
gregation of classifiers: we suggest a classifier that automatically adapts both
to the complexity and to the margin, and attains the optimal fast rates, up to a
logarithmic factor.

1. Introduction. Let (Xi, Yi), i = 1, . . . , n, be i.i.d. random pairs of observa-
tions, where Xi ∈ Rd and Yi ∈ {0,1}. Denote by PX the probability distribution
of Xi and by π = πX,Y the joint distribution of (Xi, Yi).

Let (X,Y ) be a random pair distributed according to π and independent of
(X1, . . . ,Xn,Y1, . . . , Yn), and let the component X of the pair be observed. The
problem of statistical learning in classification (pattern recognition) consists of
predicting the corresponding value Y ∈ {0,1}. A prediction rule decides that Y = 1
if X ∈ G and Y = 0 if X /∈ G, where G is a Borel subset of Rd . The corresponding
classifier is Ŷ = I (X ∈ G), where I (·) denotes the indicator function. Since a
classifier is uniquely determined by the set G, the name classifier will be attributed
without loss of generality to G as well.

The misclassification error associated with G is

R(G) = P (Y �= Ŷ ) = P
(
Y �= I (X ∈ G)

) = E
[(

Y − I (X ∈ G)
)2]

.

It is well known [see, e.g., Devroye, Györfi and Lugosi (1996)] that

min
G

R(G) = R(G∗),

where

G∗ = G∗
π = {x :η(x) ≥ 1/2}(1)
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and

η(x) = E(Y |X = x) = P (Y = 1|X = x).

In general, R(G∗) �= 0, and the efficiency of a classifier G is measured by the
difference

R(G) − R(G∗) =
∫
G�G∗

|2η(x) − 1|PX(dx)
def= d(G,G∗).(2)

Note that d(G,G∗) is a pseudodistance between the sets G and G∗; that is, it
satisfies the axioms of the distance except d(G,G′) = 0 ⇒ G = G′.

A classifier based on the data (X1, . . . ,Xn,Y1, . . . , Yn) is denoted by

Ĝn = Ĝn(X1, . . . ,Xn,Y1, . . . , Yn).

A key characteristic of Ĝn is the value R(Ĝn) known in learning theory under the
name of generalization error:

R(Ĝn) = P
(
Y �= I (X ∈ Ĝn)

∣∣X1, . . . ,Xn,Y1, . . . , Yn

)
.

The aim of statistical learning is to construct a classifier Ĝn such that d(Ĝn,G
∗) =

R(Ĝn) − R(G∗) is as small as possible. Since Ĝn is random, the smallness
of d(Ĝn,G

∗) will be expressed in terms of the expected risk

Eπ,n

(
d(Ĝn,G

∗)
) = Eπ,n

(
R(Ĝn) − R(G∗)

)
.

Here and later Eπ,n denotes the expectation w.r.t. the joint distribution Pπ,n of
(X1, . . . ,Xn,Y1, . . . , Yn).

Two basic families of classifiers are the plug-in rules and the empirical risk
minimization (ERM) rules [see, e.g., Devroye, Györfi and Lugosi (1996) and
Vapnik (1998)]. Plug-in classifiers have the form

Ĝn = {x : η̂n(x) ≥ 1/2},
where η̂n(x) is a nonparametric estimator of the regression function η(x) [i.e.,
η̂n is plugged into (1) instead of η]. ERM classifiers are defined as

Ĝn = arg min
G∈C

Rn(G),(3)

where Rn is the empirical risk

Rn(G) = 1

n

n∑
i=1

I
(
Yi �= I (Xi ∈ G)

) = 1

n

n∑
i=1

(
Yi − I (Xi ∈ G)

)2
,

and C is a given collection of subsets of Rd . Statistical properties of these two
types of classifiers as well as of other related ones have been extensively studied
[see Aizerman, Braverman and Rozonoer (1970), Vapnik and Chervonenkis
(1974), Vapnik (1982, 1998), Breiman, Friedman, Olshen and Stone (1984),
Devroye, Györfi and Lugosi (1996), Anthony and Bartlett (1999), Cristianini and
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Shawe-Taylor (2000) and Schölkopf and Smola (2002) and the references therein].
Results concerning the convergence of the risk Eπ,n(d(Ĝn,G

∗)) obtained in the
literature are of the form

Eπ,n

(
d(Ĝn,G

∗)
) = O(n−β), n → ∞,

where β > 0 is some exponent, and typically β ≤ 1/2 if R(G∗) �= 0. Mammen
and Tsybakov (1999) first showed that one can attain fast rates, approaching n−1,
that is, with β arbitrarily close to 1 under mild assumptions on the behavior
of η(x) in a neighborhood of the boundary ∂G∗ = {x :η(x) = 1/2}. For further
results about the fast rates see Massart (2000) and Catoni (2001). The effect
of behavior of the regression function η around ∂G∗ on the classification error
has been discussed earlier under different assumptions by Devroye, Györfi and
Lugosi (1996) and Horváth and Lugosi (1998). Mammen and Tsybakov (1999)
considered nonparametric discrimination which is slightly different from the
pattern recognition problem studied here, but translation of their results in terms
of pattern recognition is straightforward. They obtained lower bounds on the
risks and optimal exponents β and showed that the optimal rates are determined
by two parameters: the complexity of the class G∗ of possible sets G∗ and the
margin parameter that characterizes the behavior of η(x) in a neighborhood of the
boundary ∂G∗. For “massive” sets G∗, they showed that optimal rates are attained
either by ERM over the class of candidates C that coincides with G∗ or by ERM
over a sieve C on G∗ (in the latter case the margin parameter is supposed to be
known and C depends on it). This allows one to establish optimal rates, but the
classifiers are not always feasible: solution of (3) for “massive” sets C = G∗ is
known only for a few examples (sets with convex or monotone boundaries); if C
is a finite sieve, such a solution is available, but assuming the margin parameter to
be known is not always realistic.

The aim of this paper is twofold. First, it will be shown that the results of
Mammen and Tsybakov (1999) can be extended to feasible classifiers: for some
finite sieves C = N on G∗ that do not depend on the margin parameter the ERM
classifier (3) attains the optimal rate (fast rate, up to n−1). This can be interpreted
as robustness to the margin property of statistical learning in the case where G∗,
a class of sets containing G∗, is known.

Second, an adaptive setup with unknown class G∗ will be studied. It will only
be assumed that G∗ is a member of a known collection {G1, . . . ,GN }, where
Gj are different classes of sets. Let Gn1, . . . ,GnN denote the respective optimal
classifiers. The aim is optimal aggregation of these classifiers, that is, selection of
a data-dependent ĵ such that:

1. The adaptive classifier G
nĵ

attains the optimal (fast) rate, up to a logarithmic
factor, simultaneously on all the classes G1, . . . ,GN , or, equivalently, it mimics
the rate of the best among the classifiers Gn1, . . . ,GnN , up to a logarithmic
factor.
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2. The definition of ĵ is independent of the “true” set G∗ and of the margin
parameter.

Such an optimal aggregation procedure is suggested below. In particular, the
adaptive classifier can attain the rates up to n−1 (depending on the configuration
complexity/margin), and it has the robustness to the margin property, as in the case
of known G∗.

2. Results for known G∗. In this section we suppose that a class G∗ is
known such that G∗ ∈ G∗. Introduce the following pseudodistance between the
sets G,G′ ⊆ Rd :

d�(G,G′) = PX(G�G′).

Clearly,

d(G,G′) ≤ d�(G,G′) ≤ 1.(4)

The relation between d(G,G∗) and d�(G,G∗) is crucial to characterize the
margin, that is, the distribution of the random variable η(X) when X is near the
boundary ∂G∗ = {x :η(x) = 1/2}. Assume the following:

(A1) Assumption on the margin. There exist κ ≥ 1, c0 > 0, 0 < ε0 ≤ 1 such
that

d(G,G∗) ≥ c0d
κ�(G,G∗)

for all G such that d�(G,G∗) ≤ ε0.

The parameter κ appearing in assumption (A1) is called the margin parameter.
The values κ < 1 are impossible in view of (4). As opposed to data-dependent
notions of margin that have been introduced in the literature on classification
recently [see, e.g., Schölkopf and Smola (2002)], assumption (A1) is a condition
on the joint distribution of X and Y . The following proposition explains the origin
of assumption (A1) and its relation to the behavior of η(x) near the level 1/2.

PROPOSITION 1. Assume that

P
(|η(X) − 1/2| ≤ t

) ≤ Cηt
α(5)

for some finite Cη > 0, α > 0 and all 0 < t ≤ t∗, where t∗ ≤ 1/2. Then

assumption (A1) holds with c0 = 2C
−1/α
η α(α + 1)−1−1/α , ε0 = Cη(α + 1)tα∗ and

κ = 1 + α

α
.(6)
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PROOF. For any t > 0 and A = {x : |η(x) − 1/2| > t}, in view of (2),

d(G,G∗) ≥ 2tPX

(
(G�G∗) ∩ A

)
≥ 2t

[
PX(G�G∗) − PX(Ā)

]
≥ 2t

[
d�(G,G∗) − Cηt

α
]
.

Maximizing the last expression with respect to t we get the result. Note that
the maximizer is t0 = [d�(G,G∗)/(α + 1)Cη)]1/α , and thus we have t0 ≤ t∗ for
d�(G,G∗) ≤ ε0 if ε0 = Cη(α + 1)tα∗ . �

If d = 1 and X has a bounded density w.r.t. Lebesgue measure and the
boundary ∂G∗ reduces, for example, to one point 0, (5) may be interpreted as
follows: η(x) − 1/2 ∼ x1/α for x close to 0. Then the best situation for learning is
when α → ∞ (κ → 1) and it corresponds to a jump of η(x) at the boundary ∂G∗.
The worst case corresponds to a plateau type behavior of η(x) near ∂G∗ :α → 0
(i.e., κ → ∞). A typical intermediate case is α = 1 (i.e., κ = 2).

The second basic assumption concerns complexity of the class of candidate
sets G∗. We will first need some definitions.

DEFINITION 1. Let δ > 0 be a given number, let d̄(·, ·) be a pseudodistance
between subsets of Rd and let N and G be classes of subsets of Rd such that for
any G ∈ G there exists GN ∈ N satisfying d̄(G,GN ) ≤ δ. Then N is called δ-net
on G for the pseudodistance d̄ .

DEFINITION 2. Let δ > 0 be a given number, let G be a class of subsets
of Rd and let d̄(·, ·) be a pseudodistance between subsets of Rd . Let NB(δ,G, d̄)

be the smallest value m for which there exist pairs of sets (GL
j ,GU

j ), j = 1,

. . . ,m, such that d̄(GL
j ,GU

j ) ≤ δ for all j = 1, . . . ,m, and for any G ∈ G

there exists j (G) ∈ {1, . . . ,m} for which GL
j(G) ⊆ G ⊆ GU

j(G). Then the value

HB(δ,G, d̄) = log NB(δ,G, d̄) is called the δ-entropy with bracketing of G for the
pseudodistance d̄ .

DEFINITION 3. A class G of subsets of Rd is said to have complexity bound
ρ > 0 if there exists a constant A > 0 such that

HB(δ,G, d�) ≤ Aδ−ρ ∀0 < δ ≤ 1,

where HB(δ,G, d�) is the δ-entropy with bracketing of G for the pseudodis-
tance d�.

Note that the restriction 0 < δ ≤ 1 in this definition is natural since d� is always
less than 1. Also, Definition 3 does not define ρ uniquely since it operates only
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with an upper bound: if G has complexity bound ρ, then G also has any higher
complexity bound ρ′ > ρ.

Dudley (1974), Korostelev and Tsybakov (1993) and Mammen and Tsybakov
(1995, 1999) give various examples of classes G satisfying Definition 3. These are
typically classes of sets with smooth boundaries and their complexity bound is
ρ = (d − 1)/γ , where γ denotes the smoothness index of the boundary (roughly
speaking, γ is the number of bounded derivatives of boundary surfaces).

(A2) Assumption on the complexity. The class of sets G∗ has complexity
bound 0 < ρ < 1.

Now, putting together assumptions (A1) and (A2), we define the corresponding
class of joint distributions of (X,Y ).

DEFINITION 4. A class P of joint distributions π of (X,Y ) is called a
(G∗, κ, ρ)-class if

G∗ = G∗
π = {x :η(x) ≥ 1/2} ∈ G∗,

where G∗ is such that assumptions (A1) and (A2) are satisfied and either ε0 = 1 in
assumption (A1) or

lim
t→0

sup
π∈P

P
(|η(X) − 1/2| ≤ t

) = 0.(7)

Without loss of generality, we will assume that the constants ε0 and c0 appearing
in assumption (A1) are the same for all (G∗, κ, ρ)-classes that we will consider. For
G,G′ ⊆ Rd define the empirical analogue of d�:

d�,e(G,G′) def= 1

n

n∑
i=1

I (Xi ∈ G�G′).

THEOREM 1. Let κ ≥ 1, 0 < ρ < 1, a > 0, ε = an−1/(1+ρ). Let P be
a (G∗, κ, ρ)-class of joint distributions of (X,Y ) and let N be an ε-net on G∗
for the pseudometric d� or d�,e , such that N has complexity bound ρ. Then the
classifier

Ĝn = arg min
G∈N

Rn(G)(8)

satisfies

sup
π∈P

Eπ,n

(
d(Ĝn,G

∗)
) = O

(
n−κ/(2κ+ρ−1)

)
, n → ∞.

If we suppress assumption (A1), that is, if there are no assumptions on
the margin, we can only ensure that the classifier (8) attains the rate n−1/2,
independently of ρ:
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PROPOSITION 2. Let 0 < ρ < 1, a > 0, ε = an−1/(1+ρ). Let P 0 be a class
of joint distributions π of (X,Y ) for which the sets G∗ = G∗

π = {x :η(x) ≥ 1/2}
belong to a class G∗ having complexity bound ρ. Let N be as in Theorem 1. Then
the classifier (8) satisfies

sup
π∈P 0

Eπ,n

(
d(Ĝn,G

∗)
) = O(n−1/2), n → ∞.

Proofs of Theorem 1 and Proposition 2 are given in Section 5.

REMARKS. (i) The classifier (8) is feasible if, for example, the set N is finite.
Construction of a finite ε-net N for the empirical distance d�,e can be done in a
distribution free way. This is also possible for the distance d� if we suppose that
PX has a bounded density w.r.t. Lebesgue measure in Rd . Then N can be taken
as an ε-net on G∗ for the distance λ defined as Lebesgue measure of symmetric
difference of sets. For many examples of G∗ an ε-net N w.r.t. λ can be chosen
finite [see, e.g., Korostelev and Tsybakov (1993)]; hence a solution of (8) exists.
Another possibility is to select N as a nonfinite Vapnik–Chervonenkis (VC) class
of sets for which a solution of (8) exists, for instance, a class of sets with piecewise-
polynomial boundaries, finite series boundary approximations and so on. Note that
we do not require the inclusion N ⊆ G∗. Finally, N = G∗ obviously satisfies the
assumptions of Theorem 1, that is, the result holds for empirical risk minimizers
over the whole class G∗, although they might be difficult to compute.

(ii) Robustness to the margin property holds: knowledge of the margin
parameter κ is not needed to construct the classifier Ĝn.

(iii) The rates in Theorem 1 are always faster than n−1/2. They approach n−1/2

as ρ → 1, and they approach n−1 as ρ → 0, κ → 1.
(iv) If κ �= 1 assumption (A1) and (7) follow from (5), where α is related to κ

by means of (6); thus assumption (A1) and (7) in Definition 4 can be replaced
directly by (5).

(v) If there is no assumption on the margin, the rate does not depend on the
complexity ρ and equals n−1/2 (cf. Proposition 2). This fact is naturally related
to Theorem 1. Indeed, if there are no assumptions on the margin, arbitrarily
large values of κ are admitted, which means that the rate n−κ/(2κ+ρ−1) given in
Theorem 1 can become arbitrarily close from below to n−1/2.

Inspection of the proofs shows that the result of Theorem 1 is true not only for
the exact minimizer of the empirical risk, but also for any approximate minimizer
Ĝn,app ∈ N satisfying

Rn(Ĝn,app) − min
G∈N

Rn(G) ≤ C√
n

sup
Ĝn

d
(1−ρ)/2
�,e (Ĝn,app, Ĝn)

for some C > 0, where the supremum in the right-hand side is taken over all
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minimizers Ĝn of the empirical risk Rn if the minimizer is not unique. A particular
example of such an approximate ERM classifier is

Ĝn,app = arg max
G∈Napp

Rn(G),

where

Napp =
{
G ∈ N :Rn(G) − min

G∈N
Rn(G) ≤ C√

n
sup
Ĝn

d
(1−ρ)/2
�,e (G, Ĝn)

}
.

The result of Theorem 1 cannot be improved in a minimax sense, as the next
theorem shows. Let G∗ = Gfrag, where Gfrag is the class of boundary fragments
with boundaries of Hölder smoothness γ > 0 defined as follows. For given γ > 0
and d ≥ 2 consider the functions b(x1, . . . , xd−1), b : [0,1]d−1 → [0,1] having
continuous partial derivatives up to order l, where l is the maximal integer that
is strictly less than γ . For such functions b, we denote the Taylor polynomial of
order l at a point x ∈ [0,1]d−1 by pb,x(·). For a given L > 0, let �(γ,L) be the
class of functions b such that

|b(y) − pb,x(y)| ≤ L|y − x|γ for all x, y ∈ [0,1]d−1,

where |y| stands for the Euclidean norm of y ∈ [0,1]d−1. A function b in �(γ,L)

defines a set

Gb = {
(x1, . . . , xd) ∈ [0,1]d : 0 ≤ xd ≤ b(x1, . . . , xd−1)

}
.(9)

Such sets are called boundary fragments. Define the class

Gfrag = {Gb :b ∈ �(γ,L)}.(10)

The complexity bound of Gfrag is ρ = (d −1)/γ [see, e.g., Mammen and Tsybakov
(1999)]. Denote by P = Pfrag the class of all joint distributions of (X,Y ) such
that G∗ ∈ Gfrag and assumption (A1) and (7) hold.

THEOREM 2. For ρ = (d − 1)/γ , κ ≥ 1 we have

lim inf
n→∞ inf

G̃n

sup
π∈Pfrag

Eπ,n

(
d(G̃n,G

∗)
)
nκ/(2κ+ρ−1) ≥ cmin,

where inf
G̃n

denotes the infimum over all the classifiers and cmin > 0 is a constant.

Proof of Theorem 2 follows Mammen and Tsybakov (1999) with minor
modifications. In fact, it suffices to consider the joint distributions such that P (Y =
0) = P (Y = 1) = 1/2 and to assume that there exist densities f (x) and g(x) of the
conditional distributions P (X|Y = 1) and P (X|Y = 0), respectively. Then G∗ has
the form G∗ = {x :f (x) ≥ g(x)}, and we are in the framework of Theorem 3 in
Mammen and Tsybakov (1999) (if κ �= 1). The rest of the proof for κ �= 1 follows
the same lines as the proof of Theorem 3 in Mammen and Tsybakov (1999). For
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the case κ = 1 the lower bounds are obtained using constructions as in Korostelev
and Tsybakov (1993) or Mammen and Tsybakov (1995) for estimators of supports
of densities with jump discontinuities.

Note that Theorem 2 is true for all ρ > 0 (there is no restriction that ρ < 1, as
in Theorem 1).

3. Aggregation. In this section we assume that G∗ ∈ G∗, where G∗ is an
unknown class of subsets of Rd . Consider first the case where G∗ belongs to a finite
collection {G1, . . . ,GN }, where Gj �= Gk are known classes of sets and N = Nn is
an integer that may depend on n.

The following assumption on Gj is used.

(A3) Assumption on the complexities. The classes Gj have complexity
bounds ρj , respectively, such that

0 < ρ1 ≤ ρ2 ≤ · · · ≤ ρN < 1.

To each Gj we associate an approximating set Nj and consider the ERM
classifiers

Gnk = arg min
G∈Nk

Rn(G), k = 1, . . . ,N.

We suppose that the sets Nj satisfy the following:

(A4) Assumption on the approximating sets. (i) Nj is an ε-net on Gj for the
pseudodistance d� or d�,e , where ε = ajn

−1/(1+ρj), aj > 0, j = 1, . . . ,N , and
supj aj ≤ a < ∞.

(ii) The approximating sets are nested:

N1 ⊆ N2 ⊆ · · · ⊆ NN.

(iii) Nj has complexity bound ρj , j = 1, . . . ,N .

Introduce the thresholds

Tnk(G,G′) = (log2 n)max
{
n−1/(1+ρk),

1√
n
d

(1−ρk)/2
�,e (G,G′)

}
,

k = 1, . . . ,N.

Define, for any j ∈ {1, . . . ,N} and k ≥ j ,

Nkj = {
G ∈ Nj : |Rn(G) − Rn(Gnk)| ≤ Tnk(G,Gnk)

}
.

We call the index j admissible if Nkj �= ∅ for all k ≥ j . Note that the set of all
admissible j is nonempty since it contains at least j = N . In fact, NNN �= ∅ (NNN

contains GnN ). Set

ĵ = min{admissible j},
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and define the adaptive classifier

G∗
n

def= G
nĵ

.

THEOREM 3. Let assumptions (A3) and (A4) hold and let, for some κ ≥ 1,
Pj be (Gj , κ, ρj )-classes of joint distributions of (X,Y ), j = 1, . . . ,N . Then, if

N = O(nβ), as n → ∞, for some finite β > 0 and if ρ1
def= ρmin, ρN

def= ρmax do not
depend on n, the adaptive classifier G∗

n satisfies

sup
π∈Pj

Eπ,n

(
d(G∗

n,G
∗)

) ≤ C

(
log4 n

n

)κ/(2κ+ρj−1)

for any j = 1, . . . ,N , where n > 1 and C is a finite constant that does not depend
on n.

The message of Theorem 3 is that, up to a logarithmic factor, the adaptive
classifier attains the optimal rates simultaneously on all the classes G1, . . . ,GN .
If the “true” class where G∗ lies is Gj∗ , Theorem 3 asserts that G∗

n has at most a
logarithmically worse rate than the optimal one n−κ/(2κ+ρj∗−1). In other words,
G∗

n mimics (up to a logarithmic factor) the rate of the best classifier among
Gn1, . . . ,GnN .

Theorem 3 can be extended to a continuous scale of values ρ, under an
additional nestedness assumption. In fact, instead of a finite collection of classes
{G1, . . . ,GN }, consider a collection {Gρ}ρ∈I, where I = [ρmin, ρmax], with known
constants ρmin and ρmax such that 0 < ρmin < ρmax < 1. The statistician only
knows that G∗ ∈ Gρ for some unknown ρ ∈ I.

COROLLARY 1. Assume that 0 < ρmin < ρmax < 1, κ ≥ 1, and that
the Gρ ’s are classes of subsets of Rd such that Gρ ⊂ Gρ′ for ρ < ρ′, where
ρ, ρ′ ∈ [ρmin, ρmax] and the class Gρ has complexity bound ρ. Let assump-
tion (A4) hold with Gj = Gρj

, ρj = ρmin + (j/N)(ρmax − ρmin), and let the Pρ ’s
be (Gρ, κ, ρ)-classes of joint distributions of (X,Y ), ρ ∈ [ρmin, ρmax]. Then, if
N = O(nβ), as n → ∞, and N ≥ nβ ′

for some finite β ≥ β ′ > 0, the adaptive
classifier G∗

n satisfies

sup
π∈Pρ

Eπ,n

(
d(G∗

n,G
∗)

) ≤ C

(
log4 n

n

)κ/(2κ+ρ−1)

,

for any ρ ∈ [ρmin, ρmax], where n > 1 and C is a finite constant that does not
depend on n.
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To prove this corollary, it is enough to note that since Pρ ⊂ Pρ′ for ρ < ρ′ and
in view of Theorem 3 we have, for any ρ ∈ [ρmin, ρmax] and ρ′ = min{ρj :ρj > ρ},

sup
π∈Pρ

Eπ,n

(
d(G∗

n,G
∗)

) ≤ sup
π∈P ′

ρ

Eπ,n

(
d(G∗

n,G
∗)

) ≤ C

(
log4 n

n

)κ/(2κ+ρ′−1)

≤ C

(
log4 n

n

)κ/(2κ+ρ+n−β′−1)

≤ C′
(

log4 n

n

)κ/(2κ+ρ−1)

,

where C′ is a finite constant that does not depend on n and we used that ρ′ ≤
ρ + N−1.

Finally, if we suppress assumption (A1), that is, if there are no assumptions on
the margin, we can nevertheless ensure that the same adaptive classifier G∗

n as in
Theorem 3 or in Corollary 1 attains the rate n−1/2 log2 n:

PROPOSITION 3. Let assumptions (A3) and (A4) be satisfied, with ρ1
def= ρmin,

ρN
def= ρmax that do not depend on n. Let P 0

j be a class of joint distributions π

of (X,Y ) for which the sets G∗ = G∗
π = {x :η(x) ≥ 1/2} belong to Gj . Then, if

N = O(nβ), as n → ∞, for some finite β > 0, the adaptive classifier G∗
n satisfies

sup
π∈P 0

j

Eπ,n

(
d(G∗

n,G
∗)

) ≤ Cn−1/2 log2 n,(11)

for any j = 1, . . . ,N , where n > 1 and C is a finite constant that does not depend
on n.

Proof of Proposition 3 is given in Section 5. One can also get a result similar
to Proposition 3 with a continuous scale of ρ, under the conditions described in
Corollary 1. One of these conditions, namely the nestedness of sets Gρ , implies
that in this case it is sufficient to state (11) for the largest set P 0

j = P 0
ρmax

.

REMARKS. (i) The same comments as after Theorem 1 can be made about
the feasibility of the method; in particular, the classifiers Gnk and G∗

n can be
readily constructed. However, it is preferable here that the sets Nj be finite, since
otherwise it is difficult to check the conditions Nkj �= ∅. For this reason, it might
be helpful to consider ε-nets Nj for the empirical distance d�,e rather than for d�.

(ii) The aggregation procedure proposed in this section realizes adaptation to
the unknown complexity ρ (similar to adaptation to unknown smoothness in the
usual nonparametric problems, such as regression and density estimation). How-
ever, unlike those problems, we have another parameter, namely the characteristic
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of the margin κ , which is also unknown. It is important that this parameter ap-
pear nowhere in the above aggregation procedure; in other words, the property of
robustness to the margin holds. Moreover, the optimality properties of the aggre-
gation procedure stated in Theorem 3 are preserved if instead of assumption (A1)
[or instead of (5)] we assume a more general behavior of the margin distribution
near the boundary:

P
(|η(X) − 1/2| ≤ t

) ≤ ϕ(t),(12)

where ϕ(t) is a monotone function and ϕ(t) ↓ 0 as t → 0. In this case the rates in
Theorems 1–3 will be, in general, different from the actually stated ones, and they
will depend on ϕ. The only point to emphasize is that the aggregation procedure
remains the same as above and that the robustness to the margin property holds
under these much more general conditions.

(iii) The aggregation method proposed here is a member of the general family
of procedures that can be called pretesting aggregation schemes [cf. Tsybakov
(2002)]. Another well-known member of this family is the method of Lepski
(1990), which was originally defined for the Gaussian white noise model but
can be extended to the classification framework as well. An important difference
from the above aggregation scheme is that the Lepski method would use pairwise
comparisons between classifiers Gnk to define its own set of admissible j ’s. This
would induce too high a bias and would not allow us to get the result of Theorem 3
unless κ = 1.

(iv) The sets Gj in Theorem 3 are not supposed to be nested. They only need
to have the ordered upper bounds ρj on complexities [assumption (A3)]. The
nestedness assumption applies to the approximating sets Nj only and causes no
problem because these sets can be chosen by the statistician.

(v) The factor log2 n in the definition of the threshold Tnk can be replaced
by C∗ logn for some constant C∗ > 0 large enough. This, in turn, improves the
logarithmic factor in Theorem 3, which becomes (log2 n)κ/(2κ+ρj−1). However,
the precise value of C∗ is not known since it relies on unknown accurate constants
in the empirical process inequalities used in proofs. Also, inspection of the proofs
shows that log2 n can be readily replaced by �n logn, where �n is some sequence
that tends to ∞ slower than logn (with the respective minor improvement for the
rate in Theorem 3).

4. Discussion. In this section we discuss some questions related to optimality
of classification methods.

The first question is: how fast can the convergence of classifiers be and how does
one construct the classifiers that have optimal convergence rates? Several papers
discussing this question arrive at conclusions that are, at first glance, contradictory.
Yang (1999) claims that the optimal rates are quite slow (substantially slower than
n−1/2), and they are attained with plug-in rules; Mammen and Tsybakov (1999)



OPTIMAL AGGREGATION OF CLASSIFIERS 147

claim that the rates are fast (between n−1/2 and n−1) and they are attained by
ERM and related classifiers (this is also the message of Theorem 1 above); in
the papers deriving oracle inequalities [Barron (1991), Lugosi and Nobel (1999),
Koltchinskii and Panchenko (2002), Koltchinskii (2001) and Bartlett, Boucheron
and Lugosi (2002)] ERM-based and other related classifiers are shown to con-
verge with the rate at best n−1/2 (up to a log-factor), if R(G∗) �= 0. In fact, there
is no contradiction since different classes of joint distributions π of (X,Y ) are
considered. Yang (1999) and the papers on oracle inequalities cited above do not
impose assumption (A1) (or any other assumption) on the margin. Therefore, it
is not surprising that they get rates slower than n−1/2: one cannot obtain a rate
faster than n−1/2 with no assumptions on the margin [cf. the lower bound given
by Devroye, Györfi and Lugosi (1996), page 240]. The same effect is observed
in Proposition 2: with no assumptions on the margin we get the slow rate n−1/2.
However, note that Proposition 2 applies only if ρ < 1. If no restrictions on the
joint distribution π are imposed, one cannot exclude the case where ρ ≥ 1, that is,
the sets G which are extremely complex (the boundaries ∂G are very nonregular),
and the rate of convergence can be arbitrarily slow. Yang (1999) works with π such
that the function η is smooth, and expresses the rates in terms of the smoothness
of η. This assumption does not imply that the boundary of G is regular. For exam-
ple, using linear combinations of infinitely smooth functions on small hypercubes,
it is easy to construct a function η that is infinitely smooth in every coordinate,
but the boundary of G is not regular. This suggests that Yang’s assumptions do not
exclude the values ρ ≥ 1 for the complexity of possible sets G, explaining why
the optimal rates in the situation considered by Yang (1999) are slower than n−1/2.
On the contrary, Mammen and Tsybakov (1999) and Theorem 1 above show what
can be achieved when the situation is “nice,” that is, assumption (A1) on the mar-
gin holds. In this case the fast rates (up to n−1) are realizable. Similar results for
penalized ERM classifiers are given by Massart (2000).

The second question is whether the aggregation of classifiers is possible with
such fast rates. Theorem 3 answers this question affirmatively. It shows that fast
rates are achievable without any knowledge of the complexity and of the margin
of the underlying joint distribution π . Note that the usual aggregation procedures
based on penalization with penalty terms (random or nonrandom) of order greater
than or equal to n−1/2 cannot achieve such fast rates, irrespective of whether the
underlying joint distribution is nice or not. If the penalty is of the order n−1 logn

[as in Bartlett, Boucheron and Lugosi (2002), Massart (2000) or Catoni (2001)],
the question remains open. Another approach to aggregation is to mimic the best
member of a convex combination of classifiers and related boosting and bagging
techniques [see Breiman (1996), Schapire, Freund, Bartlett and Lee (1998) and
Bühlmann and Yu (2002)]. The results of Koltchinskii and Panchenko (2002) and
Koltchinskii (2001) suggest that, in the general case, the best one can guarantee
for a convex combination of classifiers is the rate n−1/2 (up to log-factors).
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In the present paper classification is considered as a special case of nonparamet-
ric estimation of sets. A specific point is that here one uses a particular distance d

given in (2) to define the risk, unlike in the usual set estimation problems where
one works with Lebesgue measure of symmetric difference distance or with the
Hausdorff distance [see Korostelev and Tsybakov (1993)]. The principal difficulty
in treating the classification problem, as compared to other well-known nonpara-
metric problems, such as regression or density estimation, is the lack of precise
bias–variance decomposition of the risk. The form of this decomposition cannot be
claimed to be additive, and the bias does not appear in a closed form. To illustrate
this, the bias–variance trade-off for ERM classifiers (cf. the proof of Theorem 1)
can be expressed by the inequality

d(Ĝn,G
∗) ≤ C√

n
d

(1−ρ)/2
� (Ĝn,G

∗)(13)

(with some C > 0 and only asymptotically, with a probability close to 1). The
right-hand side of this inequality plays the role of the “variance term.” Note also

that the “empirical variance” d
(1−ρ)/2
�,e (·, ·)/√n logically appears in the threshold

of the aggregation procedure of Section 3. The left-hand side of (13) represents
the total loss, while the bias term in the proper sense is not visible. Thus, the usual
nonparametric argument suggesting that one balance the approximation error and
the stochastic error, as well as its adaptive extensions, is not directly applicable.

The aggregation procedure proposed in Section 3 relies strongly upon the
approximation properties of the chosen sets Nj . To make it work efficiently,
approximation properties should be available for typical systems of sets (usually
VC-classes). The question, how well concrete systems of VC-classes approximate
the classes of sets with smooth boundaries, is crucial in this context. To answer this
question, it would be helpful to have an approximation theory for sets, analogous
to that for functions.

5. Proofs of the theorems. Without loss of generality assume in the proofs
that a = 1, and write for brevity P = Pπ,n, E = Eπ,n.

PROOF OF THEOREM 1. Write G′ = G∗ ∪ N . Clearly, G′ has the same com-
plexity bound ρ as G∗ and N . Fix an element GN ∈ N such that d�(GN ,G∗) ≤
n−1/(1+ρ) or d�,e(G

N ,G∗) ≤ n−1/(1+ρ) (such a GN exists since N is an
n−1/(1+ρ)-net on G∗ for the pseudodistance d� or d�,e). Note that, if d�,e is used,
GN is random. Consider the random event

� = {
d�(GN ,G∗) ≤ bn−1/(1+ρ)},

where b = max(2, c1) and c1 is the constant in Lemma 7 from the Appendix. If
N is an n−1/(1+ρ)-net on G∗ for d� we have P (�) = 0. If N is an n−1(1+ρ)-net
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on G∗ for d�,e, using (63) we get

P (�) ≤ P
(
d�(GN ,G∗) > bn−1/(1+ρ), d�,e(G

N ,G∗) > d�(GN ,G∗)/2
)

+ P
(
d�(GN ,G∗) > c1n

−1/(1+ρ), d�,e(G
N ,G∗) ≤ d�(GN ,G∗)/2

)
(14)

= P
(
d�(GN ,G∗) > c1n

−1/(1+ρ), d�,e(G
N ,G∗) ≤ d�(GN ,G∗)/2

)

≤ A1 exp
(−A2n

ρ/(1+ρ)
)
.

We conclude that (14) holds in both cases: when N is an n−1(1+ρ)-net on G∗ either
for d� or for d�,e. Now, Rn(G

N ) ≥ Rn(Ĝn), and therefore on �,

d(Ĝn,G
∗) ≤ [

Rn(G
N ) − Rn(G

∗) − d(GN ,G∗)
] + d(GN ,G∗)

+ [
Rn(G

∗) − Rn(Ĝn) + d(Ĝn,G
∗)

]
(15)

≤ bn−1/(1+ρ) + [
Rn(G

N ) − Rn(G
∗) − d(GN ,G∗)

]

+ [
Rn(G

∗) − Rn(Ĝn) + d(Ĝn,G
∗)

]
,

where we have used (4).
Our local aim now is to show that the probability P (d�(Ĝn,G

∗) > ε0) is
negligible as n → ∞, so that we can apply assumption (A1). If ε0 = 1, this
probability is 0. If ε0 < 1, we will bound this probability using (7). From (15)
and the fact that GN , Ĝn ∈ G′, we get on �,

d(Ĝn,G
∗) ≤ bn−1/(1+ρ) + 2 sup

G∈G′
|Rn(G) − Rn(G

∗) − d(G,G∗)|,

and for all t ≥ 2bn−1/(1+ρ),

P
(
d(Ĝn,G

∗) > t
)

≤ P

(
sup
G∈G′

|Rn(G) − Rn(G
∗) − d(G,G∗)| > t/4

)
+ P (�).

(16)

Next, for any t > 0,

d(Ĝn,G
∗) ≥ 2

∫
Ĝn�G∗

|η(x) − 1/2|I (|η(x) − 1/2| ≥ t
)
PX(dx)

≥ 2t
[
d�(Ĝn,G

∗) − P
(|η(X) − 1/2| < t

)]
.

In view of (7) there exists 0 < t0 < 1/2 such that supπ∈P P (|η(X) − 1/2| < t0) <

ε0/2. Hence

d�(Ĝn,G
∗) ≤ 1

2t0
d(Ĝn,G

∗) + ε0

2
,(17)
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and therefore, by (16), for all n large enough,

P
(
d�(Ĝn,G

∗) > ε0
)

≤ P
(
d(Ĝn,G

∗) > ε0t0
)

≤ P

(
sup
G∈G′

|Rn(G) − Rn(G
∗) − d(G,G∗)| > ε0t0/4

)
+ P (�).

Since ε0t0/4 < 1, we can apply Lemma 11, which yields, together with (14), for
n large enough,

P
(
d�(Ĝn,G

∗) > ε0
)

≤ C2 exp
(−n(ε0t0)

2/(16C2)
)+A1 exp

(−A2n
ρ/(1+ρ)).

(18)

Now we proceed to the main evaluation of the risk of the classifier Ĝn. Define
the random event �0 = {d�(Ĝn,G

∗) ≤ ε0}, where c1 > 0 is a constant such that
c1n

−1/(1+ρ) < ε0. Using (14) and (18) we get

E
(
d(Ĝn,G

∗)
) ≤ E

[
d(Ĝn,G

∗)I (�0�)
]

+ E
[
d(Ĝn,G

∗)I
(
d�(Ĝn,G

∗) > ε0
)] + P (�)

(19)
≤ E

[
d(Ĝn,G

∗)I (�0�)
] + C2 exp

(−n(ε0t0)
2/(16C2)

)

+ 2A1 exp
(−A2n

ρ/(1+ρ)
)
.

On the event �0� we have d�(GN ,G∗) ≤ bn−1/(1+ρ). Thus, using (15) and the
fact that GN , Ĝn ∈ G′, we obtain that, on �0�,

d(Ĝn,G
∗)

≤ bn−1/(1+ρ) + 2 sup
G∈G′ : d�(G,G∗)≤bn−1/(1+ρ)

|Rn(G
∗) − Rn(G) + d(G,G∗)|

(20)

+ d
(1−ρ)/2
� (Ĝn,G

∗)√
n

sup
G∈G̃′

√
n|Rn(G

∗) − Rn(G) + d(G,G∗)|
d

(1−ρ)/2
� (G,G∗)

≤ bn−1/(1+ρ) + 2V0n(G
′) + Vn(G

′)√
n

d
(1−ρ)/2
� (Ĝn,G

∗),

where G̃′ = {G ∈ G′ :d�(G,G∗) ≥ bn−1/(1+ρ)}, V0n and Vn are defined in the
Appendix and we set c2 = b in the definition of V0n. This and assumption (A1)
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imply that on �0� we have

d(Ĝn,G
∗) ≤ bn−1/(1+ρ) + 2V0n(G

′) + c
−1/κ
0 Vn(G

′)√
n

d(1−ρ)/2κ(Ĝn,G
∗).(21)

Introduce the random events

�1 = {
V0n(G

′) ≤ max(B3, b)n−1/(1+ρ)},
�2 = {

d(Ĝn,G
∗) ≥ 4 max(B3, b)n−1/(1+ρ)

}
,

where B3 > 0 is the constant from Lemma 9 in the Appendix. Then

E
(
d(Ĝn,G

∗)I (�0�)
)

≤ E
(
d(Ĝn,G

∗)I (��0�1�2)
) + E

(
d(Ĝn,G

∗)I (�1 ∪ �2)
)

(22)
≤ E

(
d(Ĝn,G

∗)I (��0�1�2)
) + P (�1)

+ 4 max(B3, b)n−1/(1+ρ).

By Lemma 9,

P (�1) ≤ B1 exp
(−B2n

ρ/(1+ρ)).(23)

Now, (21) implies that on the event ��0�1 we have

d(Ĝn,G
∗) ≤ 3 max(B3, b)n−1/(1+ρ) + c

−1/κ
0 Vn(G

′)√
n

d(1−ρ)/2κ(Ĝn,G
∗).

From this inequality and the definition of �2 we get that, on ��0�1�2,

d(Ĝn,G
∗) ≤ 4c

−1/κ
0 Vn(G

′)√
n

d(1−ρ)/2κ(Ĝn,G
∗).

Thus there exists a constant C > 0 such that on ��0�1�2 one has

d(Ĝn,G
∗) ≤ CVn(G

′)2κ/(2κ+ρ−1)n−κ/(2κ+ρ−1).

This and (19), (22), (23) imply

E
(
d(Ĝn,G

∗)
)

≤ CE
(
Vn(G

′)2κ/(2κ+ρ−1))n−κ/(2κ+ρ−1) + 4 max(B3, b)n−1/(1+ρ)

+ C2 exp
(−n(ε0t0)

2/(16C2)
) + B1 exp

(−B2n
ρ/(1+ρ)

)

+ 2A1 exp
(−A2n

ρ/(1+ρ)
)
.

To finish the proof it remains to note that n−1/(1+ρ) = O(n−κ/(2κ+ρ−1)), n → ∞,

if 0 < ρ < 1, κ ≥ 1, and supn E(Vn(G
′)q) < ∞ for any q > 0, in view of Lemma 8
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in the Appendix. �

PROOF OF PROPOSITION 2. We follow the same lines as in the proof of
Theorem 1 up to (15), and we skip the part of the proof from (15) to (18) needed to
deal with assumption (A1), which is not present in this proposition. Next, similarly
to (19) and (20) we obtain

E
(
d(Ĝn,G

∗)
) ≤ E[d(Ĝn,G

∗)I (�)] + P (�)

≤ E[d(Ĝn,G
∗)I (�)] + A1 exp

(−A2n
ρ/(1+ρ))(24)

and, on the event �,

d(Ĝn,G
∗) ≤ bn−1/(1+ρ) + 2V0n(G

′) + Vn(G
′)/

√
n,(25)

where Vn and V0n are the same as in (20) and we have used the rough bound
d�(Ĝn,G

∗) ≤ 1. Now, the result follows from (24) and (25) if we observe that
supn E(Vn(G

′)) < ∞ and supn n1/(1+ρ)E(V0n(G
′)) < ∞, in view of Lemmas

8 and 9 in the Appendix. �

PROOF OF THEOREM 3. Fix j∗ such that G∗ ∈ Gj∗ , and write ρ∗ = ρj∗ . The
proof of Theorem 3 will consist in showing that

sup
π∈Pj∗

Eπ,n

(
d(G∗

n,G
∗)

) = O
(
(log n)4κ/(2κ+ρ∗−1)n−κ/(2κ+ρ∗−1)

)
,

(26) n → ∞.

Introduce some notation. Write G′
j = Gj ∪ Nj . Clearly, G′

j has complexity
bound ρj . For brevity, write

Vn(j) = Vn(G
′
j ), V0n(j) = V0n(G

′
j ),

Wn(j) = Wn(G
′
j ), W0n(j) = W0n(G

′
j ),

where V0n,Vn,W0n,Wn are defined in the Appendix, with ρ = ρj , with c1 being
the constant from Lemma 7 and c2 = c1.

For any j ∈ {1, . . . ,N} and k ≥ j define the pseudoclassifier

Gnkj =



arg min
G∈Nkj

Rn(G), if Nkj �= ∅,

Gnk, if Nkj = ∅.

We will need some lemmas. The first lemma states that, with probability close to 1,
the value j∗ is admissible.

LEMMA 1.

sup
π∈Pj∗

Pπ,n(ĵ > j∗) = o(1/n), n → ∞.
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The second lemma contains the basic observation needed for the proof.

LEMMA 2. If j is admissible then, for all k ≥ j ,

0 ≤ Rn(Gnkj ) − Rn(Gnj ) ≤ Tnk(Gnkj ,Gnk),(27)

|Rn(Gnkj ) − Rn(Gnk)| ≤ Tnk(Gnkj ,Gnk).(28)

The next two lemmas are technical.

LEMMA 3.

sup
π∈Pj∗

1√
n
Eπ,n

(
d

(1−ρ∗)/2
�

(
Gnj∗,G∗)) = O

(
n−κ/(2κ+ρ∗−1)), n → ∞.

LEMMA 4.

sup
π∈Pj∗

Eπ,n

(
Tnj∗

(
G

nj∗ĵ ,Gnj∗
))

= O
(
(logn)4κ/(2κ+ρ∗−1)n−κ/(2κ+ρ∗−1)), n → ∞.

Proofs of the lemmas are given in Section 6.
Now we proceed to the proof of (26). First, note that, in view of Lemma 1,

E
(
d(G∗

n,G
∗)

) ≤ E
(
d
(
G

nĵ
,G∗)

I (ĵ ≤ j∗)
) + P (ĵ > j∗)

(29) = E
(
d
(
G

nĵ
,G∗)

I (ĵ ≤ j∗)
) + o(1/n).

Thus, it is sufficient to work on the random event {ĵ ≤ j∗}. If ĵ ≤ j∗, using the
definition of ĵ and Lemma 2 we find

0 ≤ Rn

(
G

nj∗ĵ
) − Rn

(
G

nĵ

) ≤ Tnj∗
(
G

nj∗ĵ ,Gnj∗
)
,(30)

∣∣Rn

(
G

nj∗ĵ
) − Rn

(
Gnj∗

)∣∣ ≤ Tnj∗
(
G

nj∗ĵ ,Gnj∗
)
.(31)

Note also that if ĵ ≤ j∗, we have G
nĵ

∈ N
ĵ

⊆ Nj∗ ⊆ G′
j∗ . Thus, if ĵ ≤ j∗, acting

similarly to (20), we get

d
(
G

nĵ
,G∗)

≤ ∣∣Rn

(
G

nĵ

) − Rn(G
∗)

∣∣ + ∣∣Rn(G
∗) − Rn

(
G

nĵ

) + d
(
G

nĵ
,G∗)∣∣

≤ ∣∣Rn

(
G

nĵ

) − Rn(G
∗)

∣∣ + V0n(j
∗) + Vn(j

∗)√
n

d
(1−ρ∗)/2
�

(
G

nĵ
,G∗)

.

(32)
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Now we come to the main step in the upper bounds. Using (30) and (31) we
obtain ∣∣Rn

(
G

nĵ

) − Rn(G
∗)

∣∣
≤ ∣∣Rn(G

∗) − Rn

(
Gnj∗

)∣∣ + ∣∣Rn

(
Gnj∗

) − Rn

(
G

nj∗ĵ
)∣∣

+ ∣∣Rn

(
G

nj∗ĵ
) − Rn

(
G

nĵ

)∣∣
≤ d

(
Gnj∗,G∗) + ∣∣Rn(G

∗) − Rn

(
Gnj∗

) + d
(
Gnj∗,G∗)∣∣(33)

+ 2Tnj∗
(
G

nj∗ĵ ,Gnj∗
)

≤ d
(
Gnj∗,G∗) + V0n(j

∗) + Vn(j
∗)√

n
d

(1−ρ∗)/2
�

(
Gnj∗,G∗)

+ 2Tnj∗
(
G

nj∗ĵ ,Gnj∗
)
.

Substitution of (33) into (32) yields (for ĵ ≤ j∗)

d
(
G

nĵ
,G∗) ≤ d

(
Gnj∗,G∗) + 2

[
V0n(j

∗) + Vn(j
∗)√

n
d

(1−ρ∗)/2
�

(
Gnj∗,G∗)

(34)
+ Tnj∗

(
G

nj∗ĵ ,Gnj∗
)]

.

Now, in view of Lemmas 8 and 9 from the Appendix and Lemma 3,

E
(
V0n(j

∗)
) = O

(
n−1/(1+ρ∗)) = O

(
n−κ/(2κ+ρ∗−1))(35)

and

E

(
Vn(j

∗)√
n

d
(1−ρ∗)/2
�

(
Gnj∗,G∗))

≤ 1√
n

[
P

(
Vn(j

∗) ≥ log2 n
) + (log2 n)E

(
d

(1−ρ∗)/2
�

(
Gnj∗,G∗))]

(36)

≤ log2 n√
n

E
(
d

(1−ρ∗)/2
�

(
Gnj∗,G∗)) + o

(
1

n

)

= O
(
n−κ/(2κ+ρ∗−1) log2 n

)
.

From (34)–(36) we get

E
(
d
(
G

nĵ
,G∗)

I (ĵ ≤ j∗)
)

≤ E
(
d
(
Gnj∗,G∗)) + 2E

(
Tnj∗

(
G

nj∗ĵ ,Gnj∗
))

+ O
(
n−κ/(2κ+ρ∗−1) log2 n

)
.

(37)

Theorem 3 follows now from (29), (37), Theorem 1 and Lemma 4. �
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PROOF OF PROPOSITION 3. Note first that Lemmas 1 and 2 remain valid
since their proofs do not use assumption (A1); see Section 6. Therefore, we get
(29) and (34) exactly in the same way as in the proof of Theorem 3. Using (34)
and the rough bounds d� ≤ 1 and

Tnj∗
(
G

nj∗ĵ ,Gnj∗
) ≤ max

(
n−1/(1+ρ∗), n−1/2) log2 n = n−1/2 log2 n,(38)

we obtain that, on the event {ĵ ≤ j∗},
d
(
G

nĵ
,G∗) ≤ d

(
Gnj∗,G∗) + 2

[
V0n(j

∗) + Vn(j
∗)n−1/2 + n−1/2 log2 n

]
.(39)

To finish the proof, it remains to substitute (39) in (29), to apply Proposition 2 with
ρ = ρ∗ and to note that supn E(Vn(j

∗)) < ∞ and supn n1/(1+ρ∗)E(V0n(j
∗)) < ∞,

in view of Lemmas 8 and 9 in the Appendix. �

6. Proofs of the lemmas.

PROOF OF LEMMA 1. We have

P (ĵ > j∗) ≤ ∑
k≥j∗

P
(
Nkj∗ = ∅

) ≤ N max
k≥j∗ P

(
Nkj∗ = ∅

)
.

Since N = O(nβ), it is sufficient to show that

sup
k≥j∗

P
(
Nkj∗ = ∅

) = o(1/n1+β),(40)

as n → ∞. Without loss of generality we will assume that all aj = 1 in assumption
(A4)(i). Fix an element GN of Nj∗ such that d�(GN ,G∗) ≤ n−1/(1+ρ∗) if Nj∗
is an ε-net on Gj∗ for the distance d� or d�,e(G

N ,G∗) ≤ n−1/(1+ρ∗) if Nj∗ is
an ε-net on Gj∗ for the distance d�,e [such an element GN exists in view of
assumption (A4)(i) and it is random if the distance d�,e is used]. We have

P
(
Nkj∗ = ∅

) ≤ P
(|Rn(G

N ) − Rn(Gnk)| > Tnk(G
N ,Gnk)

)
.(41)

Since we consider k ≥ j∗, then also Nk ⊇ Nj∗ , and GN ∈ Nk . Therefore,
Rn(G

N ) ≥ Rn(Gnk), and

0 ≤ Rn(G
N ) − Rn(Gnk)

≤ [
Rn(G

N ) − Rn(G
∗) − d(GN ,G∗)

] + d(GN ,G∗)(42)

+ [
Rn(G

∗) − Rn(Gnk) + d(Gnk,G
∗)

]
.

Consider the random event �∗ = {d�(GN ,G∗) ≤ bn−1/(1+ρ∗)}. Repeating the
argument of (14) with ρ = ρ∗ we get

P (�∗) ≤ A1 exp
(−A2n

ρ∗/(1+ρ∗)).(43)



156 A. B. TSYBAKOV

Since d(GN ,G∗) ≤ d�(GN ,G∗) [cf. (4)] we deduce from (42) that, on the
event �∗,

|Rn(G
N ) − Rn(Gnk)| ≤ bn−1/(1+ρ∗) + |Rn(G

N ) − Rn(G
∗) − d(GN ,G∗)|

+ |Rn(G
∗) − Rn(Gnk) + d(Gnk,G

∗)|.(44)

The right-hand side of (44) is analogous to that of (15). Applying the argument as

in (20) and observing that Gnk,G
∗ ∈ G′′

k

def= Gj∗ ∪ Nk (clearly, G′′
k has complexity

bound ρk, since ρk ≥ ρ∗), GN ,G∗ ∈ G′
j∗ ⊆ G′′

k and n−1/(1+ρ∗) ≤ n−1/(1+ρk) we
get that, on �∗,

|Rn(G
N ) − Rn(Gnk)|

≤ bn−1/(1+ρ∗) + 2V0n(G
′′
k) + Vn(G

′′
k)√

n
d

(1−ρk)/2
� (Gnk,G

∗),
(45)

where V0n and Vn are defined in the Appendix, with ρ = ρk and with the constant
c2 = b. Next, the triangle inequality and the fact that (1 − ρk)/2 < 1, ρk ≥ ρ∗
imply that, on �∗,

d
(1−ρk)/2
� (Gnk,G

∗) ≤ d
(1−ρk)/2
� (GN ,Gnk) + d

(1−ρk)/2
� (GN ,G∗)

≤ d
(1−ρk)/2
� (GN ,Gnk) + (

bn−1/(1+ρ∗))(1−ρk)/2(46)

≤ d
(1−ρk)/2
� (GN ,Gnk) + b′n−(1−ρk)/(2(1+ρk))

where b′ = max(b1/2,1). From (45) and (46) we obtain that, on �∗,

|Rn(G
N ) − Rn(Gnk)| ≤ (

b + b′Vn(G
′′
k)

)
n−1/(1+ρk) + 2V0n(G

′′
k)

+ Vn(G
′′
k)√

n
d

(1−ρk)/2
� (GN ,Gnk).

(47)

Now,

P
(|Rn(G

N ) − Rn(Gnk)| > Tnk(G
N ,Gnk)

) ≤ p1 + p2 + P (�∗),(48)

where

p1 = P
({|Rn(G

N ) − Rn(Gnk)|

> Tnk(G
N ,Gnk), d�(GN ,Gnk) ≤ c1n

−1/(1+ρk)
} ∩ �∗

)
,

p2 = P
({|Rn(G

N ) − Rn(Gnk)|

> Tnk(G
N ,Gnk), d�(GN ,Gnk) > c1n

−1/(1+ρk)
} ∩ �∗

)
.
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Using (47) we obtain

p1 ≤ P
([

b + (
b′ + c

(1−ρk)/2
1

)
Vn(G

′′
k)

]
n−1/(1+ρk)

+ 2V0n(G
′′
k) > Tnk(G

N ,Gnk)
)

≤ P
([

b + (
b′ + c

(1−ρk)/2
1

)
Vn(G

′′
k)

]
n−1/(1+ρk)

+ 2V0n(G
′′
k) > n−1/(1+ρk) log2 n

)
(49)

≤ P

((
b′ + c

(1−ρk)/2
1

)
Vn(G

′′
k) >

1

2
(log2 n − b)

)

+ P

(
V0n(G

′′
k) >

1

4
n−1/(1+ρk) log2 n

)

= o

(
1

n1+β

)
,

as n → ∞ uniformly in k, in view of Lemmas 8 and 9. Using (47), the
probability p2 is bounded as follows:

p2 ≤ P

((
b + b′Vn(G

′′
k)

)
n−1/(1+ρk) + 2V0n(G

′′
k) + Vn(G

′′
k)√

n
d

(1−ρk)/2
� (GN ,Gnk)

>
log2 n

2
n−1/(1+ρk)

+ log2 n

2
√

n
d

(1−ρk)/2
�,e (GN ,Gnk), d�(GN ,Gnk) > c1n

−1/(1+ρk)

)

≤ p3 + p4,

where

p3 = P

((
b + b′Vn(G

′′
k)

)
n−1/(1+ρk) + 2V0n(G

′′
k) >

log2 n

2
n−1/(1+ρk)

)
,

p4 = P

(
Vn(G

′′
k)d

(1−ρk)/2
� (GN ,Gnk) >

log2 n

2
d

(1−ρk)/2
�,e (GN ,Gnk),

d�(GN ,Gnk) > c1n
−1/(1+ρk)

)
.

Note that supk p3 = o(1/n1+β), similarly to (49). Also, for n large enough,
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p4 satisfies (since GN ,Gnk ∈ G′′
k )

p4 ≤ P

(
Vn(G

′′
k) > inf

(G,G′)∈Sk

(
d�,e(G,G′)
d�(G,G′)

)(1−ρk)/2 log2 n

2

)

≤ P

(
Vn(G

′′
k) >

log2 n

4

)
+ P

(
inf

(G,G′)∈Sk

(
d�,e(G,G′)
d�(G,G′)

)(1−ρk)/2

<
1

2

)

≤ D1 exp(−D2 log2 n) + P

(
Wn(G

′′
k) ≥ 1

2

)
= o

(
1

n1+β

)
, n → ∞,

where Sk = {(G,G′) :G,G′ ∈ G′′
k , d�(G,G′) ≥ c1n

−1/(1+ρk)} and we used Lem-
mas 7 and 8. Here again o(1/n1+β) converges to 0 uniformly in k. Thus,

sup
k

p2 = o(1/n1+β), n → ∞,

which, together with (41), (43), (48) and (49), yields (40). �

PROOF OF LEMMA 2. If j is admissible, then

Gnkj = arg min
G∈Nkj

Rn(G)

for all k ≥ j . Since Nkj ⊂ Nj we have Rn(Gnkj ) ≥ Rn(Gnj ), which is the left
inequality in (27). On the other hand, Gnkj ∈ Nkj , and (28) follows from the
definition of Nkj . Finally, Nj ⊂ Nk for k ≥ j , and thus Rn(Gnkj ) − Rn(Gnj ) ≤
Rn(Gnkj ) − Rn(Gnk) ≤ Tnk(Gnkj ,Gnk), where the last inequality is again due to
Gnkj ∈ Nkj . This proves the right-hand side inequality in (27). �

PROOF OF LEMMA 3. In view of assumption (A1) we have

E
(
d

(1−ρ∗)/2
�

(
Gnj∗,G∗)) = E

(
d

(1−ρ∗)/2
�

(
Gnj∗,G∗)

I
(
d�

(
Gnj∗,G∗) ≥ ε0

))

+ c
−1/κ
0 E

(
d(1−ρ∗)/2κ(

Gnj∗,G∗))
≤ P

(
d�

(
Gnj∗,G∗) ≥ ε0

)

+ c
−1/κ
0 E

(
d(1−ρ∗)/2κ

(
Gnj∗,G∗))

.

To finish the proof it remains to apply Theorem 1 and (18) (with ρ = ρ∗,
Ĝn = Gnj∗). �

To prove Lemma 4 we need the following auxiliary result.

LEMMA 5. For any π ∈ Pj∗ ,

1√
n
Eπ,n

(
d

(1−ρ∗)/2
�,e

(
G

nj∗ĵ ,Gnj∗
))

≤ 3

2
√

n
Eπ,n

(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,Gnj∗
)) + Cn−κ/(2κ+ρ∗−1),
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where C > 0 does not depend on π ∈ Pj∗ .

PROOF. By Lemma 1 and since d�,e ≤ 1, we have

E
(
d

(1−ρ∗)/2
�,e

(
G

nj∗ĵ ,Gnj∗
))

≤ E
(
d

(1−ρ∗)/2
�,e

(
G

nj∗ĵ ,Gnj∗
)
I (ĵ ≤ j∗)

) + o(1/n).

(50)

If ĵ ≤ j∗, we have G
nj∗ĵ ∈ Nj∗ ⊆ G′

j∗ , Gnj∗ ∈ G′
j∗ , and thus

d
(1−ρ∗)/2
�,e

(
G

nj∗ĵ ,Gnj∗
)

≤ W0n(j
∗)(1−ρ∗)/2 + (

Wn(j
∗) + 1

)
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,Gnj∗
)
,

(51)

where W0n(j
∗) and Wn(j

∗) are defined at the beginning of the proof of Theorem 3.
Using Lemma 10, we find

E
(
W0n(j

∗)(1−ρ∗)/2) ≤ [
E

(
W0n(j

∗)
)](1−ρ∗)/2

(52) = O
(
n(1−ρ∗)/(2(1+ρ∗))), n → ∞.

Also, by Lemma 7,

E
((

Wn(j
∗) + 1

)
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,Gnj∗
))

≤ 3
2E

(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,Gnj∗
))

(53)
+ E

(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,Gnj∗
)
I
(
Wn(j

∗) ≥ 1
2

))

≤ 3
2E

(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,Gnj∗
)) + A1 exp

(−A2n
ρ∗/(1+ρ∗)).

Combining (50)–(53) and observing that

n−1/(1+ρ∗) = O
(
n−κ/(2κ+ρ∗−1)) ∀κ ≥ 1, 0 < ρ∗ < 1,(54)

we obtain the lemma. The constant C in the formulation of Lemma 5 does not
depend on π since the remainder terms in (50)–(53) are uniform in π ∈ Pj∗ . �

PROOF OF LEMMA 4. Using Lemmas 3 and 5 and (54) we get

E
(
Tnj∗

(
G

nj∗ĵ ,Gnj∗
))

≤ log2 n

[
n−1/(1+ρ∗) + 1√

n
E

(
d

(1−ρ∗)/2
�,e

(
G

nj∗ĵ ,Gnj∗
))]

≤ log2 n

[
n−1/(1+ρ∗) + 3

2
√

n
E

(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,Gnj∗
)) + Cn−κ/(2κ+ρ∗−1)

]
(55)
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≤ O
(
n−κ/(2κ+ρ∗−1) log2 n

)

+ 3 log2 n

2
√

n

[
E

(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗)) + E

(
d

(1−ρ∗)/2
�

(
Gnj∗,G∗))]

= O
(
n−κ/(2κ+ρ∗−1) log2 n

) + 3 log2 n

2
√

n
E

(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗))

.

Next, note that if ĵ ≤ j∗, we have G
nj∗ĵ ∈ Nj∗ ⊆ G′

j∗ , and thus

d
(
G

nj∗ĵ ,G
∗)

≤ ∣∣Rn

(
G

nj∗ĵ
) − Rn(G

∗)
∣∣

(56) + ∣∣Rn(G
∗) − Rn

(
G

nj∗ĵ
) + d

(
G

nj∗ĵ ,G
∗)∣∣

≤ ∣∣Rn

(
G

nj∗ĵ
) − Rn(G

∗)
∣∣ + V0n(j

∗) + Vn(j
∗)√

n
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗)

,

where V0n(j
∗) and Vn(j

∗) are defined at the beginning of the proof of Theorem 3.
Applying (31) and acting similarly to (56) we find that, for ĵ ≤ j∗,

∣∣Rn

(
G

nj∗ĵ
) − Rn(G

∗)
∣∣

≤ ∣∣Rn

(
Gnj∗

) − Rn(G
∗)

∣∣ + ∣∣Rn

(
G

nj∗ĵ
) − Rn

(
Gnj∗

)∣∣
≤ ∣∣Rn

(
Gnj∗

) − Rn(G
∗) − d

(
Gnj∗,G∗)∣∣ + d

(
Gnj∗,G∗)

+ Tnj∗
(
G

nj∗ĵ ,Gnj∗
)

≤ d
(
Gnj∗,G∗) + V0n(j

∗) + Vn(j
∗)√

n
d

(1−ρ∗)/2
�

(
Gnj∗,G∗)

+ Tnj∗
(
G

nj∗ĵ ,Gnj∗
)
.

This and (56) imply that, on the event {ĵ ≤ j∗},

d
(
G

nj∗ĵ ,G
∗) ≤ d

(
Gnj∗,G∗) + 2V0n(j

∗) + Vn(j
∗)√

n
d

(1−ρ∗)/2
�

(
Gnj∗,G∗)

(57)

+ Vn(j
∗)√

n
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗) + Tnj∗

(
G

nj∗ĵ ,Gnj∗
)
.

Taking expectations, treating the event {ĵ ≤ j∗} via Lemma 1 and taking into
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account (35), (36), (54), (55) and Theorem 1 (with ρ = ρ∗, Ĝn = Gnj∗) we get

E
(
d
(
G

nj∗ĵ ,G
∗))

≤ o

(
1

n

)
+ E

(
d
(
Gnj∗,G∗)) + 2E

(
V0n(j

∗)
)

+ E

(
Vn(j

∗)√
n

d
(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗))

+ E

(
Vn(j

∗)√
n

d
(1−ρ∗)/2
�

(
Gnj∗,G∗))(58)

+ 3 log2 n

2
√

n

[
E

(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗))] + O

(
n−κ/(2κ+ρ∗−1) log2 n

)

= 1√
n
E

((
3

2
log2 n + Vn(j

∗)
)
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗))

+ O
(
n−κ/(2κ+ρ∗−1) log2 n

)
.

Acting as in (36), we get

1√
n
E

(
Vn(j

∗)d(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗)) ≤ log2 n√

n
E

(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗)) + o

(
1

n

)
.

This and (58) yield

E
(
d
(
G

nj∗ĵ ,G
∗))

≤ 5 log2 n

2
√

n
E

(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗)) + O

(
n−κ/(2κ+ρ∗−1) log2 n

)
.

(59)

The following intermediate lemma holds.

LEMMA 6. Let ε0 be the constant from assumption (A1). Then

sup
π∈Pj∗

Pπ,n

(
d�

(
G

nj∗ĵ ,G
∗) ≥ ε0

) = O
(
n−κ/(2κ+ρ∗−1)

)
, n → ∞.

Proof of Lemma 6 will be given at the end of this section.
Using Lemma 6 and assumption (A1) we find

E
(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗))

≤ c
−(1−ρ∗)/2κ
0 E

(
d(1−ρ∗)/2κ

(
G

nj∗ĵ ,G
∗)

I
(
d�

(
G

nj∗ĵ ,G
∗)

< ε0
))

(60) + P
(
d�

(
G

nj∗ĵ ,G
∗) ≥ ε0

)

≤ c
−(1−ρ∗)/2κ
0 S(1−ρ∗)/2κ + O

(
n−κ/(2κ+ρ∗−1)

)
,



162 A. B. TSYBAKOV

where S = E(d(G
nj∗ĵ ,G

∗)). This and (59) imply

S ≤ C log2 n
[
S(1−ρ∗)2κ/

√
n + n−κ/(2κ+ρ∗−1)

]
,

where C > 0 is a constant independent of π . Any solution S of this inequality
satisfies

S = O
(
(logn)4κ/(2κ+ρ∗−1)n−κ/(2κ+ρ∗−1)).

Substitution of this result into (60) yields

1√
n
E

(
d

(1−ρ∗)/2
�

(
G

nj∗ĵ ,G
∗)) = O

(
(logn)2(1−ρ∗)/(2κ+ρ∗−1)n−κ/(2κ+ρ∗−1)).

Combining this with (55) completes the proof of Lemma 4. �

PROOF OF LEMMA 6. Using (57) and the rough bounds d� ≤ 1 and (38) we
obtain that, on the event {ĵ ≤ j∗},

d
(
G

nj∗ĵ ,G
∗) ≤ d

(
Gnj∗,G∗) + 2

[
V0n(j

∗) + Vn(j
∗)n−1/2] + n−1/2 log2 n.(61)

On the other hand, note that the argument leading to (17) holds for any set in place
of Ĝn, in particular,

d�
(
G

nj∗ĵ ,G
∗) ≤ 1

2t0
d
(
G

nj∗ĵ ,G
∗) + ε0

2
.(62)

Combining (61) and (62) yields that on {ĵ ≤ j∗} we have

d�
(
G

nj∗ĵ ,G
∗)

≤ 1

2t0

[
d
(
Gnj∗,G∗) + 2

[
V0n(j

∗) + Vn(j
∗)n−1/2] + n−1/2 log2 n

] + ε0

2
.

Thus, for n large enough,

P
(
d�

(
G

nj∗ĵ ,G
∗) ≥ ε0

)

≤ P (ĵ > j∗)

+ P
(
d
(
Gnj∗,G∗) + 2

[
V0n(j

∗) + Vn(j
∗)n−1/2] ≥ ε0t0 − n−1/2 log2 n

)

≤ o(1/n) + P
(
d
(
Gnj∗,G∗) ≥ (ε0t0 − n−1/2 log2 n)/3

)

+ P
(
V0n(j

∗) ≥ (ε0t0 − n−1/2 log2 n)/6
)

+ P
(
Vn(j

∗) ≥ (n1/2ε0t0 − log2 n)/6
)

≤ o(1/n) + C
[
E

(
d
(
Gnj∗,G∗)) + E

(
V0n(j

∗)
)] + D1 exp

(−√
n/C

)
= O

(
n−κ/(2κ+ρ∗−1)),

for some C > 0, where we used Lemmas 1 and 8, the Markov inequality, (35) and
Theorem 1 (with ρ = ρ∗, Ĝn = Gnj∗). �
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APPENDIX

Assume everywhere in this appendix that G is a class of sets in Rd having
complexity bound ρ ∈ [ρmin, ρmax], where 0 < ρmin < ρmax < 1, and that G∗ ∈ G.
Write

Wn(G) = sup
G,G′∈S

∣∣∣∣
(

d�,e(G,G′)
d�(G,G′)

)(1−ρ)/2

− 1
∣∣∣∣,

where c1 > 0 and S = {(G,G′) :G,G′ ∈ G, d�(G,G′) ≥ c1n
−1/(1+ρ)}.

Note that Rn(G) and d�,e(G,G′) are sums of i.i.d. random variables bounded
by 1 and

d(G,G∗) = E
(
Rn(G) − Rn(G

∗)
)
, d�(G,G′) = E

(
d�,e(G,G′)

)
for every G,G′.

The results given below are related to the theory of empirical processes and
based on the book of van de Geer (2000). Some of them can be also deduced from
van der Vaart and Wellner (1996), Alexander (1984, 1987) and Birgé and Massart
(1993).

LEMMA 7. There exist constants c1 > 0, A1 > 0, A2 > 0, depending only on
A,ρmin, ρmax such that

P
(
Wn(G) ≥ 1

2

) ≤ A1 exp
(−A2n

ρ/(1+ρ)).
PROOF. The proof follows the lines of Lemma 5.16 [van de Geer (2000),

pages 82 and 83], where one sets g(x) = I (x ∈ G�G′). Then ‖g‖2 = d�(G,G′),
‖g‖2

n = d�,e(G,G′) and there exists δ0 > 0 such that condition nδ2
n ≥ 2HB(δn,G,

PX) required in Lemma 5.16 of van de Geer (2000) is satisfied with δn =
δ0n

−1/(2(1+ρ)) [in fact, HB(δ,G,PX) = HB(δ2,G, d�) ≤ Aδ−2ρ]. Therefore, one
can apply the argument on page 83 of van de Geer (2000), which yields, for any
η > 0,

P

(
sup

G,G′∈S

∣∣∣∣
(

d�,e(G,G′)
d�(G,G′)

)1/2

− 1
∣∣∣∣ ≥ η

)

≤ 4
∑

s≥25/η

exp
(
−nρ/(1+ρ)s2η2

27

)
(63)

≤ A1 exp
(−A2n

ρ/(1+ρ)
)
,

where A1 > 0, A2 > 0 and c1 = 210δ2
0/η. Here put η = min(1 − (1/2)1/(1−ρ),

(3/2)1/(1−ρ) − 1). Then |x − 1| < η implies |x1−ρ − 1| < 1/2 for x > 0, and
thus (63) implies the lemma. The constants c1 > 0, A1 > 0, A2 > 0 can be chosen
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depending only on A,ρmin, ρmax since they are continuous positive functions
of A,ρ and ρ ∈ [ρmin, ρmax]. �

In what follows c2 is an arbitrary positive constant. Define

W0n(G) = sup
G,G′∈G : d�(G,G′)≤c1n

−1/(1+ρ)

d�,e(G,G′),

Vn(G) = sup
G∈G : d�(G,G∗)≥c1n

−1/(1+ρ)

√
n|Rn(G

∗) − Rn(G) + d(G,G∗)|
d

(1−ρ)/2
� (G,G∗)

,

V0n(G) = sup
G∈G : d�(G,G∗)≤c2n

−1/(1+ρ)

|Rn(G
∗) − Rn(G) + d(G,G∗)|.

LEMMA 8. There exist D1 > 0,D2 > 0,D3 > 0 depending only on A,ρmin,
ρmax such that

P
(
Vn(G) ≥ x

) ≤ D1 exp(−D2x) ∀x ≥ D3.

LEMMA 9. There exist B1 > 0,B2 > 0,B3 > 0 depending only on A,ρmin,
ρmax such that

P
(
V0n(G) ≥ xn−1/(1+ρ)) ≤ B1 exp

(−B2n
ρ/(1+ρ)) ∀x ≥ B3.

PROOF OF LEMMAS 8 AND 9. Apply, respectively, the inequalities (5.43)
and (5.42) of van de Geer (2000) with g(X,Y ) = (Y − I (X ∈ G))2 − (Y − I (X ∈
G∗))2, g0(X,Y ) ≡ 0. Then νn(g) = νn(g) − νn(g0) = √

n(Rn(G
∗) − Rn(G) +

d(G,G∗)), ‖g − g0‖2 = d�(G,G∗) [‖ · ‖ being the L2(π)-norm], β = 0, α = 2ρ

(cf. the proof of Lemma 7). �

LEMMA 10. There exist Q1 > 0, Q2 > 0, Q3 > 0 depending only on
A,ρmin, ρmax such that

P
(
W0n(G) ≥ xn−1/(1+ρ)

) ≤ Q1 exp
(−Q2n

ρ/(1+ρ)
) ∀x ≥ Q3.

PROOF. Act as in the previous proof using (5.42) of van de Geer (2000), but
with g as in Lemma 7. �

LEMMA 11. There exists C2 > 0 depending only on A,ρmin, ρmax such that

P

(
sup
G∈G

|Rn(G
∗)−Rn(G)+d(G,G∗)| ≥ t

)
≤ C2 exp(−nt2/C2) ∀0 < t ≤ 1.

PROOF. Use Theorem 5.11 in van de Geer (2000) with g, νn(g) as in the
proof of Lemmas 8 and 9. It is easy to see that in this case the assumptions of
Theorem 5.11 are satisfied with K = 1, some R ≥ 1 and the constant a such that
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a0 ≤ a ≤ √
n, provided both a0 > 0 and the constant C1 in Theorem 5.11 are

chosen large enough. Thus, denoting t = a/
√

n and using (5.35) of van de Geer
(2000), we obtain Lemma 11 for a0/

√
n ≤ t ≤ 1. For t < a0/

√
n the inequality is

trivial, by the choice of C2 large enough. �
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