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A new type of stochastic dependence for a sequence of random variables
is introduced and studied. Precisel¥,),>1 is said to be conditionally
identically distributed (c.i.d.), with respect to a filtrati¢g,),>o, if it is
adapted ta4,),>0 and, for eac > 0, (X )i, is identically distributed
given the past,. In case4g = {2, 2} and 4, = o(X1q, ..., X,), a result
of Kallenberg implies that(X,),>1 is exchangeable if and only if it is
stationary and c.i.d. After giving some natural examples of nonexchangeable
c.i.d. sequences, it is shown th@X,),>1 is exchangeable if and only if
(Xz(@m))n=1 is c.i.d. for any finite permutatiom of {1,2,...}, and that the
distribution of a c.i.d. sequence agrees with an exchangeable law on a certain
subo -field. Moreover,(1/n) 3} _; X; converges a.s. and ihl whenever
(Xn)n>1 is (real-valued) c.i.d. and[|X1|]] < co. As to the CLT, three
types of random centering are considered. One such centering, significant
in Bayesian prediction and discrete time filtering FifX,,11/%. 1. For each
centering, convergence in distribution of the corresponding empirical process
is analyzed under uniform distance.

1. Introduction and motivations. In this paper a new type of stochastic
dependence for a sequen@g,),>1 of random variables is introduced and studied.
Precisely, suppose th¥, are defined on the probability spac®, 4, P), take
values in the measurable spaég &), and are adapted to a filtratign= ($,),>0.
Then, (X,), is said to beconditionally identically distributed with respect to g,
abbreviated ag-c.i.d., whenever

E[f(X)|§nl = ELf (Xn+1)|$n] a.s.
for all k > n > 0 and all bounded measuralfie E — R.

(1)

Roughly speaking, (1) means that, at each tine 0, the future observations
(X1)k-n are identically distributed given the pagf. In caseg = X, where
9% ={2,Q} and§;f =0 (X1, ..., X,), the filtration is not mentioned at all and
(Xn)n isjust called c.i.d. Clearly, iX,), is -c.i.d., then it is c.i.d. and identically
distributed.
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Two obvious equivalent formulations of (1) are
X~ Xnp+1 underP(-|H)

2
@ for all k > n > 0 and all events$/ € 4, with P(H) > 0,

where “~" means “distributed as,” and

(ELf (Xn41)19n)) =0 IS @g-martingale
for every bounded measurabfe £ — R.

®3)

By general results on martingales, condition (3) can be writteB[g8 X 71)] =
E[f(X1)] for all bounded measurabléand all finiteg-stopping times" (where
g-stopping times take values {9, 1, ..., oo}). Say that a§-stopping timeS is
predictable in caseS = T + 1 for some§-stopping time7. Then, one more
equivalent formulation of (1) is

(4) Xs~ X1 for each finite predictablg-stopping times.
Note also that, wheg = ¢, conditions (1)—(4) all reduce to
(5) [(X1,.... X0, Xp2l ~ [ X1, .-, X, X1l foralln > 0.

Exchangeable sequences meet (5) and, thus, are c.i.d. Indeed, exchangeabil-
ity is the most significant case of conditional identity in distribution. C.i.d.
sequences, however, need not be exchangeable. In fact, by a remarkable result of
Kallenberg [(1988), Proposition 2.1], exchangeability amounts to stationarity and
condition (5). In Kallenberg’s paper (cf. Proposition 2.2), it is also shown that con-
ditions (3)—(5) are equivalent in cage= §X. However, apart from these results,
condition (5) is not systematically investigated.

In the present paper, instead, we focus $t.i.d. sequences. As a first
motivation, we give some examples where conditional identity in distribution
naturally arises while exchangeability may fail.

ExAamMPLE 1.1 (Stopping and sampling). L&, = Z7.,, Where(Z,), is
exchangeable an@ is a random variable with values if1, 2, ..., co}. Then,
(X)n is not exchangeable apart from trivial cases, but it is c.i.d. under natural
conditions onT". In fact, if (Z,), is c.i.d. (and not necessarily exchangeable), then
(X,)n is c.i.d. whenever is independent ofZ,),, or whenevefl is a predictable
stopping time forgZ. Thus, typically, conditionaldentity in distribution is
preserved under stopping while exchangeability is not. We now prove Xhat
is c.i.d. if (Z,), is c.i.d. andr is a predictable stopping time fg/. If S is a finite
predictable stopping time fg#, thenT A S is a finite predictable stopping time
for g7, and sincgZ,), is c.i.d., one obtains

Xs=Zrrs ~Z1=X1.
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Since(X,), is adapted tg?, condition (4) implies thatX,), is §Z-c.i.d. and,
in particular, it is c.i.d. Next, conditional identity in distribution is also preserved
under (strictly increasing) sampling. Thatis(#,), isc.i.d.andly < T» < --- are
finite predictable stopping times fg“, then(X,), = (Zr,), is c.i.d. To prove the
latter fact, fix a finite predictable stopping tinsefor ¢X. SinceTy < 7> < - -,
one has{T; =n,S = j} € 7 ; for all j,n > 1, and this implies{Ts = n} =
j?ozl{Tj =n,S=j}e 95_1- It follows that Ts is a finite predictable stopping
time for ¢4, and sincgZ,),, is c.i.d., one obtains

Xs=Zry~2Z1~Zp = X3.

If (X,,), is stationary and converges in probability, thén= X, a.s. for alln.
In Example 1.1, ifT is a.s. finite, thenX,),, = (Zrx), IS definitively constant
with probability 1 and, thus, it converges a.s. but in a trivial way. The next example
exhibits a c.i.d. (nonexchangeable) sequence which converges a.s. in a nontrivial
way.

ExAmMPLE 1.2 (Compensated sum of independent random variables). Given
the real numbers @ by <bp < bz <--- <c,letusdefing;; =candy;; =b; Ab;
fori # j. On noting thal",, = (y;;)1<i, j<x IS @ Symmetric positive definite matrix,
(X,), can be taken such thpXy, ..., X,]1 ~ N (0, T",,) for eachn > 1. Then,

[X1,..., Xy, Xng2l ~ N (O, T} 11) foralln >0,
that is,(X,), is c.i.d. [by condition (5)]. However,
E[(Xn — Xm)?] = 2(c — by A by).

Thus, (X,), is not stationary unless, = b, for all n, and E[(X, — X)%] — O

if ¢ =Ilim,b,, for some random variabl&. Further,X,, — X a.s. whenever

> .(c —by)" < oo for somer > 0 (sinceE[|X, — X|%1=y,(c — by)" for some
constanty,). To explain the title of the example, we note that it is a particular case
of the following general scheme. LéZ,,),, (U,), be independent sequences of
independent real random variables and let

n
Xop=Y Zi+Us,  Gn=0(Z1,U1,....Z,,Up),  $0=1{2,Q}.
i=1
Suppose also thdf, compensatey_;_; Z;, in the sense thaX,, ~ X for all n,

and that the characteristic functigr, of X, is null on a set with void interior.
Fix k > n > 0 and a bounded Borel functioh: R — R. Then

ELf (X)|9a] = f f(x iy zi)mdx) as,

i=1
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wherepy is the distribution ofX; — "' ; Z;. But ux = w1, due togy, is null
on a set with void interior and, thusX,), is §-c.i.d. For instance, given any
nondegenerate and infinitely divisible law the sequences,),, and(U,), can
be taken such that the resulting,), is c.i.d., nonexchangeable witki; ~ u.
Finally, to recover the first part of the example, just téke~ N (0, b,, — b,,_1)
andU, ~ N (0, ¢ — b,,), wherebg = 0.

ExaMPLE 1.3 (Modified Pélya urns). An urn contains> 0 white and- > 0
red balls. At each time > 1, a ball is drawn and then replaced together wijth
more balls of the same color. L&, be the indicator of the event {white ball at
timen}. Then E(X1) = w/(w +r) and

w+ Y qdi X
wHr+" qd;
In the usual Polya schemé, = d; for all n, whered; > 1 is a fixed integer,

and (X,), turns out to be exchangeable. Here, instead, we(dg}, be any
sequence of random variables, with value§lif?, . . . }, satisfying the following:

a.s. for alln > 1.

E[Xn—i—lle’ dl, ey Xn7 dn] =

(i) d,isindependentof(X;,d;:i <n,j<n)foralln>1,or
(i) d1is degenerate and(d,)) C o(X1,...,X,_1) foralln > 2.

Then (X,), is c.i.d. but (apart from particular cases) nonexchangeable. For
instance, if all thed,, are degenerat€X, ), is not exchangeable unleds = d1

for all n. To prove that X, ), is c.i.d., itis enough to check théE[X,,11|$»]1)n>0

is ag-martingale for some filtratiog. > ¢X. Suppose (i) holds and let

o= {9, 2}, Gn=0(X1,d1, ..., Xn,dn,dny1) forn > 1.

For n =0, (i) implies E[E[X2|$1ll§o] = E[X2] = E[X1] = E[X1|$o] a.s.
Forn > 1, (i) givesE[X,+119,] = E[X,+1|X1,d1, ..., Xn,dy] a.s. Sinced, 11
is ,,-measurable, it follows that

w + Z?:ldiXi +dy1E[ X110l
w+r+ Y d,
= E[Xn+l|g>n] a.s.
A similar argument works under (i), after settigg= *.

E[E[Xnt2|9n+1]1$n] =

There is a second reason for studyipe.i.d. sequences, in addition to their
possible utility in modelling real phenomena. Indeed, conditional identity in
distribution is a basic assumptionuniformlimit theoremsfor predictiveinference
and empirical processes from dependent data.

Precisely, supposE is a Polish space& = 8(E) and(X,), is any sequence of
random variables. Given a clags of bounded measurable functions Bnlet

an(f) = E[f (Xp1D)I§s]  forall f e D,
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be the so-callegredictive measure. In various problems, mainly in Bayesian
predictive inference, discrete time filtering and sequential procedures, the main
goal is just evaluating,,, and good approximatioris, for a,, are needed. See, for
instance, Algoet (1992, 1995), Ould-Said (1997), Modha and Masry (1998), Berti
and Rigo (2002) and Berti, Mattei and Rigo (2002). Usuadllyjs asked to meet

a consistency condition of the type sup, [a,(f) — a.(f)| — 0 a.s. A further
request is that, for suitable normalizing constafytsthe limiting distribution of
cy(a, — ay) can be evaluated. Here, (a, — a,,) is viewed as a process (indexed
by D) with paths inl*°(D), the space of bounded functions @ equipped
with uniform distance; see van der Vaart and Wellner (1996). In this framework,
possible choices fo#i, andc, are the empirical measuye, = %2?213xi and

cn = +/n. So, it is of some interest to give conditions for

(6) suplu,(f) —a,(f)| -0  as.
fed

(7) Vn(u, — a,) converges in distribution to some known limit

Now, assuming thatX,), is §-c.i.d. is fundamental for both (6) and (7). As
to (6), we refer to Berti, Mattei and Rigo (2002). As to (7), one of the concerns
of this paper is proving it fog-c.i.d. sequences; see Section 4. Note also that (7)
implies (6) if a.s. convergence is weakened to convergence in probability.

To sum up, conditional identity in distribution seems interesting enough to
deserve a systematic study, both from the theoretical and the applied points of
view. This task is accomplished here from the first point of view, with special
attention to limit theorems.

The paper is organized in three sections. In Section 2, a few basic facts are
listed. Among other things, a c.i.d. sequence meets a SLLN, is asymptotically
exchangeable, and its probability distribution agrees with an exchangeable law
on a certain sule-field of £*°. Moreover,(X,,), is exchangeable if and only if
(Xt n))n is c.i.d. for any (finite) permutatiom of {1, 2, ...}. Section 3 includes
versions of the CLT forg-c.i.d. sequences. Lef: E — R be a measurable
function. Stable convergence (in particular, convergence in distribution) of
ﬁ(% Y4 f(Xi) — Ly) is investigated for three different choices of the random
centeringL,,. In particular, conditions are given for convergence in distribution of

S (f) = an(f)) = v/ (% 3 rX) - E[f(Xn+1)|3n]).
i=1

Such conditions, incidentally, work in Examples 1.2 and 1.3. Section 4 is devoted
to uniform limit theorems. For each centering considered in Section 3, convergence
in distribution of the corresponding empirical process is investigated under
uniform distance. General statements §oc.i.d. sequences are obtained which,
among other things, yield interesting (and possibly new) results in the particular
case of exchangeable sequences.
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2. Preliminary results and the SLLN. Let # be the class of measurable
functions f:E — R such thatE[|f(X1)|] < oco. Our starting point is the
following simple lemma.

LEmMmA 2.1. Let (X,), be g-ci.d. Then, for each f € #, there is an
integrable random variable V; such that E[f(X,+1)|$.] — V¢, as. andin L
and

(8) E[Vfl§gn]l = E[f(Xn+1)I§n]  as. for everyn > 0.

Moreover, if f1, ..., fr are bounded elementsof #, k > 1, then

9) [1‘[ fi(X

} — H vy,  asandinL™

PrROOF By (3), (E[f(X,+1)|$n]Dn>0 IS ag-martingale, and it is uniformly
integrable since th&,, are identically distributed. Hencé&] f (X, +1)1$.] — V7,
a.s.andirnLl, for some random variablié; . In particular,V, closes the martingale
(ELf(Xn+1)1$n]n>0 and, thus, condition (8) holds. As to (9), sine...., fx are
bounded, itis enough to show a.s. convergence. Arguing by induction, suppose that

[H fi(X } — H Vi, as.

Let D, = E[(Vy, — EIV ;19D [T523 £ (Xns ). Sincefi, ..., fi are bounded
andE[Vy |$.] — Vy, a.s., itfollows thatD,, — 0 a.s. Hence, (8) and the inductive
assumption imply

|

k
E[H fi(X
j=1
k—1
=E[1‘[ [iXne DELfi(X - }

j=1

k-1
= E[H fiXu+j) Ve n:|
j=1

=D, +E[ka|gn]E[]"[ fix }—> [Tvy, as. O
j=1
Among other things, Lemma 2.1 has implications as regards convergence in
o (LY, L™) of c.i.d. sequences. Recall that, for real integrable random variables
Y, andY on the same probability spacdé, — Y in o (L, L) meansE[Y,Z] —
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E[Y Z] for each bounded random variabfe Then, f(X,) — V in o (LY, L®)
whenever (X,), is§-c.i.d. and f € #. Fix, in fact, a bounded random variatite
By standard arguments, for providj Zf (X,,)] — E[Z V] it can be assumed that
Z is ,,-measurable for some, and in this case Lemma 2.1 yields

E[ZV]=lim E[ZE[f(X,)|gn-11] = lim E[Zf (X,)].

Moreover, in exactly the same way, Lemma 2.1 also implies that

1_[ f/(XrH—/) —> 1_[ Vf/ in O‘(Ll, L™)

j=1

wheneverX,), is §-c.i.d. andf, ..., fr are bounded elements @f. From now
on, when(X,), is c.i.d. andf € #, V always denotes a version of the limit in
o (LY, L) of (f(Xn))n-

If (X,), is §-c.i.d., then(f(X,)), is still g-c.i.d. for each measurabl¢
on E, while (g(X,,, X,+1,...)), can fail to be c.i.d. ifg is measurable o;
see, for instance, Example 1.2. Neverthelég6X,,, X,+1,...)), Obeys a SLLN
for various choices og, for instance, forg of the form g(x) = 1‘[’]‘-:1 fixj),
x = (x1,x2,...) € E®.

THEOREMZ2.2 (SLLN). Let(X,),becid.If f1,..., fre Hand f1,..., fi-1
are bounded, k > 1, then

1n1k

(10) - Z [1/f X)) — ]‘[ vy,  asandinL™

10]1

In particular, —Z” 1 f(Xi) = Vy,as. andin L1, whenever f € #.

PROOF LetU; = Hﬁzl fi(Xiy;),i > 0.Since(U;); is uniformly integrable,
it is enough to prove a.s. convergence, and, to this end, it can be asgiimel
for all j. To begin with, suppose also thgt is bounded, and let

"I Ui — EUi19F 4]

Z i+1

Then, (Z,), is a martingale with respect tq;f+k_1)n, and sincefi,..., fr
are all bounded, one has spﬁ[Z,%] < 00. Hence,(Z,),, converges a.s., and an
application of the Kronecker lemma gives

n—1

1
(11) —Z(U E[U15 1) —>0  as.
i=0
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Fork =1, one hast Y3 E[Ui|§X ;11 = 2 I3 E[ AA(Xi10)1§51 — Vy, as.
by Lemma 2.1 and, thus (11) implies (10). Argumg by induction, suppose that

11= 1k—-1

(12) = Z []/fiXisj) — ]‘[ Vi, as.

i=0,=1

Recall that, If(an)n and (b,), are any real sequences, th%l{j alb — ab
whenever1 Z, _oai — a, b, — banda; >0 foralli. Hence,

n 1
- Z E[Ui1954-1]
n 1k—1
= Z [1 i Xis ) ELfe(Xiz) 19 k1] — 1‘[ Vi, as.
i=0,=1 j=1

Once again, (10) follows from (11), and this concludes the proof in the particular
case wheref; is bounded. Iff; is not bounded, defing; ,, = fiI{r,<m). Then,
Viem T Vi as.asn — oo. Further, for each fixedhg, one obtains

Vi > liMSUPET fiem (Xt |G 451
m

> liminf E[ fen Xme) |Gy 151

= iminf EL fimoXmti)|Gm k1) = Viiwy @S-

Thus, Vs = limy E[fimXni)|Goip_a] @S Let ¥i = fii(Xipx) X
]‘[’]‘.j fi(Xi+j). Sincefy, ..., fi_1 are bounded, condition (12) holds by the first
part of this proof. Therefore,

n—1k—1

1t 1
- Y EiIg 1]l = - ST £ Xie D EL i (Xisi) 1G]
i=0

i=0 j=1
-]V, as

Further, -2 P(U; # Y;) < Y729 P(fi(X1) > i) < 1+ E[fi(X1)] which im-
plies P(U; # Y; i.0.) = 0. Hence, it suffices showing th%tzl’.’:_ol(Y,- — E[Y;]
X «_1) — O a.s. Inits turn, this follows from the Kronecker lemma, after noting

thatH, =>""_; 1 % is a martingale such that S,I,JE[HnZ] < o0. In fact,
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letting a = [T5_1 sup| f;1, one obtains

SUPE[H?] Z n"2E[Y? ]

< ZaZZn_Z/n xP(fir(X1) > x)dx
n=2 0

n—1

<2a22n ZZZP (fr(X1)>i—1)
n=2 i=1
=24 iP(fi(X)>i—1) Y n7?
i=1 n=i+1
<2a®3 " P(fir(X1) >i—1)
i=1
< 2a%(1+ E[fi(X1)]). O

REMARK 2.3. SupposeE is a Polish spaceg¢ = B(E) and (X,), is
c.i.d. By using Theorem 2.2 and Lemma 2.4, it is not hard to see that
%Zl’.’zlg(xi, Xi+1,...) converges a.s. for each bounded continuous fungion
on E®°. This result generally fails ig is a bounded, Borel but not continuous
function onE*°.

The remaining part of this section investigates to what extent conditional
identity in distribution is connected with exchangeability. To this end, we collect
here some notation and terminology from Aldous (1985). Given a Polish space
let C»(S) denote the space of bounded continuous functionsSoi? the set
of probability measures omB(S), and ¥ the o-field on P generated by the
evaluation mapy — p(B), for B varying in 8(S). A random measure on §
is a measurable functiow : (22, A) — (P, X). Let (Z,), be a sequence of
S-valued random variables qif2, 4, P). Say that(Z,,), convergestably if, for
every H € A4 with P(H) > 0, (Z,), converges in distribution unde? (-|H) to
some lawu g . In this case, there is a random measuren S which represents
each limitlawuy asuy(-) = [y (w)(-)P(dw|H), and(Z,), is saidto converge
stably with representing measure . See also Letta and Pratelli (1996). We recall
that, if (Z,),, is exchangeable, there is a random measumn S such that the
product random measure

YT =y xyx..
is a version of the conditional distribution ¢%,),, giveno (y). Suchy is called

the directing measure of (Z,),. For our purposes, a last simple fact should be
stressed.
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LEMMA 2.4. Let S be a Polish space and (Z,), any sequence of S-valued
random variableson (2, A, P). If 0(Z1,Z2,...) Co (U, %) and (E[ f(Z,+1)|
8,1, convergesa.s. for each f € Cp(S), thereisarandom measure y on S such
that (Z,,), converges stably with representing measure y and

ELf (Zns1)|Gn] — / FWyOdx)  as foreach f € Cy(S).

PROOF Fix H € §,, with P(H) > 0,m > 1. Then,Epm [ f(Z,)] converges
to a finite limit for all f € C,(S), so that(Z,),, converges in distribution under
P(-|H). Sinceo (Z1,Z2,...) C a(U, $n), it follows that (Z,), converges in
distribution underP(-|H) for eachH € A4 with P(H) > 0. Hence, there is a
random measurgr on S such that(Z,), converges stably with representing
measurey. Suchy can be takerv (Z1, Zo,...)-measurable. Letf € Cp(S)
andLy =lim, E[f(Z,4+1)|$n] @.s. ThenE[Iy L]l = E[Iy [ f(x)y(-)(dx)] for
all H e J,%x- SinceL; and [ f(x)y(-)(dx) are measurable with respect to
(U, %), one obtaind = [ f(x)y(-)(dx) a.s. O

SupposeE is a Polish space§ = B(E) and (X,,), is §-c.i.d. In view of
Lemmas 2.1 and 2.4, there is a random measuren E such thatV, =
[ f®a(-)(dr) a.s. for all f € C,(E). By a monotone class argument, it follows
that

Vig (@) = a(w)(B) for almost allw

wheneverB € €. In the sequely is called thedirecting measure of (X,,),,. Such
terminology, which is typical of exchangeable sequences, is motivated by at least
two facts. First, by Theorem 2.2,is the a.s. weak limit of empirical measures,

1 n
=) 8xiw) — a(w)  weakly, for almost alk.
n

i=1

Second(X,), is asymptotically exchangeable and the exchangeable limit law is,
in a sense, directed hy. In fact, something more is true in the following:

THEOREM2.5. Suppose E isa Polish space, € = B8(F) and (X,,), isg-c.i.d.
Then, [X,, X,+1, ...] converges stably with representing measure o™, where « is
the directing measure of (X,,),,, and

E[g(Xn—i-lv Xn+2’ cee )lgn]

(13) / N N
— | g(x)a>()(dx) a.s. for each g € C,(E®).

PROOF Foreach: > 0, fix a regular versiom, of the conditional distribution
of [X, 11, X,12,...] given§,,, and define

Vn.k(@)(B) = vy(w){x € E®:x;_, € B} forallk >n,we QandB € &.
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Let u, = vy n+1. Since(X,), is $-c.i.d. andy, x is a version of the conditional
distribution of X; given 4,, one obtainsy, x = u, a.s. for allk > n > 0. By
Lemma 2.1, f()u,(-)(dt) — [ f(H)a(-)(dt) a.s. for eachf € C»(E), and
this implies u, (w) — a(w) weakly for almost allw. Let H; € 4 be such that
P(H1) =1 and, for allw € H1, (un(w)), is tight andv, x (@) = u,(w) for all
k > n > 0. Then, (v, (w)), is tight, too, for allw € H1. Let Dg C C,(E) be a
countable convergence determining classfgrand letD be the class of those
functions g on E* of the form g(x) = [15_; fj(x;), x = (x1.x2,...) € E%,

wherek > 1andfi,..., fi € Do. Forg € D, sayg(x) =[T5_; f;(x;), Lemma 2.1
gives ‘

k k
[ swa@@n =1 [ fioe@@n =[] V@ =lm [gwm@idn
j=1 j=1

for almost allw. Since D is countable, there g, € A with P(H>) =1 and
[ g(x)a®(w)(dx) =lim, [ g(x)v,(w)(dx) for all g € D andw € Hy. It follows
thatv, (w) - «®°(w) weakly for allw € Hy N Hy. This proves (13). To conclude
the proof, it suffices to apply Lemma 2.4 with= E* andZ,, = [X,,, X;,+1, .. .].

O

By Theorem 2.5[X,, X,,11,...] converges in distribution undeP(-|H) to
the exchangeable lawy (1) = [a*(w)(-) P(dw|H) whenever(X,), is c.i.d.,
H e A andP(H) > 0. An alternative proof of this fact could be given by results
of Aldous (1985). Incidentally, we also note that Theorem 2.5 directly implies
Kallenberg’s result thatX,), is exchangeable if and only if it is stationary and
c.i.d.; see Section 1. In fact, {fX,,), is stationary and c.i.d., the distribution of
[X,, Xn+1, ...] does not depend om (by stationarity) and converges weakly to
the exchangeable lawg, [by Theorem 2.5, sincéX,,), is c.i.d.].

One more consequence of Theorems 2.2 and 2.5 is that any c.i.d. &% @
exchangeable on a suitable sakfield. Letrn, be thenth coordinate projection on
E®° andV theo-field on E*° generated by

lim sup%[f(nl) 4+ ()] for all boundedf e #.

THEOREM 2.6. Suppose E is a Polish space, &€ = B(E) and (X,,),, isc.i.d.
Then, the probability distribution A of (X,,),, coincideson V with the exchangeable
law 1 (-) = [ a®°(w)(-) P(dw), where « isthe directing measure of (X,,),,.

PrRooOr By Theorem 2.5[X,, X,+1,...] converges in distribution tqu.
Given f1, ..., fr € Cp(E), this fact and Lemma 2.1 imply

k k k
/ [1fjomjdu=lim E[H fj(X,,H)} = E[H Vf_;}-
j=1 j=1 j=1



2040 P. BERTI, L. PRATELLI AND P. RIGO

Let Vg be theo -field on E*° generated by lim sqp}%[f(nl) + .-+ f(m,)] forall
f € Cp(E), and leth be any product of generators f, that is,

k n
1
h= lim sup— ;0T wherefy, ..., Cp(E).
]'1:[1 - pn;f"on’ f1 i € Cp(E)

By Theorem 2.2, Iimsu,p%zg’:lfj(xi) = Vy, as. and, thus,[hd) =
E[]‘[’;:l V¢,;1. On the other hand, exchangeability,ofmplies

k n k n
. 1 .1
/hduzfllrrln ngz 1f,-on,-d;;=|lrrlnn—k/1_[2fjon,-du
J= 1=

j=1li=1

k k
- it fL] -
j=1 j=1

Hence,A = 1 on V. To conclude the proof, it is sufficient showing tHetc

o(VoU N), Wwhere N = {A € EX:A(A) = u(A) =0}. Let v = (A + w)/2.

Given a bounded measuralpeon E ande > 0, there isf € C,(E) such that
[ ¢ (1) — f(m1)|dv < €. Since(ry), is c.i.d. unden, Theorem 2.2 implies

/

dv

Iimnsup% ;mm) — Iimnsup% ; £ (i)

. 18
=h;;n/’; 2 (@m) — f(m-))‘dv
i=1

5/|¢(7Tl) — f(m)|dv < e.

This concludes the proof.(J

REMARK 2.7. In Theorem 2.6y cannot be replaced by the shift-invariant
o-field of (,,),. In fact, if the distribution of(X,,),, agrees with an exchangeable
law & on the shift-invarians -field of (7,,),,, then

P@AlimX,) = n@lim )
= u(@m with 7, = m,,, for all n > m)
= P(3m with X,, = X,,, for all n > m),

where the second equality is due to exchangeability. oBut, there are c.i.d.
sequences for whickR(3lim X,,) =1 > 0= P(3m with X,, = X,,, for all n > m),

for instance, the one exhibited in Example 1.2. It follows that, unlike in the
exchangeable case, the shift-invariantield of (i), andV have not the same
completion under an arbitrary c.i.d. law 61°.
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We close this section with a characterization of exchangeability in terms of
conditional identity in distribution.

THEOREM 2.8. Let { be the shift-invariant o -field of (X,,),,. The following
statements are equivalent:

() (X,), isexchangeable;
(i) For any H € 4 with P(H) > 0, (X,,),, isc.i.d. under P(-|H);
(i) For any (finite) permutation r of {1,2, ...}, (X)) iSC.i.d.

PROOF (i) = (ii). Obvious. (ii)= (ii)). Fix f € # and note that, by Theo-
rem 2.2,V; can be taken-measurable. Hence, by (if[f(X1)|4] =V a.s.
Further, letn > 1, H € g}{ andK e {. For allk > n, condition (ii) implies

Elf(X)Iulg]l=E[f(Xus+D)Inlk].
Since f(Xy) — Vy in o (L1, L) ask — oo, one also obtain& [V lylx] =
E[f(Xn+1)1InlIk]. SinceVy is J-measurable, this implies
Elf Xps) 1=V = E[fXprDlLV 4] as.

Thus,(X,), is exchangeable and, clearly, this implies condition (iii).
(iif) = (i). We prove that, for any;, ..., n, distinctintegers, any > 1 and any
m > maxny,...,np),

(14) [Hﬁamﬂﬁg m} [ﬂﬁ@mﬂﬂ&@@

j=1 =1

where fi,..., fr, g1...., gp are bounded elements af. We argue by induction
on p > 1. Whenp = 1, condition (14) follows from applying (5) to the c.i.d.
sequence&X.(,)),, Wherer is a finite permutation such that(j) =m + j for
j=1...,r,t(r+1) =ngandt(r +2) = 1. Suppose now that (14) holds for
somep. We have to prove

p+1 p+1
(15) |:H f](Xm—l—]) Hgl ny :| = |:H f](Xm—l—]) Hgl(Xl):|
j=1

=1

for any k > 1 and anym > maxni,...,np,n,41). Let 1 denote a finite
permutation such thaty(j) =m + j for j =1,...,k, t11(k +1) =n; for [ =1,
..,p+landri(k+2+4 p)=m+k+ 1. Since(X, ), is c.i.d., one has

p+1 k p
|:H f] (Xm—l—]) 1_[ gl n :| = E|:H fj(Xm—l—j) ngl(an)gp+l(an+1):|
j=1

j=1 =1

k P
|:H (Xm+1)l_[gl n gp+1(Xm+k+1)i|

=1 =1
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Let 7o be a finite permutation such that(j) =m + j for j = 1,...,k,
nk+)=Iforl=1,...,p+1landra(k +2+ p) =m+k + 1. Since&(Xr,(n))n
is c.i.d., one also has

p+1
[1‘[ [i&me) [ gz(Xz)}

j=1 =1

k p
= E|:1_[ f] (X”1+j) 1_[ 81 (Xl)gp+l(Xp+l):|

j=1 =1

k p
= E[H fiXmgj) 1_[ gl(Xl)gp+l(Xm+k+l):|-

j=1 =1
Hence, (15) follows from (14) with =k + 1 and fy11 = gp+1. O

3. Some CLTs for c.i.d. sequences. In this section stable convergence (in
particular, convergence in distribution) of

( Z f(X) - )

k=1

is investigated for three different choices of the random centdrjng
In all cases, our main tool is the following version of the martingale CLT; see
Hall and Heyde (1980), Theorem 3.2, page 58.{0&j:n > 1,k=1,...,k,} be
an array of real square integrable random variables, wheteco, and for alln,
let 0 C Fu1 C -+ C Fuk, C A beo-fields with F,0 = {2, Q}. If:

(I) U(Ynk) - ?nk, E[Ynkw'vn,k—l] =0 a-s-a}vnk C }Vn—i-l,k,
(i) max1<k<k |Ynk| — 0 in probability, sup E[max <k <, Ynk] < 00,
(i) Zk 1 nk — L in probability, for some real random variahkle

then Zk":1 Y. converges stably. Precisely, I8£(0, ¢) denote the Gaussian law

with mean 0 and variance> 0, where (0, 0) = §g. Then,Z’,ﬁ”:1 Y,x converges
stably with representing measus&0, L), that s, for eacl € A with P(H) > 0,

Zk 1 Yni converges in distribution undét(-| /) to the probability law

MH(-)=/N(0,L(w))(-)P(dle)-

Let us start with the cask, = V.

THEOREM3.1 (CLT, case I). Suppose (X,), isc.i.d., f and f2 arein # and
there exists an integer m > O suchthat (f (X, +») — V), isc.i.d. Then

1
—(f(XD+ -+ f(Xy) —nVy)

N

W=
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converges stably with representing measure N (0, V2 — ( Vf)z).

PRoOOFE For each: > m, define

Yor =1~ Y2(f Xigm) — V)

andFy =0 Y1, ..., Yu) fork=1,...,n—m. Since(f(X,1m) — Vy)nisc.id.,
condition (i) holds. By Theorerd.2, condltlon (iii) holds withL = V2 — (Vf)2
As to (i), first note that it can be equivalently written as

n_l/zmrg?i(n |f(Xp)|— 0 in probability
and
slgpn‘lE[mrgggnf Z(Xk)] <
Fix e > 0and putd,; = {| f(Xx)| > es/n}. Then

p( max |f<Xk)|>ef)<— S Ella, 2]
€ nk =m+1
o

— WE[IAnlfz(Xl)] -0

and

1 1 2
sgp;E[ max f <Xk>] <sup 3 ELF2(X0] < ELfAXD)].

m<k<n n —)

If (X,). is exchangeable, thely (X,,+,) — Vy), is exchangeable for ait, so
that Theorem 3.1 applies. Generally, however, the assumptiorf fHat, ) —
V) is C.i.d. for somen cannot be dropped.

EXAMPLE 3.2 (Example 1.2 continued). LeXt, = >}_; Zy + U,, where
(Z,), and (U,), are independent sequences of independent random variables,
Z, ~ N(@O,b, — b,_1), U, ~ N, c — by), with bg =0 andb,, 1 c. Let f be
the identity mapping$o = {2, Q} and4, =o(Z1, U1, ..., Z,, Uy,). Then(X,),
is g-c.i.d. SinceXy — Uy = Z’.‘zl Z;i — Y721 Z; a.s., Theorem 2.2 implies

Vy =lim = Z Xy = lim = Z(Xk — U = Z Z;  as.
=1

Then
n 0 n

iWa g =3 ((n—k+DZk+Us)—n Y Zi=Y (U= (k=1)Zx)—n Yy Z,

k=1 k=1 k=1 k>n
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so thatW,, y is Gaussian with

1 n
Var W, y1= =% (c— b+ (k - 1)2(bx — be—1)) + n(c — by).
k=1
Hence, if lim, n(c — b,) = oo, then lim, Var[W,, ¢] = co. In that case, sinc®,, r
is Gaussian for alk, (W, r), does not converge in distribution.

Let us turn to the second type of random centering, thatLis= % X
Y i1 E[f(X©)|$k—1]. This is perhaps the less interesting of our choices of
at least from the point of view of applications. Nevertheless, there are situations
where such a choice df, plays a role, for instance, in stochastic approximation,
calibration and gambling; see Hanson and Russo (1981, 1986), Dawid (1982) and
Berti and Rigo (2002). In any case, the following result is available (CLT, case II;
we omit the straightforward proof). Let

1 n
By s = ﬁk;(f(xk) — E[f(Xp)|x_1])  forall f e .

If (X,)n is g-c.i.d. andf and f2 are in#, then
(16) (B, r)a converges stably with representing measue0, V2 — (Vf)z).

Finally, we consider the cadg, = E[f(X,+1)|%.]. From the point of view of
statistical applications, mainly in Bayesian forecasting and discrete time filtering,
this is perhaps the most significant case; see Section 1. Denote

1
Con.r= ﬁ(f(Xl) + -+ f(Xn) —nE[f (Xn+1)1$n])  forall f e #.

THEOREM 3.3 (CLT, case Ill). Suppose (X,), isg-c.i.d., f and f2? arein #
and sup, E[C,f’f] < oo. If

n

1
My == Y2 (f (X0 = KELf (XisDgal + (k= DELf (X0)Iga1)’ > 0% as
k=1

for somereal randomvariable o2, then (C,,, ¢),, convergesstably with representing
measure N (0, o2). Moreover, if

12 . -
=3 KP(ELS (Xar)Igal = ELf (X0)|§a-1)* — O in probability.
k=1

then B, r — C, y — 0 in probability, and (C, r), converges stably with
representing measure & (0, V2 — (V4)?).
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PROOF  Suppose first thats,, — o2 a.s. Forn>1andk=1,...,n, define
Yo = E[W,, £19%] — E[W,, £1$k—1] and Fx = G«. Then condition (i) trivially
holds, and sinc&[W,_ |40l =0 a.s., one ha€, r = E[W, 1$n] = > }—1 Yuk-
Hence, it is enough to check (i) and (iii) with = ¢-2. On noting that

VY= f(Xp) —kE[f (Xi+D19x] + (k — DE[f (Xp)|Gi—1],

one obtaing"f_, Y2 = M, — o a.s. Since&¥2, = M,, — =1M,_1 — O a.s,, it
follows that max<, |Y,x| — O a.s. Moreover,

E[r,pngfk] < 3" E[(ETWa. 71941~ EIW rl64-11)°]
- k=1

= 3" E[E[W, 19412 — EIW, £19x-117]
k=1

= E[E[W,,£19.1%] = EIC] ;1.

so that (max.<, |Y,«|)» iS bounded in L?. Hence, (i) and (i) hold with

L = o2, and this concludes the proof of the first part of the theorem. Next,
to prove the second part, defin®, = E[f(Xx+1)|9%] — E[f (Xx)|$x-1] and
suppose tha% Zzzlksz — 0 in probability. By (16), it is sufficient to see that
B, r — C,, r — 0in probability, and a direct calculation shows tlat s — C,, s =

% Y _ kD Forn>1andk=1,...,n, define¥, = %ka and % = .

Then, (i) and (iii) hold withZ = 0. In particular{max.<, | Y|} < dhe1 Ynzk -0
in probability. Moreover,

1
max|Y,x| < —=max| f(Xx) — E[f(Xi)|$k—1] — kDx|
k<n n k<n

7

1
+ 7 rpsé}lxlf(xk) — ELf(X)|Gk-1ll,
and both terms in the right-hand side are boundetfinBoundedness of the first
term has been shown in the first part of the proof.) Hence, condition (ii) holds, and
this implies% YU kDy=3Y"_, Y, — 0 in probability. [

The assumption thatC,, ), is bounded inL2 surely holds if (Wy, £)n IS
bounded inL? and, in turn, this is true it f (X,4n) — Vi) is c.id. for somen.
In particular, Theorem 3.3 implies that,, r), converges stably whenevex,,),
is exchangeable’i[f(Xl)z] < oo and(M,,),, converges a.s. Here, it is tempting to
conjecture thatM,,), always converges a.s. in the exchangeable case, but we do
not know whether this is true.

We close this section by applying the previous results to some of the examples in
Section 1. Example 3.4 shows that, for c.i.d. nonexchangeable sequétices,,
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(B, r)n @and(Cy,, r), can have quite different asymptotic behaviors. Example 3.5
deals with modified Pdélya urns, in the particular case where the extradhaie
ii.d.

EXAMPLE 3.4 (Example 1.2 continued). LeX, =>}_; Zx + U,, where
(Z,), and (U,), are independent sequences of independent random variables,
Z, ~N(@QO,b, —b,_1), U, ~ N, c— b)), with bg =0 andb,, 1 c. Let f be the
identity mapping 4o = {@, 2} and 4, = o(Z1, U1, ..., Z,, Uy). Then, as noted
in Example 3.2(X,), is §-c.i.d., Vy = Y 72, Z; a.s. andW, ¢ is Gaussian with
mean 0 and VAW, 1= 2 Y0 ;(c — bx + (k — D2(bx — bx_1)) + n(c — by).
Suppose now that

supn?(by — by_1) <oco and n(c—by) — u
n

for some u. Then, a direct calculation shows th%tzzzl(k — D2%b —
bi-1) — u, and M, = 237 (U — (k — DZp? — u a.s. Thus,(W, )
converges in distribution tov (0, 2u) and, by Theorem 3.3,C,, r), converges
in distribution to.V (0, u). Finally,

Vye =lim - ZXk_Ilm Z(Zz)zz<iézi)zzvf a.s.

Miz1\iz1
and thus (16) yleldan,f — 0 in probability.

ExampLE 3.5 (Example 1.3 continued). Le&tX,), and (d,), be as in
Example 1.3, and l&to = {2, @} and§,, = o (X1, d1, ..., Xp, dp, dp+1) fOrn > 1.
Suppose that/, is independent ofo (X;,d;:i <n,j <n) forall n>1 [ie.,
condition (i) holds] and thel,, are identically distributed withE[dlz] < 0. As
shown in Example 1.3(X,), is §-c.i.d. Let f be the identity mapping. By
standard but long calculations, it can be shown @t ), is bounded inL?
and M, — §(V — V?) a.s., where§ = Varld1]/E[d1]? and V =lim,, 2 Y0 _; Xx
a.s. We refer to Berti, Pratelli and Rigo (2002) for details on such calculations.
In any case, by Theorem 3.@7,, r), converges stably with representing measure
N, 5(V — V),

4. Uniform limit theorems. In Section 3, given &-c.i.d. sequencéX,),,
convergence in distribution of

1
—(f(XD) + -+ f(Xp) —nVy),

Jn
B, = f(x E[f(X _1]),
= [Z F(Xp) — ELf (Xi)|Gk—1])

Wy, r=

1
Cry=—1

ﬁ(f(Xl) + o+ f(Xn) —nELf (Xn4+1)|$n])
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has been investigated foffiaed function f. In this sectionW,, := {W,, s : f € D},
B, :={B, . feD}andC, :={C, r: f € D} are seen as processes, indexed by
some clasgD ¢ # of functions, and their convergence in distribution is analyzed
in the path space under uniform distance. Note Wat B, andC, all reduce to
the usual empirical process whenewgris independent o, for all n.

For the sake of simplicity, we do not deal with a general Donsker-ciadsut
we focus on the particular case where

(E.&)=(R,B8[R)) and D ={l—cor:t R}
Hence, letting

X = {x :x is areal cadlag function dR and lim x(¢) = O},

[t|—o00
Wn,t = Wn,l(,oo,[]’ Bn,t = Bna[(foo,r]’ Cn,l‘ = Cn,l(,oo,,]v

the paths oW, B,, andC,, belong toX (up to modifications orP-null sets).
Throughout,X is equipped with uniform distance. We refer to the theory of
weak convergence developed by Hoffmann-Jgrgensen, van der Vaart and Wellner;
see van der Vaart and Wellner (1996). &, A’, P") be a probability space and
Z:Q' — X arandom element ak. Say thatZ is measurableif {Z € B} € A’
for all Borel setsB C X, and thatZ is tight if Z is indistinguishable from a
measurable random element with a tight probability distributionZ Iand Z’
are both measurable and tigl#t,~ Z’ if and only if they have the same finite-
dimensional distributions. IZ is measurable and thg, are arbitrary random
elements ofX, thenZ,, — Z in distribution meanE™*[ f(Z,)] — E[f(Z)] for
all f e Cp(X), where E* denotes outer expectation. # is not measurable,
but indistinguishable from a measurable random elen¥®nthen Z, — Z in
distribution stands forZ, — Z’ in distribution. Suppose th&, are random
processes oK<2, 4, P) such that(Z, ;,, ..., Z, ;) converges in distribution for
all r1,...,t € R. Then, for(Z,), to converge in distribution to a tight limit, it is
sufficient that, for alls, n > 0, there is a finite partitiory, ..., I, of R by right-
open intervals such that

@7 limsupP (max SUp | Zys — Zns| > s) <n;
n s,tely
see van der Vaart and Wellner (1996), Theorems 1.5.4 and 1.5.6.
When(X,), is §-c.i.d., a possible limit in distribution fow,,, B, andC, is a
tight process whose distributionis given by

v{x € X:(x(t), ... x(1,) € A} = / N, 2(t1,....1,))(A)dP

forallt,...,4, e RandA € B(R"), whereX (1, ..., ) IS a random covariance
matrix. One significant particular case is the following. [GZt denote a process,
on some probaility space, of the form

Gf =G%, forallreR,
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whereG? is a standard Brownian bridge df, 1] and F a random distribution
function, independent a&°, satisfying

(F(t1), ..., F(ty)) ~ (a(—00, 1], ..., a(—00, t,]) forallz1,...,t e R,

o being the directing measure afX,),. Then, G has finite-dimensional
distributions of the type of with

(1, ... ) =(Ftintj)) (L= F(t; v tj)))lfl.’jfr.

Generally,GF can fail to be measurable. Howevé’ is measurable and tight
whenever all thé ' -paths are continuous off for some fixed countable satc R.

Before stating results, we will give a technical lemma that is needed later on.
It is presumably well known, and we provide a proof just to make the paper self-
contained. Let us denoter|| = sup |x(7)| for all x € X.

LEMMA 4.1. Let Z be a tight random process with paths in X and
E[|Z||]] < co. Then, for all ¢ > 0, there is a finite partition I, ..., I, of R by
right-open intervals such that

E(max sup |Zg — Zt|) <e.

s,tely

PROOF It can be assumed th& is measurable. By tightness of and
integrability of || Z||, there is a compack such thatE[I{z¢x, [ Z||] < &/5. Let
x1,...,xy € K be such thatk c Uf\’zl B;, where B; is the ball with centew;
and radius /5. Take a partitionl4, ..., I,, of R by right-open intervals such that
max, SUR ;¢ 1Xi(s) — x; ()] <e/Sforalli=1,..., N. Then

Iizexymax sup |Z, — Z;| < (3/5)¢

s, tely

and thusE (max, SUR ,¢j, 1Zs — Zi]) < (3/9)e + 2E[Iz¢xy I Z|]1 <e. O

Next, based on the results in Section 3, we give conditions for convergence in
distribution of(B,,),, and(C,),.

THEOREM 4.2. If (X,), is g-c.i.d. and (B,), meets condition (17), then
B, — G indistribution and G istight.

PrROOF,  First note thatG? is measurable whefx is equipped with the ball
o-field U. Suppose the finite-dimensional distributiong Bf),, converge weakly
to those ofG’. Then, sincgB,), meets (17),B, — Z in distribution for some
measurable tight procesgswith the same finite-dimensional distributions®f .
SinceZ is tight, Z € A a.s. for some separable Borel setc X. SinceA € U
(by separability) and the distributions @&’ and Z agree onU, one obtains
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GF € A as. LetL = Ligrea)F + IigreayH, whereH is any fixed distribution
function. ThenL is a random distribution function indistinguishable framand
G! is measurable and tight due@®" having separable range atdlis complete.
Since GF is indistinguishable fronG~, it follows that G* is tight, Z ~ G-
and B, — G in distribution. It remains to prove that the finite-dimensional
distributions of (B,), converge weakly to those &&. Fix t1,...,t.,a1,...,

ar € R, definef = Y7_; ail(—,;) @nd note thap~;_; ¢;G/ has distribution

1(A) =/JV(O, Vie—(Vp)?)(A)dP,  AcB®).

Hence, (16) implies
r r
Y aiBuy, =By — Y a;G  indistribution
i=1 i=1

By letting az.,....a, vary, one obtainSB, . ..., By;) — (Gf.....G[) in
distribution. O

Convergence in distribution aiC,,),, needs more conditions. Furthermore, as
suggested by Theorem 3.3, Examples 3.4 and 3.5, it may beCthat C in
distribution but the limit process is not of the type ofz/. Denote

qi(t) = Ix,<ty = KE[Iix, 1<) §a] + (k = DE[Iix<pl§r-1]  forzeR.

THEOREM 4.3. Suppose (X,), is §-c.i.d., (C,), meets condition (17) and
sup, E[C2,] < oo for all t e R. If

(18) n ,;" (Elxia<n194] — E[Tix,<n1§i-1])" = O

in probability Vs € R,

then C,, — G! indistribution and G istight. Moreover, if

1 n
(19) =Y gk > o(s,1)  as foralls,reR,
=1

then C,, — C in distribution, where C is a tight process whose distribution v is
given by

v{x € X:(x(t),....x(1,)) € A} = / N(O, 2(t1,....1,))(A)dP

forallz,....,t, eRand A e BR"), with X(t1, ..., 1) = (0 (t;, tj))1<i, j<r-
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PROOF Arguing as in the proof of Theorem 4.2, it is enough to see that
the finite-dimensional distributions aiC,), converge weakly to those df’
under (18) and to those af under (19). Fixt1,...,t,a1,...,a, € R, define
f=Y"_1a;l-., and note thatC, r), is bounded in.2. If (18) holds, then

12 . .
- K(ELf (Xi41)19%] — ELf(X0)|gx-11)>— 0 in probability,
k=1

and Theorem 3.3 yields
r r
Y aiCuy=Cny— Y a;G;  indistribution
i=1 i=1

Similarly, if (19) holds, thenM,, — Z,-vj a;ajo(t;,t;) a.s., and Theorem 3.3
implies that(C,, r), converges in distribution to the probability lawon B(R)
given by

w(A) =/N(O,Zaiaja(ti,tj)>(A)dP

i,j

= v[x €X:) aix(t) € A}, Ae BR).
i=1

By letting aj. ..., a, vary, it follows that(Cy. . ..., Cas,) = (G, ....G[) in

distribution under (18), and thaC,, ;,, ..., Cy.;,) = (Cy, ..., Cy,) in distribution
under (19). O

REMARK 4.4. Suppos€X,), is §-c.i.d. and.X C # is a countable class
of functions such that SYRx | f1 is in #. SinceC,, r = E[W, r|$.] a.s., one
obtains '

E|:SUp|Cn’f|j| < E|:SUp|Wn,f|:|.
fex feXx
Likewise, a direct calculation shows that

lim supE[sup |Bn’f|j| <5Ilim supE[ sup|Wn,f|].
n fex n feXx

By these inequalitieg,B,), and(C,), can be connected td¥,),. In particular,
suppose that, for all > 0, there is a finite partitiody, ..., I,, of R by right-open
intervals such that

(20) limsupE (max sup [W, s — ,,,,l) <e.
n s, tely

Then, (20) still holds with(B,),, or (Cy,), in the place of(W,), and, thus,
(Bp), and(C,),, meet condition (17).
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Theorems 4.2 and 4.3 are general results $n.i.d. sequences. In the
exchangeable case, however, something more can be said. We close the paper by
dealing with this case.

THEOREM4.5. If (X,), isexchangeableand G* istight, then W, — G in
distribution.

Theorem 4.5 can be proved by a standard application of de Finetti’s repre-
sentation theorem. We refer to Berti, Pratelli and Rigo (2002) for a proof. The
assumption thaG’ is tight, instead, needs two remarks. First, it can not be sup-
pressed. Indeed, whe®’ is not tight,(W,,),, can fail to converge in distribution
even if (X,), is exchangeable. An example is in Berti and Rigo (2004). Second,
atight version of is available ifP (X1 = X») =0 orif P(X1 € A) = 1 for some
countableAd c R. In fact, if (X)), is exchangeable anBl(X1 = X») =0, the ran-
dom distribution functionF' can be taken to be continuous. Precisely, in some
probability space, there are a standard Brownian brigand a version of, in-
dependent of;°, whose paths are continuous. Hengé, = G% is tight. Up to re-
placing “continuous” with “continuous oA¢,” the same is true iP (X1 € A) =1
for some countabld.

Finally, let us turn toB,, andC,,. Investigating their asymptotic behavior needs
a little more than a straightforward application of de Finetti’'s theorem.

THEOREM 4.6. Suppose (X,), is exchangeable and G is tight. Then,
B, — GF indistribution and (C,), is relatively sequentially compact. Moreover,
C, — GF indistribution under condition (18) and C, — C in distribution under
condition (19), where C isthetight process described in Theorem4.3.

PROOFE Suppose first thaiw, ), meets condition (20). Then, by Remark 4.4,
(By)n and (Cy), satisfy (17). By exchangeabilityC, ;), is bounded inL?2 for
all . Thus, Theorems 4.2 and 4.3 yieR)} — G’ in distribution, C, — G in
distribution under (18) and,, — C in distribution under (19). Moreove(_,,),, is
relatively sequentially compact by Lemma 1.5.2 and Theorems 1.3.9 and 1.5.6
of van der Vaart and Wellner (1996). Hence, it is enough to prove (20). If
(X,), is li.d., then supE[||Wn||2] < ¢, where the constant does not depend
on the distribution ofX1; see van der Vaart and Wellner (1996), pages 247
and 248. By de Finetti's theorem, s;pE[||Wn||2] < ¢ still holds if (X,), is
exchangeabile. It follows that|W,|), is uniformly integrable, and sinc®,, —
GF in distribution (by Theorem 4.5)E[|GF|] = lim, E[|W,|]] < co. By
Lemma 4.1, giver > 0, there is a patrtitiory, . . ., I,, of R by right-open intervals
such thatE(max sup, c;, IGF — Gf|) < e. Let h(x) = max SUR ;;, [x(s) —
x(1)| for x € X. Sinceh is continuousj(W,) — h(GF) in distribution. Since
h(Wy) < 2||Wyll, (h(Wy,)), is uniformly integrable. Thus, limsyE[x(W,)] =
Eh(GH]<e. O
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