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NONPARAMETRIC ESTIMATION IN
NULL RECURRENT TIME SERIES

By Hans Arnfinn Karlsen and Dag Tjøstheim

University of Bergen

We develop a nonparametric estimation theory in a nonstationary
environment, more precisely in the framework of null recurrent Markov
chains. An essential tool is the split chain, which makes it possible to
decompose the times series under consideration into independent and iden-
tical parts. A tail condition on the distribution of the recurrence time is
introduced. This condition makes it possible to prove weak convergence
results for sums of functions of the process depending on a smoothing
parameter. These limit results are subsequently used to obtain consistency
and asymptotic normality for local density estimators and for estimators of
the conditional mean and the conditional variance. In contradistinction to
the parametric case, the convergence rate is slower than in the stationary
case, and it is directly linked to the tail behavior of the recurrence time.
Applications to econometric, and in particular to cointegration models, are
indicated.

1. Introduction. Work on nonparametric estimation has so far with very
few exceptions been carried out in a stationary strongly mixing framework
[see, e.g., Robinson (1983), Masry and Tjøstheim (1995), and references
therein]. Recently asymptotics for processes with long-range dependence have
been covered [Robinson (1997)], but still no systematic theory exists for a
nonstationary situation.
The main purpose of this paper is to try to fill this gap by establishing a

nonparametric estimation theory that can be used in a nonstationary environ-
ment. Clearly the collection of all nonstationary processes is much too wide,
but in our opinion an appropriate framework for working with such problems
is the class of null recurrent Markov chains, or possibly regime models includ-
ing null recurrent states. It is true that this requires the model to be stated
as a Markov chain, but this is a mild restriction. The random walk model
and many of the related unit-root processes belong to this class [Myklebust,
Karlsen and Tjøstheim (2001)], and, more important, nonlinear processes are
not excluded.
With the single exception of the work by Yakowitz (1993) on consistency of

nearest neighbor estimates, as far as we know, the estimation theory of null
recurrent processes has been confined to the parametric case.
Independent of our work, however, nonparametric estimation has been con-

sidered in a random walk situation by Phillips and Park (1998), who use local
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time argument to derive asymptotic distributions and by Xia (1998), who in
his doctoral thesis gives a proof of consistency in a transfer function case.
Asymptotics of parametric null recurrent (usually nontime series) models

have been treated by Höpfner (1990, 1994), Höpfner, Jacod and Ladelli (1990),
Kasahara (1982, 1984, 1985), Touati (1990), and we will exploit some of their
techniques. For two early contributions in this field we refer to Darling and
Kac (1957) and Kallianpur and Robbins (1954). However, there are important
differences between the parametric and nonparametric situations. A paramet-
ric estimate is strongly influenced by the large values of the process, and for
unit-root processes superefficiency is obtained with a faster rate of convergence
than in the stationary case. In contradistinction, a nonparametric estimator
depends heavily on observations which are confined to a neighborhood of a
given point, and the rate of convergence turns out, not unexpectedly, to be
slower than in the stationary case. This means that series with large or very
large sample sizes are required.
Long series are becoming increasingly available, for example, in finance

and econometrics. There is therefore also a practical motivation behind our
work. The particulars of this motivation are much the same as for the sta-
tionary case: it is desirable to have greater flexibility in the initial stage of
modelling than that offered by a fixed parametric or semiparametric model,
for example using nonparametric estimates as a guide in choosing a paramet-
ric (linear or nonlinear) model. Since the present paper is directed towards
establishing a theory, specific practical aspects are not much discussed, and
we refer to Myklebust, Karlsen and Tjøstheim (2001) for some more examples.
We would like to mention very briefly potential implications for econometric
time series modelling, though, since such series are often thought to be non-
stationary. The kind of nonstationarity that has been built into the paramet-
ric econometric modelling has overwhelmingly been of linear unit-root type,
leading to ARIMA models and, in the multivariate case, to linear cointegra-
tion models. For such models a very considerable body of literature exists [cf.
the review papers by Stock (1994), Watson (1994) and the book by Johansen
(1995)]. Asymptotic distributions are typically nonnormal and the parame-
ter estimates are superefficient [Dickey and Fuller (1979), Johansen (1995)].
The need for models combining features of nonlinearity and nonstationarity
has been emphasized [see, e.g., Granger and Hallman (1991), Granger (1995),
Aparicio and Escribano (1997)], but no systematic estimation theory exists.
Again, we believe that the class of null recurrent processes constitutes an
adequate framework for posing such problems. The technique used in this
paper is general, and although we focus on nonparametric estimation, it is
in principle possible to develop an analogous theory covering nonlinear and
nonstationary parametric time series models. Finally, it should be mentioned
that there are challenging and interesting connections to attempts having
been made to construct a nonlinear cointegration theory. We look at some of
these in Karlsen, Myklebust and Tjøstheim (2000).
There are a number of open problems and possibilities for further research.

These are related to exploratory problems such as those examined by Tjøstheim
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andAuestad(1994),MasryandTjøstheim(1997)andHjellvik,YaoandTjøstheim
(1998), but there are also many hard problems connected with the basic estima-
tion theory itself.
Since our paper draws quite heavily on Markov theory for recurrent chains,

in the beginning of Section 3 we briefly state some main facts stemming from
that theory. Much of the material is based on the book by Nummelin (1984),
but since to our knowledge, it has not been utilized before in the context
of nonparametric estimation, it has been included to make the paper more
self-contained. In fact, we consider the merger of the recurrence theory of
Markov chains, in particular use of the split chain, and the asymptotic theory
of sums depending on a smoothing parameter to be a main contribution of the
paper. This synthesis is achieved in Section 4. Applications to nonparametric
estimation of an invariant density and conditional mean–variance functions
are given in Section 5, where we derive consistency and asymptotic normality
of these estimates in a null recurrent situation. A simple example is given in
Section 6.

2. Motivation and intuition. Some of the proofs of this paper are quite
technical and draw on results from disciplines that are not usually brought
together: recurrence theory of Markov processes, functional limit theorems
and nonparametric estimation in a time series context. Before we start on the
technical derivations we will therefore try to provide a brief nontechnical and
intuitive overview of the paper.
For a time series �Xt� t ≥ 0�, the traditional kernel estimator of the condi-

tional mean M�x� = E�Xt �Xt−1 = x� is given by

M̂�x� =
∑

t Xt+1K
(Xt−x

h

)∑
t K

(Xt−x
h

) �(2.1)

where K is a kernel function whose argument depends on the bandwidth
h. In the stationary case, mixing results are often used to provide asymp-
totics for M̂�x�. Such arguments are not available in the situation we con-
sider. A nonparametric estimate is a local estimate. A necessary condition
for an asymptotic theory is therefore that �Xt� returns to any neighborhood
around x infinitely often, that is, the process �Xt� should be recurrent in this
sense. A suitable framework then seems to be the class of recurrent Markov
chains. This class contains both stationary and nonstationary processes.
Fortunately, there is an extensive theory for recurrent Markov chains, and

what we will use in particular is the device of the split chain. It is well known
that for an irreducible aperiodic finite state Markov chain, the process can
be decomposed into independent identically distributed parts by taking as a
regeneration point any of its states. The processes we consider have continuous
state space, and we cannot use x = x0, say, as a regeneration point since for a
continuous variable, P�Xt = x0� = 0. However, it is possible to get around this
point by replacing x0 by an appropriate set containing x0 and a randomization
mechanism. This is the splitting technique of a continuous state Markov chain,
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and it will be briefly reviewed in Section 3. The crux of the methodology is
that a sum such as

∑
t K�Xt−x

h
� appearing in the denominator of (2.1) can

essentially be decomposed into a sum of independent components

T�n�∑
k=1

τk∑
t=τk−1+1

K

(
Xt − x

h

)
�(2.2)

where T�n� is the number of regenerations at time n, and where the τk are
the regeneration time points. The sums

∑τk
t=τk−1+1K�

Xt−x
h
�, k = 1�    are inde-

pendent random variables, each consisting of a random number of addends.
In the numerator of (2.1) the corresponding terms are one dependent due to
the presence of both Xt and Xt+1.
A decomposition result makes it possible to use a functional central limit

theorem to derive the asymptotic distribution of sums of type (2.2) when appro-
priately scaled. The derivation is relatively difficult because of the depen-
dence between T�n� and the sums ∑τk

t=τk−1+1K�
Xt−x

h
� and the presence of the

smoothing parameter. A functional CLT is studied in Section 4 under high level
regularity conditions. A prerequisite for the developments of Section 4 is the
existence of an asymptotic theory for T�n�. This is provided in Section 3 in
conjunction with some other ingredients needed from the Markov chain recur-
rence theory. For example, an important role is played by a condition on the
tail of the interrecurrence times τk − τk−1, k = 1�    .
What remains is to adapt the general nature CLT of Section 4 to the non-

parametric estimation situation. Among other things the high level conditions
of Section 4 have to be translated into low level conditions on the kernel func-
tion and related quantities. It should be noted that even though recurrence
does not imply stationarity it does imply the existence of a (nonunique) invari-
ant measure. Suitably normalized on a so-called small set (cf. beginning of
Section 5) this results in a probability density that can be estimated using a
kernel estimator.
As stated above we think that recurrence is a natural tool for attacking

the asymptotic theory of nonparametric estimates in this situation, and we
believe that the theory can be extended to, say, local polynomial estimation.
The splitting technique can also be generalized to a transfer function situation

Zt = f�Xt� +Wt�

where the aim is to estimate the transfer function f for a stationary noise pro-
cess �Wt� and a recurrent input process �Xt�. We refer to Karlsen, Myklebust
and Tjøstheim (2000). This gives a nonlinear cointegration type relationship
between Zt and Xt.
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3. Markov theory.

3.1. Notation and the split chain. We adopt the notation used byNummelin
(1984). We denote by �Xt� t ≥ 0� a φ-irreducible Markov chain on a general
state space �E�� � with transition probability P. The sigma algebra of mea-
surable sets � is countably generated and we assume that φ is maximal in
the sense that if φ′ is another irreducible measure then φ′ is absolutely con-
tinuous with respect to φ. We denote the class of nonnegative measurable
functions with φ-positive support by � +. For a set A ∈ � we write A ∈ � + if
the indicator function 1A ∈ � +. The chain is Harris recurrent if for allA ∈ � +,

P�SA <∞ �X0 = x� ≡ 1 where SA = min�n ≥ 1� Xn ∈ A�(3.1)

In the following �Xt� t ≥ 0� will always be assumed to be φ-irreducible Harris
recurrent. The chain is positive recurrent if there exists an initial probability
measure such that �Xt� t ≥ 0� is strictly stationary, and the process is null
recurrent otherwise.
If η is a nonnegative measurable function and λ is a measure, then the

kernel η⊗ λ is defined by

η⊗ λ�x�A� = η�x�λ�A�� �x�A� ∈ �E�� �
If K is a general kernel, the function Kη, the measure λK and the number
λη are defined by

Kη�x� =
∫
K�x�dy�η�y�� λK�A� =

∫
λ�dx�K�x�A�� λη =

∫
λ�dx�η�x�

Sometimes we write λ�η� instead of λη. The convolution of two kernels K1
and K2 gives another kernel defined by

K1K2�x�A� =
∫
K1�x�dy�K2�y�A�

Due to associative laws, the number λK1K2η is uniquely defined. If A ∈ �
and 1A is the corresponding indicator variable, then K1A�x� = K�x�A�. The
kernel Iη is defined by Iη�x�A� = η�x�1A�x� [and Iη�x�dy� = η�x�δx�dy�
where δx is the Dirac delta measure at the point x]. We abbreviate the identity
function 1E by 1. We let � d

r = �f� �Er�� r� �→ �Rd���Rd�� where ��Rd� is
the class of Borel sets on Rd. If r = 1 or d = 1, we drop the subscript or
superscript.
We define η ∈ � + to be small if there exists a measure λ, a positive constant

b and an integer m ≥ 1 so that
Pm ≥ bη⊗ λ(3.2)

A setA is said to be small if 1A is small. Under quite wide conditions [cf. Feigin
and Tweedie (1985)] a compact set will be small. In this case it follows from
(3.2) that a φ-positive subset of a compact set would be small. If λ satisfies
(3.2) for some η, b and m, then λ is a small measure.
A fundamental fact for φ-irreducible Markov chains is the existence of a

minorization inequality [Nummelin (1984), Theorem 2.1 and Proposition 2.6,
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pages 16–19]: there exists a small function s, a probability measure ν and an
integer m0 ≥ 1 so that

Pm0 ≥ s⊗ ν(3.3)

It creates some technical difficulties to have m0 > 1 because it necessitates
the m0-step chain, and it is not a severe restriction to assume m0 = 1. There-
fore, unless otherwise stated, in the sequel we assume that the minorization
inequality

P ≥ s⊗ ν(3.4)

holds, where s and ν are small and ν�E� = 1. In particular, this implies that
0 ≤ s�x� ≤ 1, x ∈ E. If (3.4) holds, then the pair �s� ν� is called an atom (for P).
We illustrate what the minorization inequality means in the case of a non-

linear autoregressive process.

Example 3.1. Assume that

Xt =
{
X0� when t = 0,
f�Xt−1� + et� when t ≥ 1�

where �et� t ≥ 0� are iid random variables with zero mean and with density ζ
with respect to the Lebesgue measure on E = R. Assume that the function f
is bounded on compact sets and inf x∈C ζ�x� is strictly positive for all compact
sets C. The transition probability is given by

P�x�dy� = p�1��y � x�dy def= ζ�y− f�x��dy
and the n step transition function is Pn�x�dy� = p�n��y � x�dy where

p�n��y � x� =
∫
p�n−1��y � u�ζ�u− f�x��du� n ≥ 2

Let C be a compact set with positive Lebesgue measure. Define ρ0�y� =
inf x∈C ζ�y− f�x��, a = ∫

ρ0�y�dy, ρ = a−1ρ0, s = a1C. Then

P�x�dy� ≥ 1C�x�ρ0�y�dy
= s�x�ν�dy��

where ν�dy� = ρ�y�dy and ν�E� = 1. Thus (3.4) is satisfied.

Note that a pth order model with Xt = f�Xt−1�    �Xt−p� + et would
require the use of (3.3) with m0 = p. With p = 1 and f�x� ≡ x the random
walk is obtained as a special case (cf. Section 6).
In our approach to the nonparametric estimation theory a vital role will

be played by the split chain, which can be constructed once the minorization
condition is fulfilled. It permits a decomposition of the chain into separate and
identical parts which are building blocks in the subsequent analysis.
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To understand the significance of (3.4), consider the identity

P�x�A� = �1− s�x����1− s�x��−1�P�x�A� − s�x�ν�A��1�s�x� < 1�
+ 1A�x�1�s�x� = 1�� + s�x�ν�A�

def= �1− s�x��Q�x�A� + s�x�ν�A�

If (3.4) holds, Q is a transition probability, and because 0 ≤ s�x� ≤ 1 and
ν�E� = 1, the transition probability P can be thought of as a mixture of the
transition probability Q and the small measure ν. Since ν is independent of
x, this means that the chain regenerates each time ν is chosen. This occurs
with probability s�x�.
This reasoning can be formalized by introducing the split chain �Xt�Yt� t ≥

0�, where the auxiliary chain �Yt� can only take the values 0 and 1. Given
that Xt = x�Yt−1 = yt−1, Yt takes the value 1 with probability s�x�, so that
α = E × �1� is a proper atom of the split chain. More precisely, let λ denote
an arbitrary initial distribution on E , let � X

t and � Y
t denote the σ-algebras

generated by �Xj�j ≤ t� and �Yj� j ≤ t�, � Y
−1 being the trivial σ-algebra;

then the split chain �Xt�Yt� t ≥ 0� is defined by

P�X0 ∈ A� = λ�A��
P�Yt = y � � X

t ∨ � Y
t−1� = s�Xt�y+ �1− s�Xt���1− y�� t ≥ 0�(3.5)

P�Xt ∈ A � � X
t−1 ∨ � Y

t−1� = ν�A�y+Q�x�A��1− y�� t ≥ 1

For the properties of the split chain we refer to Nummelin [(1984),
Chapter 4].
We observe that the distribution of ��Xt�Yt�� t ≥ 0� is determined by

λ, P and �s� ν�. We use Pλ as generic symbol for the distribution of the
Markov chain with initial distribution λ, and the corresponding expectation
is denoted by Eλ. If λ = δx we write Px, which is the conditional distribution
of �Y0� ��Xt�Yt�� t ≥ 1�� given thatX0 = x. If the initial distribution is equal
to δα�x�y�, that is, Y0 = 1� X0 = x arbitrary, then we write Pα and Eα.

3.2. The invariant measure. In a general null recurrent chain �Xt� no
marginal distribution function exists that can be estimated nonparametrically.
There is a generalization of the distribution function in the invariant measure,
however, and in Section 4 we will show that if there is an associated density
function, then it can be estimated.
Let τ = τα = min�n ≥ 0� Yn = 1� and Sα = min�n ≥ 1� Yn = 1�. Since

�Sα = n� = �Yj = 0� 1 ≤ j < n� Yn = 1� and �τ = n� = �Sα = n� Y0 = 0�, it
follows [cf. Nummelin (1984), page 63] that

Px�τ = n�= �P− s⊗ ν�ns�x�� n ≥ 0�
Pα�Sα = n�= ν�P− s⊗ ν�n−1s� n ≥ 1

(3.6)
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Define πs by

πs�A� = πs1A = Eα

[
Sα∑
n=1

1A�Xn�
]
� A ∈ � (3.7)

Then by (3.6) and (3.5),

πs�A� =
∞∑

n=1
Eα�1A�Xn�1�Sα ≥ n�� =

∞∑
n=1

ν�P− s⊗ ν�n−11A = νGs� ν1A�

where

Gs� ν
def=

∞∑
n=0
�P− s⊗ ν�n(3.8)

This means that πs = νGs� ν and by (3.6) πs�s� = Pα�Sα <∞�. Since the split
chain is Harris recurrent, it follows that πs�s� = 1. From (3.8) it is not difficult
to prove that πs = πsP. Thus πs is an invariant measure. The results stated
below can be found in Nummelin (1984).

Remark 3.1. If π is another invariant measure, then π = π�s�πs (page 73).
The invariant measure πs is equivalent to φ, πs�C� < ∞ for all small sets C
and it is σ-finite (Proposition 5.6, page 72).
The chain is positive recurrent if and only if πs1E < ∞ (page 68). In the

positive recurrent case π def= πs/πs1E is the unique stationary probability mea-
sure for �Xt�. In the latter situation, when the initial distribution of X0 is
given by π, �Xt� will evolve as a strictly stationary process having π as its
marginal distribution. It is seen from (3.7) that �Xt� is positive recurrent if
and only if EαSα <∞.

3.3. Notation for functions in several variables. Since the kernel estimator
typically involves more than one variable, it is necessary to extend the notation
of Sections 3.1 and 3.2 to functions of several variables. All integrals will be
assumed to be well defined.
Recall that for g ∈ �1, πs�g� =

∫
πs�dx�g�x� and [cf. (3.7) and (3.8)]

Gs� νg�x� =
∫
Gs� ν�x�dy�g�y� = Ex

[ τ∑
n=0

g�Xn�
]


We introduce a useful transformation from �r to �1.

Definition 3.1. Let r ≥ 1 and let g ∈ �r. For r = 1 and r = 2 we define
Ĩg�x�dy��1� = P�x�dy�g�x� and Ĩg�x�dy��2� = P�x�dy�g�x�y�, respectively.
For r > 2 let

Ĩg�x�dy��r� =
∫
P�x�dx2� · · ·P�xr−1� dy�g�x� x2�    � xr−1� y��
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where the integration is with respect to x2�    � xr−1 and whenever the right-
hand side is well defined. Furthermore, define

g̃ = Ĩg1

Since �r−1 ⊂ �r for g ∈ �r−1, when r ≥ 2 we can write Ĩg�x�dy��r� =
Ĩg�x�dy��r− 1�P. An interpretation of g̃ is given by

Ex�g�X0�X1�    �Xr−1��= g̃�x��

Ex

[ τ∑
j=0

g�Xj�Xj+1�    �Xj+r−1�
]
=Gs� νg̃�x��

(3.9)

which is easily verified [cf. (3.7) and (3.8)]. The right-hand sides of (3.9) can be
seen as convenient and compact ways of writing the conditional expectations
on the left-hand side. In the following we omit r in Ĩg�x�dy��r�.
If g ∈ � = �1, then Ĩg = IgP and g̃ = IgP1 = g. In order to reduce the

notation further we extend πs to ∪∞r=1�r by

πsg
def= πsg̃ =

∫
πs�dx1�P�x1� dx2� · · ·P�xr−1� dxr�g�x1�    � xr�� g ∈ �r

We also extend the Lp spaces generated by πs:

Lp
r �πs� def= �g ∈ �r� �g�pp�πs

def= πsĨ�g�p1 <∞�� p ∈ �0�∞�� r ≥ 1
All of the notation in this subsection is trivially extended to � d

r . The notation
is somewhat unfamiliar in a time series context, but it has the advantage of
leading to compact derivations and expressions.

3.4. β-null recurrence and tail behavior of recurrence times. We have not
been able to carry through the asymptotic theory of nonparametric estimation
for a general null recurrent chain. We need a regularity condition for the tail
behavior of the distribution of the recurrence time Sα. Since this condition is
crucial for most of what we are doing, we introduce it in a rather general way
and then specialize to the case when (3.4) holds.
A positive function L defined on �a�∞�, where a ≥ 0, is slowly varying at

infinity [Bingham, Goldie and Teugels (1989), page 6] if

lim
x↑∞

L�κx�
L�x� = 1 for all κ > 0 and for all x ∈ �a�∞�(3.10)

Definition 3.2. The Markov chain �Xt� is β-null recurrent if there exists
a small nonnegative function h, an initial measure λ, a constant β ∈ �0�1�
and a slowly varying function Lh so that

Eλ

[ n∑
t=0

h�Xt�
]
∼ 1

6�1+ β�n
βLh�n� as n→∞(3.11)
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Remark 3.2. If L and L′ are two slowly varying functions at infinity, then
they are said to be equivalent if limx↑∞L�x�/L′�x� = 1. In all of our appli-
cations of slowly varying functions they are only unique up to equivalence.
Hence, when (3.11) is true, without any loss of generality we assume that Lh

is normalized [Bingham, Goldie and Teugels (1989), pages 15, 24]; that is, the
function xβLh�x� is strictly increasing and continuous in the interval �x0�∞�
for some x0.

Let G�n� = ∑n
t=0P

t. The left-hand side of (3.11) can be written as λG�n�h.
We first prove that for a fixed parameter β (3.11) is actually a global property
shared by all nonnegative small functions.

Lemma 3.1. Assume that �Xt� is β-null recurrent and aperiodic. Let �s� ν�
be a fixed atom. Then we can find an Ls so that for all small functions f
the asymptotic relation �311� holds with Lf = πs�f�Ls where πs is defined
by �37�.

Proof. Let λ and h be given by Definition 3.2 and the atom �s� ν� be fixed.
Let Ls

def= Lh/πsh. Using a null recurrent ratio limit theorem [Nummelin
(1984), Corollary 7.2(i), page 131] (where it should be noted that a small func-
tion is a special function) and (3.11),

λG�n�h
νG�n�s

= πs�h��1+ o�1��(3.12)

Using (3.11) again and the above expression, it follows that

νG�n�s ∼ 1
6�1+ β�n

βLs�n�(3.13)

Let f be a given small function. Then by (3.12) with f instead of h and by
(3.13) it follows that

λG�n�f ∼ 1
6�1+ β�n

βπs�f�Ls�n� ✷

Remark 3.3. If the atom �s� ν� in (3.4) is changed to �s′� ν′� then (cf.
Remark 3.1)

πs′ =
πs

πs�s′�
� Ls′ ∼ πs�s′�Ls

The asymptotic expression (3.13) is connected to the Tauberian theorem
[Feller (1971), page 447].

Tauberian Theorem. Let �dn�n ≥ 0� be any nonnegative sequence and let
d�r� = ∑∞

n=0 r
ndn be finite when �r� is less than 1. Moreover, let L1 be slowly

varying and ρ ∈ �0�∞�. Then

n∑
k=0

dk ∼
1

6�1+ ρ�n
ρL1�n� ⇐⇒ d�r� ∼ �1− r�−ρL1

(
1

1− r

)
�(3.14)
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when n → ∞ and r ↑ 1−, respectively. If �dn� is monotone and ρ > 0, then
each of the conditions given by �314� is equivalent with

dn ∼
nρ−1

6�ρ�L1�n�(3.15)

If (3.4) is true, the Tauberian theorem can be used to show that then the
concept of β-null recurrence implies a regularity condition for the tail behavior
of the distribution of the recurrence time Sα.

Theorem 3.1. Assume (3.4) is true. Then �Xt� is β-null recurrent if and
only if

Pα�Sα > n� = 1
6�1− β�nβLs�n�

�1+ o�1��(3.16)

Remark 3.4. If �316� is true, then it is not difficult to show that

sup�p ≥ 0� EαS
p
α <∞� = β

Thus, even though EαSα = ∞ for a null recurrent process, if �34� and �316�
hold, then EαS

p
α is finite for p small enough. For an ordinary random walk

β = 1/2 [Kallianpur and Robbins (1954)] and hence EαS
p
α < ∞ for 0 ≤ p <

1/2. Some other examples of β-null recurrent processes are given in Myklebust,
Karlsen and Tjøstheim �2001�.

Proof. Let G�r� =∑∞
k=0 r

kPk and Gs� ν�r� =
∑∞

k=0 r
k�P− s⊗ ν�k. Then by

(3.13) and (3.14) (with ρ = β and L1 = Ls), β-null recurrence is equivalent
with

νG�r�s ∼ �1− r�−βLs

(
1

1− r

)
(3.17)

We have Bn
def= Pα�Sα > n� = ν�P−s⊗ν�n1. If (3.16) holds, then by (3.14) and

(3.15) (with ρ = 1− β and L1 = L0 = 1/Ls),

B�r� def=
∞∑
k=0

rkBk = νGs� ν�r�1 ∼ �1− r�β−1L0
(

1
1− r

)
(3.18)

Let bn = Pα�Sα = n�, wn = Pα�Yn = 1� for n ≥ 1 and b0 = 0, w0
def= 1

and define the corresponding generating functions w�r� and b�r�. By a first
entrance decomposition

wn=Pα�Yn = 1� Sα ≥ n� +
n−1∑
k=1

Pα�Yn−k = 1�Pα�Sα = k�

=
n∑

k=0
wn−kbk� n ≥ 1�

(3.19)
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which shows that �wn� is an undelayed renewal sequence corresponding to
the increment sequence �bn�. By (3.19) we get w�r� = 1 + w�r�b�r�. Since
bn = Bn−1 −Bn when n ≥ 1, we find that b�r� = 1−B�r��1− r�. Hence

w�r� = 1
B�r��1− r� (3.20)

By (3.5) we find that wn = Pα�Yn = 1� = Eν�s�Xn−1�� = νPn−1s when n ≥ 1.
This gives

w�r� = 1+ r�νG�r�s�(3.21)

Combining (3.20) and (3.21) we finally obtain

1+ r�νG�r�s� = 1
�νGs�ν�r�1��1− r� 

This identity in conjunction with (3.17) and (3.18) shows the equivalence. ✷

3.5. Decomposing the chain and the number of regenerations. The kernel
estimator, ignoring the bandwidth parameter h for the moment, involves sums
of type

Sn�g� =
n∑

j=0
g�Xj�    �Xj+r−1�(3.22)

with g ∈ � d
r . Using the splitting technique this sum can be decomposed in a

form which makes it amenable to a CLT argument.
Let T�n� denote the complete number of regenerations in the time interval

�0� n�; that is,

T�n� =
{
max�k� τk ≤ n�� if τ0 ≤ n,
0� otherwise,

with

τk =
{
inf�n ≥ 0� Yn = 1�� k = 0,
inf�n > τk−1� Yn = 1�� when k ≥ 1,

and where τ0 = τ in (3.6). Then Sn�g� can be written as

Sn�g� = U0 +
T�n�∑
k=1

Uk +U�n��(3.23)

where �Uk�k ≥ 0�, U�n� are defined by

Uk =



τ0∑
j=0

g�Xj�    �Xj+r−1�� when k = 0,
τk∑

j=τk−1+1
g�Xj�    �Xj+r−1�� when k ≥ 1,

n∑
j=τT�n�+1

g�Xj�    �Xj+r−1�� when k = �n�.

(3.24)



384 H. A. KARLSEN AND D. TJØSTHEIM

Since [cf. Nummelin (1984), page 76]

��τk − τk−1�Xτk−1+1�    �Xτk
�� k ≥ 1�

are iid random elements which are independent of �X0�Y0�, it follows that
[cf. Nummelin (1984), page 135] �Uk�k ≥ 1� is a �r−1�-dependent stationary
sequence, which is independent of the initial distribution of the Markov chain.
We have for k ≥ 1 [using Sα�0� = Sα and Sα�1� = inf�n > Sα� Yn = 1�],

�Uk� Uk+1�

d=�α

(
Sα�0�∑
j=1

g�Xj�    �Xj+r−1��
Sα�1�∑

j=Sα�0�+1
g�Xj�    �Xj+r−1�

)

d=�ν

(
τ0∑

j=0
g�Xj�    �Xj+r−1��

τ1∑
j=τ0+1

g�Xj�    �Xj+r−1�
)


(3.25)

We prove a law of large numbers for the sum Sn�g�, where T�n� plays the
role of the number of observations, and where the expected value is replaced
by an integral with respect to the invariant measure as defined in Section 3.3.

Lemma 3.2. Assume that �34� holds. Let r ≥ 1, g ∈ � d
r and �g� ∈ L1r�πs�,

and let the process have an arbitrary initial distribution λ. Then

Sn�g�
T�n�

as→
n

πs�g�(3.26)

Proof. Assume that d = 1 and g ≥ 0. By (3.23), since g ≥ 0, we can write
T�n�∑
k=1

Uk ≤ Sn�g� ≤ U0 +
T�n�+1∑
k=1

Uk

By the definition of U0, �τ < ∞� ⊆ �U0 < ∞�. Since the chain is Harris
recurrent Px�τ < ∞� ≡ 1. Hence Pλ��U0� < ∞� = 1. From (3.7), (3.9) and
(3.25) we have that E�Uk� = πsg. Because T�n� ↑ ∞ a.s. as n → ∞, the
convergence result in (3.26) is then a consequence of the strong law of large
numbers for �r − 1�-dependent stationary variables. The rest of the proof is
obvious since a general component of g can be written as a difference between
two nonnegative g-functions. ✷

Remark 3.5. The result of Lemma 3.2 is of somewhat academic character
since T�n� is not observable. However, it can be used to link T�n� with a
directly observable hitting time. Indeed, if C ∈ � +, the number of times the
process is visiting C up to the time n is denoted by

TC�n� =
n∑

k=0
1C�Xk� = Sn�1C�
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From (3.26) we have that TC�n�/T�n�
as→πs1C. In contrast to T�n�, the vari-

able TC�n� is observable, and it is essential in stating applicable versions of
the limit theorems of Sections 4 and 5.

To obtain a central limit result for Sn�g� is more difficult, and the derivation
is postponed to Section 4, where the bandwidth parameter is also included.
However, such a result requires quite precise knowledge about the asymptotic
behavior of the number of regenerations T�n�, and the rest of this section will
be concerned with this matter.
We assume aperiodicity and that (3.4) and (3.16) hold with Ls of (3.16)

normalized, which implies that the function

u�z� def= zβLs�z�� z ∈ R+(3.27)

is strictly increasing in the interval �z0�∞� for some z0.
Then EαT�n� = Eα�

∑n
j=1Yj� =

∑n−1
k=0 νP

ks, and it follows by (3.11) (with
h = s),

Eα

[
T�n�
u�n�

]
= 1

6�1+ β� + o�1�

We need to extend this result to higher order moments.

Lemma 3.3. Let λ be any initial measure. Assume that �316� holds. Then

Eλ�T�n��m ∼
m!nmβLm

s �n�
6�1+mβ� (3.28)

Proof. Let T̃�n� =∑n
k=0Yk, so that T�n� = �T̃�n�−1�1�T̃�n� > 0�. More-

over, let �+ be the set of all positive integers and let � k
+ be the corresponding

k-fold Cartesian product. By a straightforward calculation we can write

Eα

[
T̃�n�]m = m∑

k=1

∑
l∈=m�k

(
m

l

)
Jn�k�l(3.29)

where =m�k = �l = �l1�    � lk� ∈ � k
+ �

∑
li =m� for k ≥ 1, and where

Jn�k� l=
n∑

h1=0

n−h1∑
h2=1

· · ·
n−h1−···−hk−1∑

hk=1
Eα

[
Y

l1
h1
Y

l2
h1+h2 · · ·Y

lk
h1+···+hk

]

=
n∑

h1=0

n−h1∑
h2=1

· · ·
n−h1−···−hk−1∑

hk=1
wh1

· · ·whk
�

(3.30)

with wh
def= Pα�Yh = 1�. We can write Jn�k� l = Jn�k, since (3.30) shows that

this quantity is independent of l. Let

Jk�r� def=
∞∑

n=0
Jn�kr

n� r ∈ �0�1�
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Then it can be shown from (3.30), (3.18) and (3.20) that

∞∑
n=0

Jn�kr
n =

∞∑
n=0

n∑
h1=0

n−h1∑
h2=1

· · ·
n−h1−···−hk−1∑

hk=1
wh1

· · ·whk
rn

=
∞∑

h1=0

∞∑
n=h1

n−h1∑
h2=1

· · ·
n−h1−···−hk−1∑

hk=1
wh1

· · ·whk
rn

=
∞∑

h1=0

∞∑
h2=1

· · ·
∞∑

hk=1
wh1

· · ·whk

∞∑
n=1

rn+h1+···hk

= w�r��w�r� − 1�k−1r�1− r�−1

= wk�r��1− r�−1�1+ o�1��
and hence

Jk�r� ∼ wk�r��1− r�−1 ∼ �1− r�−kβ−1Lk
s

(
1

1− r

)
(3.31)

as r ↑ 1−. From (3.14), (3.15) with ρ = kβ+ 1, L1 = Lk
s , since �Jn�k� n ≥ 1� is

a monotone sequence in n, (3.31) implies

Jn�k ∼
nkβLk

s �n�
6�1+ kβ� =

uk�n�
6�1+ kβ�(3.32)

as n→∞. Inserting (3.32) into (3.29) gives

Eα

[
T̃�n�]m ∼ m∑

k=1

{ ∑
l∈=m�k

(
m

l

)}
nkβLk

s �n�
6�1+ kβ�(3.33)

and since =m�m = �1� = ��1�    �1�� and
(
m
1

) = m!, we finally obtain (3.28) by

(3.33) and the relationship between T̃�n� and T�n�. ✷

Remark 3.6. In the rest of the paper when we write an ! bn for two real-
valued strictly positive sequences �an� and �bn�, this means that an = o�bn�.

Lemma 3.3 suggests that T�n� behaves approximately as nβ. This is made
precise in the following lemma.

Lemma 3.4. If the tail condition �316� holds, then nβ−ε ! T�n� ! nβ+ε

a.s. for all ε > 0. This is also true for TC�n�. The lower bound requires only
that

sup�p > 0� EαS
p
α <∞� = β > 0�(3.34)

which �cf. Remark 34� is a weakening of �316�.
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Proof. Let ε ∈ �0� β� and define p = β − ε/2. Assume that (3.34) holds.
Then EαS

p
α < ∞ which again entails that k−1/pSβ�k� → 0 a.s. [cf. Chow

and Teicher (1988), page 125] where Sβ�k� =def
∑k

j=1�τj − τj−1�. Let ω be an
outcome so that this holds. Then there exists a finite constant c = c�ω� so that
Sβ�k� ≤ ck1/p for all k and by this inequality, when τ0 = 0,

T�n� = max�k� Sβ�k� ≤ n� ≥ max�k� ck1/p ≤ n� =
[
np

cp

]
�

where �·� is the integer function. Hence for this outcome the lower bound is
satisfied for T�n�. If τ0 > 0 some minor modifications of this argument are
needed.
To prove the upper bound we assume (3.16). Then, for all η > 0, we have

by the Markov inequality and the convergence of all moments of T�n�/u�n�
given by (3.28) that

Pα�T�n� ≥ ηnβ+ε� ≤ η−m�u�n�/nβ+ε�mEα�T�n�/u�n��m

≤ Cmn−mε/2� m ≥ 1
Choosing m > 2ε−1, the upper bound is implied by the Borel–Cantelli lemma.
Since TC�n�/T�n� converges with probability 1 to πs�C�, the two variables

must have the same bounds of this type. ✷

Remark 3.7. Lemma 3.4 shows that β̂
def= ln�TC�n��/ ln�n� is a strongly

consistent estimator for β if (3.16) is fulfilled. Due to the slow convergence
rate it is of limited practical use.

For our derivations in Section 4 we need to evaluate the difference in growth
between π−1s �C�TC�n� and T�n�.

Lemma 3.5. Assume that C is small. Then for all p ∈ �1/2�1� we have

T1−p�n��T−1�n�TC�n� − πs1C� = o�1� as(3.35)

and for all ε > 0,

P
(
π−1s 1CTC�n� /∈ �T�n� ± εTp�n�� io

) = 0(3.36)

Proof. From Remark 3.1 we have that πs1C < ∞ and therefore without
loss of generality we may assume that πs�C� = 1. Define Uk with g = 1C in
(3.23), (3.24). Then

TC�n� = Sn�1C� = U0 +
T�n�∑
k=1

Uk +U�n�

By a result of Marcinkiewicz–Zygmund [Chow and Teicher (1988), page 125],
n−p ×�∑n

k=1Uk − n� → 0 a.s. Because T�n� ↑ ∞ a.s. as n ↑ ∞ we have that
T−p�n��∑T�n�

k=1 Uk − T�n�� = o�1� a.s. The correction terms U0 and U�n� can
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be ignored since n−pUn = o�1� a.s. Hence T−p�n��TC�n� −T�n�� = o�1� a.s.,
which implies both (3.35) and (3.26). ✷

Our next task is to derive a functional limit theorem for T�n�, which will be
used extensively in the asymptotics of Sections 4 and 5. Recall the definition
of the function u in (3.27) which is strictly increasing on �z0�∞�. Let

v�z� = u�−1��z� = inf�s� u�s� > z�
Then v�u�z�� = u�v�z�� = z for all z ∈ �z0�∞�.
Consider the space � �0�∞� of right continuous real-valued functions with

finite left-hand limits, that is, the space of cadlag functions defined on �0�∞�
[cf. Jacod and Shiryaev (1987), pages 288–322]. We write

�� �0�∞�−→ for weak con-
vergence in � �0�∞� and fd→ for convergence of finite-dimensional laws. A Lévy
process is a stochastic process with stationary independent increments and
sample paths in � �0�∞�. Consider the process

Sβ�z�t� def=
1

v�z�
�zt�∑
k=1
�τk − τk−1�� t ∈ �0�∞�� z ∈ R+�(3.37)

where �zt� is the integer value of zt, that is, the largest integer not exceed-
ing zt.
By (3.16) [cf. Bingham, Goldie and Teugels (1989), page 349] it follows that

Sβ�z

fd→
z
Sβ�(3.38)

where Sβ is the one-sided stable Lévy process defined by the marginal charac-
teristic function E�exp�iζSβ�t��� = exp�iζβt� for ζ ∈ R and t ∈ �0�∞�. Moreover
[cf. Kasahara (1984)] Sβ�z

�� �0�∞�−→
z

Sβ. The Mittag–Leffler process [cf. Kasahara

(1984)] with parameter β, Mβ = �Mβ�t�� t ≥ 0� is defined as the inverse of
Sβ. It is a strictly increasing continuous stochastic process, and the charac-
teristic functions describing the marginal distributions are given by

E
[
exp�iζMβ�t��

]
=

∞∑
k=0

�iζtβ�k
6�1+ kβ� � ζ ∈ R� t ≥ 0(3.39)

An alternative description is given by

E�Mm
β �1�� =

m!
6�1+mβ� � m ≥ 0� Mβ�t� d= tβMβ�1�

We need the continuous scaled extension

Tn =
{
T��nt��
u�n� � t ≥ 0

}
(3.40)

of T�n�. The next theorem establishes a weak limit result.
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Theorem 3.2. Let λ be any initial measure. Assume that the tail condition
�316� holds. Then

Tn

�� �0�∞�−→
n

Mβ(3.41)

Proof. By the method of moments and (3.39) we find that for each t,

Tn�t�
d→
n
Mβ�t�

However, it is difficult to establish a functional weak convergence from the
marginal convergences sinceMβ is not a Lévy process. In order to prove (3.41)

it is an advantage to use a continuous index; that is, Tz�t� def= T��zt��/u�z�.
By (3.38) and the proof of Theorem A.1 in the Appendix with Sβ = A in that
proof,

S
�−1�
β� z

�� �0�∞�−→
z

Mβ where S
�−1�
β� z �t� = inf�x� Sβ�z�x� > t�(3.42)

In the rest of the proof we omit the index β and write Sz = Sβ�z and

S
�−1�
z = S

�−1�
β�z .

To prove (3.41) it is sufficient to prove that

sup
0<t≤K

�Tz�t� −S
�−1�
z �t�� = oP�1�(3.43)

for all finite K. Assume that τ0 = 0 without loss of generality. Then{
n∑

j=1
Yj > m

}
= �τm < n��

{
n∑

j=1
Yj < m

}
= �τm > n�(3.44)

Let η > 0. From (3.37) and (3.44) we have{
S
�−1�
u�z� �t� < η

}
⊆ �Su�z��η� > t�

= {
τ�u�z�η� > zt

} = { �zt�∑
j=1

Yj < �u�z�η�
}

= �Tz�t� < u−1�z��u�z�η��
In the same way we get{

S
�−1�
u�z� �t� > η

}
⊆ �Su�z��η� ≤ t� = �Tz�t� ≥ u−1�z��u�z�η��

Let ε1 ∈ �0�1� be arbitrary. Then for η1 < η2,{
η1 ≤ S

�−1�
u�z� �t� < η2

}
⊆

{
η1�1− ε1� < S

�−1�
u�z� �t� < η2

}
⊆ �u−1�z��u�z�η1�1− ε1�� ≤ Tz�t� < u−1�z��u�z�η2���
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which gives

�Tz�t� −S
�−1�
u�z� �t�� < �η2 − η1� + ε1η1 +

1
u�z�

when S
�−1�
u�z� �t� ∈ �η1� η2�

(3.45)

Let ε > 0 be given. For all s we have

P

(
sup
t≤K

�Tz�t� −S
�−1�
u�z� �t�� > ε

)

≤ P

(
sup
t≤K

�Tz�t� −S
�−1�
u�z� �t�� > ε� sup

t≤K
S
�−1�
u�z� �t� < s

)

+P
(
sup
t≤K

S
�−1�
u�z� �t� ≥ s

)


By (3.42),

lim
s↑∞

lim
z→∞P

(
sup
t≤K

S
�−1�
u�z� �t� ≥ s

)
= 0

Hence for all δ > 0 we can choose s0 so large that

P

(
sup
t≤K

S
�−1�
u�z� �t� ≥ s0

)
< δ

for all z large enough. For fixed ε > 0, we can choose η0�    � ηL, z1, ε1 with
η0 = 0 and ηL = s0 so that maxk�ηk+1 − ηk� < ε/3, ε1 < s−10 ε/3 and z1 >
v�3ε−1�. Then by (3.45),

P

(
sup
t≤K

�Tz�t� −S
�−1�
u�z� �t�� > ε� sup

t≤K
S
�−1�
u�z� �t� < s0

)
= 0� z > z1

and therefore

P

(
sup
t≤K

�Tz�t� −S
�−1�
u�z� �t�� > ε

)
< δ� z > z1(3.46)

The function u is unbounded continuous and strictly increasing in an interval
�x0�∞� and therefore by (3.42),

sup
t≤K

�S�−1�z �t� −S
�−1�
u�z� �t�� = oP�1�

Hence (3.46) implies (3.43). ✷

Our final result of this section again concerns the replacement of T�n� by
TC�n�. In analogy with (3.40) we define Tn�C = �TC��nt��/u�n�� t ≥ 0�.

Definition 3.3. If �Xn� and �X̃n� are random elements of Dd�0�∞� they
are said to be equivalent if the difference converges weakly to the zero-process.
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If �Xn� converges weakly in Dd�0�∞� to the zero-process, then we say that
�Xn� is negligible.

Lemma 3.6. Assume that the tail condition �316� holds. Then TC�n/πs1C
is equivalent with Tn.

Proof. Assume without loss of generality that πs�C� = 1. It is enough to
prove that supt≤t0 ξn�t� = op�1� where ξn�t� def= �Tn�C�t� −Tn�t�� for all t0. Let
0 < δ < 1 and nδ = n−�1−δ�. We have supt≤nδ

ξn�t� ≤ u−1�n��TC�nδ�+T�nδ�� =
oP�1� and when t ≥ nδ,

sup
nδ≤t≤t0

ξn�t� ≤ �Tn�t0�� sup
nδ≤t≤t0

�T−1��nt���TC��nt�� −T��nt����

≤ �Tn�t0�� sup
m≥nδ

�T−1�m��TC�m� −T�m���

= oP�1�
since TC�n�/T�n� converges to πs1C with probability 1 by Remark 3.5. ✷

4. Asymptoticswith a smoothing parameter. So far we have neglected
the smoothing bandwidth hn of the kernel estimator when we have looked at
the split chain decomposition of the sum Sn�g� of (3.22)–(3.24). Now, to bring
it closer to the actual form of the kernel estimator we let g = gh depend on h
and write

Sn�gh�=
n∑

j=0
gh�Xj�    �Xj+r−1�

=U0�gh� +
T�n�∑
k=1

Uk�gh� +U�n��gh��
(4.1)

where �Uk�gh�� k ≥ 1� for each fixed h is a sequence of �r − 1� dependent
identically distributed random variables. In the following we will sometimes
use the symbol U = U�gh� to denote a random variable having this common
distribution. Note that alsoU0�gh� has this distribution if the chain has initial
measure ν.
The purpose of this section is to prove a functional limit theorem for Sn�gh�

and a corresponding CLT for a properly normalized quantity. The conditions
that we will assume for these theorems are high level conditions mainly for-
mulated in terms of the moments ofU�gh�. In Section 5 they will be translated
into workable conditions in a kernel estimation situation.
To state the conditions we need some notation. We treat the scalar case

when gh ∈ �r first and extend to the case where gh ∈ � d
r toward the end of

the section. The common mean and variance (assuming that they exist) of the
random variables �Uk�gh�� k ≥ 1� are denoted by

µ = µ�gh� = EU�gh� = πs�gh�(4.2)
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and

σ2 = σ2�gh� = Var �U�gh��(4.3)

The quantity

σ̄2 = σ̄2�gh� =
r−1∑

k=−�r−1�
Cov

(
U1+�k��gh��U1�gh�

)
(4.4)

often appears in our derivations and σ̄2 ≤ �2r − 1�σ2. Note that σ̄2 = Var
�n−1/2∑n

k=1Uk� + o�1� and σ̄2 = σ2 when the Uk’s are iid. Finally, recall that
[cf. (3.27)] u�n� = nβLs�n�. This quantity will be much used in the following.
The first condition simply states that µ and σ exist for each fixed h.

A0. (i) µ��gh�� <∞, (ii) σ2��gh�� <∞.
The next condition concerns the relationship between σ�gh� and σ��gh��
and the corresponding quantities for σ̄ as h ↓ 0.

A1. (i) σ̄−1�gh�σ̄��gh�� = O�1�, (ii) σ̄−1�gh�σ��gh�� = O�1�,
(iii) σ̄−1��gh��σ��gh�� = O�1�.
The third condition concerns the relationship between µ, σ and h.

A2. (i) hµ��gh�� = O�1�, (ii) lim infh↓0hσ̄2�gh� > 0,
(iii) lim infh↓0hσ̄2��gh�� > 0.
A bound for higher order moments is imposed in

A3. (i)E�U�gh�−µ�gh��2m ≤ dmh−2m+v, (ii)E�U��gh��−µ��gh���2m ≤ dmh−2m+v

for somem ≥ 1,dm > 0 and for a v ∈ �0�1�.
The two final conditions impose further restrictions on �hn�.

A4. (i) For some ε > 0,m > 1, v ∈ �0�1�, h−1n ! nβδm−ε, δm = �m−v�−1�m−1�,
where β is determined by the tail condition (3.16).

A5. (i) If h−1n = o�u�n�� = o�nβLs�n��, then hnU0��ghn
�� = OP�1�.

We are ready to state and prove a basic functional limit result.
Following (3.40) we denote the process �T��nt��/u�n�� t ≥ 0� by Tn and

likewise for TC�n. The standard Brownian motion defined for t ≥ 0 is denoted
by B, and B ◦Mβ denotes �B�Mβ�t��� t ≥ 0�. Weak convergence in Dd�0�∞�
is written Dd.
Our theorems also hold for the positive recurrent case which corresponds

to β = 1, M1�t� ≡ t and u�n� = n.

Theorem 4.1. Assume that the tail condition �316� is fulfilled or that �Xt�
is positive recurrent. If the conditions A0–A5 hold with m ≥ 2 and v ∈ �0�1�,
then with

=n�h�t� = u−1/2�n�σ̄−1�gh�
{
S�nt��gh� − µ�gh�T��nt��

}
�(4.5)

�=n�hn
�Tn�

� 2

−→
n
�B ◦Mβ�Mβ�� B and Mβ are independent.(4.6)

Proof. The proof would be quite easy ifT�n�were independent of �Uk�gh�,
k ≥ 1�. It is the dependence of �Uk�gh�� on the sequence of stopping times τk
which makes it intricate. The idea of the proof is first to establish a functional
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CLT neglecting this dependence, and subsequently incorporating the stopping
times via the asymptotic theory for T�n� developed in the previous section.
Accordingly, the proof is subdivided into four parts. In the first part we prove
a functional CLT for �Uk�gh�� k = 1�    � �nt�� just by exploiting that this is
an �r−1�-dependent sequence. The remainder terms U0�gh� and U�n��gh� are
shown to be of smaller order in the second part, and in the third part T�n�
and its asymptotic theory is brought into the picture. The last part is devoted
to the positive recurrent case.

Part 1. We introduce the scaled variables

Wk�gh� = σ̄−1�gh��Uk�gh� − µ� and W = σ̄−1�U− µ�gh���
where clearly σW = σ̄−1σ . Moreover, using A2 and A3,

EW2m = �hσ̄2�−mhmE�U− µ�2m ≤ d′mh−m+ν(4.7)

for some constant d′m. It is also convenient to rescale the bandwidth sequence
�hn�. Let �hn� be chosen according to A4. Define qn = hu−1�n� so that hn = qu�n�.
Then by A4, q−1n ! nδm . We consider �Wk�gh�� k ≥ 1�, and we will prove that

Qn�qn

�−→
n

B� Qn�h�t� def= n−1/2
�nt�∑
k=1

Wk�gh�(4.8)

This can be proved by using an ordinary mixing array CLT and a tightness
argument. Let t be fixed. By (4.7) and the condition on the rate of �qn�, we
have for some m ≥ 1,

n−m
�nt�∑
k=1

EW2m
k �gqn

� ≤ d′mtn−�m−1�q−�m−v�n = o�1�(4.9)

Thus the array satisfies a Liapounov condition. Since EQ2
n�qn

�t� = t�1+ o�1��
we have by an appropriate CLT [Bergstrøm (1981), Theorem 1, page 161] that

Qn�qn
�t� d→

n
� �0� t� for all t. Using a standard argument, the same CLT and

the fact that Qn�qn
has asymptotically independent increments [cf. Billingsley

(1968), pages 68 and 69], we find that

Qn�qn

fd→
n

B(4.10)

It remains to prove tightness. Without loss of generality we can assume
that r = 2. Define

χi
2k−j�h = δijηhW2k−i�gh�� 0 ≤ i� j ≤ 1� k ≥ 1�(4.11)

where ηh = 21/2σ−1W �gh� and δij is the Kronecker symbol. Note that ηh = O�1�
by A1.
Next, define

Qi
n�t� def= n−1/2

�nt�∑
k=1

χi
k�qn

= ηqn
n−1/2

��nt+i�/2�∑
k=1

W2k−1�gqn
�� i = 0�1
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The marginal arrays �χi
k�qn

� consist of independent variables. By (4.9) and an
ordinary multivariate CLT we have that (4.10) is fulfilled for Qi

n. If ψ
i
n�s� t�

def= E�Qi
n�t� −Qi

n�s��2 satisfies, for all fixed t0 > 0,

lim
δ↓0
sup
n
sup
s≤t0
�t−s�≤δ

ψi
n�s� t� = 0�(4.12)

then Qi
n

�−→B, i = 0�1 by standard theory [Pollard (1984), Theorem 19,
page 104]. Now, using A1 and �t− s� ≤ δ,

ψi
n�s� t� ≤ c1n

−1η2qn
�n�t− s� + 2�EW2�gqn

� ≤ c2�t− s+ 2/n� ≤ c3�δ+ 2n−1��

which shows that (4.12) holds. Hence Qi
n� i = 1�2 are tight in D�0�∞�. Since

B is a continuous process and Qn�qn
= η−1qn

∑1
i=0Q

i
n and η−1h is bounded, by A1

we can conclude that �Qn�qn
� is tight [cf. Jacod and Shiryaev (1987), page 317].

The next part takes care of the edge terms.

Part 2. By (4.1) and the definition of =n�hn
in the statement of the the-

orem we have that with U0� h�t� =
∑τ0∧�nt�

j=0 gh�Xj�    �Xj+r−1�, Uh��n��t� =
U��nt���gh�, it is enough to show that

δgh�n
�t� def= u−1/2�n�σ̄−1�gh��Uh�0�t� +Uh� �n��t��(4.13)

is negligible in the sense of Definition 3.3. By A2, A4 and A5,∣∣u−1/2�n�σ̄−1�ghn
�Uhn�0�t�

∣∣ ≤ {
hnu�n�hnσ̄

2�ghn
�}−1/2hnU��ghn

�� = oP�1�
independent of t. Hence we can neglect this term. Moreover, since Tn��nt�� =
Tn�t�u�n�,

�Uh� �n��t�� ≤ UT��nt��+1��gh��
= σ̄��gh��WT��nt��+1��gh�� + µ��gh��
= σ̄��gh��u1/2�n�

{
Q′

u�n��h�Tn�t� + 1/u�n�� −Q′
u�n�� h�Tn�t��

}
+ µ��gh���

where

Q′
n�h�t� = n−1/2

�nt�∑
k=1

Wk��gh��

The tail condition (3.16) guarantees by Theorem 3.2 that Tn has a specified
asymptotic distribution. Since the conditions A0–A4 hold for �gh� as well as for
gh Part 1 of the proof, with gh replaced by �gh�, and the continuous mapping
theorem, implies that ξn�t� def= Q′

n�qn
�t + 1/n� −Q′

n�qn
�t� is negligible. Again
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by the continuous mapping theorem with the map D2�0�∞� �→ D�0�∞� given
by �a� b� �→ a ◦ b, the process ξn ◦Tn converges to zero. This gives

u−1/2�n�σ̄−1�ghn
��Uhn��n��·��

≤ σ̄��gh��
σ̄�gh�

(
ξu�n� ◦Tn

)+ �u�n�hnσ̄
2�gh�hn�−1/2hnµ��gh��

�−→
n
0

because of A1, A2 and A4.

Part 3. By Part 2 of the proof we can neglect the edge terms and �=n�hn
,

Tn� is equivalent with
�Zn�hn

�Tn� = �Qu�n��qu�n� ◦Tn�Tn��

whereQ is defined in (4.8). Let �Bn�An� def= �Zn�hn
�Sβ�n�where Sβ�n is defined

in (3.37). By the proof of Theorem 3.2 we have that S�−1�β�n andTn are equivalent
processes. The proof of (4.6) and the asymptotic independence of B and Mβ

now follow by Theorem 3.2, (4.8) and Theorem A.1 in the Appendix.

Part 4. In the positive recurrent case �Xt� is ergodic which implies that
Tn

�−→I where I�t� ≡ t. Thus by (4.8) the proof is complete. ✷

For later applications it is necessary to restate Theorem 4.1 for the observ-
able stopping process TC�n = �TC��nt��/u�n�� t ≥ 0�.

Corollary 4.1. Assume that the conditions of Theorem 41 hold with A2�i�
strengthened to h1/2µ��gh�� = o�1� as h ↓ 0. Let C be a small set and define
=C�n�hn

�t� = u−1/2�n�σ̄−1�ghn
��S�nt��ghn

� − π−1s �C�µ�ghn
�TC��nt���. Then the

sequences ��=n�hn
�Tn�� and ��=C�n�hn

� π−1s �C�TC�n�� are equivalent.

Proof. By definitions we have

=C�n�h�t� − =n�h�t� = σ̄−1�gh�µ�gh�u−1/2�n�
{
π−1s �C�TC��nt�� −T��nt��}

= {
hσ2�ghn

�}−1/2h1/2µ�gh�σ̄
(
π−1s �C�1C

)
=n�t��

where =n�t� def= u−1/2�n�σ̄−1�π−1s �C�1C��S�nt��π−1s �C�1C� − T��nt���. We now
apply Theorem 4.1 to =n�t� in the simplified situation with g = π−1s �C�1C. It
follows straightforwardly that =n

�−→B ◦Mβ. Since h1/2µ�gh� ≤ h1/2 µ��gh��
= o�1�, it follows by A2(ii) that =C�n�hn

− =n�hn

�−→ 0. The equivalence of
π−1s �C�TC�n and Tn is the content of Lemma 3.6. ✷

The limit distributions obtained in Theorem 4.1 and Corollary 4.1 are non-
Gaussian. However, a Gaussian distribution can be obtained by a stochastic
normalization.
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Theorem 4.2. Assume that the conditions of Theorem 41 hold with A2�i�
strengthened to h1/2µ��gh�� = o�1� as h ↓ 0. Let C be a small set. Then

T
1/2
C �n�π1/2s �C�σ̄−1�ghn

�
{
T−1C �n�Sn�ghn

�−π−1s �C�µ�ghn
�
}

d→
n

� �0�1�(4.14)

If it is assumed in addition that there exists a constant µ0 such that µ�gh� =
µ0 +O�h2� and h−1n ( nβ/5+ε, then µ�ghn

� can be replaced by µ0 in �414�.

Proof. Denote the left-hand side of (4.14) by Kn�hn
. We have that Kn�h =

π
1/2
s �C��TC�n�/u�n��−1/2=C�n�h�1�. By Lemma 3.5, Theorems 3.2 and 4.1 and
Corollary 4.1 the implication of (4.14) follows. The last statement of the theo-
rem follows by A2 because

T
1/2
C �n�

{
hnσ̄

2�ghn
�
}−1/2

h1/2n �µ�ghn
� − µ0� ≤ c1

{
TC�n�h5n

}1/2
= oP�1� ✷

A multivariate extension to gh ∈ � d
r with d > 1 is useful. The asymptotic

covariance matrix of n−1/2
∑n

k=1Uk�gh� is given in complete analogy with σ̄2 by

)L =)L�gh� = 1
2

r−1∑
k=−�r−1�

Cov�U1+�k��gh��U1�gh��

+ Cov(U1�gh��U1+�k��gh�
)


(4.15)

The norm of gh is defined by �gh�x1�    � xr�� = �
∑d

i=1 g
2
i� h�x1�    � xr��1/2

where gi�h is the ith component of gh.

Corollary 4.2. Let gh ∈ � d
r . Assume that the conditions of Theorem 41

hold for �gh� and �Xt� with A2�i� strengthened to h1/2µ��gh�� = o�1� as h ↓ 0.
In addition we assume that

lim suph)L�gh� ≥ L0(4.16)

for some positive definite matrix L0 and

�)L�gh��−1 )σ2��gh�� = O�1�(4.17)

If C is a small set, then �414� holds with σ̄−1�gh� replaced by)L− 1
2 �gh�, and the

limit is the d-dimensional standard multivariate normal distribution. More-
over, a multivariate extension of �46� holds where B is replaced by a d-dimen-
sional Brownian motion.

If there exists a constant µ0 such that µ�gh� = µ0+O�h2� and h−1n ( nβ/5+ε,
then µ�ghn

� can be replaced by µ0.

Proof. Analogous to (4.5) and (4.13), define

=n�h�t� = u−1/2�n�)L−1/2�gh�
{
S�nt��gh� − µ�gh�T��nt��

}
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and

δgh�n
�t� def= u−1/2�n�)L−1/2�gh�

{
U0� h�t� +U�n�� h�t�

}
(4.18)

Now since �gi�h� ≤ �gh� we have �U�gi�h�� ≤ U��gh�� for i = 1�    � d. Using
this inequality we find that �U�gh�� ≤ d1/2U��gh�� and

�δgh�n
�t�� ≤ d1/2�)L�gh��−1/2σ̄��gh��δ�gh�� n�t�(4.19)

From the conditions assumed in the corollary it follows that the conditions in
Theorem 4.1 for �gh� are satisfied. In particular this implies that δ�ghn

�� n is
negligible. Together with (4.17), (4.18) and (4.19) this means that �δhn

� n� is
negligible.
We have thus shown that =n�hn

is equivalent with Zn�hn
defined by

Zn�hn
�t� = u−1/2�n�

T��nt��∑
k=1

Wk�ghn
� = Qu�n�� qu�n� �Tn�t��

with Qn�h defined by (4.8) and Wk�gh� def= L̄−
1
2 �gh��Uk�gh� − µ�gh��. It is

enough to prove that

a′Qn�qn

�−→
n

a′B ∀a ∈ Rd�(4.20)

where a′ means the transpose of a. Let fh = b′hgh where bh = �h)L�gh��−1/2a.
Then

µ�fh� = b′hµ�gh�� σ̄2�fh� = h−1�a�2
Moreover,

a′Qn�h = n−1/2
�nt�∑
k=1

h1/2h−1/2a′)L− 1
2 �gh�

(
Uk�gh� − µ�gh�

)
= �a�n−1/2

�nt�∑
k=1
)σ−1�fh�

(
Uk�fh� − µ�fh�

)
= �a�Qf

n�h say,

where Q
f
n�n is defined by (4.8) with Wk�gh� replaced by Wk�fh�. Using h1/2

µ��gh�� = o�1� as h ↓ 0 and applying A1 and A3 to �gh� we have
EW2m

k �fh� = σ̄−2m�fh�E
[
b′h�U�gh� − µ�gh��

]2m
≤ c2σ̄

−2m�fh��bh�2m
[
E U2m��gh�� + µ2m��gh��

]
≤ c3h

mh−�2m−v�

= c3h
−�m−v�

We have also used that �bh� is bounded with respect to h; in fact it follows
from (4.16) that lim sup �bh�2 ≤ �a�2ρ where ρ denotes the spectral radius
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of L−10 . Hence the analogue of (4.9) is satisfied and (4.20) is proved using
the method of Part 1 of the proof of Theorem 4.1. We now easily get the
multivariate extension of Theorem 4.1 claimed in the second statement of
the corollary by a Cramér–Wold argument: let Bd denote a d-dimensional
Brownian motion. It is enough to prove that(

a′=n�hn
�Tn

)
�−→
n

(
�a�B ◦Mβ�Mβ

)
B and Mβ are independent,(4.21)

since a′Bd has the same distribution as �a�B. But (4.21) follows from (4.20)
and the proof of Theorem 4.1.
The first and the last statement of the corollary are proved as in the proof

of Theorem 4.2. ✷

5. Asymptotics for some nonparametric statistics. The objective of
this section is to extend nonparametric kernel estimation from the traditional
stationary case [see, e.g., Robinson (1983)] to the null recurrent case. This will
be done using the result established in the preceding section.
We assume aperiodicity and (3.4). In addition we assume that the state

space E ⊆ R so that Xt is one-dimensional. All of these conditions can be
relaxed. The bandwidth h = hn is assumed to satisfy hn ↓ 0, and with no loss
of generality we also assume that hn ≤ 1. Let K� R→ R be a kernel function
and for a fixed x letKx�h�y� = h−1K��y−x�/h�. We will consider estimation of
both the conditional mean and an analogue of the density function. Concerning
the latter we look at the normalized density relative to a small set C; that is,
if the invariant measure πs has a density ps, we define pC = π−1s �C�ps. The
density pC does not depend upon s as is easily verified from the nonuniqueness
property stated in Remark 3.1.
By analogy with the ordinary kernel estimator for a density in the positive

recurrent case, an estimator for pC is defined by

p̂C�x� = p̂C�n�h�x� = T−1C �n�
n∑

t=0
Kx�h�Xt�(5.1)

Next, coming to the conditional expectation, note that for a function ξ ∈ � d,
in the Markov chain terminology adopted in this paper the conditional mean
of ξ�Xt� given Xt−1 = x is written Pξ�x� = E�ξ�Xt��Xt−1 = x�. A kernel
estimator for the conditional mean function Pξ is given by

P̂ξ�x� = P̂ξn�h�x� =
{

n∑
t=0

Kx�h�Xt�
}−1{

n∑
t=0

ξ�Xt+1�Kx�h�Xt�
}

(5.2)

and is seen to coincide with the traditional Nadaraya–Watson estimator in
the positive recurrent case. The corresponding conditional variance function
is given by

Vξ = P�ξ⊗ ξ� −Pξ⊗Pξ(5.3)
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If we replace the two terms of the right-hand side of (5.3) by estimators defined
by (5.2), we obtain a conditional variance estimator V̂ξ�x�.
The expressions (5.1)–(5.3) can be put into the framework of Section 4 by

considering

Sn�gh� =
n∑

t=0
gh�Xt�Xt+1� = U0�gh� +

T�n�∑
k=1

Uk�gh� +U�n��gh�

with

gh�u�w� =Kx�h�u�ξ0�u�w� or gh�u�w� =Kx�h�u�ξ�w�(5.4)

with ξ0 and ξ being arbitrary functions in � d
2 and � d. There are no difficulties

in extending the theory to � d
r with r > 2, but it is notationally more complex.

We will prove consistency and supply results for the asymptotic distribu-
tion of kernel estimates at a fixed point x ∈ E. Both types of result require
an adaption of the theory of Section 4 in the form of two lemmas. Basically,
these lemmas secure the existence of the first two moments as required in
assumption A0, and supply bounds of higher order moments of the kind con-
tained in A3. To be able to prove the lemmas and the subsequent theorems
we need to impose some (relatively mild) conditions on the kernel function
K and the invariant density ps. To this end let �x�h� = �y� Kx�h�y� += 0�
and �x = �x�1�. In our context a locally bounded function will be taken to
mean bounded in a neighborhood of x and a locally continuous function is
continuous at the point x. Without loss of generality we may assume that this
neighborhood equals �x, and local continuity implies local boundedness. This
is so since �x�h� = x⊕h�0. Again, we use c1� c2�    as a sequence of generic
constants in our proofs.
The following condition is always assumed:

B0. The kernel K is nonnegative,
∫
K�u�du <∞ and

∫
K2�u�du <∞.

The next condition is standard:

B1. (i)
∫
K�u�du = 1, (ii) ∫ uK�u�du = 0.

Condition B2, however, is more specific. Note that the last part of (ii) follows
from (i) under wide conditions [cf. comment after (3.2)].

B2. (i) The support �0 of the kernel is contained in a compact set.
(ii) The kernel is bounded, and �x is a small set.

The next condition is a smoothness condition on ps.

B3. The invariant measure πs has a locally continuous density ps which is
locally strictly positive; that is, ps�x� > 0.
The last condition is a sort of uniform local continuity condition on the

transition probability.

B4. For all �Ah� ∈ � so that Ah ↓ - when h ↓ 0, limh↓0 lim supy→x

P�y�Ah� = 0.
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The following result is needed so often in our derivations that we state it
as a separate remark.

Remark 5.1. If B2�ii� holds and ξ ∈ � is a locally bounded function, then,
since a small function is a special function, by Propostion 5.13 in Nummelin
with m0 = 1 we have supGs� ν1�x

ξ <∞.

The first lemma is a generalization to the null recurrent case of the well-
known results in the one-dimensional positive recurrent case that E�Kx�h

�Xt�ξ0�Xt�Xt+1�� = p�x� ∫ P�x�dz�ξ0�x� z�
∫
K�u�du+ o�1� and hVar�Kx�h

�Xt�ξ0�Xt�Xt+1�� = p�x� ∫ P�x�dz�ξ20�x� z�
∫
K2�u�du + o�1�, which hold

under some mild regularity conditions. Recall that in the notation of
Section 3.3,

Ĩξ0
�y�dz� = P�y�dz�ξ0�y� z�� ξ̃0�y� = Ĩξ0

1�y� =
∫
P�y�dz�ξ0�y� z�(5.5)

As before, when we write ξ̃0�y�, the integral in (5.5) is implicitly assumed to
exist. Also note that �ξ̃0�p ≤ �Ĩ�ξ0�21�p/2 when p ≥ 0. If ξ0�u�w� = ξ�u�; that
is, ξ ∈ � d, then ξ̃0 = ξ.

Lemma 5.1. Let gh�u�w� =Kx�h�u�ξ0�u�w� where ξ0 ∈ � d
2 , and let µ�gh�

and )L�gh� be defined by �42� and �415�.
(a) Assume that B2 and B3 hold, that Ĩ�ξ0�21 is locally bounded and Ĩξ0

1,

Ĩξ0⊗ξ0
1 are locally continuous. Then

µ�gh� = ps�x�ξ̃0�x�
∫
K�u�du+ o�1�(5.6)

h)L�gh� = ps�x�Ĩξo⊗ξ0
1�x�

∫
K2�u�du+ hA�gh� + hA′�gh� + o�1��(5.7)

where A�gh� = πsĨgh
⊗Gs� νĨgh

1. Let L�gh� be the multivariate analogue

of σ2�gh� of �43�. If hA�gh� = o�1�, then h)L�gh� = hL�gh� + o�1� =
hπs�gh ⊗ gh� + o�1�.

(b) If in addition ξ̃0�x� = 0 or B3 and B4 hold, then hA�gh� = o�1�. If
ξ0�u�w� = ξ�w� −Pξ�u�, then

h)L�gh� = ps�x�Vξ�x�
∫
K2�u�du+ o�1�(5.8)

Proof. The proof of (5.6) follows immediately from B2�i�, B3, (3.7), the
continuity of Ĩξ0

1 and Bochner’s lemma [cf. Wheeden and Zygmund (1977),
Chapter 9]. The rest of the proof is more intricate and is subdivided into two
steps according to the subdivision of the lemma in parts (a) and (b).
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Proof of the rest of part (a). We start by the scalar case (d = 1),
because, as will be indicated, the general case can be deduced from this case.
We assume with no loss of generality that the chain is started with initial

measure ν, so that �Uk�k ≥ 0� is a stationary sequence of one-dependent
variables. Then

σ̄2�gh� = EνU
2
0 −E2νU0 + 2Eν�U0U1� − 2E2νU0

Some manipulation of this expression [cf. Appendix A, Karlsen and Tjøstheim
(1998), pages 49 and 50] yields

σ̄2�gh� = πsg
2
h − π2s gh − 2πsghπs�sgh� ν� + 2πsψ�(5.9)

where gh� ν�u� =
∫
ν�dz�gh�u� z� and ψ�x� = Ex�gh�X0�X1�

∑Sα

j=1 gh�Xj�
Xj+1��.
Using Nummelin [(1984), (4.16a), page 61] and (3.9) we find that

E

{
Sα∑
j=1

gh�Xj�Xj+1��� X
1 ∨ � Y

0

}
= Gs� νg̃h�X1��

and we obtain

ψ�x� = Ĩgh
Gs� νg̃h�x� and πsψ = πsĨgh

Gs� νg̃h(5.10)

The appropriate generalization of (5.9) and (5.10) to the multivariate case is
given by

)L�gh� = πs�gh ⊗ gh� +A�gh� +A′�gh� −B�gh� −B′�gh��(5.11)

A�gh�=πsĨgh
⊗Gs� νg̃h�

B�gh�=2−1�πsgh ⊗ πsgh� + πsgh ⊗ πs�sgh� ν�
(5.12)

This can be verified by looking at gh�a = a′gh and noting that σ̄2�gh�a� =
a′)L�gh�a with a ∈ Rd. We can then identify terms in (5.11), (5.12) with corre-
sponding terms in (5.9), (5.10).
It is now straightforward to obtain (5.7). Indeed, by (5.6) µ�gh� = O�1�. The

term πs�s · gh� ν� can be treated likewise, and hence hB�gh� = o�1�. Similarly,
we have

hπs�gh ⊗ gh� = ps�x�Ĩξ0⊗ξ0
1�x�

∫
K2�u�du+ o�1�

and (5.7) follows.
Using the same reasoning as when deriving (5.11) and (5.12), we have

L�gh� = πs�gh ⊗ gh� +A�gh� +A′�gh�
−1⊗ πsgh − �1⊗ πsgh�′ − πsgh ⊗ πsgh

If hA�gh� = o�1�, it therefore follows that h)L�gh� = hL�gh�+o�1� = hπs�gh⊗
gh� + o�1�, and part (a) of the lemma is proved.
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Proof of part (b). We can write

hA�gh� = πsIKx�h
Ĩξ0
⊗ ψh� ψh

def= Gs� νhIKx�h
ξ̃0

Because a small set is a special set it follows by B2 (ii) (cf. Remark 5.1) and
the local boundedness of Ĩ�ξ0�, that we have �ψh� ≤ c1, and hence
that �hA�gh�� = O�1�. If ξ̃0�x� = 0, then sup �ψh� = o�1� since supy∈�x�h�
�ξ̃0��y� = o�1� by local continuity of ξ̃0, and hence �hA�gh�� = o�1�.
Assume that B3 and B4 are true. Then, since Ĩ�ξ0�1 is locally bounded and

since B2 �ii� holds, �ψh� ≤ c1fh where fh = Gs� ν1�x�h�. This gives

�hA�gh�� ≤ c3πsIKx�h
Ĩ�ξ0�fh(5.13)

By the Cauchy–Schwarz inequality,∫
P�y�dz��ξ0�y�z��fh�z�≤c4

{∫
P�y�dz��ξ0�y�z��2

}1/2{
Pf2h�y�

}1/2
=c4

{
Ĩ�ξ0�21�y�

}1/2{
Pf2h�y�

}1/2


(5.14)

By the local boundedness of Ĩ�ξ0�2 ,

sup
y∈�x

Ĩ�ξ0�2�y� <∞(5.15)

Inserting (5.14) into (5.13) and by B3, (5.15) and Remark 5.1 applied once to
fh we obtain

�hA�gh��≤ c5

∫
ps�x+ hu�K�u�{Pf2h�x+ hu��1/2 du

≤ c6

{ ∫
K�u�Pfh�x+ hu�du

}1/2


(5.16)

Let δ = limh↓0 fh and ηh = fh − δ. Then (cf. Remark 5.1) the functions δ and
ηh are bounded and

lim
h↓0

ηh ↓ 0� δ = Gs� ν1�x� ≤ G1�x��(5.17)

where G =∑∞
n=0P

n. By (5.16) and B2 we get

�hA�gh��2 ≤ c7

∫
�0

{
Pηh�x+ hu� +PG�x+ hu� �x��}du�

and we need to show that the integral in the above expression is o�1�. We first
prove ∫

�0

PG�x+ hu� �x��du = 0�(5.18)
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which follows from B3 since πs��x�� = 0 and for fixed n,

πs��x�� ≥
∫
�x�h�

πs�dz�Pn�z� �x��

=
∫
�x�h�

ps�z�Pn�z� �x��dz

=
∫
�0

ps�x+ hu�Pn�x+ hu� �x��hdu

≥ h inf
y∈�x�h�

ps�y�
∫
�0

Pn�x+ hu� �x��du

Let ε > 0 and �h = �ηh > ε�. Then by B4, lim suph↓0 supy∈�x�h�P�y��h� = 0,
which gives �hA�gh��2 ≤ c8ε + o�1� where c8 is independent of ε. Hence
�hA�gh�� = o�1�.
If ξ0�u�w� = ξ�w� −Pξ�u�, then ξ̃0 ≡ 0, Ĩξ0⊗ξ0

1�x� = Vξ�x� and ξ̃0�x� = 0.
Thus (5.8) is true. ✷

In the second lemma we obtain bounds of higher order moments of the type
required in A3.

Lemma 5.2. Let gh be given by �54� with gh ∈ �2. Assume that B2 holds,
and that Iξ0

1 is locally continuous and that the invariant measure πs has

a locally bounded density ps. Let m ≥ 1 and assume that Ĩ�ξ0�2m1 is locally
bounded. Then corresponding to A3 in Section 4,

EU2m��gh�� ≤ dmh−2m+1

for some dm > 0. Moreover, hσ̄2�gh� = O�1�.

Proof. From definitions we have

EU2m��gh�� = Eν

{
τ∑

j=0
�gh��Xj�Xj+1�

}2m

= Eν

{ ∞∑
j=0

{
j−1∏
i=0
1�Yi = 0�

}
�gh��Xj�Xj+1�

}2m

= Eν

{ ∞∑
j=0

Bj�gh��Xj�Xj+1�
}2m

with Bj =
∏j−1

i=0 1�Yi = 0�. As in the proof of Lemma 3.3, let =2m�k = �l =
�l1�    � lk� ∈ � k

+ �
∑

li = 2m� for k ≥ 1. By B2 and since ξ̃0 is locally bounded
we have that EU��gh�� = πsKx�h�ξ̃0� is finite, and consequently,

∞∑
j=0

Bj�gh��Xj�Xj+1� <∞ a.s.
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Hence we can use the technique of Lemma 3.3 with n = ∞ to obtain

EU2m��gh�� =
2m∑
k=1

∑
l∈=2m�k

�2m�!
l1! · · · lk!

EνJk� l�(5.19)

where, using the compressed notation js
def= i1 + · · · + is, s = 1�    � k,

Jk� l =
∞∑

i1=0

∞∑
i2=1

· · ·
∞∑

ik=1
Bj1

· · ·Bjk
�gh�l1�Xj1

�Xj1+1� · · · �gh�lk�Xjk
�Xjk+1�

A tedious calculation, the details of which can be found in Karlsen and
Tjøstheim [(1998), pages 52 and 53], shows that

EνJk� l = νGs� νǏ�gh�l1Gs� νǏ�gh�l2 · · ·Gs� νǏ�gh�lk−1Gs� νĨ�gh�lk1�

where the kernel Ǐ is defined by

Ǐf�x�dy� = �P− s⊗ ν��x�dy�f�x�y�

Because of (5.19) and the fact that Ǐf ≤ Ĩf when f ≥ 0, it suffices to consider
the expression

νGs� νĨ�gh�l1Gs� νĨ�gh�l2 · · ·Gs� νĨ�gh�lk−1Gs� νĨ�gh�lk1�

where k ≤ 2m, li ≥ 1 and
∑

li = 2m. Now we use the simple inequality
�ξ0�li ≤ 1 + �ξ0�2m, when li ≤ 2m, B2 and the local boundedness of Ĩ�ξ0�2m1 to
obtain

Ĩ�gh�li1 ≤K
li
x�h�1+ Ĩ�ξ0�2m1� ≤ c1K

li
x�h ≤ c2h

−li1�x


By Remark 5.1 Gs� ν1�x
is bounded, so that Gs� νĨ�gh�li ≤ c3h

−li1. Hence, using
the above inequalities successively for i = k� k − 1�    �2, it follows from B2
and the fact that νGs� ν = πs,

EνJk�l ≤ c4h
−∑k

i=2 liπsK
l1
x�h ≤ c5h

−2m+v�

where v = 1, since πs has a locally bounded density ps and l1 ≥ 1. The proof
of the statement concerning hσ̄2��gh�� is similar, albeit simpler. ✷

We are now in a position to state and prove the main results in this section.
The first two theorems give conditions for consistency, and the last two theo-
rems deal with weak convergence.

Theorem 5.1. Assume that the tail condition �316� and B1–B3 hold. Let
ε > 0 and assume that h−1n ! nβ/2−ε or hn = qTC�n�, where q−1n ! n1/2−ε. Then
p̂C defined in �51� is a strongly consistent estimator of pC at the point x.
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Proof. We have p̂C�x� = T−1C �n�Sn�gh� with gh=Kx�h. From Lemma 5.1,
µ�gh� = ps�x� + o�1�. The case where h−1n ! nβ/2−ε will be treated first. The
stochastic bandwidth case then follows easily as will be seen at the end of the
proof.
Let �hn� be fixed. Without loss of generality we may assume hn = qu0�n�,

where u0�n� = �nβ−ε�, and where q−1n ! n1/2−ε. We use the representation

Sn�gh� = U0�gh� +
T�n�∑
k=1

Uk�gh� +U�n��gh�

for each n. By Lemma 3.4,T�n� ( u0�n� a.s. Let t = T�n�, l = u0�n�, p = �t/l�,
r = t− lp+ 1 so that t = lp+ r− 1, 1 ≤ r ≤ l. Then∣∣∣T−1�n�T�n�∑

k=1
Uk�ghn

� − µ�ghn
�
∣∣∣ = ∣∣∣ 1

lp+ r− 1
lp+r−1∑
k=1

Uk�gql
� − µ�gql

�
∣∣∣

def= �Sl�p� r − µ�gql
��

By the Borel–Cantelli lemma we have �T−1�n�∑T�n�
k=1 Uk�ghn

�−µ�ghn
��→0 a.s.

if we can show that for some m,

∞∑
l=1

∞∑
p=1

l∑
r=1

E
{
Sl�p� r − µ�gql

�}2m <∞(5.20)

By Lemma 5.2 and the independence properties of �Uk�gql
�� k ≥ 1�,

E
{
Sl�p� r − µ�gql

�}2m ≤ c1�lp+ r− 1�−mE{
Uk�gql

� − µ�gql
�}2m

≤ c2�lp�−mq
−�2m−1�
l ≤ p−ml−�m−1−�

1
2−ε��2m−1��l−1

and the assertion in (5.20) follows because m− 1− � 12 − ε��2m− 1� = ε�2m−
1� + 1

2 − 1 > 1 for m large enough. Since T�n� → ∞ a.s. as n → ∞, and
TC�n�/T�n� → πs1C a.s., it follows from the definition of pC�x� that

T−1C �n�
T�n�∑
k=1

Uk�ghn
� → pC�x� a.s.

It remains to consider the edge terms U0�gh� and U�n��gh� of Sn�gh�. First,
note that the above arguments also show that T−1�n�∑T�n�+1

k=1 Uk�ghn
� →

ps�x� a.s. Hence we can neglectU�n��ghn
�. Since gh�u�w� =Kx�h�u�, it follows

from B2 that gh�u�w� ≤ h−1g0�u� with g0�u� def= �supK�1�x
�u�. Then

T−1�n�U0�ghn
� ≤ h−1n T−1�n�U�g0�

But U�g0� = ∑τ
j=0 g0�Xj� and Ey�U�g0�� = Gs� νg0�y�. It follows (cf.

Remark 5.1) that Gs� νg0 is bounded and hence Py�U�g0� < ∞� ≡ 1, and
therefore �hn T�n��−1U�g0� = o�1� a.s., and the first part of the proof is com-
plete. If hn = qTC�n� with q−1n ! n1/2−ε, and neglecting the edge terms as
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above, it is enough to show

T−1C �n�
TC�n�∑
k=1

Uk�gqTC�n�
� → pC�x� a.s.

But since TC�n� → ∞ a.s., this convergence is implied by n−1
∑n

k=1Uk�gqn
� →

∞ a.s. pC�x�, and the latter is proved by the Borel–Cantelli lemma in complete
analogy with the first part of the proof. ✷

Remark 5.2. It will be noted that only the lower bound of Lemma 3.4 is
required, so that in fact only the weakened form of the tail condition stated
in that lemma is needed. This is the case for the next theorem as well, where
we prove strong consistency of the conditional mean estimator P̂ξ�x� defined
in (5.2).

Theorem 5.2. Assume that the weakened version �334� of the tail condi-
tion �316� and B1–B3 hold. In addition assume that Pξ and P�ξ� are locally
continuous, P�ξ�2m is locally bounded for some integer m�h−1n ! nβδm−ε with
δm = �m− 2�/�2m− 1� for some ε > 0, or h−1n = qTc�n� with q−1n ! nδm−ε. Then

P̂ξ is a strongly consistent estimator of Pξ at the point x.

Proof. First note that δm = �m − 2�/�2m − 1� ≤ 1
2 . Hence, h

−1
n ! nβδm−ε

implies h−1n ! nβ/2−ε, and it follows from Theorem 5.1 that the denominator of

P̂ξ�x� =
(
T−1C �n�

n∑
t=0

Kx�h�Xt�
)−1(

T−1C �n�
n∑

t=0
ξ�Xt+1�Kx�h�Xt�

)
(5.21)

converges almost surely to pC�x�. For the numerator we can again use the
proof of Theorem 5.1 (for one dependence in this case), the only change being
that the convergence in Lemma 5.1 is to pC�x�Pξ�x� and that in the Borel–
Cantelli argument

∑∞
l=1 l

−�m−1−� 12−ε��2m−1�� is now replaced by
∞∑
l=1

l−�m−1−�δm−ε��2m−1�� <∞�

the finiteness of the sum being true since m − 1 − δm�2m − 1� ≥ 1 and
ε�2m− 1� > 0. ✷

In the expression (5.24) of the following theorem we obtain a β-null recur-
rent generalization of the weak convergence theorem for the kernel density
estimator.

Theorem 5.3. Assume that the tail condition �316� holds or that the chain
is positive recurrent. Let C be a small set. If B2 and B3 hold and h−1n ! nβ−ε

for some ε > 0, then

T
1/2
C �n�π1/2s �C�σ̄−1�Kx�hn

�
×

{
p̂C�x� − pC�x� −

(
π−1s �C�µ�Kx�hn

� − pC�x�
)} d

−→
n
� �0�1��(5.22)
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where

π−1s �C�hσ̄2�Kx�h�=
∫
pC�x+ hu�K2�u�du

+ 2
∫
K�u�PGs� νKx�h�x+ hu� + o�1�

(5.23)

If in addition B4 holds, then

T
1/2
C �n�h1/2n

{
p̂C�x� − pC�x� −

(
π−1s �C�µ�Kx�hn

� − pC�x�
)}

d
−→
n
�

(
0� pC�x�

∫
K2�u�du

)


(5.24)

Moreover, if pC has a locally continuous second-order derivative and if B1
holds, then the bias term π−1s �C�µ�Kx�hn

�−pC�x� is negligible if h−1n ( nβ/5+ε.

Proof. We first prove (5.22) by using Theorem 4.2, and then establish the
more explicit expression (5.24).
We have to verify the conditions of Theorem 4.2 with gh =Kx�h. The main

tools for doing this are Lemmas 5.2 and 5.1. In Lemma 5.2 the local bound-
edness assumptions for ps and ξ0 follow from B3 and the fact that ξ0 ≡ 1.
Moreover, since gh ≥ 0, conditions A0 and A3 (with m = 2 and v = 1) of
Theorem 4.2 hold. Condition A1 follows from the fact that �gh� = gh and that
due to independence of �Uk�gh�� k ≥ 1� in the present case σ̄�gh� = σ�gh�.
Since by definition A�gh� ≥ 0 in the formulation of Lemma 5.1, it follows

from that lemma that lim inf hσ̄2�gh� > 0, and hence A2(ii) and A2(iii) hold.
The strengthening of A2(i) required in Theorem 4.2 follows from

µ��gh�� = µ�gh� = πs�Kx�h� ≤ sup
u∈�x

�ps�u��
∫
K�u�du <∞

Furthermore, condition A4 (v = 1) follows directly from our assumption h−1n !
nβ−ε on the bandwidth. It remains to prove A5 concerning the edge term
U0��gh��. We use the same reasoning as in the proof of Theorem 5.1; that is,

it follows from B2 that gh ≤ h−1g0 with g0
def= �supK�1�x

�u� and Py�U�g� <
∞� ≡ 1, and A5 now easily follows from this and A4 with v = 1.
The conditions of Theorem 4.2 are then fulfilled and (5.22) is true.
The expression for σ̄2�Kx�h� essentially is a consequence of a simplification

of (5.11) in the proof of Lemma 5.1.
If also B4 holds, by Lemma 5.1,

µ�gh� = ps�x� + o�1� and hσ̄2�gh� = ps�x�
∫
K2�u�du+ o�1�
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This implies (5.24). It remains to consider the bias term. By B1 and the local
continuity of the second-order derivative of pC,

π−1s �C�µ�Kx�h� − pC�x� =
∫
�pC�x+ hu� − pC�x��K�u�du

=
{

d

dx
pC�x�h

} ∫
uK�u�du+O�h2�

= O�h2��
and the desired conclusion is a direct consequence of Theorem 4.2. ✷

A weak limit theorem for the conditional mean estimator of (5.2) can be
obtained along the same lines, but requires some more work.

Theorem 5.4. Assume that the tail condition �316� holds or that the chain
is positive recurrent. Moreover, assume that B1–B3 hold, that the conditional
mean Pξ is locally continuous, the conditional variance Vξ defined by �53� is
locally continuous and positive and P�ξ�2m is locally bounded for some m ≥ 2.
If h−1n ! nβ−ε for some ε > 0, then{

hn

n∑
t=0

Kx�hn
�Xt�

}1/2{
P̂ξ�x� −Pξ�x� − ahn

}
d
−→
n
�

(
0�Vξ�x�

∫
K2�u�du

)
�

(5.25)

where ah
def= πs�ψx ·Kx�h�/πsKx�h, with ψx�y� def= Pξ�y� − Pξ�x�, is the bias

term. If ps and Pξ have locally continuous second-order derivatives, then the
bias term is negligible if h−1n ( nβ/5+ε.

Proof. We start by deriving an expression for P̂ξ�x� −Pξ�x�. Note that
ξ�Xt+1� = �ξ�Xt+1� −Pξ�Xt�� + �Pξ�Xt� −Pξ�x�� +Pξ�x��

ξ�Xt+1�Kx�h�Xt� = gh�Xt�Xt+1� + ψx�Xt�Kx�h�Xt� +Pξ�x�Kx�h�Xt��
where gh�u�w� = �ξ�w� −Pξ�u��Kx�h�u�. This gives, by (5.2),

P̂ξ�x� −Pξ�x� − ah = S−1n �Kx�h�
{
Sn�gh� +Sn�ψx ·Kx�h�

}− ah

= S−1n �Kx�h�
{
Sn�gh� +Sn�fh�

}
�

where fh = �ψx − ah� ·Kx�h. We note that µ�gh� = µ�fh� = 0. Denote the
left-hand side of (5.25) by =n�hn

. Then

=n�h = =1n�h + =2n�h�(5.26)

where

=1n�h=�p̂C�x��−1/2T−1/2C �n�h1/2Sn�gh��
=2n�h=�p̂C�x��−1/2T−1/2C �n�h1/2Sn�fh��

(5.27)
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and where C is a purely auxiliary small set. The conditions are fulfilled
for the second part of Theorem 5.3, and thus (5.22) and (5.23) imply that
p̂C�x� → pC�x� in probability. The next step consists in showing that =2n�hn

in (5.26) can be neglected in the sense of Definition 3.3. We first establish that
lim suph↓0 hEU2��fh�� = 0, and then we use this to prove negligibility.
Since Pξ is locally continuous, it follows that ah = o�1� and

sup
y∈�x�h�

�Pξ�y� −Pξ�x� − ah� = o�1�(5.28)

Moreover, fh and Ĩfh⊗fh
are locally continuous and small functions by B2(ii),

and πsfh = 0. By a simplified version of (5.9) [g�x�y� = g�x�, which implies
gν = g] in the proof of Lemma 5.1,

EU2��fh�� ≤ πs�fh�2 + 2πsI�fh�PGs� ν�fh� + 2µ2��fh��
and by local continuity of Pξ, B2(ii), B3 and the Lebesgue dominated conver-
gence theorem,

µ��fh�� =
∫
ps�x+ hu��Pξ�x+ hu� −Pξ�x��K�u�du+ o�1� = o�1�

By (5.28) and B2�ii�,
sup
z

Gs� νh�fh��z� ≤ sup
z

Gs� ν�z� �x�h�� ≤ c2�

and it follows that

hπsI�fh�PGs� ν�fh�≤ c3µ��fh�� = o�1��
hπs�fh�2≤ c4�supz h�fh�z���πs�fh� ≤ c5µ��fh�� = o�1�

(5.29)

Hence we have that lim suph↓0EU2��fh�� = 0.
To show that =2n�hn

is negligible it is sufficient to show that =3n�hn
= T

1/2
C �n�

h
1/2
n Sn�fhn

� is negligible. Consider therefore =̃3n�h = u−1/2�n�h1/2S�nt��fh�,
where u is defined in (3.27). Since h−1n ! nβ−ε, we have h−1n = o�u�n��.
Define qn = hu−1�n� so that hn = qu�n�. Neglecting for the moment the edge

terms of =̃3n�hn
, and reasoning as in Part 1 of the proof of Theorem 4.1, analo-

gously to (4.8) we consider

Q̃3
n�t� = �nq−1n �−1/2

�nt�∑
k=1

Uk�fqn
�

It is enough to prove that each of the components of Q̃3
n is negligible. Hence,

without loss of generality, we can assume that fh is real valued. Then

E
{
Q̃3

n�t�
}2
≤ c6n

−1qn�nt�EU2��fqn
�� ≤ c7tqnEU2��fqn

��

and hence, since lim suph↓0 hEU2��fh�� = 0, we have for any finiteM, supt≤M
E�Q̃3

n�t��2 = o�1�.
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Since �Uk�k ≥ 1� is a sequence of independent random variables, we can
conclude [cf. Pollard (1984), page 104] that �Q̃3

n� is negligible.
The edge effects are tackled in the same way as in Part 2 of the proof of

Theorem 4.1. Hence it is sufficient to look at

Z̃3
n�h�t� = u−1/2�n�

T��nt��∑
k=1

h1/2Uk�fh�

since =̃3n�hn
�t� is equivalent to Z̃3

n�hn
�t�. But

Z̃3
n�hn

�t� = Q̃3
u�n��Tn�t��

and Q̃3
u�n� ◦Tn is easily shown to be negligible from the negligibility of �Q̃3

n�.
It follows from Lemmas 3.4 and 3.5 that

T
−1/2
C �n�h1/2n Sn�fhn

� = oP�1�(5.30)

Hence by (5.26), (5.27) and (5.30),

=n�hn
= =1n�hn

+ oP�1�
The next part of the proof consists in verifying that the conditions of Corollary
4.2 are fulfilled for =1n�hn

. It is patterned after the proof of Theorem 5.3, and
Lemmas 5.1 and 5.2 are the main tools.
In the present case we have that gh�u�w� = ξ0�u�w�Kx�h�u� with ξ0�u�w�

= ξ�w� −Pξ�u�. By Jensen’s inequality �Pξ�2m ≤ P�ξ�2m, which gives that
Ĩ�ξ0�2m1�x� =

∫
P�x�dy��ξ0�x� y��2m

≤
∫
P�x�dy�

{
�ξ�y�� + �Pξ�x��

}2m
≤ 22m−1

{
P�ξ�2m�x� + �Pξ�2m�x�

}
≤ 22mP�ξ�2m�x�

Hence the conditions of Lemma 5.2 are satisfied since the right-hand side
of the above inequality is by assumption locally bounded. Thus �gh� satisfies
A0 and A3 (m = 2� v = 1). Moreover, h1/2µ��gh�� = o�1�, so that �gh� satisfies
the strengthening of A2(i) required in Corollary 4.2.
Likewise, since Pξ, P�ξ ⊗ ξ� are continuous at the point x and ξ̃0 = Pξ −

Pξ ≡ 0, the conditions in Lemma 5.1 are fulfilled. In particular (5.8) holds
and

)L�gh� = pC�x�Vξ�x�
∫
K2�u�du+ o�1�(5.31)

Since A��gh�� ≥ 0 in the formulation of Lemma 5.1, we have that A2(ii) and
A2(iii) hold for �gh�, and by (5.31) it follows that (4.16) and (4.17) are fulfilled
with L0 = pC�x�Vξ�x� ∫ K2�u�du. The remaining conditions A1, A4 and A5
of Corollary 4.2 are verified in exactly the same manner as in the proof of
Theorem 5.3, and (5.25) follows.
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The proof is concluded by considering the bias term. This term is negligi-
ble if {

n∑
t=0

Kx�hn
�Xt�

}1/2
h1/2n

∣∣∣∣πsψx ·Kx�hn

πsKx�hn

∣∣∣∣ = oP�1�

Introducing the set C as in (5.27); by B3 this is equivalent with

T
1/2
C �n�h1/2n

∣∣∣πsψx ·Kx�hn

πsKx�hn

∣∣∣ = oP�1�

Assume that h−1n ( nβ/5+ε. Then from Lemma 3.4 and Lemma 3.5, h5nTC�n� =
oP�1� as Hence it is enough to verify that

h−2
∣∣∣πsψx ·Kx�h

πsKx�h

∣∣∣ = O�1�

Assume without loss of generality that d = 1. Then by a Taylor expansion we
can write

ps�x+ hu� = ps�x� + hR1�x�hu�h�� sup
h≤1

sup
y∈�0

�R1�x�y�h�� <∞

and

Pξ�x+ hu� = Pξ�x� + h
d

dx
Pξ�x�u+ h2R2�x�hu�h��

sup
h≤1

sup
y∈�0

�R2�x�y�h�� <∞

This gives

πsψxKx�h =
∫
πs�dy��Pξ�y� −Pξ�x��Kx�h�y�

=
∫
ps�x+ hu��Pξ�x+ hu� −Pξ�x��K�u�du

= ps�x�
∫
�Pξ�x+ hu� −Pξ�x��K�u�du

+
∫
huR1�x�hu�h��Pξ�x+ hu� −Pξ�x��K�u�du

= ps�x�h
d

dx
Pξ�x�

∫
uK�u�du+O�h2�

+h2
d

dx
Pξ�x�

∫
u2R1�x�hu�h�K�u�du+O�h3�

= O�h2�
Hence the theorem is proved. ✷

6. An example. An important task is to find good examples of β-null
recurrent processes. Some such examples are given in Myklebust, Karlsen and
Tjøstheim (2001). But we hasten to add that this is really an open problem,
and it is difficult to apply the drift criterion supplied in the book of Meyn and
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Tweedie (1994) since we need to verify the tail condition (3.16) in addition.
The present paper is directed towards deriving asymptotic theory, and we
will therefore satisfy ourselves by providing a very simple example, that of a
random walk �Xt� t ≥ 0� where X0 = x0 and for t ≥ 1,

Xt =Xt−1 + et�(6.1)

where �et� t ≥ 0� is a series of zero-mean independent identically distributed
random variables. If �et� is Gaussian, say, it is well known that �Xt� is what
we have termed β-null recurrent with β = 1/2 and with Lebesgue measure
as an invariant measure. It should be noted that this instantly gives rise to
a whole class of β-null recurrent processes, since if �Xt� is β-null recurrent,
and if f is a one-to-one function, then Yt = f�Xt� is β-null recurrent with the
same β.
We will consider the problem of estimating the conditional quantity Pξ�x�

with ξ�Xt� = Xt, which means Pξ�x� = M�x� = E�Xt+1�Xt = x� = x in
the case of (6.1). We will examine the finite sample properties of the estima-
tor (5.2). A difficult and largely unresolved problem is that of choosing a proper
bandwidth. Theorem 5.4 only gives the allowable rate as n tends to infinity,
and these rates are based on the asymptotic situation, where, in the random
walk case, the observations are evenly scattered over the real line according to
Lebesgue measure. In practice, the data are unevenly distributed, and we have
found it useful to employ cross-validation, and to let the bandwidth depend on
x. In fact we typically let hn be proportional to TC�n�p̂C�x�1/5, where p̂C�x�
could be thought of as a locally estimated density according to Theorem 5.3.
We look briefly at two aspects of the estimation problem. In Figure 1 is

shown an estimate of M�x� with the corresponding scatter diagram for n =
500 observations and with �et� being standard normal. It is seen thatM�x� is
well estimated. Only a single realization is shown, but it is representative for
the quality of the estimate. In Figure 2 we turn to the finite sample approxi-
mation of the asymptotic standard normal distribution for the estimator{∫

K2�u�du
}−1/2{

hn

n∑
t=0

Kx�hn
�Xt�

}1/2{
M̂�x� − x

}
(6.2)

Fig. 1. Estimated conditional mean M̂�x�.
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Fig. 2. Finite sample approximation.

related to (5.25), using that Vξ�x� = 1 and assuming that the bias can be
neglected.
The quality of the sample approximation has to be judged using a multitude

of realizations. A problem not encountered in the stationary case is that the
simulated realizations may cover very different x-regions. (This is one reason
for only using one realization in Figure 1.) Hence, for a fixed x = x′, close
to the starting value X0 = 0, say, of each realization, some realizations may
have many observations in the neighborhood of x′, whereas other realizations
may have a few, or even no observations in the vicinity of x′ for the sample
size we are considering. This kind of behavior does not occur in the stationary
case, where the expected time until the process reaches x′ is always finite and
in practice small, when �x′� is small. This means that in the verification of
Theorem 5.4 we can either keep x fixed and wait until we have sufficiently
many observations close to x, the other realizations being discarded, or we can
choose a central realization-dependent value, for example the modal value of
the sample, for studying the normalized ratio (6.2).
In Figure 2 is shown the approximation to normality as a function of sample

size for the first procedure at the point x = 75. We have used 1000 realiza-
tions, and a particular realization is admitted into the evaluation as, respec-
tively, 100, 200, 300, 500 and 800 observations are accumulated in the interval
(5,10). Considering the modest sample sizes in the “relevant” region surround-
ing x and the approximations involved, the convergence towards normality is
quite satisfactory.
A much more extensive set of simulation experiments in the transfer func-

tion case is carried out in Karlsen, Myklebust and Tjøstheim (2001). These
experiments also involve larger sample sizes and the second procedure men-
tioned above.

APPENDIX

We denote by Dd�0�∞�, the space of all Rd-valued functions defined on R+
which have left limits and are right continuous (cadlag). We refer to Jacod and
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Shiryaev [(1987), pages 288–322] for a complete description of this space, and
the concept of weak convergence of stochastic processes with sample paths
therein.
If �ξn� is a sequence of stochastic processes with values in Dd�0�∞� then

ξn

�−→ ξ if the corresponding sequence of induced measures converges
weakly to Pξ, where Pξ�·� = P�ξ ∈ ·�. We have finite-dimensional conver-
gence if for each finite set F ⊂ �0�∞�, the vector sequence �ξn�t�� t ∈ F�
converges in distribution to the vector �ξ�t�� t ∈ F�. The sequence �ξn� is C-
tight if �ξn� is tight and all limits points of �Pn� charges only Cd�0�∞�, the
space of all continuous Rd-valued functions, that is, Pn�Cd�0�∞�� = 1 for all
n. In particular, if ξn converges weakly to a ξ, which has continuous sample
paths, then �ξn� is C-tight.
The inverse of a function f is denoted by f�−1�. For x ∈ D�0�∞� and x

increasing, we define x�−1��t� = inf�s� x�s� > t�. If x is strictly increasing,
then x�−1� is continuous and nondecreasing.
The following theorem is essentially due to Kashara (1984). A key factor in

this result is the fact that a Brownian motion B and an increasing process A
are independent.

Theorem A.1. For each n let �Bn�An� be a pair of stochastic processes
which are cadlag, where An is nonnegative and nondecreasing. Let B denote
a Brownian motion defined for t ∈ R+ and let A denote a strictly increasing
nonnegative process with independent increments, A�0� ≡ 0 and with no fixed

jumps. Assume that Bn

�−→B and An

�−→A. Then

�Bn�An�A
�−1�
n � � 3

−→
n
�B�A�A�−1���(A.1)

where B is independent of �A�A�−1�� and(
A
�−1�
n �Bn ◦A�−1�

n

)
� 2

−→
n

(
A�−1��B ◦A�−1�)(A.2)

For all ε > 0,(
A
�−1�
n �

Bn ◦A�−1�
n√

A
�−1�
n

ψε

(
A
�−1�
n

)) � 2

−→
n

(
A−1�

B ◦A�−1�
√
A�−1�

ψε�A�−1��
)
�(A.3)

where ψε�x� = ε−1/2x1/21�x ≤ ε�+1�x > ε�. If we let ψε ≡ 1 and put 0/0 equal
to 0, then still finite-dimensional convergence holds. In this case we have for
each fixed t that the limit vector is distributed as �A�−1��t��Z� where Z is a
standard normal variable independent of A�−1��t�.

Proof. By assumption �Bn� isC-tight and �An� is tight.Hence ��Bn�An��
is tight [cf. Jacod and Shiryaev (1987) Corollary 3.33, page 317]. If �B′�A′� is a
limit point for this sequence, then necessarily B′ d=B and A′ d=A. But since A
is strictly increasing, B′ and A′ are independent [cf. Kasahara (1984)]. Hence
�B′�A′� = �B�A�.
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The map given by a �→ a�−1� is continuous when a ∈ 	0
def=�x � x is strictly

increasing�. By the continuous mapping theorem we find that A
�−1�
n con-

verges weakly to A�−1� since A ∈ 	0. Now, ��A�−1�
n �An�� is tight since �A�−1�

n �
is C-tight and �An� is tight. Again by the same argument it follows that
��Bn�A

�−1�
n �An�� is tight which implies (A.1). Generally, the map �b� x� �→ b◦x

is continuous at all points where b is continuous and x is nonnegative. Again,
by the continuous mapping theorem we can conclude that (A.2) is true. The
reasoning is similar for (A.3) where the function ψε guards against a discon-
tinuity at zero. By Jacod and Shiryaev [(1987), Proposition 3.14, page 313] we
have that (A.3) implies finite-dimensional convergence when ψε is not present.
Let ξ�t� = B�A�−1��t��/

√
A�−1��t�. Since B�s�/√s ∼ Z for all s > 0, and since

B and A�−1� are independent, we have that ξ�t� ∼ Z for all t > 0. ✷
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