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CLUMP COUNTS IN A MOSAIC

By PETER HALL

Australian National University

A mosaic process is formed by centering independent and identically
distributed random shapes at the points of a Poisson process in k-dimen- -
sional space. Clusters of overlapping shapes are called clumps. This paper
provides approximations to the distribution of the number of clumps of a
specified order within a large region. The approximations cover two different
situations—‘‘moderate-intensity” mosaics, in which the covered proportion
of the region is neither very large nor very small; and “sparse” mosaics, in
which the covered proportion is quite small. Both these mosaic types can be
used to model observed phenomena, such as counts of bacterial colonies in a
petri dish or dust particles on a membrane filter.

1. Introduction. A mosaic process (Boolean model) is a completely spatially
random coverage process, in which independent and identically distributed
random sets are centred at points of a homogeneous Poisson process in R*. The
sets are permitted to overlap at will. Connected clusters of overlapping sets are
called clumps. Our aim in this paper is to describe second-order properties of
clump counts, using limit theory and approximate methods to overcome some of
the mathematical difficulties which prevent an exact description of clumping.

Even first-order properties of random clumping are hard to describe with
much precision. For example, there is no known exact formula for the expected
number of clumps per unit content of R*, even in simple cases such as the
distribution of fixed radius discs in the plane. Nevertheless, if we define the mean
number of clumps per unit area to equal the limit of the mean number per unit
area in a k-dimensional rectangular prism, as the side lengths of the prism
diverge in an arbitrary way, we may prove by extending an argument of
Grimmett (1976, 1981) (see also Kesten 1982, page 239ff) that the mean number
equals E{C'I(C > 0)}, where C is the content of the clump containing the
origin. Use of this formula is very restricted from a practical viewpoint, since we
cannot work out the expectation. Armitage (1949) and Irwin, Armitage, and
Davies (1949) have given approximate formulas in the case of certain fixed
shapes in two-dimensional sparse mosaics; Mack (1954, 1956) has provided an
upper bound to the mean number of clumps per unit content for convex shapes
in two and three dimensions; and Kellerer (1983) has given an exact formula for
the mean number of clumps minus voids in two dimension. First-order properties
are often related to the so-called principal formulas of integral geometry; see for
example Blaschke (1949, page 37), Santal6 (1953, Chapter 8; 1976, Chapters 7
and 15), and Miles (1974). Kendall and Moran (1963, Chapter 5), Roach (1968,
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Chapter 4), and Santalo (1976, Chapter 6) have reviewed most of the first-order
work on clumping.

Some of the difficulties connected with clumping arise because infinite clumps
can occur in many realistic circumstances; see Gilbert (1968) and Hall (1985).
This makes it difficult to define the centre of an arbitrary clump. The property
of infinite clumping, or continuum percolation, has important applications in the
physical sciences, and is being studied increasingly in the case of random-sized
shapes; see for example Kertész and Vicsez (1982), Gawlinski and Redner (1983),
and Phani and Dhar (1984).

Second-order properties seem to be even more elusive than first-order ones.
We shall not attempt to discuss exact properties of the distribution of clump
count about its mean. Instead, we shall examine clump count within large
regions, and provide approximations to the distribution by proving limit theo-
rems as the size of the region increases. There are two different mosaic types
which are of interest in this context: “moderate-intensity” mosaics, in which the
expected proportion of covered content remains roughly constant as the region
increases; and “sparse” mosaics, in which the proportion of covered content
decreases to zero. The opening paragraphs of Mack (1953) compare practical
applications of these two situations. Moderate-intensity mosaics can arise when
one is counting numbers of bacterial colonies, and sparse mosaics may be used to
model dust-particle counting experiments. Each is a variant of the same basic
stochastic model, which we now describe.

Let 2= {X,,X,,...} be a homogeneous Poisson point process with intensity
A in R%, and let S be a random subset of R*, where & > 1. For our purpose there
is no real loss of generality in taking S to be either a random closed set, or a
random open set; see Matheron (1975, pages 27 and 48) for definitions. This
ensures that scalar quantities such as ||S||, s(S), and rad(S), to be introduced
below, are well-defined random variables taking values on the extended real line.
Let S,, S,,... be independent copies of S, independent also of . For each § > 0
and i > 1, define

X;+8S;={X;+dx:x€S;}.

We shall study the mosaic €= %(8, A\) generated by overlapping random sets
X, + 8S;, i > 1. The process # will be called the Poisson process driving €, and
the sets S; will be termed random shapes, to help distinguish them from the
random sets X; + 8S;. The set X, + 8S; will be said to be centred at X,.

A moderate-intensity mosaic may be obtained by permitting 8 = §(A) to
converge to zero as A — oo, in such a manner that §*\ — p where 0 < p < c0.
Examining the mosaic pattern within a fixed region % for this process, is
virtually the same as taking both 6§ and A to be constant and viewing the
resulting mosaic within a growing region

aZ= {ax:X € Z},

as a — o0. A sparse mosaic may be obtained by varying § and A such that
8%\ — 0. If in addition § > 0 and A — oo, and we examine % within a fixed
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region %, then we are effectively viewing within a growing region a% a mosaic
in which 8 is fixed and Poisson intensity decreases to zero.

It may be proved that under mild regularity conditions on the distribution of
S, infinite clumps fail to occur if the mosaic is sparse enough; see Hall (1985).
From that point of view at least, counting problems are easier for sparse than for
moderate-intensity mosaics. In the moderate-intensity case we shall .confine
ourselves to counting singleton clumps (isolated sets). Our techniques extend to
clumps of any fixed finite order, but calculation of the large-region variance is
very tedious for clumps of order 2 or more. In many applications of mosaic
process theory, overlapping sets are considered to “interact” in some sense.
Thus, singleton clumps represent the inert part of the mosaic, and are important
in their own right.

We shall count clumps of arbitrary order in sparse mosaics. The moderate-
intensity case will be treated in Section 2, and sparse mosaics in Section 3. All
proofs will be deferred to Section 4.

We conclude this section by introducing necessary notation. The set 2 C R*
will always be assumed Riemann measurable (i.e., to have a Riemann integrable
indicator function), to be bounded, and to have strictly positive [£] content.
Given a Lebesgue measurable set ¥ C R*, define ||.#|| to be the [%] Lebesgue
measure of % and let

5(&) = inf{||7|: 7 is a sphere and ¥ I }.

The “smallest sphere containing ¥ ” is defined to be the closed sphere T(&) for
which || 7(£)|| = §(&). The radius of &, rad (%), is the radius of 7 (.%). When
S is a random set, §(S) and rad(S) are random variables.

If rad(S) < oo with probability 1 then we may always choose a proper
random vector Y such that the sphere 7 (Y + S), of radius rad(S), is centred at
the origin. Suppose Y; + S;, i > 1, are independent copies of Y + S, independent
also of #. Then the mosaic generated by sets X; + Y, + S;, i > 1, has the same
properties as that generated by sets X, + S;, i > 1. (PRooF: Conditional on
S,, S,,..., the point process {X, + Y, X, + Y,,...} is homogeneous Poisson
with intensity A.) For this reason there is no loss of generality in assuming that
S has the property

rad(S) = sup{|X|: x € S}.

On several occasions during our work we shall require the notion of an
arbitrary set in the mosaic generated by sets X, + S;, i > 1. One way of coping
with arbitrariness is to use the concept of Palm measure; see, e.g., Papangelou
(1974). Since our coverage process is completely spatially random and homoge-
neous, the following simpler procedure will give the same result. Let £ =
{Y,,Y,,...} be a homogeneous Poisson point process with intensity A in R*, and
let S;, S,,... be independent copies of the random set S, independent also of Z.
Fix some point x € R*, and define Z, = x and Z; = Y,_, for i > 2. Then

P =20 {x}={2,,Z,,...}

is a Poisson process “conditional on some arbitrary point being sited at x.” The
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properties of Z, + S, in the coverage process ¥’ generated by Z, + S,, i > 1, are
defined to be those of an arbitrary set in the mosaic ¥ generated by X, + S,
¢ > 1. In particular, the probability P(X, + S, isolated) appearing in formulas
(2.1) and (2.2) should be interpreted in this way. When in Section 3 we speak of
the event that an arbitrary random set is part of a clump of order n, we are
really referring to the set Z, + S, just defined. Note that ¥’ is a mosaic
“conditional on some arbitrary set being centred at x.”

We shall also require the concept of two arbitrary sets centred within a given
region %. Consider the mosaic % driven by Poisson process #. Let M denote the
number of points of 2 within a given subset # of R*. Conditional on M > 1,
call the M points X#,...,X}%,, numbered in completely random order, and let
X* + S* denote the random set centred at X*. We define the probability

p = P(X, + S,,X, + S, both isolated | X, X, € #)
appearing in (2.2), to be
p = P(X¥ + Sy, X% + Sy both isolated| M > 2).

2. Moderate-intensity mosaic. We begin by considering the mosaic gener-
ated by sets X; + S;, i > 1. A set X; + S; will be called isolated if it has empty
intersection with all other random sets. Let N denote the number of isolated
random sets centred within the region %. Since expectation is a linear operator,

(2.1) E(N) = M| 2| P(X, + 8, isolated),

where P(X; + S, isolated) denotes the probability that an arbitrary random set
is isolated. One way of computing the variance of N is to consider the driving
Poisson process as the limit of uniform distributions. Given a very large region
&, containing %, distribute n points X,,...,X, independently and uniformly
within «7,. Let S,,..., S, be independent and identically distributed random
shapes, and let N, equal the number of sets X; + S, (1 <i < n) which are
isolated and centred within %£. Then

N,= Y I(X; + S, isolated and X; € %),
i=1
where I( E) denotes the indicator function of an event E. Thus,
E(N?) = nP(X, + S, isolated and X, € %)

+(n%-n)P(X, + S,,X, + S, both isolated; X, X, € %)

n
= ||Z||——P(X, + S, isolated|X, € #
[

R v )2

X P(X, + S,,X, + S, both isolated |X,,X, € #).

Letting n — o0 and &/, increase in such a manner that n/||.%,|| = A, we deduce



428 P. HALL

a formula for E(N?). Thus,
var(N) = A||2|| P(X, + S, isolated)
(2.2) + (A2 {P(X, + S, X, + S, isolated X,, X, € %)
—P(X, + S, isolated)”}.

Now we turn to our mathematical model for a moderate-intensity mosaic,
generated by random sets X; + 8S;. The driving Poisson process has intensity A,
and 8 = 8§(A) = 0 as A - o in such a manner that §*A - p (0 < p < ). As a
prelude to describing the limiting behaviour of isolated clump count, we intro-
duce the mosaic %, in which the driving Poisson process has intensity p and all
shapes are distributed as S (not 8S). Let @ be the probability measure associ-
ated with %,, and let S® and S® be two independent copies of S, independent
also of %,. We shall say that S is isolated if it intersects no shape in %, and
that x + S® and S® are both isolated if (x + S®) N S® = @ and neither set
intersects any shape in %,. The following integrals both are relevant to our
formula for asymptotic variance of N:

I = f {Q(x + S, 8? both isolated) ~ Q(S" isolated)’} dx
R

and

(2.3) I,= /';kQ{(x +8SM) NS % &) dx.

(Note that the integrand of I, could equally have been written
P{(x+SM)NnS® =+ @})

THEOREM 2.1. If E{5(S)} < oo then I, is finite, and if E{3(S)*} < o then I,
converges absolutely.

We are now in a position to describe asymptotic properties of isolated clump
count.

THEOREM 2.2. Assume that § - 0 as A — oo, in such a manner that
8*\ — p where 0 < p < 0. Then
(2.4) (M|12]) 'E(N) — Q(S™ isolated ).
If in addition E{5(S)?} < oo then
(AN2]) " 'var(N) — 2 = Q(SV isolated ) + pI, + 4pQ(S" isolated )
(2.5) :
X f kQ{(x +8M) N S® + 7; 8P isolated } dx
R
and ’
(2.6) {N—E(N)}/(\IZI)"* — N(0, *)

in distribution.
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The probability @(S" isolated), which occurs repeatedly in formulas (2.4) and
(2.5), is perhaps most easily calculated in the case where S is a uniformly
oriented (i.e., isotropic) convex set. For example, in that situation it may be
deduced from the work of Mack (1954), for example, that for the case of £ = 2
dimensions,

QS isolated) = e~ [exp{ ~p(IISIl, + (27) B3I )},

where a = E(]|S||;) denotes the mean area of S, and B8 = E(||dS||,) equals the
mean perimeter of S.

Calculation of the integrals in the formula for k2 is more complicated. We
shall treat only the case where shapes are fixed spheres of radius r, centred
(without loss of generality) at the origin. Let v, and s, denote, respectively, the
[%£] content and [k — 1] surface content of the [ %] unit sphere. In fact, s, = kv,
= 27%/2 /T(k/2). Then for any k > 1,

Q(S™ isolated) = exp{ —p(2r)kvk},
RQ{(x+SM)NS®+ 3;8Pisolated} = Q{(x + SV) N S® + z}
X Q(SV isolated),
1 if |x| < 2r
+SM)NSB+ @z ={ ’
Q{(x ) } 0 otherwise,
and
0 if |x| <2r,
Q(S™ isolated)2exp{p(2r)kB(|x|/4r)}
if 2r < |x| < 4r,

Q(SW isolated)® if |x| > 4r,

Q(x + 8™, S both isolated) =

where

1 k).
(k=1)/2 -z ook Dy2 .
B(x) = 2m {I‘(2+2)} fx(l - ¥%) dy if0<x<1,

0 otherwise,

denotes the content of the lens of intersection of two unit [£] spheres whose
centres are distant 2x apart. Combining these results we see that

k2 = exp{ —p(2r)kvk} + p(4r)kskexp{ —2p(2r)kvk}
></;1/2xk‘1[exp{p(2r)kB(x)} - 1] dx

+3p(2r)kukexp{ —2p(2r)kvk}.

The integral here may be calculated numerically, given values of &, p, and r.

3. Sparse mosaic. In this section it is notationally convenient to assume
that the shape S is connected with probability one. In that case we shall say that
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a set X, + S; is part of a clump of order n if there exist sets X; + S;,...,X; |
+ S, , such that the set

n—1
X;+S)uv 1U (X;+8;,)
=1
is connected and has empty intersection with each set X, + S, whose index
does not appear in the collection {i, j,,..., j,_;}. Thus, a clump of order n
cannot be part of a clump of order n + 1. (In this respect our definition of an
nth order clump is different from that of Roach (1968).) Let p(n) be the
probability that an arbitrary random set is part of a clump of order n.
Our first result describes asymptotic properties of p(n). By way of notation,
let S,, S,,S;,... be independent and identically distributed copies of S, and

define

n—1
f(XyeesX,_y) = P{the set S, U U (xj + SJ) is connected}.

J=1

THEOREM 3.1. Assume n > 2 and E{5(S)"} < 0. Suppose & and X vary in
such a manner that p = 8*\ — 0. Then

”n—l o
1) p(w) = s [ [ kg ) o dxy+ o(u )
and
(3.2) S p(i) = o(p™)

i=n+1

as p — 0. The integral on the right-hand side of (3.1) is finite.

The case n = 1, not covered by Theorem 3.1, is very easy, since it may be
proved that if E{5(S)*"'*} < c then p(1) — 1 and

0
(3.3) 2 p(n)=1-p(1) > 0.
n=2
The equality in (3.3) follows from the fact that if E{5(S)?"'/*¥} < oo then for all
sufficiently small 7, the probability of an arbitrary set being part of an infinite
clump equals zero; see Hall (1985).
Our next task is to count nth-order clumps. If

c=U (le + S,l)
=1

is a clump of order n, then following Mack (1954, 1956) we define the right-hand
centre (r.h.c.) of C to be that vector out of X ;,..., X whose first coordinate is
greatest. Let N(n) equal the number of nth-order clumps whose r.h.c.’s lie
within £. (In this notation, the quantity N defined in Section 2 is N(1).) Since
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expectation is a linear operator then
(3.4) E{N(n)} = N|2|n""p(n).

Suppose A = o0, and 8§ = §(A) — 0 so quickly that n(A) = 8%*\ — 0. Our thesis
is that in this sparse mosaic, N(n) is asymptotically Poisson-distributed. In
some forms this Poisson approximation is really a normal approximation, since
the Poisson mean is very large. Once again, the case n = 1 is most easily tackled
separately, and we treat it first.

THEOREM 3.2. Assume E{5(S)?} < oo. Suppose 8 and M\ vary togeth-
er such that A\ > o and n = 8%\ - 0. Then (MA|2|) 'E{NQ)} - 1,
(NI 2|)~ " var{N(1)} - 1 and

{N(1) - ENQ1)}

T,

in distribution as A > oo.

Our calculations suggest that when n > 2, the moment condition
E{5(S)*"} < oo is sufficient for a limit theorem for N(n). However, the proof is
dramatically shortened if we assume that the shape S is bounded with probabil-
ity 1, and so we shall content ourselves with that case. Thus, we suppose that
there exists ¢ > 0 such that

(3.5) P(x| <cforallx € S) = 1.
THEOREM 3.3. Assume n > 2 and (3.5) holds. Suppose 8 and A\ vary

together such that A > oo and n=8*A > 0. If \y" ! > a < o as A > oo,
then N(n) is asymptotically Poisson-distributed with mean ap(n), where

12|
p(n) = 7[ ,(Rk)n-lf(xl"°"x"‘1) dx, --- dx,_,.

If A" ! > o then {N(n) — EN(n)}/{var N(n)}'/? is asymptotically normal
N(0,1), and

var{N(n)} = An""'u(n) + o(Ag" ).
The total number of clumps of all orders whose r.h.c.’s lie within %, equals
Nt = Z N(n),
n=1

and has mean

E(Ny) = N2l ¥ n-'p(n).

n=1

If Ay™ = O(1) as A - oo for some sufficiently large m, then we may deduce from
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Theorems 3.1-3.3 that
{Ntot - E(Ntot)} _ {N(l) - EN(I)}
(IR (N121)'

+0,(1)

in distribution. Thus, the three random variables: total number of clumps within
2, total number of isolated sets within %, and total number of points from the
driving Poisson process within %, have essentially the same asymptotic be-
haviour. In each case,

(observed number — expected number)

- N(0,1
(\21)'? ©1

in distribution.
4. Proofs.

PROOF OF THEOREM 2.1. Let T = T (S™) be the smallest sphere contain-
ing 8, let R denote the radius of T*), and assume (without loss of generality)
that T‘? is centred at the origin with probability 1. Then

I, spr{(x + TO)Y N T+ g} dx

< [ P(R™ + R® > |x|) dx
Rk

= DkE{(R(l) + R‘Z’)k} < .

Now we turn attention to I,. We shall say that x» + S and x® + S® are
virtually isolated if no shapes from the mosaic intersect either x» + SM or
x® + S@ irrespective of whether or not x¥ + S® and x® + S® intersect one

another. Then
Q(x + SV, 8@ both isolated) < Q(x + SV, 8@ virtually isolated)
< Q(x + SM, 8@ both isolated)
+Q{(x+SM)NS?» =+ g},
Therefore

f |Q(x + S©, S both isolated) — Q(S® isolated)’| dx
R .

(4.1)
< f 1Q(x + 57, 8@ virtually isolated) — Q(S® isolated)’|dx + I,.
R
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In fact, the integrand of the quantity
I* = / {Q(x + 80, 8® virtually isolated) — Q(S isolated)”} dx
R

is nonnegative. This is most easily seen in the case where S = %, where K is a
positive integer-valued random variable and %}, %,,... are fixed (i.e., nonran-
dom) shapes. From there the proof may be extended to other random shapes S.
The argument is very adaptable; for example, it may be employed to show that
the quantity A, to be introduced below, is nonnegative.

Since the integrand of I* is nonnegative then in view of (4.1), absolute
integrability of I, will follow if we prove that

(4.2) I* < .
We may write

(4.3) IF = f E{A(xISV, $?)} dx,
R

where the expectation is taken in the distribution of S® and S®, and
A(x|SD, S@) = Q(x + SM, 8@ virtually isolated|S™, S@)
—Q(x + SV isolated|S™M)Q(S® isolated|S?®).

Suppose rad(S) =r® for i =1 and 2. The coverage process %, may be
regarded as the superposition of two independent mosaics, the first comprised of
shapes whose radii are no more than (|x| — r® — r®)/2, and the second of
shapes whose radii exceed (|x| — r® — r®) /2. Denote these by %, and %,
respectively, and let @, be the probability measure associated with %,,. No
random set from %, can intersect both x + S® and S®. Therefore, if
rad(S®) = r® for i = 1 and 2, then

Q(x + SM, 8@ virtually isolated|S, S®)
= Q,(x + S® isolated|S™)@Q,(S? isolated|S?)
X Q,(x + SV, 8@ virtually isolated|S™, S@).
Thus,
0 < A(x|S™, S@)

= Q,(x + S" isolated|S")Q,(S? isolated|S®)

X {Qy(x + ST, S® virtually isolated|S, S@)

—Qy(x + SU isolated|S™M)Q,(S? isolated|S?) }

<1 — Q,(S™ isolated|S™)Q,(S® isolated|S®).

But Q,(S'? isolated|S”) = exp(—»"), where »'" equals the mean number of
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shapes in %, which intersect S”, conditional on S‘*. Therefore
(4.4) 0 < A(x|SD, S@) < »® + »®,

Let ,, denote the mosaic in which the driving Poisson process has intensity
pP{R > (|x| — r® — r®)/2}, and the shapes are all distributed as random
radius spheres, all independent of S® and S®. Sphere radius, A, is given the
distribution of R conditional on R > (x| — r® — r®)/2, where R = rad(S).
We shall take R, R®, and R® to be independent and identically distributed
random variables. In this notation,

E(yORO = p)
< (expected number of spheres from %,
which intersect a fixed sphere of radius r*)

x| —r® —r® ,
CETLLI

< 2k—1pvk[(r(i))kp(r(l) +r® 4+ 2R > |x|)

+E{R*I(r® + r® + 2R > |x|)}].

= pP{R >

Combining this estimate with (4.3) and (4.4), we conclude that
Iy < 2%pv, [ [E{(RV)*I(RV + R® + 2R > |x|)}
Rk
(4.5) +E{RM(R® + R® + 2R > |x|)}] dx
< 2%} E{(R® + R® + R)*} < oo,
establishing (4.2) and completing the proof of Theorem 2.1.
PrROOF OF THEOREM 2.2. Result (2.4) follows easily from (2.1).

PrOOF OF (2.5). Let M equal the number of points X; centred within %.
Then M is Poisson-distributed with parameter p = A||2||. Given that M > 2, let
X* + 85 and X} + 8Sy denote any two different sets X, + 8S; for which
X, € &, chosen at random from among all such sets. Result (2.5) will follow from
(2.2) and (2.4) if we prove that

| |[{ P(XF + 8S¥, X + 8S5* both isolated|M > 2)
— P(X, + 8S, isolated)”}

(46) p[ f {Q(x + SD, S both isolated) — Q(S" isolated)”} dx

R*

+ 4Q(SV isolated)f kQ{(x +8M) N S® + @; 8P isolated } dx|.
R
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Let XV and X® denote independent random variables uniformly distributed
on %, and recall that S® and S® are independent copies of S, all being
independent of one another and of everything defined before. Now,

P(X¥ + 8S¥,X% + 8S;* both isolated|M > 2) + o(A 1)

= ) P(X¥ + 8S¥,X* + 6S;* both isolated|M = m)P(M = m) -

m=2
= ), P(XD + 8SD X + §S® hoth isolated|M = m — 2)P(M = m)
m=2
(4.7) = Y P(XD + 88D, X? + §S@ both isolated|M = m — 2)
m=2
X P(M=m-2)
+ Y P(X® 4+ 85D, X® 4 §S® hoth isolated | M = m — 2)
m=2
X{P(M=m)—-P(M=m-2)}
= P(X® 4+ §SM X@ + §S@ hoth isolated) + A,
where
A=) P(X® 485D XA 4+ §S® both isolated | M = m)
m=0
u?
XP(M = —-1).
P( ’”){(m+ (m +2) }

The following lemma, to be proved shortly, estimates A.

LEMMA 4.1. If E{35(S)*} < o then
A~A,

= \"4p||2|'Q(S? isolated)f kQ{(x +8M) N S® # @; S isolated } dx
R
as A = oo.

Combining (4.7), Lemma 4.1, and the fact that
P(X, + 88, isolated) = P(X® + 8S® isolated)
for i = 1 and 2, we obtain:
P(X* + 88, X% + 8S; both isolated|M > 2) — P(X, + 88, isolated)”

= P(X® + 8S®,X® + §S® both isolated)

2
— [T P(X® + 88 isolated) + A, + o(A"Y).
i=1

(4.8)
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The desired result (4.6) follows from (4.8) and the limit theorem,

)\{P(X“) + 8SM X + §S® both isolated)

2
(4.9) - TT1PX® + 8S® isolated)}
. -1

> o217 [ {Q(x + SO, S® both isolated)
R

-Q(S® isolated)z} dx.

The remainder of our proof of formula (2.5) consists of deriving (4.9).

If the mosaic is rescaled by the factor § ! along each dimension, it becomes a
new coverage process in which the driving Poisson process has intensity §*A and
each shape is distributed as S. Under this transformation, X* becomes uni-
formly distributed on 8 %2. We shall use P! instead of P for the probability
measure associated with this rescaled mosaic. Thus, the left-hand side of (4.9)
equals

A6~ 12| 2 f f 1 2{P*(x“) + 8™ x® 4 S® hoth isolated)
(87'%)

2
(4.10) - TT1PI(x® + S® isolated)} dx® dx®
. -1

= Mg~ [ 18720 (872 = )|
8

x { P!(x + S®, $® both isolated) — P'(S® isolated)} dx,

where #; = (x — y: x,y € § '%}.
Since

Pi(x + SM, S@ both isolated)
= Pf(x + S®, S® virtually isolated)
—Pf(x + SM, 8@ virtually isolated but not both isolated),
then by (4.10), the left-hand side of (4.9) equals

S8t [ pi(x) ax = [ pix) ax),
9?8 ‘9?5
where
py(x) = 1872711872 N (87'% — x)||
x {Pi(x + ST, S virtually isolated) — PH(S® isolated)”}
and
py(x) = (1872|7872 N (872 — x|
X PY(x + S®, S virtually isolated but not both isolated).
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Likewise, the right-hand side of (4.9) equals

pll | [ () dx = [ aulx) dx|,
where
¢,(x) = Q(x + S, S virtually isolated) — Q(S isolated)” -
and
g,(x) = Q(x + S®, S@ virtually isolated but not both isolated).

In consequence, (4.9) will follow if we prove that
(4.11) L?Bpi(x) dx - /thi(x) dx

as § » 0, for i =1 and 2.
Note that 0 < p;(x) < 1, and p,(x) — g;(x) as § —» 0, for i = 1 and 2 and for
each fixed x. Therefore by dominated convergence,

[ pdx)dx > [ q,(x) dx
o o
as 8 —» 0, whenever &/ is a bounded, measurable subset of R*. Since # is
Riemann measurable then for each ¢ > 0, #; contains the closed sphere
T(t) = {x:|x]| < ¢}
for all sufficiently small 8. Combining these facts, we see that

[ pix)dx = [ a,(x) dx

8 8

lim sup
50

(4.12)

< limsup limsup/ |pi(x)|dx + limsupf |q.(x)|dx.
t—oo  8-0 ‘RAI() tooo YRMNT(D)
The functions p, and q, are obviously nonnegative, and arguments given early
in the proof of Theorem 2.1 show that p, and g, are nonnegative. Therefore the
absolute value signs on the right-hand side of (4.12) are not really necessary. It
also follows from the proof of Theorem 2.1 that ¢, and g, are integrable, so that
the last term on the right-hand side of (4.12) equals zero. A similar argument
may be used to show that the other term on the right is zero. (Note that the
factor

I8 2|82 N (87'2 - x)||

appearing in p,(X) and p,(x) does not exceed 1.) This proves (4.11).
It remains only to derive Lemma 4.1.

Proor oF LEMMA 4.1. Markov’s inequality implies that for any ¢, [ > 0,

P(M — p| > p/2*¢) < E(IM — pl/p/2*)" = O(p~*).
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Therefore if » = u!/2** for some positive e,
A=

|m—p|<v

Y, P(XD+ 85D, X® + §S@ both isolated|M = m)
(4.13)

2

X P(M = m){ 7 1“)L(m T2 1} +o(p™1).

Writing n = m — pu, we have

p?

. 2n + 3 3n2 O|n|3 n| + 1
=1-—7+ + O —
(m+1)(m +2) p (#) T p?
Substituting into (4.13), and choosing ¢ € (0, ), we see that

A =

|m—p|<v

X P(M = m){— 2": - 3(%)2} T o(uY)

Y P(XD + 88D, X® + §S® hoth isolated|M = m)
m=0

B SR LI

o0
—2p7t Y P(X® + 88D, X® + §S® both isolated| M = m)

Y, P(X®+38SD,X® + §S? both isolated|M = m)

m=0

XP(M =m)(m - p)

— 3u IP(XD + 8SM X@ + §S@ photh isolated)
m=0

[}
+ 3072 Y P(XD + 8S™M,X® + 6S both isolated | M = m)

XP(M =m)(m—p)+o(p").
In view of (4.9),

P(X® 4+ §SM X® 1 §S® both isolated) — Q(S isolated)?,
and similarly it may be shown that

Y P(XD + 88D, X® + 88 both isolated|M = m)P(M = m)(m — p)’
m=0

m=0

~ Y Q(SY isolated)?P(M = m)(m — )’

= pQ(SY isolated)’.
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Combining the results from (4.14) down, we obtain:
(4.15) A=2A,+o(p),

where
o0

Ay, = Y P(X® + 88D, X® + §S® both isolated|M = m)
m=0

X{P(M=m)—-P(M=m-1)}.
An application of Abel’s method of summation shows that

[oe]

A,= ) P(M=m)

m=0

X {P(X® + 88N, X® + 8S® both isolated|M = m)
—P(X® + 8SM, X + §S® both isolated|M = m + 1)}.

Let X® + 8S® denote an independent copy of X® + 8S™, independent of
everything defined so far. Then

P(X® + 8SM X@ + §S@ both isolated|M = m + 1)
= P(X® + 88D, X® + §S@ hoth isolated, and X® + 8S®
intersects neither X® + 8S® nor X® + 8§S@|M = m).
Substituting into (4.16), we see that

(4.16)

A, = i P(M = m)P(XD + 88D, X® + §S® both isolated,

m=0
and X® + §S® intersects
at least one of X® + §S®
and X® + 8S@|M = m)

= P(XD + §S®,X® + §S@ both isolated, and

X® + §S® intersects at least one of XV + 8S® and X® + §S@)
~ 2P{X(1) + 8SM, X® + §S® both isolated,
and(X® + 88®) N (X® + 8S?) + @}
(4.17) ~ 2P(XD + 88D isolated)
X P{(X® + 8S®) N (X® + 8S®) # & and X + 85 isolated )

= 2P(XD + 8SD isolated)8*|| |16~ 2| !
X f f P((x® + 88®) N (x® + 8S@) # 2 and
(8_19)2 .
x® + 8S® isolated } dx® dx®
~ 2Q(SW isolated)
><8k||.@||‘1/ kQ{(x +8®) N 8P+ 7; S isolated } dx.
R
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That is,
A, =1A +o(A71).
Lemma 4.1 follows on combining (4.15) and (4.17).

PROOF OF (2.6). Our proof of the central limit theorem (2.6) contains two
steps. First we show that the error committed by truncating the radius of
random shapes may be made arbitrarily small by taking the truncation point to
be sufficiently large. Then we prove the central limit theorem in the case of
bounded shapes.

STEP (i). Fix r > 0, and define

N® = (number of sets X, + S, for which X, € #, rad(S,) < r, and
(X;+8)N(X;+8S) = & forall sets X, + S;
with j # i and rad(S;) < r),
N® = (number of sets X, + S; for which X, € #, rad(S,) > r and
(X, +8)N(X,+S;) = @ forall j #i),
and
N® = (number of sets X, + S, for which X, € %, rad(S,) < r and
(X;+8)N(X;+8) = & forallsets X, + S;
with j # i and rad(S;) < r,
but (X; + 5;) N (X, + S;) # & for some j with rad(S;) > r).
Then
(4.18) N® 4+ N® =N+ N®,

The variable NV equals the number of isolated shapes which would result if we

ignored all shapes of radius r or more.
We shall prove that

(4.19) lim limsupA~'var(N®) =0
r=o® A>ow

for i = 2 and 3, and that
(4.20) lim limsupA~!|var(N) — var(N®)| = 0.
. ro AL .
Actually, result (4.20) follows from (4.19), since after a little algebra and an
application of the Cauchy-Schwarz inequality it may be proved that

|var(N) — var(N©)| < 4[{var(N®) + var(N®)}

X {var(N) + var(N®) + var(N‘3’)}]1/2.



CLUMP COUNTS 441

Together, (4.19) and (4.20) imply that our central limit theorem for N will follow
if we prove it instead for N, (That proof constitutes Step (ii) below.)

The methods used to derive (4.19) are similar for i = 2 and i = 3, and so we
consider only i = 3. Using the argument leading to (2.2), we obtain:

var(N®) = \||2||P{rad(S,) < r; (X, + 8S,) N (X, + 8S,) = @
for all i # 1 with rad(S;) < r;
(X, +88)) N (X, + 8S;) + @ for some i + 1}
+(M2))*[ P{rad(8,),rad(S,) both < r; (X, + 8S,)
N (X, +8S;) = & forall j+ i withrad(S;) <r,
(4.21) for both i = 1 and 2; (X, + 8S,) N (X, + 8S;) # @
for some j, # i, for both i = 1 and 2|X,,X, € #}
— P{rad(S,) <r;(X,+8S;)n(X;+8S,) =@
for all i # 1 with rad(S;) < r;
(X, +88,) N (X, + 8S,) # @ for some i # 1}°].

Let X™ + 858(® and M have the meanings ascribed to them during our proof of
(2.5). Define E to be the event:

rad(S"),rad(S®) both <r; (X +859) N (X; + 8S;) = & for all
j with rad(S;) < r, for both i = 1 and 2; (X + 85™")
(X; + 8S;) # & for some j;, for both i = 1 and 2.

Let E, denote the event: E N {(X® + §SM) N (X@ + §S?P) = @ ). Employing
+ the argument leading to (4.7), we may deduce that

P{rad(S,),rad(S,) both < r; (X, + 8S,) N (X, +8S;) = & forall j+ i
with rad(S;) < r, for both i = 1 and 2; (X, + 8S;) N (X + 8S,) # &
for some j; # i, for both i = 1 and 2|X, X, € #}

=P(E,)) + A,

(4.22)

where

4= i;OP(EllM B m){ (m + 1l)L(m +2) 1}

and p = A||Z|. We may estimate A using techniques from the proof of Lemma
4.1. Indeed, we may obtain the following analogue of (4.14):

A= 27" Y P(EM = m)P(M = m)(m — p)

m=0

3 P(E,) + 3 X P(EM = m)P(M = m)(m — )’ + o).

m=0
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Since
lim limsupP(E,) =0
r-ow A—-ow
and
Y P(E|M =m)P(M = m)(m— p)* < {P(E,)E(M - )"},
m=0

then we may write
[}
(4.23) A=-2u"'Y P(EJM=m)P(M=m)(m—p)+A,
m=0
where
lim limsupAlA4,| = 0.

roo Ao

An argument like that leading to (4.17) reveals that an estimate similar to (4.17)
applies to the series on the right-hand side of (4.23). Thus, we may conclude that

(4.24) lim limsupA|A| = 0.

roo A oo
Combining (4.21) and (4.22), we obtain:
(N|22|l) 'var(N®) < P{(X, + 8S,) N (X, N 8S,) + @
for some ¢ # 1 with rad(S;) > r}
+A|2|{P(E,) + A — P(EV)P(E®)},
where E () denotes the event
rad(S?) < r; (X9 + 88?V) N (X, + 8S;) = @ for all j with
rad(S;) < r; (X® + 8S9) N (X, + 8S;) + & for some ;.

Note that E, C E = E® N E®. From this inequality and (4.24) we see that
(4.19) in the case i = 3 will follow if we prove that
(4.25) lim limsupA{ P(E® N E®) — P(E®)P(E®)} < 0.

r—-0 A-o0

We shall estimate the probabilities in (4.25) by first conditioning on S™ and
S®@. Choose versions of S for which rad(S”) < r, for i =1 and 2. Let P’
denote the probability measure associated with the mosaic in which the driving
Poisson process has intensity 8%\, and each shape is distributed as S. Let F()(x)
be the event:

(x+89)N(X;+S;) =2 forall j withrad(S;) <r;

(x+89)N(X;+S;) # @ forsome .
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Then
P(E‘” N E(Z)IS(I), S(Z)) _ P(E“)|S(1))P(E(2)|S(2))

=161/ 2 PHFO(xMD) N FO(x@ S(l),S(Z)
o f [ [PFOED) 0 FOx®) }
_PT{F(l)(X(l))Is(l)}PT{F(2)(X(2))|S(2)}] dx® dx®
< ||8_19?||_1/ k|P+{F<1>(x) N F®(0)|SV, S<2)}
R

— PY{FO(x)|[SMYPHF®(0)S?}|dx.

The term within modulus signs may be shown to be nonnegative, for all values of
SM and S®. Taking expectations with respect to S and S®, we obtain:

P(EV N E®) — P(EM)P(E®)
< 842! fR [P{F®(x) n F®(0)} - PH{FM(x)} PY{F®(0)}] dx.

Therefore
P“||@||limsup>\{P(E‘” NE®) — P(E“))P(E@’)}
A—> oo

< fR [Q{FOx) n FO(0)) - Q(FV(0)}] dx
< fg_(t)Q{F‘”(x)}dx

+ [Q{F‘”(x) N F®0)} — Q{F‘”(O)}z] dx,
RA\T(t)
where 7(t) denotes the sphere {x: |x| < ¢}. The first integral on the right-hand
side converges to zero as r — oo, for each ¢ > 0, while the second integral may be
made arbitrarily small uniformly in r > 0 by choosing ¢ sufficiently large. These
two observations are enough to prove (4.25), and that result gives us (4.19) in the
case I = 3.

STEP (ii). In view of Step (i), it suffices to consider the case where the shape
S is uniformly bounded: For some ¢ > 0,

(4.26) P(x| <cforallx € S) = 1.

Let d be a very large positive constant. Divide R* into a regular lattice of cubes
of side length cd8, with nearest faces of adjacent cubes distant 4c8 apart. Those
regions which lie in between cubes will be called “spacings.” They may be
regarded as being a disjoint union of rectangular prisms, no prism having a side
length exceeding cd$. Let %, equal the union of all those cubes contained wholly
within %; let %, be the union of all those spacing prisms wholly within #; and
let B, = 2\ (B, N B,). Write N, for the number of isolated sets centred within
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%,;. Then
Nl = Z ij’
j=1

where M denotes the number of isolated sets centred within the jth cube 9;
(1 <j < ») of side length cdéd. Since no random set in the mosaic can intersect
both a set centred in 9; and a set centred in 9,, for i # j (note condition (4.26)),
then the variables M; are independent as well as identically distributed. Thus,

var(N,) = »[Al|2,|| P(X, + 85, isolated) + (A[|2,]))*
x {P(X, + 8S,,X, + 8S, both isolated|X,, X, € 2,)
—P(X, + 88, isolated)’}].
Since A||2,|| = p(cd)* as A > oo, then
var(N,) = v[p(cd)kQ(Xl + 8, isolated) + {p(cd)*)”
x{Q(X, + 8,,X, + S, both isolated|X,, X, € &)
-Q(X, + S, isolated)z}] + o(v),

where & is an arbitrary [ k] cube of side length cd with the same orientation as
2,.As A > oo, v is asymptotic to a constant multiple of A. Therefore A~ !var(N,)
has a finite limit o2, say, as A - oo.

Observe that M, < M,,, where M, equals the total number of points from the
driving Poisson process which are centred within 2,. Since M, has a Poisson
distribution with parameter A(cd8)* = p(cd)* + o(1), then for a positive con-
stant C,

EM, — E(M,)]® < 4{E(M$) + (EM,)’} < C

uniformly in A. Thus,
ElMi B E(Mi)|3 E|M1 B E(M1)|3 -
Z N2 =v NG = 0(}\ 1/2)

i (

as A — c0. Lyapounov’s central limit theorem (see Chung (1974, page 200)) now
tells us that

{NI - E(Nl)}

(4.27) N2 — N(0, 02)_
in distribution.

+Our goal of a central limit theorem for N will follow from (4.27), provided we
prove that

(4.28) lim limsupA~'var(N;) =0

d—o A->o0



CLUMP COUNTS 445

for i = 2 and 3, and
(4.29) lim limsupA~!|var(N) — var(N;)|= 0.
d—o A—©

Since
|var(N) = var(NV,)] .
< 4{var(N,) + var(N3)}]/2{var(N) + var(N,) + var(N,)}"?,
then (4.29) follows from (4.28) and (2.5). We shall complete the proof by deriving
(4.28).
The variables N, and N; may each be written in the form

m nz/

N, = Z ZMijl’

Jj=11l=1

where m < 2%, the M, ;’s represent numbers of isolated shapes centred within
respective disjoint regions .%/;; of dimension no more than (cd8) X - -- X(cd8),
and for fixed i and j, the variables M;;,..., M;;, are stochastically indepen-
dent. Thus,

m Ty

Var(l\,i) <CYy Y Var(Miﬂ)a

j=11=1
where the constant C depends only on k. Using formula (2.2) to evaluate
var(M;, ;), we see that

var(M,;) < |+l + (A”diﬂ”)2
x{P(X, + 85, X, + 85, both isolated|X,, X, € ;)
— P(X, + 88, isolated)”}
and

var(N;) < C

1 + Asupl|#Z; |l

Jsl
(4.30) x{P(X, + 85,,X, + 85, both isolated|X,, X, € ;)
—-P(X, + 88, isolated)2}]7\||§¢’,.||.

It may be proved that | %,|| < C,/d, for a constant C, depending on neither d
nor 8, and ||%,|| = 0 as A - oo. Furthermore,
lim sup)xsup||4a{2j,||{P(X1 + 8S,,X, + 88, both isolated|X,, X, € o, ;)
A—> o0 Js 1
— P(X, + 88, isolated)’}
(4.31)
< psup||B||{Q(X, + S,,X; + S, both isolated X,, X, € #)
2

—Q(X, + 8, isolated)’},
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where the last supremum is taken over rectangular boxes 4 C R*; and

Asup||Zy,l| < A(ed8)* > p(ed)*
7,1

as A — 0o. Therefore result (4.28) will follow from (4.30) if we prove that the
supremum on the right-hand side of (4.31) is finite. In fact, that sup is dominated
by

4sup||@’||“/f Q{(x, +S) N (x,+8,) + ¥} dx, dx,
3 B*

+ sup||£3||‘1ff {Q(x‘” + 8SM x® + SO virtually isolated)
2 B°
—Q(S isolated)’} dxV dx®

< 4/RkQ{(x +8M)NS® + g}dx

+ f k{Q(x + 8™, S virtually isolated) — @(S™ isolated)2} dx
R
< .

Proor oF THEOREM 3.1. The proof consists of two steps. First we show that,
under our assumption E{5(S)"} < oo, there is no real loss of generality in
supposing that shapes are bounded with probability 1. In the second step we
establish the theorem for bounded shapes.

STEP (i). Let p(n,r) denote the probability that the clump containing an
arbitrary shape is of order > n, and contains at least one shape of radius > ér.
Step (i) consists of proving that
(4.32) lim limsupy " Yp(n,r) =0.

r-o 1n-0

Let R have the distribution of rad(S). Consider the mosaic ¥, in which the
driving Poisson process has intensity A, and shapes are [ k] spheres centred at
the origin with radius distribution §( R] + 1), where [ R] denotes the integer
part of R. Let p,(n, r) be the probability that the clump containing an arbitrary
shape in %, is of order > n, and contains a sphere of radius > 8r. Then
p(n,r) < p(n, r). Therefore (4.32) will follow if we prove it for p,(n, r) instead
of p(n,r).

We shall bound the mosaic %, using a multitype branching process. There
will be a countable infinity of types, indexed by positive integers which equal
sphere radii divided by 8. Individuals in the process will be represented by points
in R*. The individual in the zeroth generation is the centre of our arbitrary
sphere in %,. Its type is the radius of the sphere divided by §, and so is
distributed as N = [R] + 1. Given individuals Z,,,,...,Z,,, in the nth genera-
tion, we define the (n + 1)th generation as follows. Suppose Z,,, is of type i. Let
2., be a Poisson process in R* of intensity A, independent of the previous
history and also of #,;, for I’ # l. Centre spheres at the points of £,,, their radii
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being distributed independently and identically as 6 N. The progeny of Z,, of
type J in the (n + 1)th generation, are those points of #,, whose associated
spheres are of radius §; and intersect the sphere of radius 87 centred at Z,,,. Let
DPo(n, r) be the probability that the total number of individuals in all generations
of this branching process is at least n, and that at least one of these individuals
is of a type > r. Then p,(n, r) < py(n, r), and so it suffices to prove (4.32) with
po(n, r) replacing p(n, r). A key assumption in that proof is that E(N*") < oo,
which follows from the moment condition E{5(S)"} < oo.

Suppose there is a total of at least n individuals (including the zeroth
individual) in all generations of our branching process. Then at least one of the
following occurs:

(a) there is at least one individual in the nth generation;

(b) for some 0 < i < n — 1, at least one individual in the ith generation has > n
children;

(c) the number M; of individuals in the ith generation satisfies 0 < M; < (n — 1)'
forl<i<n-1,X"M;>n-1,and M, = 0.

Let A, B, and C denote the events described in (a), (b), and (c), respectively, and
let D be the event that some individual in the branching process is of a type
> r. Then

po(n,r)=P{(AUBUC)N D}
< P(A) + P(B) + P(C n D).
Therefore (4.32) will follow if we prove that

(4.33) P(A) + P(B) =o(n")

as n — 0, and

(4.34) lim limsupn *"YP(C N D) = 0.
r—soc n—-0

The probability of event A is dominated by the expected number of individ-
ual in the nth generation. (Use Markov’s inequality.) To calculate this mean, let

nu;; = (expected number of children of type j
born to an individual of type i)
= (i +J)"P(N = j)o,
< ni%*P(N = j)2*v,.

Define M to be the matrix whose (i, j)th element is nu,;, and let 5"u{} denote
the (i, j)th element of M”. It may be proved by induction that

W < IAP(N = j)(2t,)" (B(N?*))"

for n > 1. Therefore the mean number of individuals in the nth generation
equals

(4.35)

" fj f} P(N = i) < (n2%0,)" (E(N*) ) {E(N**))"

i=1j=1
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(See Athreya and Ney (1972, page 184).) Combining the results in this paragraph,
we conclude that
(4.36) P(A) = O(n")
asn — 0.

Let E,, denote the event that some individual in the mth generation has > n
children. We shall prove by induction over m that

(4.37) P(E,) = o(n""")
for all m > 0. As an immediate corollary, we have
(4.38) P(B) =o(n" ).

Suppose (4.37) is true for m < m,— 1, and let M equal the number of
individuals in the mth generation. Set n, = (n — 1)™. Then, by our induction
hypothesis,

P(M > ny) =o(n""").
Number the members of the mth generation from 1 to M in random order, and
let K, equal the number of progeny of individual i. Then

min(M, n,)

(E,.)< Y IK;2n)+IM>n),

i=1
and so
P(E,,.,) < n,P(K, 2 n) + P(M > n,).

Therefore (4.37) for m = m, + 1 will follow if we prove that
(4.39) P{(K(m) = n} =o(n"")
for each m > 0, where K(m) has the distribution of the number of progeny born
to a single, arbitrary individual in the mth generation, given that there is at
least one individual in the mth generation. Furthermore, demonstrating (4.39)
for m = 0 will establish (4.37) for m = 0. This will complete our inductive proof
of (4.37).

If a child is chosen at random among from the progeny of a type i individual,
the chance that he is of type j equals

D= nl"'ij — I"'tj
Y Zﬁmﬂu By
where
0]
p‘l = Z I“'u 21 Uk
j=1
Therefore

0 < p;; < 2%*P(N = ).
(Note formula (4.35).) It may now be proved by induction that
m—1.
03p§}’”s2k"’{E(Nk }7 JRP(N =)
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for m > 1, where p,’") is the (i, j)th element in the mth power of the matrix
(pyj)-

The probability that an individual chosen at random from the mth generation
has > n — 1 children, given that there is at least one individual in the mth
generation, equals

P{K(m)>n—-1) = ZP(N—:)Zp‘"” i (";‘, ) exp(—np,.)

i=1 Jj=1 l=n-1

(4.40) < ié =) i i"’)%
nn—l
= (_n——l_)!):(m’ n),
where
z(m,n)sf X PN = i)plu

Note that ¥(m, n) does not depend on 7, and that

S(m, n) < f f P(N = i)25*P(N = j) {20, E(N*) j*}" "
= 2k Y E(N*)}" ' E(N*") < co.

The finiteness of >(m, n) implies that
n—1

P{K(m)=n-1} = Z P(N =1i) ip"’”%em(—wj.)
(4.41) =t J '
nn—l

= _(—I_l———I)_!Z(m’ n) + O('q"_l)

as 71 — 0. Combining (4.40) and (4.41), we conclude that
P{K(m)>n}=P{K(m)=n—1} — P{K(m)=n—-1} =o(9" "),

establishing (4.39).

Result (4.33) follows from (4.36) and (4.38). We shall complete Step (i) by
proving (4.34).

Our multitype branching process may be viewed as a vector-valued Markov
chain. Denote the state of the ith generation by the infinite-component vector
M, = (M, M,,...), where M, equals the number of type ; individuals in
generation i. Let m; = (m;;, m,,,...) be a particular value of M, in which all
but a finite number of the m,,’s are zero. The first step in proving (4.34) is to
bound the probability PM; = m; for0 <i <n — 1).
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Conditional on M; = m,;, the number of individuals of type [/ in the (i + 1)th
generation is Poisson-distributed with mean

Z mtjn:u'jl nUkP(N = l) Z mlj .] + l)
J=1 Jj=1

< n2%o,l*P(N = 1) Z mg;J*.
J=1
Therefore
7(m;,m;,,)=PM,,, =m, M, =m,)

0]
= Z P(Mi+1,l =m;,, M, = m;)
=1

-1

{nokPw - Y my(+ 1) } |

ml+ll Jj=1

(4.42)

=1

Xexp{—nka(N =1) i m;(J+ l)k}]

00 My, 0
< (Tl2kvk E mijjk) exp(—nvk Z mijjk

j=1 j=1

X lo__o[ {lkP(N - l)}mz+l,l’

where m; = Y% m;; for i > 1. '

We shall assume throughout that foreach1 <i<n -1, m; < (n - 1)}, and
also that 1 + X" "'m;. > n; note the definition of event C at (c) above. The
symbol y will denote a positive generic constant depending only on n and the
distribution of N. (In particular, y does not depend on choice of the vectors m,.)
Set m, = min(n — 1, m;.), and note that

0 m, .y, —My4 0
(ﬂ”k E mijjk) eXp(—'?Uk Z mijjk) <

J=1 J=1
for 0 < i < n — 2. Therefore by (4.42),.

(4~43) W(mi’mi+1) =< Y(ﬂ Z mijjk) {lkP(N = l)}ml+l l
j=1

Let [, = max{l: m; > 0}, and observe that .
0 .
Jj=1 .
Substltutlng into (4.43), we conclude that for0 <i<n — 2,

7(m;,m,,,) < Y("?lik)mmlr[ {I*P(N = l)}m.+| l
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Consequently if 0 <n < 1,

n—-2

PM,=m;for0<i<n-1)=PMy;=m,) [[7(m,,m,,,)
i=0
n—2 ' m
< ynm P(N = zo>( 11 zfml*l) [T (*P(N = 1)}"™
i=0 =1
n-2 k(n—1)
(4.44) < yn" G VP(N = lo)( I1 li)
i=1

xf[{lkP(N=l)}m"

[e o]
(4.45) <yn" 'UE"P(N = 1) [T {I*"P(N = 1)},
=1
where m =Y 'm;>n—-1 and m. ;=X 'm,. (Note that m, is a vector

consisting entirely of zeros except for a single one in position [/, and that
PM,=m,)= P(N =1,).) Let n, equal the total number of individuals in
generations 0,1,..., n — 1 who are of type L. Then by (4.45),

o0
(446) PM,=m,for0<i<n—1)<yp" '[]{I*P(N= l)}n'.
=1

Adding formula (4.46) over all vectors m, for which both m; =m{®
(a predetermined number satisfying m{® < (n—1)' for 1<i<n-1 and
1+ 22'm® > n) and

sup sup m,; >0,
J>r 0<i<n-1

we conclude that
q = P(there are precisely m(” individuals in generation i, for

0 <i < n — 1, and at least one individual in the first n — 1

(4.47) generations is of a type > r)
<y ' T IP(N = 1),
I>r

Therefore the probability g satisfies
(4.48) lim limsupn~ (Vg = 0.

r— oo n—0
The probability P(C N D) appearing in (4.34) is dominated by a finite sum of
probabilities like g, the number of terms in the series depending on neither n nor
r. Therefore (4.34) follows from (4.48). This completes Step (i).

Before passing to Step (ii), we note that the techniques used in Step (i) may be
employed to prove two other results which are of use to us. The first of these,

(4.49) limsupn ™" Yp(n) < o,
n—0
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follows immediately from (4.33) and (4.46), since
p(n) < P(A) + P(B)

+ P{ the number M, of individuals in the ith generation satisfies

n—1
0<M<(n-1) forl<i<n-1and EMiZn—l}.
i=1
The second result is (3.2). To prove it, observe that the sum on the left-hand side
of (3.2) is dominated by the probability that our multitype branching process
contains a total of n + 1 or more individuals in all generations. That probability
does not exceed P(A N BN C’), where events A and B are defined as before,
and C’ is the event,

the number M; of individuals in the ith generation satisfies
n-—1

0<M,<(n—-1)forl<i<n-—1land ) M,>n.
i=1
In view of (4.33), result (3.2) will follow if we show that
(4.50) P(C’) = O(n")
as n — 0.
To prove (4.50), note that if M; =m, forl<i<n-1,if m;. <n -1, and
Y !m; > n, then
n—1
m.= Y min(n—1,m,;) > n.
i=1
Therefore the factor n™ appearing in (4.44) may be simplified to 7", instead of
7", in (4.45). Likewise, the factor 7" ! in (4.46) may be replaced by n". Adding
(4.46) over all numbers m{® satisfying m® < (n— 1) for Ll <i<n -1 and
"!m® > n, we obtain (4.50).

STEP (ii). We shall assume initially that the shape S is essentially bounded;
that is, for some ¢ > 0,

P(x| <cforallx € S) = 1.

Define x = 2(n — 1)c, and let Z(t) denote the closed [k] sphere of radius ¢
centred at the origin. If our arbitrary shape X; + 8S; is part of a clump

n—1

X;+8s)u U (X, +8S,)

=1
of-order n, then all the points X ; must lie within the (closed) sphere X, + .7 (x6)
centred at X; and of radius x4.

Let the random variable M have the Poisson distribution with mean p =

Al (x8)|| = 1|7 (x)|l, and distribute M points Y,,...,Y,, independently and
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uniformly within (x8). In view of the conclusion of the previous paragraph, we
have:
p(n) = P(the clump containing S, and formed from the random sets

8S,,Y, + 8S,,...,Y,, + 8Sy, is of size n)

< .
= ¥ P(M=m)|7(x)] /---/w_( YY) dyy ey,
m=n—1 x

where
&g,(¥,,---,¥,) = P(the clump containing S, and formed from the random
sets Sy, ¥, + Sy,--, ¥ + S, is of size n).
However,
ne1 n-1
P(M=n-1)= (n"_—l)!ew - {""(—i(f)—llﬁ—— + o(n),
and

m

[ee]
0s X PM=m)|Z@) [ [ giyies¥n)dy, o dy,
=n {(7(x)}

< Y P(M=m)
#n
i O(n")

as n — 0. Therefore

n—1
n
= — [ ... + ny.
p(n) (n-l)!-[ fmx)}"_lgn(yp Ya-1)dyy - Ay, + O(1")

Since g,(¥1,-+-s¥n-1) = f(¥15---,¥.—1), and this function vanishes outside the
set {7 (x))""", then result (3.1) is proved.
It remains only to extend this conclusion to the case of general shapes
satisfying E{5(S)"} < co. We may write
p(n) =p(n,r) +q(n,r)

where p(n, r) was defined in Step (i), and q(n, r) equals the probability that
an arbitrary shape is part of a clump of order n which contains no shapes of
radius > r. The result proved in the previous paragraph establishes that

n~ " Vg(n,r)

1 .
- (n—1) -/ o /(’Rh)n—lf(x"”"x"—llr) dx, -+ dx, , +o(l),
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where

n—1
f(Xy,.., X, 4|r) = P{the set S,U U (x; + S;) is connected,

i=1
andrad(S;) <rforl<i<n-—1}.

Step (i) shows that 4~ "~ Up(n, r) may be made arbitrarily small uniformly in 7
by choosing r large. Therefore result (3.1) for general shapes will follow if we
prove that

I(ry= - f(m)n/,/(x,,...,x,,,.lr)dxl cdx,
(4.51)
- ‘e Xy X, dx, --- dxn—
[ fyg J0xe 3, ax

as r — oo, and that the limit is finite.

For each x,...,x,_;, the function f(x,,...,x,_,|r) increases to
f(xy,...,x,,_,) as r = oo. Therefore (4.51) will follow by dominated convergence
if we show that

supI(r) < .
r>0

But for each r > 0,

I(r) < limsupn """ Yp(n),

(n—1)! 7—0
and so
supI(r) < (n — 1)!limsupn " Yp(n) < o,
r>0 70
using (4.49).

PROOF OF THEOREM 3.2. Result (3.1) implies that (A||2|)) 'E{N(1)} — 1. To
prove the remainder of the theorem, let M equal the total number of points from
the driving Poisson process which fall within £, and set N’ = M — N(1). Then

|var(M) — var(N(1))| < 4{var(N’)}{var(N(1)) + var(N")}'/?,

(A|2)) " 'var(M) = 1 and {M — E(M)}/(A||2|)"/? > N(0,1) in distribution as
A = oo. Therefore the result (A||2|) !var(N(1)) > 1, and the central limit
theorem, will follow if we prove that A~!var(N’) — 0. This may be done using
techniques from the proofs of Theorems 2.1 and 2.2, since

var(N’) = A|2||P(X, + &S, not isolated)
+(AI2I)*{ P(X, + 8S,,X, + 8S, both not isolated|X,, X, € %)
—P(X, + 8S, not isolated)’} .
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PrOOF OF THEOREM 3.3. Qur proof is similar to Step (ii) in the proof of
Theorem 2.2. Define the regions %,, #,, #; and 9,,..., 2, as in that argument,
except that here we stipulate that nearest faces of adjacent cubes be distant
4ncd (instead of 4¢8) apart. Let N, equal the number of clumps of order n whose
r.h.c’s lie within %,. Then N(n) = N, + N, + N;. In Step (i) of the proof below
we shall establish a Poisson limit (if An"~! - a) or a normal limit (if An"~! — o)
for N,. Then in Step (ii) we shall prove that for large values of d, N,, and N; are
negligible in comparison with N,.

STEP (i). Let 2! be the [k] cube of side length (d + 4n)cd, concentric to 2,.
Any clump of order n whose r.h.c. lies within 9,, is composed entirely of sets
centred within 2. Let M, equal the number of clumps of order n centred within
92,, and K, equal the total number of points of the driving Poisson process within
2. The following results may be proved in succession after a little algebra:

E{M?I(M;>2)} < E{KI(K,;>2n)} = O(n*"),

(4.52) P(M;=1)=P(M;=1,K;=n) + O(1"*")
=17"b + O(n"*),

(4.53) E(M;) =n"b+ O(n"*"),

(4.54) var(M;) = 9"b + O(n"*1),

and if x = x(7) is any sequence diverging to +oo as 1 — 0,

(4.55) E{(M, - EM,)’I(M, - EM, > x)} = O(w*").

In identities (4.53) and (4.54), b is defined by

E;:_!f...fnp{i

where & is any cube of side length (d + 4n)c with the same orientation as 2,. It
may be proved that

(4.56) b~ (d*/I1R))u(n)

as d - . Note that N, = T’_,M,, where the summands are independent and
identically distributed, and that » ~ An~'||2||/{(d + 4n)c)* as n - 0.

n

(x;+S,) connected} dx, --- dx,,
1

CASE (a). An"~! - a < oo. In this situation,
Y E{MI(M;>2)} = O(An~'-9?") =0
i=1 . A

by (4.52), and
Y E(M,) = vq"b + O(v"*")

i=1
- ap,
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by (4.53), where
(4.57) m = 1216/ {(d + 4n)c}".

These two properties imply Poisson convergence for a sum of independent,
identically distributed, nonnegative integer-valued random variables M,; see, for
example, Theorem 5, page 132 of Gnedenko and Kolmogorov (1968). Therefore:

N, = Y M, is asymptotically Poisson-distributed as
(4.58) im1
n — 0, with mean ap,.
Note that by (4.56) and (4.57),
(4.59) = p(n)
as d — oo.

CaASE (b). An" ! - co. Here,
var(N,) = Y var(M;) = vn"b + O(»q"*")
(4.60) Pt
— }\,','n—lp‘1 + O()\T]n_l),

using (4.54). If we take x = e{var(N,)}"/? in (4.55), we may deduce that Linde-
berg’s condition holds for the series ¥;_,(M; — EM,):

{var(N,)} ™! éE[(Mi — EM,)*I{|M; — EM}| > &(var N

= of(vn") '(»n*")} = O(n") > 0
as n — 0. Lindeberg’s central limit theorem (see, for example, Chung (1974, page
205)) now ensures that

{Nl - E(Nl)}

{var(N,)} 7T NGO

(4.61)

in distribution.

STEP (ii). We may deduce from Theorem 3.1 that
(4.62) E(N,) = A" 'C|| | + o(A" "),
where the finite constant C, depends only upon r and the distribution of S.

CaSE (a). A" ' > a < 0. When i = 2, ||%,|| < C,/d for a constant C, not
depending on d, and when i = 3, ||%;|| = 0 as n — 0. Therefore by (4.62),
lim- limsup E(N;) = 0.
. d—>ow 1-0
This result, together with (4.58) and (4.59), implies that N(n) = N, + N, + N; is
asymptotically Poisson-distributed with mean ap(n), as had to be proved.
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CAsE (b). An""! > «. Both N, and N3 may be written in the form

(4.63) N, = E E Lo
Jj=11=1
where m; < 2%, the M, ;1’8 are the numbers of nth order clumps centred within
respective disjoint regions .#/;; of dimension no more than (ed§) X --- X(edd),
and for fixed ¢ and j, the varlables M;j, ..., M;;,, are mutually mdependent
The total number of terms in the double series (4. 63) is O(8 %) as § > 0.
Independence implies that

S
<

m, Ny,

var(N) < C2 Z Z var( ljl) g

Jj=11l=1

( t/l)

n[\/]

where C, depends only on k. Now,
E(szl) ( zjl) + E{MJII(Mul> 2)}
An argument like that leading to (4.52) shows that
sup E{Mz%"lI(szl )} = 0(772”)

i1
as 1 — 0. Combining these estimates we conclude that for a constant C; > 0,
m, U m, U
var(N,) < C, 1 X E(M;;) + G 2 Y™
Jj=11l=1 Jj=11l=1

= GE(N,) + O(8~*n2n).

Referring to formula (4.60) for var(N,), and to formula (4.62) for E(N,), we
conclude that

var(N;)  CG| &
<
var(N;) By

+ o(1)

for 1 = 2 and 3.
In the case i = 2 we have |%,|| < C,/d, and when i = 3, ||%;| » 0 as n — 0.
Therefore

Lo var(N)
im limsup ———~ =
d—>ow -0 Var(Nl)

for i = 2 and 3. This result, together with (4.59)-(4.61), implies that N(n) is
asymptotically normally distributed with asymptotic variance An"~'p(n).
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