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A new type of stochastic dependence for a sequence of random variables
is introduced and studied. Precisely,(Xn)n≥1 is said to be conditionally
identically distributed (c.i.d.), with respect to a filtration(Gn)n≥0, if it is
adapted to(Gn)n≥0 and, for eachn ≥ 0, (Xk)k>n is identically distributed
given the pastGn. In caseG0 = {∅,�} andGn = σ(X1, . . . ,Xn), a result
of Kallenberg implies that(Xn)n≥1 is exchangeable if and only if it is
stationary and c.i.d. After giving some natural examples of nonexchangeable
c.i.d. sequences, it is shown that(Xn)n≥1 is exchangeable if and only if
(Xτ(n))n≥1 is c.i.d. for any finite permutationτ of {1,2, . . .}, and that the
distribution of a c.i.d. sequence agrees with an exchangeable law on a certain
sub-σ -field. Moreover,(1/n)

∑n
k=1 Xk converges a.s. and inL1 whenever

(Xn)n≥1 is (real-valued) c.i.d. andE[|X1|] < ∞. As to the CLT, three
types of random centering are considered. One such centering, significant
in Bayesian prediction and discrete time filtering, isE[Xn+1|Gn]. For each
centering, convergence in distribution of the corresponding empirical process
is analyzed under uniform distance.

1. Introduction and motivations. In this paper a new type of stochastic
dependence for a sequence(Xn)n≥1 of random variables is introduced and studied.
Precisely, suppose theXn are defined on the probability space(�,A,P ), take
values in the measurable space(E,E), and are adapted to a filtrationG = (Gn)n≥0.
Then,(Xn)n is said to beconditionally identically distributed with respect to G,
abbreviated asG-c.i.d., whenever

E[f (Xk)|Gn] = E[f (Xn+1)|Gn] a.s.
(1)

for all k > n ≥ 0 and all bounded measurablef : E → R.

Roughly speaking, (1) means that, at each timen ≥ 0, the future observations
(Xk)k>n are identically distributed given the pastGn. In caseG = GX, where
GX

0 = {∅,�} andGX
n = σ(X1, . . . ,Xn), the filtration is not mentioned at all and

(Xn)n is just called c.i.d. Clearly, if(Xn)n is G-c.i.d., then it is c.i.d. and identically
distributed.
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Two obvious equivalent formulations of (1) are

Xk ∼ Xn+1 underP (·|H)
(2)

for all k > n ≥ 0 and all eventsH ∈ Gn with P (H) > 0,

where “∼” means “distributed as,” and(
E[f (Xn+1)|Gn])n≥0 is aG-martingale

(3)
for every bounded measurablef :E → R.

By general results on martingales, condition (3) can be written asE[f (XT +1)] =
E[f (X1)] for all bounded measurablef and all finiteG-stopping timesT (where
G-stopping times take values in{0,1, . . . ,∞}). Say that aG-stopping timeS is
predictable in caseS = T + 1 for someG-stopping timeT . Then, one more
equivalent formulation of (1) is

XS ∼ X1 for each finite predictableG-stopping timeS.(4)

Note also that, whenG = GX, conditions (1)–(4) all reduce to

[X1, . . . ,Xn,Xn+2] ∼ [X1, . . . ,Xn,Xn+1] for all n ≥ 0.(5)

Exchangeable sequences meet (5) and, thus, are c.i.d. Indeed, exchangeabil-
ity is the most significant case of conditional identity in distribution. C.i.d.
sequences, however, need not be exchangeable. In fact, by a remarkable result of
Kallenberg [(1988), Proposition 2.1], exchangeability amounts to stationarity and
condition (5). In Kallenberg’s paper (cf. Proposition 2.2), it is also shown that con-
ditions (3)–(5) are equivalent in caseG = GX. However, apart from these results,
condition (5) is not systematically investigated.

In the present paper, instead, we focus onG-c.i.d. sequences. As a first
motivation, we give some examples where conditional identity in distribution
naturally arises while exchangeability may fail.

EXAMPLE 1.1 (Stopping and sampling). LetXn = ZT ∧n, where (Zn)n is
exchangeable andT is a random variable with values in{1,2, . . . ,∞}. Then,
(Xn)n is not exchangeable apart from trivial cases, but it is c.i.d. under natural
conditions onT . In fact, if (Zn)n is c.i.d. (and not necessarily exchangeable), then
(Xn)n is c.i.d. wheneverT is independent of(Zn)n, or wheneverT is a predictable
stopping time forGZ. Thus, typically, conditional identity in distribution is
preserved under stopping while exchangeability is not. We now prove that(Xn)n
is c.i.d. if (Zn)n is c.i.d. andT is a predictable stopping time forGZ. If S is a finite
predictable stopping time forGZ, thenT ∧ S is a finite predictable stopping time
for GZ , and since(Zn)n is c.i.d., one obtains

XS = ZT ∧S ∼ Z1 = X1.
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Since(Xn)n is adapted toGZ, condition (4) implies that(Xn)n is GZ-c.i.d. and,
in particular, it is c.i.d. Next, conditional identity in distribution is also preserved
under (strictly increasing) sampling. That is, if(Zn)n is c.i.d. andT1 < T2 < · · · are
finite predictable stopping times forGZ , then(Xn)n = (ZTn)n is c.i.d. To prove the
latter fact, fix a finite predictable stopping timeS for GX. SinceT1 < T2 < · · ·,
one has{Tj = n,S = j} ∈ GZ

n−1 for all j, n ≥ 1, and this implies{TS = n} =⋃∞
j=1{Tj = n,S = j} ∈ GZ

n−1. It follows that TS is a finite predictable stopping
time forGZ , and since(Zn)n is c.i.d., one obtains

XS = ZTS
∼ Z1 ∼ ZT1 = X1.

If (Xn)n is stationary and converges in probability, thenXn = X1 a.s. for alln.
In Example 1.1, ifT is a.s. finite, then(Xn)n = (ZT ∧n)n is definitively constant
with probability 1 and, thus, it converges a.s. but in a trivial way. The next example
exhibits a c.i.d. (nonexchangeable) sequence which converges a.s. in a nontrivial
way.

EXAMPLE 1.2 (Compensated sum of independent random variables). Given
the real numbers 0< b1 ≤ b2 ≤ b3 ≤ · · · < c, let us defineγii = c andγij = bi ∧bj

for i �= j . On noting that�n = (γij )1≤i,j≤n is a symmetric positive definite matrix,
(Xn)n can be taken such that[X1, . . . ,Xn] ∼ N (0,�n) for eachn ≥ 1. Then,

[X1, . . . ,Xn,Xn+2] ∼ N (0,�n+1) for all n ≥ 0,

that is,(Xn)n is c.i.d. [by condition (5)]. However,

E[(Xn − Xm)2] = 2(c − bn ∧ bm).

Thus,(Xn)n is not stationary unlessbn = b1 for all n, andE[(Xn − X)2] → 0
if c = limn bn, for some random variableX. Further,Xn → X a.s. whenever∑

n(c − bn)
r < ∞ for somer > 0 (sinceE[|Xn − X|2r ] = γr(c − bn)

r for some
constantγr ). To explain the title of the example, we note that it is a particular case
of the following general scheme. Let(Zn)n, (Un)n be independent sequences of
independent real random variables and let

Xn =
n∑

i=1

Zi + Un, Gn = σ(Z1,U1, . . . ,Zn,Un), G0 = {∅,�}.

Suppose also thatUn compensates
∑n

i=1 Zi , in the sense thatXn ∼ X1 for all n,
and that the characteristic functionφX1 of X1 is null on a set with void interior.
Fix k > n ≥ 0 and a bounded Borel functionf :R → R. Then

E[f (Xk)|Gn] =
∫

f

(
x +

n∑
i=1

Zi

)
µk(dx) a.s.,
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whereµk is the distribution ofXk − ∑n
i=1 Zi . But µk = µn+1, due toφX1 is null

on a set with void interior and, thus,(Xn)n is G-c.i.d. For instance, given any
nondegenerate and infinitely divisible lawµ, the sequences(Zn)n and(Un)n can
be taken such that the resulting(Xn)n is c.i.d., nonexchangeable withX1 ∼ µ.
Finally, to recover the first part of the example, just takeZn ∼ N (0, bn − bn−1)

andUn ∼ N (0, c − bn), whereb0 = 0.

EXAMPLE 1.3 (Modified Pólya urns). An urn containsw > 0 white andr > 0
red balls. At each timen ≥ 1, a ball is drawn and then replaced together withdn

more balls of the same color. LetXn be the indicator of the event {white ball at
time n}. ThenE(X1) = w/(w + r) and

E[Xn+1|X1, d1, . . . ,Xn, dn] = w + ∑n
i=1 diXi

w + r + ∑n
i=1 di

a.s. for alln ≥ 1.

In the usual Pólya scheme,dn = d1 for all n, whered1 ≥ 1 is a fixed integer,
and (Xn)n turns out to be exchangeable. Here, instead, we let(dn)n be any
sequence of random variables, with values in{1,2, . . . }, satisfying the following:

(i) dn is independent ofσ(Xi, dj : i ≤ n, j < n) for all n ≥ 1, or
(ii) d1 is degenerate andσ(dn) ⊂ σ(X1, . . . ,Xn−1) for all n ≥ 2.

Then (Xn)n is c.i.d. but (apart from particular cases) nonexchangeable. For
instance, if all thedn are degenerate,(Xn)n is not exchangeable unlessdn = d1
for all n. To prove that(Xn)n is c.i.d., it is enough to check that(E[Xn+1|Gn])n≥0
is aG-martingale for some filtrationG ⊃ GX. Suppose (i) holds and let

G0 = {∅,�}, Gn = σ(X1, d1, . . . ,Xn, dn, dn+1) for n ≥ 1.

For n = 0, (i) implies E[E[X2|G1]|G0] = E[X2] = E[X1] = E[X1|G0] a.s.
For n ≥ 1, (i) givesE[Xn+1|Gn] = E[Xn+1|X1, d1, . . . ,Xn, dn] a.s. Sincedn+1
is Gn-measurable, it follows that

E
[
E[Xn+2|Gn+1]|Gn

] = w + ∑n
i=1 diXi + dn+1E[Xn+1|Gn]

w + r + ∑n+1
i=1 di

= E[Xn+1|Gn] a.s.

A similar argument works under (ii), after settingG = GX.

There is a second reason for studyingG-c.i.d. sequences, in addition to their
possible utility in modelling real phenomena. Indeed, conditional identity in
distribution is a basic assumption inuniform limit theorems for predictive inference
and empirical processes from dependent data.

Precisely, supposeE is a Polish space,E = B(E) and(Xn)n is any sequence of
random variables. Given a classD of bounded measurable functions onE, let

an(f ) = E[f (Xn+1)|Gn] for all f ∈ D,
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be the so-calledpredictive measure. In various problems, mainly in Bayesian
predictive inference, discrete time filtering and sequential procedures, the main
goal is just evaluatingan, and good approximations̃an for an are needed. See, for
instance, Algoet (1992, 1995), Ould-Said (1997), Modha and Masry (1998), Berti
and Rigo (2002) and Berti, Mattei and Rigo (2002). Usually,ãn is asked to meet
a consistency condition of the type supf ∈D |ãn(f ) − an(f )| → 0 a.s. A further
request is that, for suitable normalizing constantscn, the limiting distribution of
cn(ãn − an) can be evaluated. Here,cn(ãn − an) is viewed as a process (indexed
by D ) with paths in l∞(D), the space of bounded functions onD equipped
with uniform distance; see van der Vaart and Wellner (1996). In this framework,
possible choices for̃an andcn are the empirical measureµn = 1

n

∑n
i=1 δXi

and
cn = √

n. So, it is of some interest to give conditions for

sup
f ∈D

|µn(f ) − an(f )| → 0 a.s.(6)

√
n(µn − an) converges in distribution to some known limit.(7)

Now, assuming that(Xn)n is G-c.i.d. is fundamental for both (6) and (7). As
to (6), we refer to Berti, Mattei and Rigo (2002). As to (7), one of the concerns
of this paper is proving it forG-c.i.d. sequences; see Section 4. Note also that (7)
implies (6) if a.s. convergence is weakened to convergence in probability.

To sum up, conditional identity in distribution seems interesting enough to
deserve a systematic study, both from the theoretical and the applied points of
view. This task is accomplished here from the first point of view, with special
attention to limit theorems.

The paper is organized in three sections. In Section 2, a few basic facts are
listed. Among other things, a c.i.d. sequence meets a SLLN, is asymptotically
exchangeable, and its probability distribution agrees with an exchangeable law
on a certain sub-σ -field of E∞. Moreover,(Xn)n is exchangeable if and only if
(Xτ(n))n is c.i.d. for any (finite) permutationτ of {1,2, . . . }. Section 3 includes
versions of the CLT forG-c.i.d. sequences. Letf :E → R be a measurable
function. Stable convergence (in particular, convergence in distribution) of√

n( 1
n

∑n
i=1 f (Xi) − Ln) is investigated for three different choices of the random

centeringLn. In particular, conditions are given for convergence in distribution of

√
n
(
µn(f ) − an(f )

) = √
n

(
1

n

n∑
i=1

f (Xi) − E[f (Xn+1)|Gn]
)
.

Such conditions, incidentally, work in Examples 1.2 and 1.3. Section 4 is devoted
to uniform limit theorems. For each centering considered in Section 3, convergence
in distribution of the corresponding empirical process is investigated under
uniform distance. General statements forG-c.i.d. sequences are obtained which,
among other things, yield interesting (and possibly new) results in the particular
case of exchangeable sequences.
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2. Preliminary results and the SLLN. Let H be the class of measurable
functions f :E → R such thatE[|f (X1)|] < ∞. Our starting point is the
following simple lemma.

LEMMA 2.1. Let (Xn)n be G-c.i.d. Then, for each f ∈ H , there is an
integrable random variable Vf such that E[f (Xn+1)|Gn] → Vf , a.s. and in L1,
and

E[Vf |Gn] = E[f (Xn+1)|Gn] a.s. for every n ≥ 0.(8)

Moreover, if f1, . . . , fk are bounded elements of H , k > 1, then

E

[
k∏

j=1

fj (Xn+j )
∣∣∣Gn

]
→

k∏
j=1

Vfj
a.s. and in L1.(9)

PROOF. By (3), (E[f (Xn+1)|Gn])n≥0 is a G-martingale, and it is uniformly
integrable since theXn are identically distributed. Hence,E[f (Xn+1)|Gn] → Vf ,
a.s. and inL1, for some random variableVf . In particular,Vf closes the martingale
(E[f (Xn+1)|Gn])n≥0 and, thus, condition (8) holds. As to (9), sincef1, . . . , fk are
bounded, it is enough to show a.s. convergence. Arguing by induction, suppose that

E

[
k−1∏
j=1

fj (Xn+j )
∣∣∣Gn

]
→

k−1∏
j=1

Vfj
a.s.

LetDn = E[(Vfk
−E[Vfk

|Gn])∏k−1
j=1fj (Xn+j )|Gn]. Sincef1, . . . , fk are bounded

andE[Vfk
|Gn] → Vfk

a.s., it follows thatDn → 0 a.s. Hence, (8) and the inductive
assumption imply

E

[
k∏

j=1

fj (Xn+j )
∣∣∣Gn

]

= E

[
k−1∏
j=1

fj (Xn+j )E[fk(Xn+k)|Gn+k−1]
∣∣∣Gn

]

= E

[
k−1∏
j=1

fj (Xn+j )Vfk

∣∣∣Gn

]

= Dn + E[Vfk
|Gn]E

[
k−1∏
j=1

fj (Xn+j )
∣∣∣Gn

]
→

k∏
j=1

Vfj
a.s. �

Among other things, Lemma 2.1 has implications as regards convergence in
σ(L1,L∞) of c.i.d. sequences. Recall that, for real integrable random variables
Yn andY on the same probability space,Yn → Y in σ(L1,L∞) meansE[YnZ] →
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E[YZ] for each bounded random variableZ. Then, f (Xn) → Vf in σ(L1,L∞)

whenever (Xn)n is G-c.i.d. and f ∈ H . Fix, in fact, a bounded random variableZ.
By standard arguments, for provingE[Zf (Xn)] → E[ZVf ] it can be assumed that
Z is Gm-measurable for somem, and in this case Lemma 2.1 yields

E[ZVf ] = lim
n

E
[
ZE[f (Xn)|Gn−1]] = lim

n
E[Zf (Xn)].

Moreover, in exactly the same way, Lemma 2.1 also implies that

k∏
j=1

fj (Xn+j ) →
k∏

j=1

Vfj
in σ(L1,L∞)

whenever(Xn)n is G-c.i.d. andf1, . . . , fk are bounded elements ofH . From now
on, when(Xn)n is c.i.d. andf ∈ H , Vf always denotes a version of the limit in
σ(L1,L∞) of (f (Xn))n.

If (Xn)n is G-c.i.d., then(f (Xn))n is still G-c.i.d. for each measurablef
on E, while (g(Xn,Xn+1, . . . ))n can fail to be c.i.d. ifg is measurable onE∞;
see, for instance, Example 1.2. Nevertheless,(g(Xn,Xn+1, . . . ))n obeys a SLLN
for various choices ofg, for instance, forg of the form g(x) = ∏k

j=1fj (xj ),
x = (x1, x2, . . . ) ∈ E∞.

THEOREM2.2 (SLLN). Let (Xn)n be c.i.d. If f1, . . . , fk ∈ H and f1, . . . , fk−1
are bounded, k ≥ 1, then

1

n

n−1∑
i=0

k∏
j=1

fj (Xi+j ) →
k∏

j=1

Vfj
a.s. and in L1.(10)

In particular, 1
n

∑n
i=1 f (Xi) → Vf , a.s. and in L1, whenever f ∈ H .

PROOF. Let Ui = ∏k
j=1fj (Xi+j ), i ≥ 0. Since(Ui)i is uniformly integrable,

it is enough to prove a.s. convergence, and, to this end, it can be assumedfj ≥ 0
for all j . To begin with, suppose also thatfk is bounded, and let

Zn =
n−1∑
i=0

Ui − E[Ui |GX
i+k−1]

i + 1
.

Then, (Zn)n is a martingale with respect to(GX
n+k−1)n, and sincef1, . . . , fk

are all bounded, one has supn E[Z2
n] < ∞. Hence,(Zn)n converges a.s., and an

application of the Kronecker lemma gives

1

n

n−1∑
i=0

(Ui − E[Ui |GX
i+k−1]) → 0 a.s.(11)
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For k = 1, one has1
n

∑n−1
i=0 E[Ui |GX

i+k−1] = 1
n

∑n−1
i=0 E[f1(Xi+1)|GX

i ] → Vf1 a.s.
by Lemma 2.1 and, thus, (11) implies (10). Arguing by induction, suppose that

1

n

n−1∑
i=0

k−1∏
j=1

fj (Xi+j ) →
k−1∏
j=1

Vfj
a.s.(12)

Recall that, if(an)n and (bn)n are any real sequences, then1
n

∑n−1
i=0 aibi → ab

whenever1
n

∑n−1
i=0 ai → a, bn → b andai ≥ 0 for all i. Hence,

1

n

n−1∑
i=0

E[Ui |GX
i+k−1]

= 1

n

n−1∑
i=0

k−1∏
j=1

fj (Xi+j )E[fk(Xi+k)|GX
i+k−1] →

k∏
j=1

Vfj
a.s.

Once again, (10) follows from (11), and this concludes the proof in the particular
case wherefk is bounded. Iffk is not bounded, definefk,m = fkI{fk≤m}. Then,
Vfk,m

↑ Vfk
a.s. asm → ∞. Further, for each fixedm0, one obtains

Vfk
≥ lim sup

m
E[fk,m(Xm+k)|GX

m+k−1]

≥ lim inf
m

E[fk,m(Xm+k)|GX
m+k−1]

≥ lim inf
m

E[fk,m0(Xm+k)|GX
m+k−1] = Vfk,m0

a.s.

Thus, Vfk
= limm E[fk,m(Xm+k)|GX

m+k−1] a.s. Let Yi = fk,i(Xi+k) ×∏k−1
j=1 fj (Xi+j ). Sincef1, . . . , fk−1 are bounded, condition (12) holds by the first

part of this proof. Therefore,

1

n

n−1∑
i=0

E[Yi|GX
i+k−1] = 1

n

n−1∑
i=0

k−1∏
j=1

fj (Xi+j )E[fk,i(Xi+k)|GX
i+k−1]

→
k∏

j=1

Vfj
a.s.

Further,
∑∞

i=0 P (Ui �= Yi) ≤ ∑∞
i=0 P (fk(X1) > i) ≤ 1 + E[fk(X1)] which im-

plies P (Ui �= Yi i.o.) = 0. Hence, it suffices showing that1
n

∑n−1
i=0 (Yi − E[Yi|

GX
i+k−1]) → 0 a.s. In its turn, this follows from the Kronecker lemma, after noting

thatHn = ∑n−1
i=0

Yi−E[Yi |GX
i+k−1]

i+1 is a martingale such that supn E[H 2
n ] < ∞. In fact,
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letting a = ∏k−1
j=1 sup|fj |, one obtains

sup
n

E[H 2
n ] ≤

∞∑
n=1

n−2E[Y 2
n−1]

≤ 2a2
∞∑

n=2

n−2
∫ n−1

0
xP

(
fk(X1) > x

)
dx

≤ 2a2
∞∑

n=2

n−2
n−1∑
i=1

iP
(
fk(X1) > i − 1

)

= 2a2
∞∑
i=1

iP
(
fk(X1) > i − 1

) ∞∑
n=i+1

n−2

≤ 2a2
∞∑
i=1

P
(
fk(X1) > i − 1

)

≤ 2a2(1+ E[fk(X1)]). �

REMARK 2.3. SupposeE is a Polish space,E = B(E) and (Xn)n is
c.i.d. By using Theorem 2.2 and Lemma 2.4, it is not hard to see that
1
n

∑n
i=1 g(Xi,Xi+1, . . . ) converges a.s. for each bounded continuous functiong

on E∞. This result generally fails ifg is a bounded, Borel but not continuous
function onE∞.

The remaining part of this section investigates to what extent conditional
identity in distribution is connected with exchangeability. To this end, we collect
here some notation and terminology from Aldous (1985). Given a Polish spaceS,
let Cb(S) denote the space of bounded continuous functions onS, P the set
of probability measures onB(S), and � the σ -field on P generated by the
evaluation mapsp 
→ p(B), for B varying in B(S). A random measure on S

is a measurable functionγ : (�,A) → (P,�). Let (Zn)n be a sequence of
S-valued random variables on(�,A,P ). Say that(Zn)n convergesstably if, for
everyH ∈ A with P (H) > 0, (Zn)n converges in distribution underP (·|H) to
some lawµH . In this case, there is a random measureγ on S which represents
each limit lawµH asµH(·) = ∫

γ (ω)(·)P (dω|H), and(Zn)n is saidto converge
stably with representing measure γ . See also Letta and Pratelli (1996). We recall
that, if (Zn)n is exchangeable, there is a random measureγ on S such that the
product random measure

γ ∞ = γ × γ × · · ·
is a version of the conditional distribution of(Zn)n, givenσ(γ ). Suchγ is called
the directing measure of (Zn)n. For our purposes, a last simple fact should be
stressed.
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LEMMA 2.4. Let S be a Polish space and (Zn)n any sequence of S-valued
random variables on (�,A,P ). If σ(Z1,Z2, . . . ) ⊂ σ(

⋃
n Gn) and (E[f (Zn+1)|

Gn])n converges a.s. for each f ∈ Cb(S), there is a random measure γ on S such
that (Zn)n converges stably with representing measure γ and

E[f (Zn+1)|Gn] →
∫

f (x)γ (·)(dx) a.s. for each f ∈ Cb(S).

PROOF. Fix H ∈ Gm with P (H) > 0,m ≥ 1. Then,EP(·|H)[f (Zn)] converges
to a finite limit for all f ∈ Cb(S), so that(Zn)n converges in distribution under
P (·|H). Sinceσ(Z1,Z2, . . . ) ⊂ σ(

⋃
n Gn), it follows that (Zn)n converges in

distribution underP (·|H) for eachH ∈ A with P (H) > 0. Hence, there is a
random measureγ on S such that(Zn)n converges stably with representing
measureγ . Such γ can be takenσ(Z1,Z2, . . . )-measurable. Letf ∈ Cb(S)

andLf = limn E[f (Zn+1)|Gn] a.s. Then,E[IHLf ] = E[IH

∫
f (x)γ (·)(dx)] for

all H ∈ ⋃
n Gn. SinceLf and

∫
f (x)γ (·)(dx) are measurable with respect to

σ(
⋃

n Gn), one obtainsLf = ∫
f (x)γ (·)(dx) a.s. �

SupposeE is a Polish space,E = B(E) and (Xn)n is G-c.i.d. In view of
Lemmas 2.1 and 2.4, there is a random measureα on E such thatVf =∫

f (t)α(·)(dt) a.s. for allf ∈ Cb(E). By a monotone class argument, it follows
that

VIB
(ω) = α(ω)(B) for almost allω

wheneverB ∈ E . In the sequel,α is called thedirecting measure of (Xn)n. Such
terminology, which is typical of exchangeable sequences, is motivated by at least
two facts. First, by Theorem 2.2,α is the a.s. weak limit of empirical measures,

1

n

n∑
i=1

δXi(ω) → α(ω) weakly, for almost allω.

Second,(Xn)n is asymptotically exchangeable and the exchangeable limit law is,
in a sense, directed byα. In fact, something more is true in the following:

THEOREM 2.5. Suppose E is a Polish space, E = B(E) and (Xn)n is G-c.i.d.
Then, [Xn,Xn+1, . . .] converges stably with representing measure α∞, where α is
the directing measure of (Xn)n, and

E[g(Xn+1,Xn+2, . . . )|Gn]
→

∫
g(x)α∞(·)(dx) a.s. for each g ∈ Cb(E

∞).
(13)

PROOF. For eachn ≥ 0, fix a regular versionνn of the conditional distribution
of [Xn+1,Xn+2, . . .] givenGn, and define

νn,k(ω)(B) = νn(ω){x ∈ E∞ :xk−n ∈ B} for all k > n,ω ∈ � andB ∈ E .
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Let µn = νn,n+1. Since(Xn)n is G-c.i.d. andνn,k is a version of the conditional
distribution of Xk given Gn, one obtainsνn,k = µn a.s. for allk > n ≥ 0. By
Lemma 2.1,

∫
f (t)µn(·)(dt) → ∫

f (t)α(·)(dt) a.s. for eachf ∈ Cb(E), and
this impliesµn(ω) → α(ω) weakly for almost allω. Let H1 ∈ A be such that
P (H1) = 1 and, for allω ∈ H1, (µn(ω))n is tight andνn,k(ω) = µn(ω) for all
k > n ≥ 0. Then,(νn(ω))n is tight, too, for allω ∈ H1. Let D0 ⊂ Cb(E) be a
countable convergence determining class forE, and letD be the class of those
functionsg on E∞ of the form g(x) = ∏k

j=1fj (xj ), x = (x1, x2, . . . ) ∈ E∞,

wherek ≥ 1 andf1, . . . , fk ∈ D0. Forg ∈ D, sayg(x) = ∏k
j=1fj (xj ), Lemma 2.1

gives
∫

g(x)α∞(ω)(dx) =
k∏

j=1

∫
fj (t)α(ω)(dt) =

k∏
j=1

Vfj
(ω) = lim

n

∫
g(x)νn(ω)(dx)

for almost allω. SinceD is countable, there isH2 ∈ A with P (H2) = 1 and∫
g(x)α∞(ω)(dx) = limn

∫
g(x)νn(ω)(dx) for all g ∈ D andω ∈ H2. It follows

thatνn(ω) → α∞(ω) weakly for allω ∈ H1 ∩ H2. This proves (13). To conclude
the proof, it suffices to apply Lemma 2.4 withS = E∞ andZn = [Xn,Xn+1, . . .].

�

By Theorem 2.5,[Xn,Xn+1, . . .] converges in distribution underP (·|H) to
the exchangeable lawµH(·) = ∫

α∞(ω)(·)P (dω|H) whenever(Xn)n is c.i.d.,
H ∈ A andP (H) > 0. An alternative proof of this fact could be given by results
of Aldous (1985). Incidentally, we also note that Theorem 2.5 directly implies
Kallenberg’s result that(Xn)n is exchangeable if and only if it is stationary and
c.i.d.; see Section 1. In fact, if(Xn)n is stationary and c.i.d., the distribution of
[Xn,Xn+1, . . .] does not depend onn (by stationarity) and converges weakly to
the exchangeable lawµ� [by Theorem 2.5, since(Xn)n is c.i.d.].

One more consequence of Theorems 2.2 and 2.5 is that any c.i.d. law onE∞ is
exchangeable on a suitable sub-σ -field. Letπn be thenth coordinate projection on
E∞ andV theσ -field onE∞ generated by

lim sup
n

1

n
[f (π1) + · · · + f (πn)] for all boundedf ∈ H .

THEOREM 2.6. Suppose E is a Polish space, E = B(E) and (Xn)n is c.i.d.
Then, the probability distribution λ of (Xn)n coincides on V with the exchangeable
law µ(·) = ∫

α∞(ω)(·)P (dω), where α is the directing measure of (Xn)n.

PROOF. By Theorem 2.5,[Xn,Xn+1, . . .] converges in distribution toµ.
Givenf1, . . . , fk ∈ Cb(E), this fact and Lemma 2.1 imply

∫ k∏
j=1

fj ◦ πj dµ = lim
n

E

[
k∏

j=1

fj (Xn+j )

]
= E

[
k∏

j=1

Vfj

]
.



2040 P. BERTI, L. PRATELLI AND P. RIGO

Let V0 be theσ -field onE∞ generated by lim supn
1
n
[f (π1)+· · · +f (πn)] for all

f ∈ Cb(E), and leth be any product of generators ofV0, that is,

h =
k∏

j=1

lim sup
n

1

n

n∑
i=1

fj ◦ πi wheref1, . . . , fk ∈ Cb(E).

By Theorem 2.2, lim supn
1
n

∑n
i=1 fj (Xi) = Vfj

a.s. and, thus,
∫

hdλ =
E[∏k

j=1Vfj
]. On the other hand, exchangeability ofµ implies

∫
hdµ =

∫
lim
n

k∏
j=1

1

n

n∑
i=1

fj ◦ πi dµ = lim
n

1

nk

∫ k∏
j=1

n∑
i=1

fj ◦ πi dµ

=
∫ k∏

j=1

fj ◦ πj dµ = E

[
k∏

j=1

Vfj

]
=

∫
hdλ.

Hence,λ = µ on V0. To conclude the proof, it is sufficient showing thatV ⊂
σ(V0 ∪ N ), where N = {A ∈ E∞ :λ(A) = µ(A) = 0}. Let ν = (λ + µ)/2.
Given a bounded measurableφ on E and ε > 0, there isf ∈ Cb(E) such that∫ |φ(π1) − f (π1)|dν < ε. Since(πn)n is c.i.d. underν, Theorem 2.2 implies

∫ ∣∣∣∣∣lim sup
n

1

n

n∑
i=1

φ(πi) − lim sup
n

1

n

n∑
i=1

f (πi)

∣∣∣∣∣dν

= lim
n

∫ ∣∣∣∣∣1

n

n∑
i=1

(
φ(πi) − f (πi)

)∣∣∣∣∣dν

≤
∫

|φ(π1) − f (π1)|dν < ε.

This concludes the proof.�

REMARK 2.7. In Theorem 2.6,V cannot be replaced by the shift-invariant
σ -field of (πn)n. In fact, if the distribution of(Xn)n agrees with an exchangeable
law µ on the shift-invariantσ -field of (πn)n, then

P (∃ lim Xn) = µ(∃ lim πn)

= µ(∃m with πn = πm for all n ≥ m)

= P (∃m with Xn = Xm for all n ≥ m),

where the second equality is due to exchangeability ofµ. But, there are c.i.d.
sequences for whichP (∃ lim Xn) = 1 > 0 = P (∃m with Xn = Xm for all n ≥ m),
for instance, the one exhibited in Example 1.2. It follows that, unlike in the
exchangeable case, the shift-invariantσ -field of (πn)n andV have not the same
completion under an arbitrary c.i.d. law onE∞.
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We close this section with a characterization of exchangeability in terms of
conditional identity in distribution.

THEOREM 2.8. Let I be the shift-invariant σ -field of (Xn)n. The following
statements are equivalent:

(i) (Xn)n is exchangeable;
(ii) For any H ∈ I with P (H) > 0, (Xn)n is c.i.d. under P (·|H);
(iii) For any ( finite) permutation τ of {1,2, . . . }, (Xτ(n))n is c.i.d.

PROOF. (i) ⇒ (ii). Obvious. (ii)⇒ (iii). Fix f ∈ H and note that, by Theo-
rem 2.2,Vf can be takenI-measurable. Hence, by (ii),E[f (X1)|I] = Vf a.s.
Further, letn ≥ 1, H ∈ GX

n andK ∈ I. For allk > n, condition (ii) implies

E[f (Xk)IH IK ] = E[f (Xn+1)IH IK ].
Sincef (Xk) → Vf in σ(L1,L∞) as k → ∞, one also obtainsE[Vf IH IK ] =
E[f (Xn+1)IH IK ]. SinceVf is I-measurable, this implies

E[f (Xn+1)|I] = Vf = E[f (Xn+1)|I ∨ GX
n ] a.s.

Thus,(Xn)n is exchangeable and, clearly, this implies condition (iii).
(iii) ⇒ (i). We prove that, for anyn1, . . . , np distinct integers, anyr ≥ 1 and any

m > max(n1, . . . , np),

E

[
r∏

j=1

fj (Xm+j )

p∏
l=1

gl

(
Xnl

)] = E

[
r∏

j=1

fj (Xm+j )

p∏
l=1

gl(Xl)

]
,(14)

wheref1, . . . , fr, g1, . . . , gp are bounded elements ofH . We argue by induction
on p ≥ 1. Whenp = 1, condition (14) follows from applying (5) to the c.i.d.
sequence(Xτ(n))n, whereτ is a finite permutation such thatτ (j) = m + j for
j = 1, . . . , r , τ (r + 1) = n1 andτ (r + 2) = 1. Suppose now that (14) holds for
somep. We have to prove

E

[
k∏

j=1

fj (Xm+j )

p+1∏
l=1

gl

(
Xnl

)] = E

[
k∏

j=1

fj (Xm+j )

p+1∏
l=1

gl(Xl)

]
(15)

for any k ≥ 1 and anym > max(n1, . . . , np,np+1). Let τ1 denote a finite
permutation such thatτ1(j) = m + j for j = 1, . . . , k, τ1(k + l) = nl for l = 1,

. . . , p + 1 andτ1(k + 2+ p) = m + k + 1. Since(Xτ1(n))n is c.i.d., one has

E

[
k∏

j=1

fj (Xm+j )

p+1∏
l=1

gl

(
Xnl

)] = E

[
k∏

j=1

fj (Xm+j )

p∏
l=1

gl

(
Xnl

)
gp+1

(
Xnp+1

)]

= E

[
k∏

j=1

fj (Xm+j )

p∏
l=1

gl

(
Xnl

)
gp+1(Xm+k+1)

]
.
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Let τ2 be a finite permutation such thatτ2(j) = m + j for j = 1, . . . , k,
τ2(k + l) = l for l = 1, . . . , p + 1 andτ2(k + 2+ p) = m + k + 1. Since(Xτ2(n))n
is c.i.d., one also has

E

[
k∏

j=1

fj (Xm+j )

p+1∏
l=1

gl(Xl)

]

= E

[
k∏

j=1

fj (Xm+j )

p∏
l=1

gl(Xl)gp+1(Xp+1)

]

= E

[
k∏

j=1

fj (Xm+j )

p∏
l=1

gl(Xl)gp+1(Xm+k+1)

]
.

Hence, (15) follows from (14) withr = k + 1 andfk+1 = gp+1. �

3. Some CLTs for c.i.d. sequences. In this section stable convergence (in
particular, convergence in distribution) of

√
n

(
1

n

n∑
k=1

f (Xk) − Ln

)

is investigated for three different choices of the random centeringLn.
In all cases, our main tool is the following version of the martingale CLT; see

Hall and Heyde (1980), Theorem 3.2, page 58. Let{Ynk :n ≥ 1, k = 1, . . . , kn} be
an array of real square integrable random variables, wherekn ↑ ∞, and for alln,
let Fn0 ⊂ Fn1 ⊂ · · · ⊂ Fnkn ⊂ A beσ -fields withFn0 = {∅,�}. If:

(i) σ(Ynk) ⊂ Fnk,E[Ynk|Fn,k−1] = 0 a.s.,Fnk ⊂ Fn+1,k,
(ii) max1≤k≤kn |Ynk| → 0 in probability, supn E[max1≤k≤kn Y 2

nk] < ∞,

(iii)
∑kn

k=1 Y 2
nk → L in probability, for some real random variableL,

then
∑kn

k=1 Ynk converges stably. Precisely, letN (0, c) denote the Gaussian law

with mean 0 and variancec ≥ 0, whereN (0,0) = δ0. Then,
∑kn

k=1 Ynk converges
stably with representing measureN (0,L), that is, for eachH ∈ A with P (H) > 0,∑kn

k=1 Ynk converges in distribution underP (·|H) to the probability law

µH(·) =
∫

N
(
0,L(ω)

)
(·)P (dω|H).

Let us start with the caseLn = Vf .

THEOREM 3.1 (CLT, case I). Suppose (Xn)n is c.i.d., f and f 2 are in H and
there exists an integer m ≥ 0 such that (f (Xn+m) − Vf )n is c.i.d. Then

Wn,f = 1√
n

(
f (X1) + · · · + f (Xn) − nVf

)
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converges stably with representing measure N (0,Vf 2 − (Vf )2).

PROOF. For eachn > m, define

Ynk = n−1/2(f (Xk+m) − Vf

)
andFnk = σ(Yn1, . . . , Ynk) for k = 1, . . . , n−m. Since(f (Xn+m)−Vf )n is c.i.d.,
condition (i) holds. By Theorem2.2, condition (iii) holds withL = Vf 2 − (Vf )2.
As to (ii), first note that it can be equivalently written as

n−1/2 max
m<k≤n

|f (Xk)| → 0 in probability

and

sup
n

n−1E

[
max

m<k≤n
f 2(Xk)

]
< ∞.

Fix ε > 0 and putAnk = {|f (Xk)| > ε
√

n }. Then

P

(
max

m<k≤n
|f (Xk)| > ε

√
n

)
≤ 1

ε2n

n∑
k=m+1

E
[
IAnk

f 2(Xk)
]

= n − m

ε2n
E

[
IAn1f

2(X1)
] → 0

and

sup
n

1

n
E

[
max

m<k≤n
f 2(Xk)

]
≤ sup

n

1

n

n∑
k=m+1

E[f 2(Xk)] ≤ E[f 2(X1)].
�

If (Xn)n is exchangeable, then(f (Xn+m) − Vf )n is exchangeable for allm, so
that Theorem 3.1 applies. Generally, however, the assumption that(f (Xn+m) −
Vf )n is c.i.d. for somem cannot be dropped.

EXAMPLE 3.2 (Example 1.2 continued). LetXn = ∑n
k=1 Zk + Un, where

(Zn)n and (Un)n are independent sequences of independent random variables,
Zn ∼ N (0, bn − bn−1), Un ∼ N (0, c − bn), with b0 = 0 andbn ↑ c. Let f be
the identity mapping,G0 = {∅,�} andGn = σ(Z1,U1, . . . ,Zn,Un). Then(Xn)n
is G-c.i.d. SinceXk − Uk = ∑k

i=1 Zi → ∑∞
i=1 Zi a.s., Theorem 2.2 implies

Vf = lim
n

1

n

n∑
k=1

Xk = lim
n

1

n

n∑
k=1

(Xk − Uk) =
∞∑

k=1

Zk a.s.

Then

√
nWn,f =

n∑
k=1

(
(n−k+1)Zk +Uk

)−n

∞∑
k=1

Zk =
n∑

k=1

(
Uk − (k−1)Zk

)−n
∑
k>n

Zk,
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so thatWn,f is Gaussian with

Var[Wn,f ] = 1

n

n∑
k=1

(
c − bk + (k − 1)2(bk − bk−1)

) + n(c − bn).

Hence, if limn n(c − bn) = ∞, then limn Var[Wn,f ] = ∞. In that case, sinceWn,f

is Gaussian for alln, (Wn,f )n does not converge in distribution.

Let us turn to the second type of random centering, that is,Ln = 1
n

×∑n
k=1 E[f (Xk)|Gk−1]. This is perhaps the less interesting of our choices ofLn,

at least from the point of view of applications. Nevertheless, there are situations
where such a choice ofLn plays a role, for instance, in stochastic approximation,
calibration and gambling; see Hanson and Russo (1981, 1986), Dawid (1982) and
Berti and Rigo (2002). In any case, the following result is available (CLT, case II;
we omit the straightforward proof ). Let

Bn,f = 1√
n

n∑
k=1

(
f (Xk) − E[f (Xk)|Gk−1]) for all f ∈ H .

If (Xn)n is G-c.i.d. andf andf 2 are inH , then

(Bn,f )n converges stably with representing measureN (0,Vf 2 − (Vf )2).(16)

Finally, we consider the caseLn = E[f (Xn+1)|Gn]. From the point of view of
statistical applications, mainly in Bayesian forecasting and discrete time filtering,
this is perhaps the most significant case; see Section 1. Denote

Cn,f = 1√
n

(
f (X1) + · · · + f (Xn) − nE[f (Xn+1)|Gn]) for all f ∈ H .

THEOREM 3.3 (CLT, case III). Suppose (Xn)n is G-c.i.d., f and f 2 are in H
and supn E[C2

n,f ] < ∞. If

Mn = 1

n

n∑
k=1

(
f (Xk)−kE[f (Xk+1)|Gk]+ (k−1)E[f (Xk)|Gk−1])2 → σ 2 a.s.

for some real random variable σ 2, then (Cn,f )n converges stably with representing
measure N (0, σ 2). Moreover, if

1

n

n∑
k=1

k2(E[f (Xk+1)|Gk] − E[f (Xk)|Gk−1])2 → 0 in probability,

then Bn,f − Cn,f → 0 in probability, and (Cn,f )n converges stably with
representing measure N (0,Vf 2 − (Vf )2).
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PROOF. Suppose first thatMn → σ 2 a.s. Forn ≥ 1 andk = 1, . . . , n, define
Ynk = E[Wn,f |Gk] − E[Wn,f |Gk−1] andFnk = Gk. Then condition (i) trivially
holds, and sinceE[Wn,f |G0] = 0 a.s., one hasCn,f = E[Wn,f |Gn] = ∑n

k=1Ynk .
Hence, it is enough to check (ii) and (iii) withL = σ 2. On noting that

√
nYn,k = f (Xk) − kE[f (Xk+1)|Gk] + (k − 1)E[f (Xk)|Gk−1],

one obtains
∑n

k=1 Y 2
nk = Mn → σ 2 a.s. SinceY 2

nn = Mn − n−1
n

Mn−1 → 0 a.s., it
follows that maxk≤n |Ynk| → 0 a.s. Moreover,

E

[
max
k≤n

Y 2
nk

]
≤

n∑
k=1

E
[(

E[Wn,f |Gk] − E[Wn,f |Gk−1])2]

=
n∑

k=1

E
[
E[Wn,f |Gk]2 − E[Wn,f |Gk−1]2]

= E
[
E[Wn,f |Gn]2] = E[C2

n,f ],
so that (maxk≤n |Ynk|)n is bounded inL2. Hence, (ii) and (iii) hold with
L = σ 2, and this concludes the proof of the first part of the theorem. Next,
to prove the second part, defineDk = E[f (Xk+1)|Gk] − E[f (Xk)|Gk−1] and
suppose that1

n

∑n
k=1k2D2

k → 0 in probability. By (16), it is sufficient to see that
Bn,f − Cn,f → 0 in probability, and a direct calculation shows thatBn,f −Cn,f =

1√
n

∑n
k=1 kDk . For n ≥ 1 andk = 1, . . . , n, defineYnk = 1√

n
kDk andFnk = Gk .

Then, (i) and (iii) hold withL = 0. In particular,{maxk≤n |Ynk|}2 ≤ ∑n
k=1 Y 2

nk → 0
in probability. Moreover,

max
k≤n

|Ynk| ≤ 1√
n

max
k≤n

|f (Xk) − E[f (Xk)|Gk−1] − kDk|

+ 1√
n

max
k≤n

|f (Xk) − E[f (Xk)|Gk−1]|,

and both terms in the right-hand side are bounded inL2. (Boundedness of the first
term has been shown in the first part of the proof.) Hence, condition (ii) holds, and
this implies 1√

n

∑n
k=1 kDk = ∑n

k=1 Ynk → 0 in probability. �

The assumption that(Cn,f )n is bounded inL2 surely holds if (Wn,f )n is
bounded inL2 and, in turn, this is true if(f (Xn+m) − Vf )n is c.i.d. for somem.
In particular, Theorem 3.3 implies that(Cn,f )n converges stably whenever(Xn)n
is exchangeable,E[f (X1)

2] < ∞ and(Mn)n converges a.s. Here, it is tempting to
conjecture that(Mn)n always converges a.s. in the exchangeable case, but we do
not know whether this is true.

We close this section by applying the previous results to some of the examples in
Section 1. Example 3.4 shows that, for c.i.d. nonexchangeablesequences,(Wn,f )n,
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(Bn,f )n and(Cn,f )n can have quite different asymptotic behaviors. Example 3.5
deals with modified Pólya urns, in the particular case where the extra ballsdn are
i.i.d.

EXAMPLE 3.4 (Example 1.2 continued). LetXn = ∑n
k=1 Zk + Un, where

(Zn)n and (Un)n are independent sequences of independent random variables,
Zn ∼ N (0, bn − bn−1), Un ∼ N (0, c − bn), with b0 = 0 andbn ↑ c. Let f be the
identity mapping,G0 = {∅,�} andGn = σ(Z1,U1, . . . ,Zn,Un). Then, as noted
in Example 3.2,(Xn)n is G-c.i.d.,Vf = ∑∞

k=1 Zk a.s. andWn,f is Gaussian with
mean 0 and Var[Wn,f ] = 1

n

∑n
k=1(c − bk + (k − 1)2(bk − bk−1)) + n(c − bn).

Suppose now that

sup
n

n2(bn − bn−1) < ∞ and n(c − bn) → u

for some u. Then, a direct calculation shows that1
n

∑n
k=1(k − 1)2(bk −

bk−1) → u, and Mn = 1
n

∑n
k=1(Uk − (k − 1)Zk)

2 → u a.s. Thus,(Wn,f )n
converges in distribution toN (0,2u) and, by Theorem 3.3,(Cn,f )n converges
in distribution toN (0, u). Finally,

Vf 2 = lim
n

1

n

n∑
k=1

X2
k = lim

n

1

n

n∑
k=1

(
k∑

i=1

Zi

)2

=
( ∞∑

i=1

Zi

)2

= V 2
f a.s.

and thus (16) yieldsBn,f → 0 in probability.

EXAMPLE 3.5 (Example 1.3 continued). Let(Xn)n and (dn)n be as in
Example 1.3, and letG0 = {∅,�} andGn = σ(X1, d1, . . . ,Xn, dn, dn+1) for n ≥ 1.
Suppose thatdn is independent ofσ(Xi, dj : i ≤ n, j < n) for all n ≥ 1 [i.e.,
condition (i) holds] and thedn are identically distributed withE[d2

1] < ∞. As
shown in Example 1.3,(Xn)n is G-c.i.d. Let f be the identity mapping. By
standard but long calculations, it can be shown that(Cn,f )n is bounded inL2

andMn → δ(V − V 2) a.s., whereδ = Var[d1]/E[d1]2 andV = limn
1
n

∑n
k=1Xk

a.s. We refer to Berti, Pratelli and Rigo (2002) for details on such calculations.
In any case, by Theorem 3.3,(Cn,f )n converges stably with representing measure
N (0, δ(V − V 2)).

4. Uniform limit theorems. In Section 3, given aG-c.i.d. sequence(Xn)n,
convergence in distribution of

Wn,f = 1√
n

(
f (X1) + · · · + f (Xn) − nVf

)
,

Bn,f = 1√
n

n∑
k=1

(
f (Xk) − E[f (Xk)|Gk−1]),

Cn,f = 1√
n

(
f (X1) + · · · + f (Xn) − nE[f (Xn+1)|Gn])
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has been investigated for afixed functionf . In this sectionWn := {Wn,f :f ∈ D},
Bn := {Bn,f :f ∈ D} andCn := {Cn,f :f ∈ D} are seen as processes, indexed by
some classD ⊂ H of functions, and their convergence in distribution is analyzed
in the path space under uniform distance. Note thatWn, Bn andCn all reduce to
the usual empirical process wheneverXn is independent ofGn−1 for all n.

For the sake of simplicity, we do not deal with a general Donsker-classD , but
we focus on the particular case where

(E,E) = (
R,B(R)

)
and D = {

I(−∞,t] : t ∈ R
}
.

Hence, letting

X =
{
x :x is a real cadlag function onR and lim|t|→∞x(t) = 0

}
,

Wn,t = Wn,I(−∞,t], Bn,t = Bn,I(−∞,t], Cn,t = Cn,I(−∞,t],

the paths ofWn, Bn andCn belong toX (up to modifications onP -null sets).
Throughout,X is equipped with uniform distance. We refer to the theory of

weak convergence developed by Hoffmann-Jørgensen, van der Vaart and Wellner;
see van der Vaart and Wellner (1996). Let(�′,A′,P ′) be a probability space and
Z :�′ → X a random element ofX. Say thatZ is measurable if {Z ∈ B} ∈ A′
for all Borel setsB ⊂ X, and thatZ is tight if Z is indistinguishable from a
measurable random element with a tight probability distribution. IfZ and Z′
are both measurable and tight,Z ∼ Z′ if and only if they have the same finite-
dimensional distributions. IfZ is measurable and theZn are arbitrary random
elements ofX, thenZn → Z in distribution meansE∗[f (Zn)] → E[f (Z)] for
all f ∈ Cb(X), whereE∗ denotes outer expectation. IfZ is not measurable,
but indistinguishable from a measurable random elementZ′, then Zn → Z in
distribution stands forZn → Z′ in distribution. Suppose theZn are random
processes on(�,A,P ) such that(Zn,t1, . . . ,Zn,tr ) converges in distribution for
all t1, . . . , tr ∈ R. Then, for(Zn)n to converge in distribution to a tight limit, it is
sufficient that, for allε, η > 0, there is a finite partitionI1, . . . , Im of R by right-
open intervals such that

lim sup
n

P

(
max

k
sup

s,t∈Ik

|Zn,s − Zn,t | > ε

)
< η;(17)

see van der Vaart and Wellner (1996), Theorems 1.5.4 and 1.5.6.
When(Xn)n is G-c.i.d., a possible limit in distribution forWn, Bn andCn is a

tight process whose distributionν is given by

ν
{
x ∈ X :

(
x(t1), . . . , x(tr )

) ∈ A
} =

∫
N

(
0,�(t1, . . . , tr )

)
(A)dP

for all t1, . . . , tr ∈ R andA ∈ B(Rr), where�(t1, . . . , tr ) is a random covariance
matrix. One significant particular case is the following. LetGF denote a process,
on some probability space, of the form

G
F
t = G

0
F(t) for all t ∈ R,
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whereG0 is a standard Brownian bridge on[0,1] andF a random distribution
function, independent ofG0, satisfying(

F(t1), . . . , F (tr)
) ∼ (

α(−∞, t1], . . . , α(−∞, tr ]) for all t1, . . . , tr ∈ R,

α being the directing measure of(Xn)n. Then, GF has finite-dimensional
distributions of the type ofν with

�(t1, . . . , tr ) = (
F(ti ∧ tj )

(
1− F(ti ∨ tj )

))
1≤i,j≤r .

Generally,GF can fail to be measurable. However,G
F is measurable and tight

whenever all theF -paths are continuous onAc for some fixed countable setA ⊂ R.
Before stating results, we will give a technical lemma that is needed later on.

It is presumably well known, and we provide a proof just to make the paper self-
contained. Let us denote‖x‖ = supt |x(t)| for all x ∈ X.

LEMMA 4.1. Let Z be a tight random process with paths in X and
E[‖Z‖] < ∞. Then, for all ε > 0, there is a finite partition I1, . . . , Im of R by
right-open intervals such that

E

(
max

k
sup

s,t∈Ik

|Zs − Zt |
)

< ε.

PROOF. It can be assumed thatZ is measurable. By tightness ofZ and
integrability of ‖Z‖, there is a compactK such thatE[I{Z/∈K}‖Z‖] < ε/5. Let
x1, . . . , xN ∈ K be such thatK ⊂ ⋃N

i=1 Bi , whereBi is the ball with centerxi

and radiusε/5. Take a partitionI1, . . . , Im of R by right-open intervals such that
maxk sups,t∈Ik

|xi(s) − xi(t)| < ε/5 for all i = 1, . . . ,N . Then

I{Z∈K} max
k

sup
s,t∈Ik

|Zs − Zt | < (3/5)ε

and thusE(maxk sups,t∈Ik
|Zs − Zt |) ≤ (3/5)ε + 2E[I{Z/∈K}‖Z‖] < ε. �

Next, based on the results in Section 3, we give conditions for convergence in
distribution of(Bn)n and(Cn)n.

THEOREM 4.2. If (Xn)n is G-c.i.d. and (Bn)n meets condition (17), then
Bn → GF in distribution and GF is tight.

PROOF. First note thatGF is measurable whenX is equipped with the ball
σ -field U. Suppose the finite-dimensional distributions of(Bn)n converge weakly
to those ofGF . Then, since(Bn)n meets (17),Bn → Z in distribution for some
measurable tight processZ with the same finite-dimensional distributions ofGF .
SinceZ is tight, Z ∈ A a.s. for some separable Borel setA ⊂ X. SinceA ∈ U
(by separability) and the distributions ofG

F and Z agree onU, one obtains
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GF ∈ A a.s. LetL = I{GF ∈A}F + I{GF /∈A}H , whereH is any fixed distribution
function. ThenL is a random distribution function indistinguishable fromF , and
G

L is measurable and tight due toG
L having separable range andX is complete.

Since GF is indistinguishable fromGL, it follows that GF is tight, Z ∼ GL

and Bn → GF in distribution. It remains to prove that the finite-dimensional
distributions of(Bn)n converge weakly to those ofGF . Fix t1, . . . , tr , a1, . . . ,

ar ∈ R, definef = ∑r
i=1 aiI(−∞,ti ] and note that

∑r
i=1 aiG

F
ti

has distribution

µ(A) =
∫

N
(
0,Vf 2 − (Vf )2)(A)dP, A ∈ B(R).

Hence, (16) implies

r∑
i=1

aiBn,ti = Bn,f →
r∑

i=1

aiG
F
ti

in distribution.

By letting a1, . . . , ar vary, one obtains(Bn,t1, . . . ,Bn,tr ) → (GF
t1
, . . . ,GF

tr
) in

distribution. �

Convergence in distribution of(Cn)n needs more conditions. Furthermore, as
suggested by Theorem 3.3, Examples 3.4 and 3.5, it may be thatCn → C in
distribution but the limit processC is not of the type ofGF . Denote

qk(t) = I{Xk≤t} − kE
[
I{Xk+1≤t}|Gk

] + (k − 1)E
[
I{Xk≤t}|Gk−1

]
for t ∈ R.

THEOREM 4.3. Suppose (Xn)n is G-c.i.d., (Cn)n meets condition (17) and
supn E[C2

n,t ] < ∞ for all t ∈ R. If

1

n

n∑
k=1

k2(E[
I{Xk+1≤t}|Gk

] − E
[
I{Xk≤t}|Gk−1

])2 → 0
(18)

in probability ∀ t ∈ R,

then Cn → GF in distribution and GF is tight. Moreover, if

1

n

n∑
k=1

qk(s)qk(t) → σ(s, t) a.s. for all s, t ∈ R,(19)

then Cn → C in distribution, where C is a tight process whose distribution ν is
given by

ν
{
x ∈ X :

(
x(t1), . . . , x(tr )

) ∈ A
} =

∫
N

(
0,�(t1, . . . , tr )

)
(A)dP

for all t1, . . . , tr ∈ R and A ∈ B(Rr), with �(t1, . . . , tr ) = (σ (ti , tj ))1≤i,j≤r .
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PROOF. Arguing as in the proof of Theorem 4.2, it is enough to see that
the finite-dimensional distributions of(Cn)n converge weakly to those ofGF

under (18) and to those ofC under (19). Fixt1, . . . , tr , a1, . . . , ar ∈ R, define
f = ∑r

i=1 aiI(−∞,ti ] and note that(Cn,f )n is bounded inL2. If (18) holds, then

1

n

n∑
k=1

k2(E[f (Xk+1)|Gk] − E[f (Xk)|Gk−1])2 → 0 in probability,

and Theorem 3.3 yields
r∑

i=1

aiCn,ti = Cn,f →
r∑

i=1

aiG
F
ti

in distribution.

Similarly, if (19) holds, thenMn → ∑
i,j aiajσ (ti , tj ) a.s., and Theorem 3.3

implies that(Cn,f )n converges in distribution to the probability lawµ on B(R)

given by

µ(A) =
∫

N

(
0,

∑
i,j

aiajσ (ti , tj )

)
(A)dP

= ν

{
x ∈ X :

r∑
i=1

aix(ti ) ∈ A

}
, A ∈ B(R).

By letting a1, . . . , ar vary, it follows that(Cn,t1, . . . ,Cn,tr ) → (GF
t1
, . . . ,GF

tr
) in

distribution under (18), and that(Cn,t1, . . . ,Cn,tr ) → (Ct1, . . . ,Ctr ) in distribution
under (19). �

REMARK 4.4. Suppose(Xn)n is G-c.i.d. andK ⊂ H is a countable class
of functions such that supf ∈K |f | is in H . SinceCn,f = E[Wn,f |Gn] a.s., one
obtains

E

[
sup
f ∈K

|Cn,f |
]

≤ E

[
sup
f ∈K

|Wn,f |
]
.

Likewise, a direct calculation shows that

lim sup
n

E

[
sup
f ∈K

|Bn,f |
]

≤ 5 lim sup
n

E

[
sup
f ∈K

|Wn,f |
]
.

By these inequalities,(Bn)n and(Cn)n can be connected to(Wn)n. In particular,
suppose that, for allε > 0, there is a finite partitionI1, . . . , Im of R by right-open
intervals such that

lim sup
n

E

(
max

k
sup

s,t∈Ik

|Wn,s − Wn,t |
)

< ε.(20)

Then, (20) still holds with(Bn)n or (Cn)n in the place of(Wn)n and, thus,
(Bn)n and(Cn)n meet condition (17).
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Theorems 4.2 and 4.3 are general results onG-c.i.d. sequences. In the
exchangeable case, however, something more can be said. We close the paper by
dealing with this case.

THEOREM 4.5. If (Xn)n is exchangeable and GF is tight, then Wn → GF in
distribution.

Theorem 4.5 can be proved by a standard application of de Finetti’s repre-
sentation theorem. We refer to Berti, Pratelli and Rigo (2002) for a proof. The
assumption thatGF is tight, instead, needs two remarks. First, it can not be sup-
pressed. Indeed, whenGF is not tight,(Wn)n can fail to converge in distribution
even if (Xn)n is exchangeable. An example is in Berti and Rigo (2004). Second,
a tight version ofGF is available ifP (X1 = X2) = 0 or if P (X1 ∈ A) = 1 for some
countableA ⊂ R. In fact, if (Xn)n is exchangeable andP (X1 = X2) = 0, the ran-
dom distribution functionF can be taken to be continuous. Precisely, in some
probability space, there are a standard Brownian bridgeG0 and a version ofF , in-
dependent ofG0, whose paths are continuous. Hence,GF = G

0
F is tight. Up to re-

placing “continuous” with “continuous onAc,” the same is true ifP (X1 ∈ A) = 1
for some countableA.

Finally, let us turn toBn andCn. Investigating their asymptotic behavior needs
a little more than a straightforward application of de Finetti’s theorem.

THEOREM 4.6. Suppose (Xn)n is exchangeable and G
F is tight. Then,

Bn → GF in distribution and (Cn)n is relatively sequentially compact. Moreover,
Cn → GF in distribution under condition (18) and Cn → C in distribution under
condition (19),where C is the tight process described in Theorem 4.3.

PROOF. Suppose first that(Wn)n meets condition (20). Then, by Remark 4.4,
(Bn)n and(Cn)n satisfy (17). By exchangeability,(Cn,t )n is bounded inL2 for
all t . Thus, Theorems 4.2 and 4.3 yieldBn → G

F in distribution,Cn → G
F in

distribution under (18) andCn → C in distribution under (19). Moreover,(Cn)n is
relatively sequentially compact by Lemma 1.5.2 and Theorems 1.3.9 and 1.5.6
of van der Vaart and Wellner (1996). Hence, it is enough to prove (20). If
(Xn)n is i.i.d., then supn E[‖Wn‖2] ≤ c, where the constantc does not depend
on the distribution ofX1; see van der Vaart and Wellner (1996), pages 247
and 248. By de Finetti’s theorem, supn E[‖Wn‖2] ≤ c still holds if (Xn)n is
exchangeable. It follows that(‖Wn‖)n is uniformly integrable, and sinceWn →
GF in distribution (by Theorem 4.5),E[‖GF ‖] = limn E[‖Wn‖] < ∞. By
Lemma 4.1, givenε > 0, there is a partitionI1, . . . , Im of R by right-open intervals
such thatE(maxk sups,t∈Ik

|GF
s − GF

t |) < ε. Let h(x) = maxk sups,t∈Ik
|x(s) −

x(t)| for x ∈ X. Sinceh is continuous,h(Wn) → h(GF ) in distribution. Since
h(Wn) ≤ 2‖Wn‖, (h(Wn))n is uniformly integrable. Thus, lim supn E[h(Wn)] =
E[h(GF )] < ε. �
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