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Random number generators often work by recursively computing X,, ., =
aX, + b (mod p). Various schemes exist for combining these random number
generators. In one scheme, @ and b are themselves chosen each time from
another generator. Assuming that this second source is truly random, we
investigate how long it takes for X,, to become random. For example, if a = 1
and b =0, 1, or —1 each with probability I, then cp® steps are required to
achieve randomness. On the other hand, if @ = 2 and 4 =0, 1, or —1, each
with probability }, then clog p loglog p steps always suffice to guarantee
randomness, and for infinitely many p, are necessary as well, although, in
fact, for almost all odd p, 1.02 log, p steps are enough.

1. Introduction. Computers often generate pseudorandom sequences using
recurrences such as

X,..=aX,+ b (mod p),

where p is a fixed integer (with 23! — 1 and 232 being popular choices), and the
integers a and b are chosen so that the sequence X, = 0, X;, X,,...has some of
the properties of a random sequence. An extensive discussion of these matters
can be found in Knuth [5].

Of course, however, the sequence X, is deterministic and exhibits many
regular aspects. To increase “randomness,” several different generators are often
combined or “shuffled.” We investigate properties of the process

(1) Xn+l = aan + bn (mOd p)’

where a, and b, are independent random variables. These might be the output
of another generator, or they might be the result of a “truly random” source
produced, for example, by electrical noise or radioactive decay. The earliest
pseudorandom number generators, due to Lehmer, were of this type. He used the
recurrence X, ; = aX, (mod p) run at a constant rate (say, 1000 times per
second). Calls to the generator depended on the execution times of various steps
in the program, resulting in a random multiplier (see Knuth [5] for further
details).
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Most distributions for a, and b, in (1) lead to a uniform distribution for X,
as n tends to infinity. We will use the following measure of “closeness to
uniformity” for X,,. Let

P(j)=Prob{X,=j}, 0<j<p-1,

and let U denote the uniform distribution, defined by U(j) = 1/p for all ;.
Define the variation distance between P, and U by

(2) 1P, = Ul =3 X|P(J) = 1/p|.

It is well known (and easy to show) that
1B, = Ull = max | P(4) = U(A)|

(3) =%"s1|.|1p1|P(f)—U(f)|

where Z , denotes Z /pZ, the integers modulo p, for A € Z,

P(A) = X B(J),

jeA
and for a function f: Z, - C,

Wil= mjflef(J')
and

(1) = TPL)I0)-

Our primary focus in this paper will be on sequences X, generated by
X, ., =aX,+ b, (mod p),

n

where p is odd and b,, b,,..., b,,... are independent with common distribution
p on Z ,. Our basic goal will be to estimate as sharply as we can the number N of
steps needed to guarantee that || Py — U] is close to 0. Typlca.lly, we show the
existence of a “threshold” Ny so that for N < Ny, ||[Py — U|| is close to 1 while
for N > Ny, ||Py — U] goes to 0 exponentially fast.

The remainder of the paper is organized as follows. In Section 2 we review
basic facts from Fourier analysis we will need. In Section 3 we discuss the
(classical) case of a = 1. It is easy to show in this case that for general p with
bounded support, N = c¢(p)p? steps with ¢(p) > o as p — oo are necessary
and sufficient to drive ||Py — U]|| to 0.

The situation is changed drastically if @ = 1 is replaced by @ = 2. In Section 4
we derive an upper bound of the form clog p loglogp for N which, in Section 5,
we show is best possible for infinitely many p. Finally, in Section 6 we prove that
for almost all odd p, N = clog p steps suffice to drive || Py — Ul| to 0 for a fixed
constant ¢ (slightly larger than 1).

We end this section by commenting on two further problems which motivate
the careful study of the special cases reported here. One basic technique we
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employ is the “upper bound” lemma (Lemma 1) of Section 2. This has been used
in numerous other random walk problems as detailed in Chapter 3 of [2]. In most
problems, it tends to give sharp estimates, such as in the case a = 1. The case
a = 2 is an example of a problem in which the upper and lower bound for specific
values of p are of different orders of magnitude. Our investigations indicate that
this is not an artifact arising from the use of the upper bound lemma but rather
it is a consequence of the true state of affairs here.

We also point out that Markov chains very similar to (1) arise in computer
graphics algorithms which draw realistic pictures of leaves, trees, and clouds by
using iterated maps. Diaconis and Shahshahani [4] investigate such problems in
a continuous setting.

2. Preliminaries. Many of our arguments involve the Fourier transform on
Z,. To define this, let ¢ = g(p) =Ae2’”/ 2, For any complex-valued function f on
Z,, define the Fourier transform f: Z, — C by

(4) f()= X q"i(&).

kez,

The Fourier inversion theorem and the Plancherel theorem give, respectively,

(5) f(R) =~ ¥ q %7 ()),
pjelp
(6) S )=~ ¥ 10),
keZ, b JEZ,

where |x|? = xx. These follow easily from (4) (see also Chapter 6 of Serre [6]). A
further useful fact concerning the uniform distribution U is

AL 1, ifj=0
U = b b
(/) {0, otherwise.

By combining these facts we obtain the following upper bound.

LEMMA 1.
1P - UJ? - i(glP(f) vl
(7) <pLIPU) - u(j)*
- ifj.olﬁ(j)lz-

In Lemma 1 we have used the Cauchy-Schwarz inequality and the fact that
Po)=1 (for any probability measure P).
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This bound will usually be used when P is close to uniform, and then the
Cauchy-Schwarz inequality is fairly accurate. The bound in (7) was used in the
noncommutative case in [3].

Let P and @ be probability distributions on Z , and let P *@Q denote the
convolution of P and @, defined by

PxQ(k) = ¥ P(/)Q(k—J).

Jje z,
The following facts (with proofs omitted) will be used in what follows:
i) PxQ=P- Q.
(i) |P*Q - Ul <@ — Ul
(iii) Let T: Z, - Z, be 1-1 and let PT~" and QT " denote the correspond-
ing image measures. Then

|PT~! — QT =|IP - @Il
3. The case a =1. We first discuss for illustrative purposes the process
(8) Xn+1 = Xn + €n (mOd p)’
where ¢, = 0,1, or —1, each with probability 3, and X, = 0.

Fact. There exist positive constants a and B such that

9) e NP < ||Py — U| < e BN/,

ProOF. The ¢,’s in (8) have the common distribution p where p(0) =
p(—1) = p(1) = 3 Thus,
2 27r]

kj, = i —_ —
AJj) = Zq n(Jj) + goos—

After N steps, the correspondmg measure P, is the convolution of p with itself
N times. By Lemma 1,

1Py - U< 3 T I = 7 £ 50)

j#O J#0
2 2

= - E ( —COS——{)
j#O b

The right-hand side of (9) now follows by using elementary bounds on the cosine
function, such as
14 2cosx <e 2/? for0<x<m/2.
To prove the left-hand side of (9) we use (3) with the choice

27j
f(j) = cos—=
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In this case,
U(f) =0

and since

Py(f) = TPy(i)F()

N 2m)
= ZPN(J)COS—"‘
J p

2mj

= Re ZPN(j)e—"—

J

. 1 2 2x\V
= RePy(1) = 3t gcos—p— ,

then

1(1 2 27\V )
”PN_UHZ §(§+§COS?) ze_”N/"

for a suitable 8. O

A more careful analysis shows that the correct rate is e~ *¥/?* with a = 472,

but we will not prove this here. By using the Berry—Esseen theorem to bound
the random walk, it can be shown that a “cap” {k € Z ,: |k| < c} for a fixed c,
has probability close to 1 under Py, but probability close to 0 under U, if N/p?
is small (which in turn also implies that ||Py — U] is close to 1).

4. The case a = 2—an upper bound. We consider here the process
(10) Xn+1 = 2Xn + €n (mod p)9 XO = 0’
where, as usual, p is odd and the ¢, all share a common distribution p with

p(O0) = p(—1) = p(1) = 3.

THEOREM 1. Suppose X, satisfies (10) and c > 1/log9. Then for N.Z
clog p loglog p, we have |Py — U|| = 0 as p = .

Proor. After N steps of the process we have

N-1
(11) Xy= Y 2N¥"1'7%, (mod p).

a=0

Thus, the corresponding measure Py induced by X is just the convolution of
the N measures p(® given by

p(0) = p(-2%) = p@(2%) = §, 0<as<N-1,
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where, of course, the arguments of u(®) are reduced modulo p. Therefore,

N-1
= l"[ ﬁ(a)
a=0
and, by Lemma 1,
2 1 BB |2
1Py = Ul < 5 T |P(k)]
k%0
12
(12) 1ZN-11 2 272°%\?
= - - + —cos

Let
1 2 2
g(x) = (5 + Ecos27rx)
and define the function A: [0, 1] - R by
h(x) = {%’ ifx e [},3),
1, otherwise.

Note that g(x) < h(x) for 0 < x < 1. Thus, with {x} denoting the fractional
part of x, we have

(13) 1Py = Ul < z ] Ii‘[ ({“})

p

If we write x € [0,1) in its binary expansion
X = a,ayag,..., a;=0or1 (where a; = 0 infinitely often),
then
h(x) =} ifandonlyif a, # a,.
’I‘fhus., if A (NN) denotes the number of “alternations” in the first N binary digits
of x,i.e.,

A(N)=|{1 <i<N:a;#a;,,}|,

then
N-1 9ap,
(14) I1x { } = 9 A/p(N+D),
a=0 p
Define the integer ¢ to satisfy
2!—1 <p < 2t.

We shall choose N to be of the form rt for a large integer r = r(¢) to be specified
later.
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Consider the first N = rt binary digits of the binary expansion of
k/p=a1a2 e at“t‘i’l e a2t e art RIS

Partition this string into r disjoint blocks B,;, 1 < i < r, each of length ¢, by
defining

B, = QG-ne+1%G-1)e+2 7" Xige
Let A(B,;) denote the number of alternations in the block B,;. Thus,

(15) ’\i:ll 5 ( { 29 }) < ,1;[1 9-ABw,

a=0 p

where the inequality sign allows for the fact that we have ignored the possible
interblock alternations, and that we are only using the first N digits of k/p (and
not N + 1 as specified by (14)).

Next observe that as & ranges over Z ,\ {0}, the blocks B, are all distinct
and all have at least one alternation (by the choice of ¢). Furthermore, since
(2, p) = 1 = (2%, p), then for each i, the set of blocks {B,;: 1 <k <p—1}is
identical with the set {B,;:1 <k <p —1}.

By (13) and (15) we have
(16) IPy = Ul>< § X JT9745.

k%0 1=1

12

Since for a < a’, b < b’, and 0 < y < 1 we have
(17) ,Ya+b’ + .Ya’+b < ,Ya+b + .Ya’+b"

then by successively interchanging pairs of exponents A(B,;), A(B,.;) (using
(17) with y = } and the fact that the sets {B,;: 1 < k < p — 1} are identical for
1 <i<r), weobtain

(18) E ﬁg_A(Bki) < E 9—rA(B)

k#0 =1 k+#0

Since the B,;, 1 < k < p — 1, are all distinct and have at least one alternation,
the right-hand side of (18) is upper-bounded by summing over all blocks B of
length ¢ having at least one alternation:

(19) Z 9 TA(Brn) < Z 9-rAB).
k+#0 length B=¢
A(B)>0

If M(j) denotes the number of blocks of length ¢ with exactly j alternations

then
M(j)s2(t;.1)s2(]t.).
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Therefore, combining the preceding estimates, we have

1Py = UI* < 3 1 9774
k+0
% E 9—rA(B)

length B=1¢
A(B)>0

IA

IA

t
T M9
j=1

ey
B
2j=1 Jj

“H{avs-)
He® - 1),

(20)

IA

IA

Thus, for

logt
r=

+d,
log9 d

Py - UIP < 3”7 - 1),

which goes to 0 as d — oo. This proves the theorem. O

REMARK. For the much easier special case that p = 2! — 1, a probabilistic
argument can be given for Theorem 1 (see [1]).

5. The case a = 2—a lower bound. The main result of this section deals
with moduli p of a special form, namely, p = 2° — 1. One reason for suspecting
that these p might have particularly slow convergence of P to uniform is that
for each &, all the blocks B,;, 1 < i < r, introduced in the preceding section, are
identical, so that equality holds in (18). It turns out that for these p (and many
others as well) the estimate in Theorem 1 is essentially best possible.

THEOREM 2. Suppose X, satisfies (10). Then for a suitable ¢’ > 0, if p =
2 —1 and N < c’log p loglog p then ||Py — U|| is bounded away from 0 as

t — o0.

PrROOF. Our strategy will be to introduce what might be called a “separat-
ing” function f: Z , —> C, defined by

-1
f(k) = X ¢**.
Jj=0

We will take N = rt where r is an integer of the form r = alog¢ — d for a
fixed constant a to be specified later.
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Define
=11 2 24292/~ 1)
II; = - 4+ —cos—
’ al:[0 3 3 p
for 1 <j <t — 1. We will compute the mean and variance of f with respect to
the two measures U and Py,.
To begin with, it is easy to see that for U the mean is

(21) Ey(f) = %U(k)f(k) =0
and the second moment is
Ey(ff) = §U(k)f(k)fm
) S iy Yoy
P rjy

For the measure Py we have

EPN(f) = Zk:PN(k)f(k)

t—1 .

=) X Py(k)g**/?

E j=0
(23) -1

= Z PN(2J)
Jj=0
t-1e-1(1 2 242%/\"

= = + —cos = ¢II7.
LI(5 gD -

In the same way we compute

EPN( ff_) = Zk:PN(k)f(k)f_(k)

X X Py(k)g*® " /p

k J,J

Y By(2/-27)

LT

t—1
=ty II;
Jj=0

(24)

Thus, the variances of f under U and P, are
Va‘rU ( f ) = t:

2 t—1
(25) Varp (f) =t ) 117 — t*I1}".
Jj=0
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We will need the following complex form of Chebyshev’s inequality:
(26) Pr{x: |£(x) = Eq(f)] = Varg(f) } < 1/a?,

for an arbitrary probability distribution @ (on Z,) and an arbitrary constant
a > 0.
For the cases @ = U and @ = Py, (26) implies

Pry{x: | f(x)| > at'?} < 1/0?,
(27)
t-1 172
PrPN{x: | f(x) — ¢eI1]] > ,B(t IR I tzﬂf’) } <1/B2
Jj=0
Thus, if A and B denote the complements of these two sets, respectively, then
(28) Pry(A)=21-1/a%, Prp(B)=1-1/8%

If in fact the sets A and B are disjoint, then from (28) we immediately obtain
the lower bound

(29) IPy— Ull=1-1/a% - 1/82.
We next specify r to be an even integer of the form
logt
r=————+- -2\
2log(1/1L,])
for a fixed number A. In this case,

(31) tTI] = #7210, |72 > ct'/?

(30)

for any fixed ¢, provided A is sufficiently large since |I1,| is bounded away from
both 0 and 1 as ¢ — co.

CLAIM.

16-1(I0,\"
(32) —Z(——’) -1 ast— oo.
tjiZo\ I}

REMARK. 1t is easy to see that (32) implies that
/2
(33) (Varp, (1)) = o( Ep,(1))-

Hence, by choosing a = 8 = 2 and A > 1, for example, we see that A and B are
disjoint for ¢ sufficiently large and || Py — U|| > 1. Since in this case

( log ¢

2log(1//11,)

)t > c’log p loglog p,

the theorem then follows.
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It remains to prove the claim. To begin with, define

(34) G(x) = |3 + %cos2mx]|.
Thus,
=1 (9a(9/ — 1)

35 II|= G| ——|.
(35) I al:Io p
Note that

0<x<y<i=G(x)>G(y),

1<y<x<§=G(x)>G(y).

Facr 1. |II;| < |TI,|for all j> 1.

ProOF OF FACT 1. The strategy will be to pair off each factor x of II; with a
corresponding factor #(x) of II; so that |x| < |#(x)|. (Strictly speaking, we do
this for all but two factors of I1; and II,, as we shall see.) Since G(x) = G(1 — x),
we can assume without loss of generality that 2 <j < ¢/2. Thus,

t—j—1 2i+j _ 2i Jj—1 2i+t—j _ 2i
36 II. = G| ———— G| ——|.
(36) ! E) r E) ( p )
We make the following association:
x o a(x),
2i+j _ 2i 2i+j—1
—— | e G , for0<i<t-j-2,
b
2t—1 _ 2t—j—1 2!—1
Gl ——— | e G s
b b
2i+t—j _ 2i 2i
— | e G|—]|, for0<i<j-3,
)4 D
2!—1 _ 2j~—1 2!—2 _ 2j—2 ’ 2j—2 2!—2\
G G oG G .
p )4 b b

It is straightforward to check that the product of the factors under x is I1;, and
the product of the factors under #(x) is IT,. Furthermore, |x| < |7(x)| for each
pair of associated terms (as well as for the bottom pair of associated products).
This proves Fact 1. O

By a similar (but slightly more complex) argument, the following result can be
proved.
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Fact 2. There is an absolute constant c, such that for #/3 <j < t/2 we
have

IT; Co
(37) ﬁ%SHE

A straightforward calculation now shows that

II; \"
[mi] -

for absolute constants ¢, and c,. Therefore, since I1; = II

ctr Cy
Yl < YA

(38) D

t3<j<t/2

then

t—js
1t-1 ro 9 Im.\" II.\"
‘Z(nz) —z( X (ﬁ‘) "> (ﬁ‘))
0<j<p/3 1 3 <j<t/2 1
=1+o0(1)
as t — co. This completes the proof of the Claim and Theorem 2. O
Essentially the same argument can be applied to other p, such as those of the

form 2!+ 1,2%¢ + 2t + 1, etc., for which the value of ord,(p) is small, where
ord ,( p) is defined to be the least positive integer satisfying

2°74:(P) = 1 (mod p).
However, these p are rather exceptional, as the result in the next section shows.
6. A bound for almost all odd p. In this section, we show that in fact
almost all odd p require far fewer steps to bring Py close to uniform than the
upper bound given in Theorem 1.
THEOREM 3. Suppose X,, satisfies (10). Then for almost all odd p, if

log p N
> S ——
= log(9/5)
then

1Py = Ull= 0((5)”%).

Proor. We will proceed as in the proof of Theorem 1, defining g(x), h(x),
and A (N) in the same way. Further, define f,(p) and f(p) by

fup) =TT h((2%/p),
(39) -
f(p) = kgl f«(p).
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By applying the argument used to establish (15), it follows that

(40) f(p) < 974 (N).
Note that by (13),

1
(1) 1By = UI* < 51(p)-

Choose a large fixed integer ¢ and consider the set of all f,(p) where
20"l<p<2, 1<k<p-1

(and where we always assume p is odd).
Define

p-1
S = Z Z fk(P)-
2t-l<p<at k=1

Of course, if k/p = k’/p’ then f,(p) = f{(p’). Let M(r/s) denote the number
of pairs (k, p) with 28" <p <24 1 <k <p— 1, which satisfy k/p =r/s
where (r, s) = 1. Therefore,

s- T MZ)is)

1<s<2!
l<r<s—1
(r,s)=1
s odd
= s
@ § ()f<>
r 2t
<2‘ sinceM(—) < —
e s s
<2 Z y 9 4N (by (40)),
w=1
where ¥’ denotes the sum taken over all r and s satisfying
2¢71l < 5 <29 l<r<s-—1, (r,s)=1 and sodd.

We will partition the sum

Z Z 9 Ar/s(N)

w=1

into three sums as follows:

Sl = Z Z 9 Ar/s(N)
w<t/logt
1
S2 = Z Z,—-g_Ar/s(N),
t/log t<w<N/2 s
S3 = Z Z 9_ r/s(N)

N/2<w<t
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We should keep in mind that we are assuming N = log p/log 2 + ¢ for a fixed
positive c.

(i) Bounding S,. Let N’ =[N/2w] and for each r/s=aja, -+ ay - -,
partition the first 20N’ binary digits of r/s into N’ blocks B,(r/s), each of
length 2w, as follows:

B\(r/s) By(r/s) By(r/s)
a1a2 cee a2w a2a)+l coe a4w e a2le :
Observe that since (2, s) = 1, then for
R(s)={1<x<s:(x,5) =1}

we have
{2r (mod s): r € R(s)} = R(s).
It follows that all of the sets
{B{(r/s): reR(s)}, 1<i<N’,
are equal, i.e., independent of i. Furthermore, since for
2971 < 5,8 < 29, (r,s)=(r",s’)=1,

if r/s # r’/s’, then

Ir/s —r'/s’| > 1/ss’ > 272,
Hence, all the blocks

B/(r/s), 2°7'<s<2% l1l<r<s-1, (r,s)=1,

are distinct. Also, since s < 2, each B,(r/s) has at least one alternation.
Next, for each s, we can apply the “interchange” technique used in deriving
(18) and obtain

Y 9 ILABC/ ) < Y 9T NAB/E),
reR(s) reR(s)
Therefore,
/1 ,
Z —9=4rs(N) 9@ Z 9-N'A(B)
s

length(B)=2w
A(B)>1

_w2m 2(0 —jiN’
<27¢ Y P

j=1
=27¢[(1 + 9 V) - 1]

<279V — 1) < w2799V,
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Continuing the inequality for S, we have

S,< Y w27e9~M
w<t/logt

< 9—(N log t)/2t’

since ¥, . w27 is bounded.
Thus, for N = ¢/logy(2) + ¢,

(43) S, < ¢~(/2)10g 90/ log9/5)+ /1),

(i) Bounding S,. Starting with the definition

’
S2 = z Z %Q_Ar/s(N)’
t/logt<w<N/2

we can proceed as in the case of S, until we come to the point where we have
S< X 2e(@+9M)-).
t/logt<w<N/2

We now continue as follows:

<N 27¢((1+9°N)%* -1
Sz t/logrtgac:ast/Z (( ) )

44 <N 50,/81)"
(44) tog ey O0/BY

< N(50,/81)""¢¢
since N’ > 1.

(iiiy Bounding S;. We begin by partitioning
[0,1) = UI(e),

where a ranges over all binary rationals u/2V, 0 < u < 2V, and
I(a) =[a,a +27V).
Therefore,

/1
S3 = Z Z -;9—Ar/s(N)
N/2<w<t

S D
a N/2<w<t| go-lcg<w s
1<r<s-1
(r,s)=1
s odd

r/sel(a)
where, of course, A(a) denotes the number of alternations in the binary N-
tuple a.
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Our next task is to estimate the inner sum. This we do as follows. First, we
write
;1 1
—_—= Z - < 2—(“’—1)
r/sel(e) S gemicg<ge S

.

{2: g EI(a)}

However, since r/s # r’/s’ implies

rr
{—: - € I(a)} < 229N,
s s
consequently,
’ 1
Y - <2eN
r/s€l(a) s
Thus,
S3 < Z Z 2w—N9—A(a)
a N/2<w<t
< 9t-N Zg—A(u)
N
<2tV Y (1}7)9-1’: 2¢(3)".
Jj=0
For N = ¢/log,(2) + ¢, this gives
(45) Sy < ($)"

Now we can combine the estimates for S;, S,, and S;. Since for fixed ¢ > 0,
S, = o(1) and S, = o(1) as ¢t = oo, we have
(46) 8 < 248, + 8, + 8;) < ¢2(2)°

for an absolute constant c’.
Since there are 2¢72 odd integers p in (2°71,2%) and we have just shown that

Y f(p)<c24(3)°

2t l<p<2t
p odd

for N = t/logy(2) + ¢, then the number of odd p’s in (2°7%,2%) which have
f(p) > ¢”(£)° is at most (c’/c”)2"
Since ¢’ is arbitrary then it follows that for each fixed ¢ > 0, almost all odd
integers p have, by (41),
IPy = U|I* = 0(3)°
for N = log p/log £ + c. This proves Theorem 3. O

7. Concluding remarks. If a better upper bound to g(x) is used, rather
than the simple step function A(x), the preceding estimates can all be
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strengthened, but at the expense of considerably more complicated arguments.
We plan to focus on these in a later paper—here, we will just summarize some of
the results.

Define c¢* by

* 1°‘°[ L, 202" 143.659
= — + —cos—| =143.659--- .
c 1113 3C032k

The “correct” values of the constants ¢ and ¢’ in Theorems 1 and 2, respectively,
turn out to both be equal to (log c¢*) 1.

In the case of Theorem 3, our bound is not as sharp. The best upper bound we
can obtain is this:

For any ¢ > 0 and almost all odd p, if N > (¢é + ¢)log, p then ||Py — U|| <,
where

5417 \\ 7!
é= (1 - log2(—~9———)) -=1.01999186 - - - .
It is conceivable that in fact (1 + o(1))log, p steps are enough for almost all p to
force Py to converge to uniform.

On the other hand, we are at present unable to exhibit for any fixed constant
¢, an explicit sequence of p’s for which clog p steps suffice.

We should point out that similar techniques can be applied to more general
sequences of the form
(47) Xn+1 = aXn + bn (mOd p)
where the b, share a common distribution p of bounded support. These prob-
lems can usually be dealt with by applying the remarks (ii) and (iii) mentioned
earlier together with the methods we have employed. For example, it is easy to
show that if @ = 2 and p(1) = p(—1) = 3 in (47) then N = clog p steps suffice,
for some absolute constant c. If instead, we now consider (47) with a = 2 and
p' () = p’(—1) = 1, p/(0) = ; then this measure p’ is (a scaled version of) the
convolution of p with itself. Thus, by (ii), the corresponding measure Py}
converges to uniform at least as rapidly as Py, and so, clog N steps also suffice
for this case, as well.

This, in fact, strikes the authors as somewhat curious since all three of the
processes are of the form

Xn+1 = 2Xn + bn (mOd p)’

where the b, share the common distribution p with p(1) = p(—1) = 8, p(0) =
1 — 2B. Thus, if B =1 or B =1, clog p steps suffice. However, if 8 = § then
clog p loglog p steps may be required (e.g., when p = 2 — 1). It would be very
interesting to know which value of 8 maximizes the value of N required for

1Py = Ul = 0.
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