
The Annals of Statistics
1997, Vol. 25, No. 2, 478–494

MULTIDIMENSIONAL MEDIANS ARISING FROM
GEODESICS ON GRAPHS1

By Christopher G. Small

University of Waterloo

In this paper we introduce a depth function for distributions on graphs
that is analogous to recent multivariate definitions. Using the property of
geodesic convexity on graphs, a median-like center for distributions on
graphs is constructed and applied to ranking data as well as multivariate
data spanned by the minimal spanning tree.

1. Introduction. Recent work on the concept and theory of multidimen-
sional medians has produced a proliferation of different constructions. In di-
mension 1, the median is characterized by a variety of equivalent definitions.
However, in higher dimensions, these definitions cease to be equivalent, and
produce different multidimensional medians which can all claim, to a greater
or lesser degree, to be the natural extension of the one-dimensional definition.
For example, in dimension 1, the median is that point about which the ex-
pected absolute deviation is minimized. In dimension 2 and higher, the point
from which the expected distance to a random point of the distribution is
smallest can be called the spatial median. The sample analog of this was ap-
plied by Brown (1983), who derived its first-order asymptotics. A variation
of this definition by Oja (1983) and Oja and Niinimaa (1985) replaced the
expected absolute deviation with the expected volume of a simplex. The simi-
larity between the two definitions belies the differences in their properties, the
former having 50 percent breakdown, and the latter 0 percent. See Niinimaa,
Oja and Tableman (1990). The characterization of the median in dimension 1
as the deepest point in the distribution was generalized by Tukey (1975) to
what is usually now called the Tukey depth median. See Donoho and Gasko
(1992) for a study of its properties. The reader can find a survey of work up
to 1990 in Small (1990).

Multidimensional medians have also been applied to directional statistics.
The extension to directional data is a natural one because directional data
on the sphere S2, say, can be considered as data in R3 having the appropri-
ate constraint of lying at a unit distance from the origin. As a directional
median is constrained to lie on a unit sphere, directional medians are dis-
tinct from their multidimensional counterparts. Nevertheless, each multidi-
mensional median for R3 typically has an analog on the unit sphere S2. See
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Fisher (1985), Ducharme and Milasevic (1987) and Liu and Singh (1992) for
examples and theory of these.

In this paper we shall introduce a family of medians that are applicable to
distributions and data on graphs. We shall call these the geodesic convexity
medians or GCM’s, for short. As many multivariate data sets can be regarded
as generating a graph such as the minimal spanning tree, this median will be
applicable to data sets in Rp. The proposed median will also be applicable to
data and distributions which lie naturally on a graph. As a special case of this,
we propose permutation medians for the analysis of rank or permutation data.
The graph median will be seen to be an extension of the univariate median,
which will arise as the linear graph associated with the ordering of the data.

There are several reasons for constructing medians on graphs. In dimen-
sion 1, the most obvious characterization of the median is as the middle order
statistic of the data. However, it is this most obvious interpretation which is
most difficult to generalize; by contrast, absolute deviation arguments gener-
alize immediately. By interpreting the median as the middle order statistic,
we assume that distance relationships among points are only relevant to the
extent that they characterize the ordering of the data. The median is thereby
equivariant under monotone transformations which can distort distances con-
siderably. Ordering of data values is a topological property that is akin to the
more general property of the connectivity of a graph. Seen in this context, a
linear ordering of points becomes a special case of a graph in which neighbor-
ing order statistics are joined by an edge. In some cases, such as permutation
models considered below, distance values are as naturally measured through
geodesic distance on a graph as through Euclidean distance. For example, as
McCullagh (1993) has noted, Spearman’s rank correlation is associated with
Euclidean distance on a permutation polytope, whereas Kendall’s rank correla-
tion is naturally associated with the geodesic distance measure on the graph
whose vertices and edges are the respective vertices and edges of the poly-
tope. The question of which measure of distance is more natural is analogous
to the choice between Spearman’s and Kendall’s coefficient. A second reason
for considering medians on graphs is that geodesic distance on a finite graph
is bounded. This implies a natural robustness of medians and depth mea-
sures based on geodesic distance. For example, we shall note that medians
constructed for minimal spanning trees have 50 percent breakdown points.

2. Definitions and examples. By an (undirected) graph G we shall un-
derstand a finite collection of vertices X = �xi: i = 1;2; : : : ; n� together with
a collection of edges E = ��xi; xj�: 1 ≤ i ≤ j ≤ n� ⊂ X × X . A sequence of
vertices xi1; xi2; : : : ; xij is said to be a path of length j if each successive pair
xik , xik+1

is joined by an edge from E . In particular, if i1 = ij and the path
contains at least one edge, then the path is said to be a cycle. A graph is said
to be a tree if it has no cycles. A graph is said to be connected if any two dis-
tinct vertices can be joined by a path. Throughout this paper, all graphs will
be connected.
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Definition 2.1. A sequence of vertices xa = xi1; : : : ; xij = xb is said to
be a geodesic path from xa to xb if it is of minimum length among all paths
from xa to xb. We say that the length j of such a geodesic path is the geodesic
distance from xa to xb, and we write d�xa; xb� = j. In particular, d�xa; xb� = 0
if and only if xa = xb. A set of vertices A ⊂ X is said to be geodesically convex
or G-convex if, for each xa, xb ∈ A , the vertices of every geodesic path joining
xa to xb are also in A .

Note that the empty set, singleton sets of vertices and the set X are all
G-convex. See Jamison-Waldner (1982) for more on the theory of geodesic con-
vexity on graphs.

By a distribution µ on G we shall mean an assignment of nonnegative
weights pi to each xi ∈ X such that

∑
pi = 1. A random vertex from X

chosen with some probability distribution will typically be written as X.
We shall now introduce the GCM through a measure of depth that is analo-

gous to Tukey’s depth measure in the standard Euclidean setting. First, how-
ever, we need to introduce the concept of a half set on a graph. A set A ⊂ X
is said to be a half set if A and its complement A c = �x ∈ X :x /∈ A � are both
G-convex. Note that the set X is a half set because the empty set is always
G-convex. The terminology “half set” is apparently new in this graph-theoretic
context. However, it is well known for the theory of convex sets in Euclidean
spaces, where geodesic convexity on a graph is replaced with the standard
convexity of Rp. Application of this definition to usual convexity in Euclidean
space leads to the class of half spaces. See Benson (1966) for a number of
results on convex sets and half spaces in Rp.

Of particular interest are those graphs satisfying the following separation
condition.

Definition 2.2. A graph G with vertex set X is said to satisfy the half set
separation condition if, for all vertices x ∈ X and for all G-convex sets B ⊂ X
for which x /∈ B, there exists a half set A ⊂ X such that x /∈ A and B ⊂ A .

A property that is equivalent to the half set separation condition is that any
G-convex set can be written as an intersection of half sets. (The set X is the
empty intersection.) This is a well-known property of convexity in Euclidean
space. Here, we adapt this property for use within graphs. Henceforth, all
graphs that we shall consider will be assumed to satisfy the half set separation
condition. Typically, to verify the condition, it is necessary to characterize the
half sets of the graph and check the condition directly.

To illustrate the concept of G-convexity, consider the graph on the uni-
variate order statistics x�1�; : : : ; x�n� constructed by joining all neighboring
order statistics x�i�, x�i+1� by an edge. A subset of these statistics is G-convex
provided it is of the form �x�i�; x�i+1�; : : : ; x�i+k��. It is a half set provided
i = 1 or i + k = n. As we can write �x�i�; : : : ; x�i+k�� as the intersection of
�x�1�; : : : ; x�i+k�� and �x�i�; : : : ; x�n��, it follows that this graph satisfies the
half set separation property.
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Definition 2.3. Let G be a graph with vertex set X and let µ be a distri-
bution on G . We define the geodesic convexity depth or GC-depth of a vertex
x of G to be the minimum value of µ�A �, where A ranges over the class
of all half sets of G such that x ∈ A . We shall write the GC-depth of x as
GCD�x;µ�.

We now have the following definition.

Definition 2.4. We shall say that x ∈ X is a geodesic convexity median
(GC-median, or GCM) for µ if GCD�y;µ� is maximized over y ∈ X at y = x.
Let GCM�µ� be the set of all such GC-medians for µ.

The following proposition shows that the GC-depth function is concave.

Proposition 2.5. The set of all x ∈ X such that GCD�x;µ� ≥ p for real p
is a convex set.

Proof. The proof of this proposition uses the property that

�x ∈ X : GCD�x;µ� ≥ p� =
⋂
�A :µ�A � > 1− p�;

where A denotes a half set. To prove this identity, consider a vertex x which
is an element of the left-hand side. Then GCD�x;µ� ≥ p. This will be true
if and only if x ∈ A implies that µ�A � ≥ p. Equivalently, we can write
that µ�A � < p implies that x ∈ A c. In turn, this is the case if and only if
x ∈ ∩�A c:µ�A c� > 1 − p�. As the class of half sets is closed under comple-
mentation, this set is simply the right-hand side of the identity. Proposition
2.5 now follows by noting that the intersection of half sets is G-convex. 2

So, in particular, the set GCM�µ� is a G-convex set. Proposition 2.5 has
particular consequences for the search for the GCM on a graph. As every G-
convex set is connected, it follows that any local maximum of the function
GCD�·; µ� must also be a global maximum. That is, if GCD�y;µ� < GCD�x;µ�
for every y that shares an edge with x, then x is the unique GC-median
of µ. Thus a basic but reliable way to find the GCM of µ when the GCD
function is strictly convex proceeds as follows. First calculate GCD�x;µ� for
some initial starting point x ∈ X and compare this value with the GC-depth
of neighboring vertices. For convenience, let us write the set of such neighbors
y of x as N �x�. In fact, we can do slightly better than searching all of N �x�.
In calculating GCD�x;µ� we have found a half set A such that x ∈ A and
GCD�x;µ� = µ�A �. It follows that any neighbor y of x whose GC-depth is
greater than x must be an element of A c. Thus we can restrict the search for
a vertex of greater GC-depth to N �x� ∩A c.

We close this section by considering the analysis of paired data on graphs.
Paired data of the form �xr; ys� can be regarded as an element of the Cartesian
product X 2 = X ×X , or more generally X ×Y . By a paired GCM we mean a
GC-median for distributions on the sets of vertices of X ×Y . To construct this,
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some appropriate set of edges should be imposed on the Cartesian product to
make X ×Y the set of vertices of a graph. Many choices are available here. A
simple choice is to join vertices so as to make the geodesic distance on X ×Y
into a “Manhattan metric.” (Of course, this should not be given priority over
what is statistically sensible.) To construct a graph whose geodesic distance
is the Manhattan metric, we join vertex �xr; ys� to �xt; yu� if xr = xt and ys
is a neighbor of yu in Y or if ys = yu and xr is a neighbor of xt in X . The
resulting G-convex subsets of X ×Y will be Cartesian products A ×B, where
A is a G-convex subset of X and B is a G-convex subset of Y . Suppose we
have some distribution µ on the vertices of X × Y . It can be seen that the
GC-depth of a point �x;y� ∈ X ×Y is given by

GCD ��x;y�; µ� = min �GCD�x;µ1�;GCD�y;µ2�� ;

where µ1 is the marginal distribution on X and µ2 is the marginal distribu-
tion on Y . Thus the analysis of the depth of paired data can be reduced to
consideration of the marginal distributions of the vertices. While this makes
the GC-depth function easy to compute, it also shows the limitation of the
Manhattan metric on X × Y . Most multivariate data sets cannot be fully
analyzed by an examination of their marginal distributions.

We now consider some examples of medians on graphs.

3. Permutation medians and depth ranking methods. In this section
we consider data and distributions on the set of permutations �i1; i2; : : : ; in�
of the integers 1;2; : : : ; n. Permutation data typically arise in statistics from
studies in which different individuals are asked to rank a set of n items, which
are labeled from 1 up to n for convenience. For example, if m individuals are
each asked to rank three types of coffee according to preferences, then the
results of this study can be recorded as a data set of m elements on the set
of permutations of the integers 1, 2 and 3. Note that we shall only consider
complete rankings of the items here. Two notations are standard. Suppose,
for example, that an individual is asked to rank the quality of three brands
of coffee, the brands having labels 1, 2 and 3. The notation �3;1;2� refers to
ordering, and denotes the fact that the individual ranks brand 3 first, brand 1
second and brand 2 third. The notation (3, 1, 2) refers to ranking, and denotes
that brand 1 is ranked third, brand 2 is ranked first and brand 3 is ranked
second. We shall use both notations, with an emphasis on the rank notation.

Let Xn be the set of all rankings �i1; i2; : : : ; in� of the first n positive inte-
gers. A large number of metrics are available for Xn including the Hamming
distance, Ulam’s distance and Cayley’s distance. For information about these
and related measures, the reader is referred to Diaconis (1988). Closely re-
lated to the family of metrics on Xn are the measures of association, of which
Spearman’s rho and Kendall’s tau are the best known. Of particular inter-
est here is the metric induced by Kendall’s tau. The distance between two
rankings �i1; i2; : : : ; in� and �j1; j2; : : : ; jn� can be defined as the number of
pairs �r; s�, 1 ≤ r, s ≤ n, such that ir < is and jr > js. Kendall’s tau, as a
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measure of association between rankings, is an affine transformation of this
metric. We will say that a pair �r; s� of integers between 1 and n is discordant
between two rankings if this condition is satisfied, and concordant between
the two rankings otherwise. Thus Kendall’s tau metric counts the number of
discordant pairs between two permutations.

To interpret this metric in terms of graph theory, we note that the dis-
tance between �i1; i2; : : : ; in� and �j1; j2; : : : ; jn� is the minimum number
of transpositions of adjacent ranks necessary to permute �i1; i2; : : : ; in� into
�j1; j2; : : : ; jn�. In this form, the metric is recognizable as a geodesic distance
on a graph whose vertices are the permutations of the integers up to n. Two
permutations are connected by an edge if their rankings differ by a single
interchange of adjacent ranks. For example, the orderings �3;1;6;2;4;5� and
�3;6;1;2;4;5� are adjacent. In ranking notation, we can write these equiv-
alently as (2, 4, 1, 5, 6, 3) and (3, 4, 1, 5, 6, 2), respectively. This graph, for
which Kendall’s tau is the geodesic distance, also has a representation using
the permutation polytope. See Yemelichev, Kovalev and Kravtsov (1984) and
Thompson (1993). The permutation polytope is defined as the convex hull in
Rn of the set of all rankings �i1; i2; : : : ; in� considered as elements of Rn. Any
two vertices of the permutation polytope will be joined by an edge if and only
if they differ by a single adjacent transposition. Thus Kendall’s tau metric is
the shortest number of steps required, moving via neighboring vertices con-
nected by edges of the polytope. See also Mallows (1957) and McCullagh and
Ye (1993).

As the geodesic distance between two rankings can be computed from
Kendall’s tau statistic without direct reference to any geodesic path between
them, there is any easy test to check whether a third ranking lies on a
geodesic path between any two permutations. A ranking �k1; k2; : : : ; kn� will
lie on some geodesic path from �i1; i2; : : : ; in� to �j1; j2; : : : ; jn� provided the
geodesic distance from �i1; i2; : : : ; in� to �j1; j2; : : : ; jn� is the sum of the
geodesic distances from �i1; i2; : : : ; in� to �k1; k2; : : : ; kn� and �k1; k2; : : : ; kn�
to �j1; j2; : : : ; jn�. This will be true provided �k1; k2; : : : ; kn� shares all con-
cordant pairs between �i1; i2; : : : ; in� and �j1; j2; : : : ; jn�. More precisely, if r
and s are integers such that ir < is and jr < js, then it follows that kr < ks.
We can also define the concept of concordance between points and sets.

Definition 3.1. Let �k1; k2; : : : ; kn� be any ranking and let A be any set
of rankings. We shall say that �k1; k2; : : : ; kn� is concordant with A provided
that, for all 1 ≤ r, s ≤ n, statement (A) implies statement (B) below:

(A) ir < is for all �i1; i2; : : : ; in� ∈ A ;
(B) kr < ks.

Note that this property can be vacuously satisfied if there exist no r and
s satisfying statement (A). For example, every ranking is concordant with
Xn. On the other hand, no ranking is concordant with the empty set \.
Note also that �k1; k2; : : : ; kn� lies on a geodesic path from �i1; i2; : : : ; in� to
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�j1; j2; : : : ; jn� provided that �k1; : : : ; kn� is concordant with the set

��i1; i2; : : : ; in�; �j1; j2; : : : ; jn��:
Using Definition 3.1, we can obtain the following property of G-convex sets.

Proposition 3.2. Let A be any G-convex set of rankings. Then any ranking
which is concordant with A is an element of A .

Proof. Suppose that �i1; : : : ; in� /∈ A , and that �i1; : : : ; in� is concordant
with A . We will prove a contradiction. Let �j1; : : : ; jn� be any ranking in A
whose geodesic distance from �i1; : : : ; in� is minimum. Furthermore, let

�j1; : : : ; jn� → �k1; : : : ; kn� → · · · → �i1; : : : ; in�
be a geodesic path from �j1; : : : ; jn� to �i1; : : : ; in�, where �k1; : : : ; kn� differs
from �j1; : : : ; jn� by a single interchange of adjacent ranks. As �j1; : : : ; jn� is
the closest ranking in A to �i1; : : : ; in�, it follows that �k1; : : : ; kn� /∈ A . The
contradiction will be established if we can show that �k1; : : : ; kn� ∈ A .

Now there exist integers 1 ≤ r, s ≤ n such that jr < js, while kr > ks and
ir > is. It is at this point that we use the fact that �i1; : : : ; in� is concordant
with A . This fact implies that there exists a ranking �m1; : : : ;mn� ∈ A such
thatmr > ms. [If not, we would have verified that �i1; : : : ; in� is not concordant
with A .] It can be checked that there exists a geodesic path

�j1; : : : ; jn� → �k1; : : : ; kn� → · · · → �m1; : : : ;mn�:
As this is a geodesic whose endpoints lie in A , the G-convexity of A im-
plies that the rankings along this geodesic must lie in A . In particular,
�k1; : : : ; kn� ∈ A and the contradiction is established. 2

Let us define subsets

A �r; s� = ��i1; i2; : : : ; in�: ir < is�:
Using Proposition 3.2, we can prove the following.

Proposition 3.3. The family of half sets consists of the empty set \, the set
Xn and sets of the form A �r; s�. Furthermore, the half set separation condition
is satisfied.

Proof. It is immediate that \ and Xn are half sets. In addition, it is routine
to show that sets of the form A �r; s� are G-convex. As this class is closed under
complementation, these sets are seen to be half sets. So it suffices to show that
there are no others.

Suppose A is a half set that is not of the form A �r; s�. Then either A is not
a subset of any set of the form A �r; s� or A c is not a subset of any A �r; s�.
Without loss of generality, we can suppose that A is not a subset of any
A �s; r�. If this is the case, then condition (A) is vacuously satisfied for every
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ranking �k1; : : : ; kn�. Moreover, since A is G-convex, it follows by Proposition
3.2 that every ranking �k1; : : : ; kn� is an element of A . So A = Xn, and
A c = \.

To check that the half set separation condition is satisfied, we consider any
G-convex set A and any ranking �k1; : : : ; kn� which is not an element of A .
By Proposition 3.2, there must exist integers 1 ≤ r, s ≤ n such that kr > ks
and such that ir < is for all rankings �i1; : : : ; in� in A . From this fact, we
see that �k1; : : : ; kn� is not an element of A �r; s� and that A ⊂ A �r; s�. This
completes the proof. 2

Example 3.4. We consider the example of the literary criticism data set
considered by Critchlow and Verducci (1992). This has also been studied by
Thompson (1993) and McCullagh and Ye (1993). A group of 38 students in a
course were asked to rank four types of literary criticism of a Faulkner novel in
order of preference. These types were authorial (A), comparative (C), personal
(P) and textual (T) (see Table 1).

This data set consists of paired values for each student, and therefore is
naturally represented as an empirical distribution on X4×X4. However, as we
noted in the previous section, the GC-depth on such a Cartesian product with

Table 1

Orderings Count GC-depth Count GC-depth

�A;C;P;T� 0 0.236842 0 0.184211
�A;C;T;P� 0 0.236842 1 0.184211
�A;T;C;P� 0 0.236842 0 0.184211
�A;T;P;C� 0 0.236842 1 0.184211
�A;P;T;C� 4 0.236842 1 0.184211
�A;P;C;T� 1 0.236842 0 0.184211
�C;A;P;T� 0 0.236842 1 0.289474
�C;A;T;P� 0 0.236842 2 0.289474
�C;T;P;A� 2 0.315789 3 0.421053
�C;T;A;P� 1 0.236842 4 0.289474
�C;P;A;T� 1 0.315789 5 0.578947
�C;P;T;A� 1 0.315789 4 0.578947
�P;C;A;T� 3 0.368421 2 0.394737
�P;C;T;A� 2 0.368421 4 0.394737
�P;T;A;C� 2 0.394737 0 0.184211
�P;T;C;A� 2 0.552632 2 0.289474
�P;A;T;C� 2 0.368421 2 0.184211
�P;A;C;T� 3 0.368421 1 0.184211
�T;A;C;P� 1 0.236842 1 0.184211
�T;A;P;C� 0 0.236842 0 0.184211
�T;C;P;A� 4 0.315789 2 0.289474
�T;C;A;P� 2 0.236842 0 0.289474
�T;P;A;C� 2 0.394737 0 0.184211
�T;P;C;A� 5 0.447368 2 0.289474
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the Manhattan metric is a function of the marginal empirical distributions:
in this case, the pre-course and post-course results. The pre-course orderings
were compared with the post-course orderings.

The 24 orderings of the four types of criticism are shown in the first column,
with the empirical counts before and after the course shown in columns 2
and 4, respectively. Column 3 shows the GC-depth function based on the pre-
course empirical distribution found by dividing the entries of column 2 by 38.
Finally, column 5 shows the corresponding GC-depth function for the post-
course empirical distribution. To illustrate the GC-depth calculations, let us
consider the ordering �P, T, C, A�. We consider all half spaces which contain
this ordering. Such half spaces correspond to orderings of pairs of criticism
types which are compatible with �P, T, C, A�. These are �P, T�, �P, C�, �P, A�,
�T, C�, �T, A� and �C, A�. In the pre-course empirical distribution, these have
21, 26, 29, 24, 24 and 23 students, respectively. The minimum of these is 21.
Therefore, the GC-depth of the pre-course empirical distribution at �P, T, C, A�
is 21/38 = 0:552632, approximately.

As there are 38 observations among 24 categories, the empirical distribu-
tion is quite noisy. By contrast, the GC-depth takes on only a few values, and
these are distributed so that neighboring permutations have similar depths. A
simple interpretation can be drawn from the pre-course and post-course GC-
depth functions. If we consider the four orderings whose pre-course depth is
the highest, we see that these are the four which place textual (T) and per-
sonal (P) criticism above comparative (C) and authorial (A) criticism. Note also
that the four orderings which place comparative and authorial criticism above
textual and personal criticism are uniformly given the minimum GC-depth.
If we compare this with the post-course GC-depth function in column 5, we
see that the comparative style of criticism has been given a more favorable
ranking than the pre-course GC-depth suggests. The three highest post-course
GC-depth values place the comparative method first and the next two highest
depth values place the comparative method second. These five orderings rank
the authorial style third or fourth. This is supported by considering the min-
imum of the GC-depth as well, where orderings ranking the authorial style
first have uniformly minimum depth.

This analysis suggests that the students moved from a preference for
textual–personal criticism at the beginning of the course toward a preference
for comparative criticism at the end of the course. This is compatible, although
not identical, with the interpretation given by Thompson (1993). We must
be careful not to read too much into the analysis using the GC-depth. The
GC-depth serves as an exploratory tool, and cannot be used to make proba-
bility statements about full rankings. However, statements about pairs can
be made. For example, the fact that the pre-course GC-depth of �P, T, C, A�
is greater than 0.5 means that in the pre-course preferences, for any of the
six paired orderings that are compatible with �P, T, C, A�, the majority of
students implicitly chose an ordering compatible with that pair. From this
we cannot conclude anything directly about preferences for �P, T, C�, say, or
�P, C, A�. To investigate these, we must return to the data.
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It should be noted that the GCM’s for both the pre-course and post-course
empirical distributions are attained where the GC-depth is greater than 0:5.
We now consider a class of models for permutation distributions which have
this property. Two general classes of models have proved useful in analyzing
permutation data. These are the Thurstone order statistics models and the
Babington Smith models whose special cases have been developed by Mallows
(1957). Of the two types, the Thurstone order statistics models are particularly
useful for studying GC-depth functions, as paired comparisons in these mod-
els are straightforward. The general form of the model is as follows. Let F1,
F2; : : : ;Fn be n continuous cumulative distribution functions. We generate
n independent random variables such that the ith variable has distribution
Fi. Let ik be the rank of the kth random variable. Then �i1; i2; : : : ; in� is
a random permutation of �1;2; : : : ; n�, inducing a corresponding distribution
µ = µ�F1;F2; : : : ;Fn� on the set Xn of all permutations of the first n positive
integers. We now have the following.

Proposition 3.5. Suppose that F1;F2; : : : ;Fn are stochastically ordered
in the sense that Fi�t� > Fj�t� for all −∞ < t < ∞ whenever i < j. Then
GCM�µ� = �1;2; : : : ; n�. Moreover, on this permutation the GC-depth is greater
than or equal to 0:5; and is the only permutation for which this is so.

Proof. For r > s the half sets A �r; s� have probability

µ�Ars� =
∫ +∞
−∞

Fr�ξ�dFs�ξ�

<
∫ +∞
−∞

Fs�ξ�dFs�ξ� = 1
2 :

It follows easily from this that the identity permutation �1;2; : : : ; n� has GC-
depth greater than one-half, in fact given by

1−max
r>s

µ �A �r; s�� :

For any other permutation �i1; i2; : : : ; in� there must exist a pair r > s such
that ir < is. For this case the probability of A �s; r� is greater than one-half,
and the GC-depth of �i1; i2; : : : ; in� is at most 1− µ�A �s; r��. 2

The possibility that the GC-depth at the GCM can be less than 0:5 for
certain distributions F1; : : : ;Fn other than the case above is a consequence of
the intransitivity of ordering based on pairwise comparisons. Suppose we say
that Fr ≺ Fs whenever

∫
FrdFs > 0:5. Then this ordering can be intransitive,

so that we can find F1 ≺ F2 ≺ · · · ≺ Fn ≺ F1. For such examples, the GC-
depth will be uniformly less than 0:5 for all vertices of the set of permutations.
The intransitivity of orderings based on ≺ is known as the voting paradox.
See Johnson and Kotz (1988), pages 325–328, for a description of the voting
paradox and relevant references.

As an example, suppose Fr�x� = 8��x − µr�/σ� is a normal distribution
function with variance σ2 centered at µr. Then we can find an expression for
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the depth function. Suppose that the depth is evaluated at the permutation
�i1; : : : ; in�. Let δ = min�µir −µis y r > s�. Then the GC-depth evaluated at the
permutation will be 8�δ/�σ

√
2��.

For probability measures µ = µ�F1; : : : ;Fn�, the asymptotic distribution
of the GC-depth function can be analyzed. The reader should compare the
analysis which follows with the work of Critchlow and Fligner (1993). For any
distribution µ on Xn let µ∗ be defined to be that element of the n�n − 1�/2-
dimensional cube �0;1�n�n−1�/2 whose entries are µ�Ars�1≤r<s≤n. For conve-
nience, we abbreviate these entries as µ∗rs. If µ̂ is an empirical distribution
on Xn from a sample of m independent µ-variates, then µ̂∗ is a random point
of �0;1�n�n−1�/2 having an asymptotic normal distribution centered at µ∗ and
with covariance matrix m−16, where 6rs; tu = 0 when r, s, t and u are distinct
integers, and 6rs; rs = µ∗rs�1 − µ∗rs�. Elements of the matrix of the form 6rs; st,
and so on, where r < s < t, and so on, are expressible as µ∗rs; st�1 − µ∗rs;st�
where

µ∗rs; st =
∫ +∞
−∞

Fr�ξ��1−Ft�ξ��dFs�ξ�:

Also 6rs; rt = µ∗rs; rt�1− µ∗rs; rt�, and 6rs; ts = µ∗rs; ts�1− µ∗rs; ts�, where

µ∗rs; rt =
∫ +∞
−∞
�1−Fs�ξ���1−Ft�ξ��dFr�ξ�

and

µ∗rs; ts =
∫ +∞
−∞

Fr�ξ�Ft�ξ�dFs�ξ�:

Now consider the problem of finding the distribution of the GC-depth function
at some permutation. Without loss of generality, this can be assumed to be
the identity permutation x = �1;2; : : : ; n� as other points can be transformed
into this one by a relabeling. Evaluating at the identity permutation, we note
that GC�x; µ̂� ≤ GC�x;µ� + d if and only if minr<s µ̂∗rs ≤ GC�x;µ� + d. The
calculation of the exact distribution of this minimum is difficult, requiring
numerical tools such as simulation. However, we can use the fact that the
random variables µ̂∗rs are dissociated asymptotically normal random variables.
So an asymptotic form for the lower bound is given by

1− min
rk<sk

�n/2�∏
k=1

8

{
−
√

m

µ∗rksk�1− µ∗rksk�

[
GC�x;µ� + d− µ∗rksk

]}

≤ P �GC�x; µ̂� ≤ GC�x;µ� + d� ;

where again 8 is the standard normal distribution function. The minimum of
the lower bound in the inequality is taken over all choices of �n/2� disjoint
pairs r1 < s1; : : : ; r�n/2� < s�n/2�. In the common circumstance where the ex-
pectations µ∗rs are uniquely minimized at a particular choice of r < s where
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µ∗rs = GC�x;µ�, the lower bound given will be asymptotically tight. In this
case, the asymptotic distribution of GC�x; µ̂�, will be equal to the distribution
of µ∗rs.

The problem of estimating parameters in the Thurstone order statistics
model is discussed by Critchlow and Fligner (1993), page 10. The method that
is most compatible with the construction of the depth function is to use an
iteratively weighted least squares estimation based on the asymptotic normal
approximation of µ̂∗. This is equation (8) of Critchlow and Fligner (1993).
As the GC-depth is a function of µ̂∗, it is natural to fit parameters so that
the estimating equations are those of the multivariate normal model for this
vector. Maximization of the multivariate normal likelihood is equivalent to
minimization of

n�n− 1�
2

log
(

det
∑)
+ �µ̂∗ − µ∗�m

−1∑
�µ̂∗ − µ∗�T:

4. Minimal spanning trees. In this section we shall consider the use
of GC-depth functions and GCM’s on minimal spanning trees of multivariate
data sets. A number of the results will generalize immediately to all graphs
which are trees.

Let x1, x2; : : : ; xn be n data points in some Euclidean space Rp, the points
typically an independent sample from some general distribution on Rp. We
shall generally assume that the minimal spanning tree can be uniquely con-
structed. To ensure this, it is sufficient to suppose that the set of distances
between points and their neighbors in the Delaunay triangulation are dis-
tinct. For convenience, we shall call this the distinct neighbor condition or DN
condition. For vertices from some distribution on Rp which is absolutely con-
tinuous, this will hold with probability 1. In this context we shall suppose that
the data themselves form the graph through their minimal spanning tree. Un-
less otherwise stated, the distribution µ under consideration is the empirical
distribution which places mass 1/n on each vertex or data point.

A path of vertices within the minimal spanning tree will be a geodesic path
if and only if the vertices are distinct. Any geodesic path between two distinct
vertices is unique. It follows from this that the G-convex sets of the minimal
spanning tree are the connected sets, that is, subsets of vertices for which any
two distinct vertices can be joined by a path. The half sets of the minimal
spanning tree are then seen to be the branches. There are a total of 2n − 2
branches consisting of one of more vertices; these can be characterized as the
connected components of the minimal spanning tree after the deletion of an ar-
bitrary edge. The GC-depth of a vertex x can then be determined. If we delete
x from the minimal spanning tree, along with the edges which are connected
to it, the tree is broken up into k branches, say, having n1, n2; : : : ; nk vertices,
respectively. Then the GC-depth at x is 1 − max�n1/n;n2/n; : : : ; nk/n�. The
GCM will be the vertex maximizing this quantity. It is possible to put bounds
on the GC-depth at the GCM. In general, at the GCM of the tree in Rp, we
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have

��n+ 1�/2�
n

≤ GCD ≤ ��nK�p� + 1− n�/K�p��
n

;

where �a� represents the greatest integer less than or equal to a, and the
function K�p� is the famous kissing number for dimension p. It is known that
K�1� = 2, K�2� = 6 and K�3� = 12. However, even for dimensions as low as
p = 4, the kissing numberK�4� is unknown, although it is known thatK�4� =
24 orK�4� = 25. Thus a valid bound can be obtained by using the latter figure.
The kissing number can be defined as the greatest number of unit spheres in
dimension p which can be arranged around the outside of a given unit sphere
so as to simultaneously be tangent to the given sphere. The case p = 2 is the
well-known penny problem. The kissing number is also the largest number of
edges that can be attached to a vertex of a minimal spanning tree. The upper
bound on the GC-depth at the median is obtained by constructing the minimal
spanning tree of the centers of the sphere arrangement attaining the kissing
number, and attaching the remaining vertices using branches from the centers
of the surrounding spheres. An application of the pigeonhole principle gives
the upper bound of the GC-depth at the vertex corresponding to the central
sphere. This is an upper bound on the GC-depth for any vertex of the minimal
spanning tree, and a fortiori an upper bound on the GCM. For the special
case p = 2, we can improve on this slightly by noting that the arrangement
that attains the kissing number 6 violates the DN condition. Thus we can
tighten the bound by replacing K�2� by 5. However, in higher dimensions the
arrangement that attains the kissing number will not generally be rigid, as
some gaps will exist between neighboring spheres. For more work on kissing
numbers, see Conway and Sloane (1988). Just as the upper bound is obtained
by the maximum number of edges at the vertex, so the lower bound is obtained
with the smallest possible number of edges at a GCM, namely 2.

The vertices of the minimal spanning tree of minimal depth are those points
which have only one edge attached to them. These points are called leaves (i.e.,
the ends of the branches). Some specialized asymptotic results are available
as to the proportion of leaves in a minimal spanning tree. See Steele, Shepp
and Eddy (1987). In particular, the proportion can be shown to converge to
a constant for a sample of n independent identically distributed points as
n→∞. The value of this constant is generally difficult to obtain but is known
to be approximately 2/9 for the minimal spanning tree of a set of uniform
independent points in a square (dimension 2).

No matter what the dimension, the minimal spanning tree GCM shares the
property of the one-dimensional sample median of being essentially unique.
That is, the GC-depth will be maximized on one or at most two points of the
minimal spanning tree. This follows from the fact that if x1, x2 and x3 form a
path of the tree, then the GC-depth at x2 is strictly greater than the minimum
of the GC-depths at x1 and x3. Thus these three vertices cannot all be GCMs.
However, the set of all GCMs is connected, and this implies that its cardinality
is at most 2.
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Another property that the minimal spanning tree GCM shares with the
univariate sample median is a 50 percent breakdown. The breakdown point
of an estimator is the smallest proportion of the data whose perturbation to
∞ is capable of forcing the estimator to go to ∞ as well. If any proportion
less than 0:5 of the vertices x1, x2; : : : ; xn ∈ Rp is moved toward the point
at ∞, deletion of any of these vertices and their associated edges will not
disconnect the set of unmoved vertices. Thus the GC-depth at these vertices
moved to∞ will be less than 1/2. Therefore, the GCM will be found among the
remaining unperturbed vertices. This is a simple consequence of the property
stated above, namely that the GC-depth at the GCM is bounded below by
��n+1�/2�/n. This value or higher cannot be attained at a vertex moved to∞.

Example 4.1. We now consider the application of GC-depth functions to
some methods developed by Friedman and Rafsky (1979) for distribution-free
nonparametric two-sample tests in Rp using minimal spanning trees. In par-
ticular, we consider the planar case p = 2. The null hypothesis of a two-sample
test on a graph can be stated in graph theory terminology as saying that the
partition of the graph into two sets is equivalent to a random two-coloring
of the graph. Suppose x1, x2; : : : ; xn and y1, y2; : : : ; yn are two samples in
R2. We draw the minimal spanning tree on the combined data and consider
testing whether the two samples come from the same distribution versus a
possible alternative such as a location, scale or other change. A natural class
of tests is conditional on the topology of the graph. As an example of the use of
minimal GC-depth for minimal spanning trees, we consider the data discussed
by Hodder and Orton (1976). These data consist of the geographical locations,
plotted in two dimensions, of a variety of pin and pendant types from the
Middle Bronze Age. Figure 1 displays the minimal spanning tree for the dis-
tribution of pin type 76 and pendant type 128. Associated with each vertex,
the GC-depth is given in Figure 1 as well. An examination of this figure shows
clear evidence that the spatial distribution of type 128 differs from that of type
76. A chi-square test based on division of the plane into quadrats is possible.
However, the dependence of the test on the method for grouping univariate
data is exacerbated for bivariate or spatial data because there is an arbitrari-
ness about the shape and orientation of the rectangles into which the region is
subdivided. More successful are the methods of Friedman and Rafsky (1979).
Friedman and Rafsky (1979) proposed a 2 × 2 contingency table test that is
appropriate for scale alternatives to the null hypothesis. Suppose the data are
divided into two groups based on the topology of the minimal spanning tree.
Each vertex of the tree can be classified into a 2×2 contingency table based on
its color (i.e., sample) and its group. As vertices are grouped without regard to
color, the rows and columns will be independent under the null hypothesis. A
chi-square test for independence can be run on this contingency table. Fried-
man and Rafsky noted that partitioning the tree into vertices that are leaves
and remaining vertices has reasonable power for scale alternatives in higher
dimensions. Its poor performance in lower dimensions can be seen clearly in
dimension 1, where the minimal spanning tree has only two vertices which
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Fig. 1. Pin and pendant types from Middle Bronze age.

are leaves. We note here that the GC-depth function provides ample flexibility
to partition the data into two groups based on the minimal spanning tree. An
approach that is appropriate for the apparent location shift of our example
is to sever the edge which joins the two vertices in Figure 1 having greatest
depth. The result is a partition of the tree into two equal groups. The hypoth-
esis that the two samples are from the same distribution is easily rejected by
a test for independence on the 2× 2 contingency table based on the partition.
Fisher’s exact test gives a p-value of 0:0128. Other partitions of a tree may
be more appropriate to scale alternatives. For example, vertices can be par-
titioned into a group with high GC-depth and a group with low GC-depth. A
special case of this partition leads to the contingency table test for scale alter-
natives proposed by Friedman and Rafsky: in this case, the group of vertices
with smallest GC-depth consists of the leaves of the tree.

We close this section with a consideration of the computational aspects
of GC-depth for minimal spanning trees. The computation of the minimal
spanning tree itself has been well developed by Prim (1957). More efficient
methods for constructing the tree are based on the fact that it is a subgraph
of the Delaunay triangulation. See Preparata and Shamos (1985). We shall
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only concern ourselves here with the calculation of the GC-depth function.
The calculation of this function reduces to the problem of finding the size of
the largest connected component of a given graph. This can be determined
directly by classifying points iteratively into classes where any two points
sharing a common edge are classified similarly. An alternative procedure is
to construct a uniformized Markov chain and to determine its (approximate)
equilibrium distribution. Let M be the n × n matrix whose ijth entry is 1
if the ith and jth vertices share a common edge, and is 0 if not. Let Mi be
the �n − 1� × �n − 1� matrix of 0’s and 1’s obtained from M by deleting the
ith row and the ith column. For j = 1; : : : ; n − 1 let sj be the sum of the
elements of the jth row of Mi. We set s = max�s1; s2; : : : ; sn−1� and let Ni be
the �n−1�× �n−1� matrix whose off-diagonal elements are identical to those
of Mi and whose jth diagonal element is s − sj. We construct a transition
matrix Pi for a uniformized Markov chain on the vertices by dividing the
elements of Ni by s. The Markov chain on the state space of n − 1 vertices
will have a limiting distribution that is uniform on the connected components
of the graph. We write Pi in similar canonical form as PiUi = UiDi, where
Di = diag�λ1; λ2; : : : ; λn−1� is the diagonal matrix of eigenvalues of Pi. Let D∗i
be the diagonal matrix whose jth diagonal element is 1 if and only if the jth
eigenvalue is 1, and is 0 otherwise. That is,

D∗i = diag�1�λ1 = 1�;1�λ2 = 1�; : : : ;1�λn−1 = 1��:

The GC-depth of the vertex xi is determined as the reciprocal of the minimum
of the elements on the main diagonal of the matrix UiD

∗
iU
−1
i .

5. Conclusions. We have illustrated the use of GC-depth and GCMs
through two examples and data sets. Many other types of graphs remain to
be considered although general results such as those of Section 2 hold for all.
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