THE ROLE OF SUFFICIENCY AND OF ESTIMATION
IN THERMODYNAMICS!

By BeNoiT MANDELBROT

I.B. M. Thomas J. Watson Research Center

1. Introduction and summary. The purpose of this paper is to point out (and
to use) the relations of certain statistical concepts with ‘‘statistical” thermo-
dynamics.

(A) It is observed that Gibbs’s “‘canonical distribution” of energy is precisely
what statisticians have later labeled a “distribution of the exponential type’. It
follows that a rigorous treatment of the canonical law can be based upon the
concept of “sufficiency”’, which is thereby related to the physical idea of “thermal
equilibrium” and to the “zero-th principle of thermodynamics”. In other words,
the theory of physical fluctuations can be based upon “principles” very similar to
those of the ‘‘phemomenological”, or ‘‘classical, mon-statistical” thermodynamics.
Naturally, our results will be less detailed than those of statistical mechanics.
However, the foundations of the latter theory still raise a host of unanswered
problems, and it seems good in the meantime to show that the less powerful
phenomenological theory has a wider scope than is commonly thought (see also
[15]).

The possibility of a purely phenomenological approach to statistical thermo-
dynamics is not in itself a new idea. A procedure somewhat similar to ours has
indeed been long ago suggested in Szilard’s admirable, but very difficult and
neglected, paper [18]—not to be confused with his [19]. Of course, Szilard used a
quite different vocabulary; but, with hindsight, one may now say that he has
co-invented the concept of sufficiency with R. A. Fisher; by showing that, under
certain regularity conditions, Gibbs’s canonical law is the only probability dis-
tribution with a single scalar sufficient statistic, Szilard also anticipated the
results of G. Darmois [2], B. O. Koopman [10] and E. J. G. Pitman [16], but was
partly anticipated by Poincaré [17].

(B) The second thesis of the paper is independent of Szilard, and concerns
the concept of temperature. For systems with a canonical energy, the tempera-
ture is the parameter of the Gibbs distribution; as such it is undefined for iso-
lated systems with a determined energy. However, it is necessary to generalize
the concept of temperature to isolated systems. Several definitions have been
proposed and, although they all safely converge mutually for the usual very
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1022 BENOIT MANDELBROT

large systems, the temperature remains mathematically ambiguous for small
isolated systems; it also becomes physically meaningless.

We shall show that the temperature for systems-in-isolation should be viewed as a
statistical estimate of the parameter of a conjectural canonical distribution, from
which the presently isolated system may be presumed to have once been drawn.
This interpretation explains the nature of the ambiguity of the concept of tem-
perature; it also meets the actual practice of physicists; finally, some of the
a priori conditions, which the physicists impose upon their ‘‘estimators”, turn
out to correspond to the statistical conditions of consistency, unbiasedness, and
efficiency. Physicists also use two very interesting variants of consistency and
unbiasedness, which we shall study under the names of “self-consistency” and
“gelf-unbiasedness”. The most commonly used temperature, due to Ludwig
Boltzmann, turns out to be the maximum likelihood estimator.

In summary, we hope to show that it is a great pity that mathematical and
physical statistics should have developed largely independently of each other,
while using the same concepts. By combining the rigor of modern statistics with
the intuitive vigor of thermodynamics, both should be served well. However, as
things stand, the mathematical statistician should not hope to unearth in the
literature of physics any result as yet unknown to him.

An important open problem suggested by this paper is the following. When
sufficiency and estimation are defined in the most general terms, it seems that
one should also be able to generalize the scope of thermodynamics. However,
an approach such asthat of P. R. Halmos and L. J. Savage [5] could not be applied
to thermodynamics without substantial restrictions, as we shall show in Section 7.
It remains to study these restrictions in greater detail, before one can assert that
a non-void generalization of thermodynamics is possible. The problem is ad-
dressed to both mathematicians and physicists.

We shall strive to reduce to the minimum the detailed knowledge of physics
required to read this paper. If the reader’s appetite for information about thermo-
dynamics has been awakened, he could do no better than to make use of refer-
ences [11] and [20].

2. Presentation of the statements to be used as axioms. In order to avoid
axioms picked out of thin air, we shall start in this section by deriving them as
properties, obvious in the relevant frames of reference, of either matter-in-bulk
or of canonical distributions.

2.1. Definitions relative to the canonical law. The statistical thermodynamics
of equilibrium is concerned with physical systems that can be characterized by
a few so-called “macroscopic”’ quantities, referred to as ‘“variables of state’.
Their number is independent of the size of the system; some of them can either
be random variables or parameters—depending upon the problem—while others
can only play the role of parameters.

Consider the energy of the system, a real strictly positive quantity. U follows
Gibbs’s law, whenever d F(u) = d Prob (U = u) is of the form:

dF(u | B) = dG(u) exp (—Bu)/Z(B).
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Here, G(u) is a non-decreasing and right-continuous function with G(0) = 0.
The single parameter 8 is called the inverse-absolute-temperature and Z(B) is
called the partition function of the distribution and of the system to Whlch it
refers. One obviously has the relationships

Z(8) = fo exp (—Bu) dG(w); E(U | 8) = —a log Z(8)/96;

E[U — B(U)F = o* log Z(8)/36".

The third of these expressions being by definition positive, E(U | 8) is a de-
creasing function of .3

We shall eventually need a reformulation of the Gibbs law in terms of a ficti-
tious real variable @, as follows: A being an interval of the real line, and w(g)
being the inverse function of G(u), one can write

Prob(Ged) — fﬂ  dg exp[—pu(g)l/Z(5).

2.2. Systems in thermal equilibrium with heat reservoirs. The physical significance
of the canonical distribution is that ‘it rules the energy of a system which is in
contact and in thermal equilibrium with a heat reservoir.” Let us comment upon
the meaning of the various terms used in this statement:

Definition of contact. M physical systems S.. are said to be in thermal contact,
if their respective energies are random variables. Degenerate variables, equal to
+ «, are not excluded.

Definition of thermal equilibrium. M systems S, are said to be in thermal
equilibrium, if the distributions of their energies are independent of the moment
of observation.

Properties of the heat reservoirs.

(A) The energy of any heat reservoir is a degenerate random variable equal
to 4o

(B) If M systems S, are in contact and in equilibrium with the same heat
reservoir, their energies U,, are independent random variables.

(C) If a system is in contact and in equilibrium with a heat reservoir, its
energy is a canonical random variable, or equals -+ .

(D) If M systems S, are in contact and in equilibrium with the same heat
reservoir, the parameters 8 of their canonical distributions are identical. In
particular, it is impossible that two heat reservoirs lead to the same probability
distribution for the energy of S; and to different distributions for the energy of S, .

(E) The concept of temperature can also give a meaning to the statement that
“heat flows from the warmer body to the cooler.”

2 In statistical mechanics, G(u) is the number of microscopic states of the system of
energy not greater than «. But in a purely phenomenological approach such as ours, G () has

no concrete interpretation.
3 The symbol of partial differentiation is meant to insure uniformity of notation with
the developments of [15], in which external parameters—such as volume—are introduced.
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The above properties can be expected not to be independent. Indeed, we shall
find it sufficient to postulate the existence of physical systems defined by Prop-
erty (B).

2.3. Energy. Let the G- and Z-functions of S,. be Gn(un) and Z,(B8). If the
S are in contact and in equilibrium with a heat reservoir, one has

M
dProb (Ui 2wy, -+, Un S un) = H dGn(Un) exp (—Bum)/Zn(B)
m=1

and

dProb (3> U. < u) — dG(u) exp(—Bu)/Z(B),

where Z(8) = JIaii Za(8) and G(u) = Gi(u) * Go(u) * - - - * Gu(u).

Properties of energy.

(A) There exists a kind of contact, called weak inieraction, such that M partial
systems in weak interaction can be considered as making up a compound system,
with a compound energy equal to the sum-of the partial energies.

(B) If M systems interact weakly with each other and not at all with other
systems, the compound energy remains constant in time.

(C) Energy is the unique non-trivial invariant of an isolated S, sum of partial
S in weak interaction with each other. (That is, other invariants do not vary
even when the compound 8 is put in thermal contact with an environment.)

The above properties are again not independent of each other, and from the
properties of temperature and of thermal equilibrium. It will be sufficient to
postulate unicity.

2.4. Finite systems in thermal equilibrium with each other. We now arrive at the
most interesting of the properties of thermal equilibrium. For that, note that
the joint distribution of the U, , which was written in the last section, can be
reformulated as follows:

IMI dGn(Un) exp (—BUn) "Il] dGn(un) dG(u) exp (—pBu)

ma1 Z.(B) T dG(w) 7(B)

Therefore, the conditioned distribution of the U,, , knowing 8 and the value u of
the sum U = D ¥, U.,, will have as differential [[2; dGm(un)/dG(u). If
the systems S, exchange energy through a heat reservoir exclusively, this ex-
pression has no physical meaning. Suppose however that, even when one isolates
the 8., from the heat reservoir, these systems remain in weak thermal interaction.
Then, u is the energy of the system compounded from the S, and
dG(u) exp (—Bu)/Z(B) is its canonical distribution. What about

TT d6 (um) /d6 ) ?
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Depending upon the approach which one chooses, physics either shows or postu-
lates that this is the differential of the joint energy distribution of the U,, , when
the compound system Y S, is isolated from all outside contact. Hence,
one can make the following statements:

Properties of thermal equilibrium under weak interaction.

(A) In thermal equilibrium, under weak interaction, the joint distribution of
the energies U, of the parts S, of a compound system is independent of whether
these parts exchange energy directly or only through intermediates.

(B) The parameters that condition the distribution of any subset of the U,
must be invariant under thermal interaction.

(C) If M communicating systems S, are in equilibrium when in contact with
some environment, they remain in equilibrium when cut off from this
environment.

(D) The joint distribution of the U, after isolation from the environment is
identical to their conditional distribution, if the set of S, is not isolated but w is
known.

If one disregards the physical content of the above properties, and recalls the
unicity of the energy as an invariant of an isolated system, one sees that the
above statements imply something about the canonical distribution.

Criterion of sufficiency: The nature of thermal equilibrium s such that, if a system
18 withdrawn from contact with a heat reservoir, the energy of that system is a neces-
sary and sufficient (or minimal sufficient) statistic for the temperature of the heat
reservoir.

2.5. The set of possible values of energy, dominatedness and regularity. Clearly,
whichever the function G(u), the set of possible values of a canonical U is inde-
pendent of the parameter 8. Similarly, consider an isolated S; + S, , of compound
energy u. For u; to be a possible value of U, , it is necessary that it be a possible
value when §S; is in contact with a heat reservoir. In both cases, the families of
energy distributions are dominated by some measure.

In fact, the behavior of G(«) is usually very special. In the so-called quantum
case, G(u) is reduced to jumps, the set of positions of which has no accumulation
point, except perhaps at the ends of the interval of variation of . In the so-called
classical case, one feels free to attribute to G(u) as many derivatives as one may
need for any given purpose; at least, G(u) is piecewise very smooth.

2.6. Generalization of Section 2 to the ‘“‘grand-canonical” case, where there is
more than one invariant. All that preceeds is immediately generalizable to the
(J + 1)-dimensional case, where the systems which interact with each other can
exchange J kinds of particles as well as energy.’ The canonical law is replaced
by the grand canonical, which is such that

Flu,n, - ,n;) =Prob (UL u,Ni=n,---,N; =ny)

4 Reference [4] offers a formal generalization of thermodynamics, in which the invariants
other than energy are not necessarily the numbers of particles, and hence are not neces-
sarily integral.
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satisfies
J
ar = dG(u; Ny, -+, n-’) €xp (_Bu - Zl'yfni)/z(ﬂa Yi, *° "YJ)'
j=

Heat reservoirs are replaced by heat and particle reservoirs, but the rest of the
treatment is essentially unchanged.’

3. First axiomatic of the canonical distribution. The properties of the canonical
law, derived in Section 2, are surely compatible. We shall now extract a subset
of these properties, from which the canonical law will be shown to follow and
which will therefore constitute a complete system of axioms. We know however
that our system is not minimal and we shall propose a better one in Section 4.

3.1. The state-space and conditions of regularity. Suppose that all the possible
“macroscopic states’”” G,, of the physical system S, can be described by points
of a subset of an h,-dimensional euclidean space; the possible ‘“states” B of other
systems, that can play the role of an “‘environment” for S, , will be points of
a subset of a c-dimensional euclidean space. S, will be said to be in contact
with its environment, if G, is a random variable with B as parameter.

We shall only consider two types of random variables: discrete or ‘‘smooth.”
Further, and even though this may seem strange in an axiomatic, we shall define
“smoothness” only to the extent of saying that, at the most, the density of G
must satisfy the conditions given by Dynkin [3]; the reason for this procedure is
that smoothness will be required only at one stage, in a presumably generalizable
theorem, and we would not like our axiomatic to need any deep revision if such a
generalization succeeds.

3.2. Axioms associated with the ‘“‘zero-th principle of thermodynamics.”

Conditioning. A physical conditioning is any set of operations, realizable by
means of macroscopic physical operations, which imposes a mathematical rela-
tion upon the random “state” of a system.

Axioms of thermal equilibrium.

(A) Let a system be in equilibrium, first under the condition C’, then under
the stricter condition C”. The distribution of its random state under C” will be
statistically independent from its distribution under C’.

(B) The equilibrium distribution under the physical condition C” may be
obtained as follows: begin by the distribution under the less strict condition C’,
consider C” as a mathematical relation, and apply the rules of probability theory

relative to conditioning,.
It follows from (A) and (B) that the parameters of a system after con-

§'Actually, the many variable function G can be reduced to a one-variable function, in
geveral fashions that correspond to the different physical characteristics of the so-called
statistics of Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac. Of course, this reduction

involves further axioms; see [14].
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ditioning must constitute a necessary and sufficient statistic for its parameters
before conditioning,.

Subjective and objective interpretations of equilibrium. For Szilard, the state of
equilibrium is ‘“‘really”’ characterized by a statement analogous to the preceeding
axiom. However, one can also say that the properties of equilibrium rather refer
to the best that an observer “could” or “should” say about a system, if he only
knows a small number of sufficient statistics (see [13] and [15b]).

Auxiliary axiom: existence of heat reservoirs. There exists a class of physical
systems, to be called the heat-reservoirs, which can simultaneously serve as en-
vironments for several distinct S, and are such that the corresponding states
G, are statistically independent. Moreover, the carriers of the corresponding
probabilities of G, are independent of the heat reservoir used as environment.

3.3. First form of the axiom associated with the first principle of thermodynamics.
Aziom of energy. Consider a composite system S made up of parts S, . The only
time-invariant of the compound system S is real one-dimensional and it can be
written as a sum of functions of the states G., of the partial S, ; this invariant is
called ‘“‘energy.”

A theorem of Poincaré and the canonical distribution of energy for replicas of the
same system. Consider M systems, which are replicas of each other, in the sense
that they have the same probability distribution for energy, whichever their
environment. Our axioms require that an expression of the form Y a—; um(G)
be a sufficient statistic for the estimation of the parameter B of a heat reservoir
from the states G, . For that, it is in particular necessary that the maximum
likelihood estimate of B be a function of ) s %n(G») alone. Poincaré [17] has
shown that this is possible if and only if there exists a non-decreasing function
Gn(un) and a real function 3(B), such that

AF (tm | B) = dGm(tum) exp [—B(B)un(Gn)l/Z(8).

Conversely, 2 o um(Gn) is a sufficient statistic for the parameter 8(B) of
this law, irrespectively of the chosen method of estimation.

Comment. We have chosen the previous argument in order to be able to use
what we believe to be the oldest theorem deriving the canonical distribution
from arguments concerning estimation. By current standards, the reference to
maximum likelihood is of course quite unnecessary. Moreover, the proof of [17],
which makes many implicit assumptions of regularity, is also obsolete; but the
existence of the theorems to be used in Section 4.1 makes it pointless to attempt
to update the proof of Poincaré, or the similar proof of p. 197 of [6a] (note that
Keynes does not refer to [17]).

4. Second axiomatic of the canonical distribution. In Section 3.3, we postu-
lated the additive character of energy. Actually, as we now proceed to show,
this additivity is an automatic consequence of our form of the zero-th principle.
The present approach starts with Sections 3.1 and 3.2 and continues as follows.

4.1 The Dynkin-Jeffreys form of the theorem of Poincaré, Szilard, Darmots,
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Koopman and Pitman. Let the state and parameter spaces be both euclidean,
and the probability distribution of the state be regular in the sense of Section 3.1.
The existence of non-trivial sufficient statistic for the parameter then requires
that the probability distribution of the state be of the form

dF(G | B) = dG(G) exp [— > ﬁj(B)uj(G)]/r(B)-

The various functions introduced in this formula have the following meanings.
G(G) is either discrete (Jeffreys case) or “smooth’” (Dynkin case). 8;(B) and
u;(G) are linearly independent. Under these conditions, the sufficient statistic is
constituted by the J 4+ 1 expressions D o u;(Gm).

Proofs will be found in the original references [3] and [6]. The above result
should be generalizable to the case where G(G) is a mixture of discrete and
smooth parts.

4.2. Axiom of energy. The sufficient statistic has now been shown to be neces-
sarily of the additive type. We have earlier postulated that it must be a physical
invariant in thermal equilibrium. We now add the postulate that it is one-
dimensional. ‘

The canonical distribution of energy for replicas of the same system. The above
axiom means that J = 0 in the Dynkin-Jeffreys theorem, so that

dF (G | B) = dG(G) exp [—B8(B)u(G)ls(B).

The condition, that the probability of the whole state space be one, immediately
shows that {(B) depends upon B through 8(B) only, so that it can be written
as Z(B). Moreover, the first and second terms on the right depend upon G
through « only, so that one can integrate over all states of given energy u, to
obtain the desired expression

dF (u|B) = dG(u) exp (—Bu)/Z(8B).

Generalization to the case of more than one invariant. If there are J + 1 = 1
invariants, there are J -+ 1 parameters, each of which is associated with one
invariant.

4.3. The theorem, that the same scale of temperature applies irrespectively of the
structure function Gn(un). By appropriate renormalization of the scale of the
B, one can prove the usual statement of the zero-th law of thermodynamics, that
different systems in contact with the same heat reservoir have the same tem-
perature. ‘

Proof of the universality of the scale of temperature. From the theorem of Poincaré,
it follows that there exist two functions 8”(B) and 8’(B), not necessarily identi-
cal, and such that when two non-identical systems are in contact with the same
heat reservoir, the distributions of U’, U” and U + U” satisfy

dF'(w' | 8") = dG'(u') exp (—B"w')/Z'(B'),
dF” (u" | 8”) = dG” (u") exp (—B"u")/Z"(B")
dF(u' + u” | 8) = dG (v + u”) exp [—B(u" + u")]/Z(8),
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where the function 8(B) depends upon B by the intermediate of 8/(B) and
8”(B). However, a fresh application of sufficiency requires that

dFI(u/ IB/) d ll(ull IB//)/ dF(uI + ull IB)

be independent of B. Let w' change by Au’ and u” by Au”; then, the logarithm of
the last written ratio changes by

—Au’(ﬂ' — B) — Aull(Bll — B)-

This expression is independent of 8” and of 8’ (and hence of 8), if and only if
8’ — B and B” — B are constants. Hence, one can make 8, 8’ and 8” equal by
multiplying dG”(u) by exp[(8 — B”)u] and multiplying dG'(u) by
exp [(8 — B8')ul.

In the case of greatest interest, the regions of convergence of the Laplace
integrals Z(8), Z'(8) and Z”(B) are half-planes. In that case, one can choose the
origin of the 8 so that the abscissa of convergence of Z(8) is equal to zero for
all systems.

Comment. It should be stressed that, the preceding theorem is a consequence
of the zero-th and first principles of thermodynamics. It is not necessary to follow
Szilard in using the second principle of thermodynamics in its derivation.

4.4. Comments on Dynkin’s proof, on the euclidean character of the state space
and on the concept of entropy. It will be noted that entropy played no role in our
approach (see Section 7.3). However, an entropy-like expression plays a central
role in Dynkin’s proof. Indeed, whichever the discrete or smooth distribution of
the state, a sufficient statistic is always constituted by the following function of
the parameter:

’ Ing(Gl;G2)"'7GMIB) _Ing(Gl, "':GMIBO):

where p is either a discrete probability or a density. If the zero-th law holds in
the form in which we postulate it, this statistic becomes
M

le llog p(Gn | B) — log p(Gn | B")].
Dynkin’s proof is based upon the consideration of the minimal linear space of
functions consisting of constants and of the functionslog p(G | B) — log p(G | B°)
for all admissible B. If that space has an infinite dimension, there is no non-trivial
sufficient statistic. If the dimension takes the finite value J + 1, one obtains the
law of Section 4.1.

There is a close similarity between this argument and those used in certain
physical treatises, such as the one due to Landau and Lifshitz [11], which is
highly respected for its intuitive vigor. In those approaches, one also starts
with a state space, which needs not even be separately postulated to be euclidean,
because it was from the outset defined using as coordinates the position and
momentum parameters of analytical mechanics. The concept of ‘“‘state,” as
used by Landau and Lifshitz, has a physical meaning and hence has more proper-
ties than ours. In particular, due to Liouville’s theorem, the logarithm of the
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probability of a cell in the state space is an invariant of motion, additive in the
addition of parts S, following our zero-th law. Hence, this logarithm is a linear
form of all other constants of motion, i.e., of energy. This finally leads to the
canonical law, as written in the last line of Section 2.1; moreover, the function
G(u) is thereby interpreted as being the number of states having an energy at
most equal to u.

In our approach, all that can be said a prior: of J 4+ 1, is that it can not exceed
the dimension more of less arbitrarily attributed to the euclidean space in which
the values of the parameter B are imbedded.

b. Genuine temperature estimation.

5.2. Thermometry. A thermometer is, by definition, ¢ physical system such that
thevalue of its energy canbe ascertained by direct observation. Hence, from thereading
of a thermometer in contact with a heat reservoir, one will determine the tem-
perature of that reservoir by ordinary estimation. If the thermometer is very
large, or if one has a large number of independent readings of a small thermom-
eter, the temperature of the heat reservoir may be determined with arbitrary
precision.

For the sake of convenience, thermometers always carry a scale labeled in
units of temperature, and not of energy; this scale is meant to be used with a
single reading and it realizes physically the designer’s chosen estimator. More
precise thermometers will carry two scales, giving respectively the lower and
upper confidence limit corresponding to a confidence interval. Still more precise
thermometers are not absolute but differential; on the basis of their energy, the
physicist will be able to say whether 8 > B* or B < B it is well-known that
(Gibbs’s distribution being of the exponential type) there exists a uniformly
most powerful differential thermometer requiring a single reading.

5.2. Use of a thermometer to evaluate the energy of an isolated nonthermometric
system. If the isolated system S is not a thermometer, its energy u is fixed but
unknown, and one can say nothing in practice about its future behavior or the
behavior of its parts—even though in theory they are both fully determined.
However, if one accepts a slight perturbation in the energy u, prediction becomes
possible. Indeed, let G, , G; and G, be the G-functions of the thermometer, the
system and the sum of the two; uy being the initial energy of the thermometer, its
later energy u; has the following differential element:

dG(us) dGs(u + un — us)/dGps(w + wa).

With the help of very many readings of u., one will determine exactly the
parameter 4 + uq and hence the final energy of the system, u + %uu — Wssina -
If the thermometer is very small, the perturbation ua — u: tina1 becomes neg-
ligible.

It may however happen that one can only take one reading of the thermometer.
Suppose then that the scale is expressed in terms of temperatures corresponding
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to the estimator favored by the designer. In that case, the energy w 4 wu — U final
will be some function of the “apparent temperature” shown by the thermometer.

6. The concept of temperature for an isolated system.

6.1. Boltzmann’s and Gibbs’s definitions of a temperature for an isolated system.
For various reasons, which we shall give below, the following expressions have
been used as “analogs’ of temperature.in the case of isolated systems.

Boltzmann’s analog Bs . It is the solution of the equation

u = E(U|B) = —dlog Z(B)/3Bls=p, -
Gibbs’s differential analog, By . If G(u) has two derivatives, let

Bua = (8/0u)log [9G(u)/du].

This expression is mostly useful when it is an increasing function of u; then
u = Mode(U | B,a), as one easily ascertains.
Gibbs’s integral analog. B,: . If G(u) has one derivative, let

Bsi = (8/9u) log [G(w)].

6.2. The concept of a self-consistent and self-unbiased temperature for an isolated
system. The most basic and most ‘“hard-boiled” reason for speaking of a tem-
perature for an isolated system is the following. Suppose that the system is
compounded of the parts designated as S, . Then, it is very frequently necessary,
in order to predict the outcome of macroscopic experiments, to evaluate expres-
sions of the form R(Uy, ---, Ux); typically, the function R either depends on
a single u, or is symmetric in the . ; usually, one can even write B as
S M  R(U,n). Unfortunately, such evaluations are usually analytically un-
tractable. But, for most functions R, an adequate approximation is obtained with
the following assumptions.

(A) Each individual U, is canonical, with an inverse-temperature given by
one of the expressions of Section 6.1, or some similar expression.

(B) The U, are statistically independent. Or, at least, if I is small with respect
to M, then Unqy, *+* » Um@y, -+ * » Umry are independent, whichever the in-
dices m(z). .

That is, let 8 = D Smi and 8”7 = S8 — S’ have the respective G-and Z-
functions G'(z), G”(x), Z'(B) and Z”(B). Then, for all practical purposes, it is
possible to approximate the joint probability

AGnltim] * + + AGmy[Umn)dG U — 22 Umw]/dG(u),

by the following product of independent canonical laws:

I
I;Il dGm(i)[um(i)] exp [_3um(i)]/Zm(i)(3)-
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Actually, the independence and the canonicity of the Uney both follow from
the canonicity of the sum 8’ = > Snc , since both require the possibility of
approximating

A TS S
by I=I1 exp [— B/ Zmei(B) = exp (—pu')/Z (B).

Definition of self-consistency. Whichever its definition, the “error’” in the
canonical approximation is positive. 8 is said to be self-consistent, if this error
tends to zero as the “size”” of the compound system S increases to infinity, for
example as the number M of identical systems S, tends to infinity. (The idea
is old, but the term ‘‘self-consistent’’ is new in this context.) The asymptotic
argument of self-consistency is the only motivation that certain physicists will
accept for the 8 of their choice. As the system size increases, the various defini-
tions of Section 6.1 converge mutually; hence either none is self-consistent or
all are.

Self-consistency can take various forms. For example, Khinchin [9] proves it
with respect to the following weighted distance function between the approxi-
mating and the true distributions:

Sup0<u<oo{ lFtrue(u) - Fapprox(u)lexp (Ct’ll/)}, with a < B

Earlier works of Khinchin,® as well as most treatises on physics, limit them-
selves to proving self-consistency with respect to some class of functions
R(U,, ---, Uu): they prove the mutual convergence, in relative values, of
the functions R computed on the basis of the approximating U, and of the
functions R computed on the basis of the approximated U, .

The concept of self-unbiasedness. When one deals with self-consistency only
relatively to a class of functions R, one may usefully introduce the following

¢ It seems appropriate at this point to comment upon the evolution of Khinchin’s think-
ing. Between his best-known [7] and his later writings, the proof of the self-consistency of
B became ever more elementary and stronger. For example, [7] concerns the case of a
system S made up of subsystems S, , such that the variety of different S,’s increases with-
out bound as the size of S increases. Such generality is seldom needed in practice. Moreover,
the best local central limit theorem available around 1943 was quite complicated. Therefore,
[7] remains circuitous, even though it only yields self-consistency with respect to the ex-
pected values of functions of the form > R(um). From the practical viewpoint, it is obvi-
ously better to eliminate all extraneous difficulties from the first stage of the theory, by
limiting it to identical subsystems S,, . This was indeed done by Khinchin in his [9], which
also treats more general cases, and to which we refer the reader for proofs.

Note that our considerations have no counterpart in any of Khinchin’s publications
known to us. Although he was evidently aware that the Gibbs distribution satisfies the
properties derived in Section 2, Khinchin does not use—and perhaps did not know—the
fact that no law but the canonical satisfies those properties. The canonical law is simply
introduced as a formal auxiliary device. Therefore, our Section 4 may also be used as a
preliminary to Khinchin method.
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concept: A definition of 3 is said to be “self-unbiased’” with respect to a function
R, if the expected value of R does not change when one replaces the actual dis-
tribution of the U, by a product of independent canonical distributions of

parameter §.

Although the term “self-unbiased” seems new, the idea has been widely used,
in particular in the cases where R is analytically related to the functions that
define the three ‘“analogs” of Section 6.1. Let us explicitly show what we mean

(we can replace 8 by d all through).
Gibbs’s differential analog. Let B = (d/dum) 10g [dGm(tn)/duns]. Designating
its actual and canonical means by E,, and E., we have:

B= " (d/dtum) 108 [dCo(tm) /dtin] dGon(tim) XD (—Btm)/Zon(B)

= [ (@/dun)IdGn(un)] exp (—Brn)/Zu(B) = B,
a function of B alone;

E.= fou (d/dtty) 10g [AGm(Um) /Atm] AGr(Um) AGr(U — ) /G (u)

= [ (W) dn(un) 467 (0 = ) /6 () = (@) dG)/G )

= (d/du) log [dG(w)/du).

One notes that E, takes the same value for all S,, and that this function R is
self-unbiased if 3 = B,a .

Gibbs’s integral analog. Let 1/R = (d/dum) log [Gm(un)]. Easy calculations
yield E. = 1/8 and 1/E,, = (d/du) log [G(u)]. Hence this R is self-unbiased if
B = Bgi.

Boltzmann’s analog. Let B = u, . In general, this R is not self-unbiased when
one chooses B, . Indeed,

E, = —dlog Zu(B)/dBs

depends upon Z,,(8) and upon Z(B); that is: it depends upon the values of the
functions G,(x) and G(z) for all values of z. On the contrary,

E,.= /;u U AGra(Us) G (U — U ) /AG(u)

depends only upon the values of G.(z) and G(z) for x smaller than u.
However, self-unbiasedness is satisfied in the single most important special
case, when all the functions G,,(x) are identical. In that case, one finds that
E.=E,=u/M.
The last of the above examples shows that self-unbiased definitions of 3 cannot
in general depend upon the whole range of values of G(u).
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Comment. It is clear that the concept of 8 would be of little value, if one in-
sisted on self-unbiasedness, since each R would yield its own 8. The idea of self-
‘consistency is far more important. Indeed, authors such as H. A. Lorentz and
E. Schrodinger have used almost lyrical terms to hail the “unsensitivity”’ of
thermodynamics, with respect to the method chosen to present it is the conse-
quence of this self-consistency. Statisticians would be very happy if large-sample
arguments could be a source of similar pride for them!

6.3 Second motivation for a temperature-in-isolation. Use of unbiased estimation
ta extend the scope of the parameter of the canonical distribution. We now come to
physicists who wish to extend the idea of thermal equilibrium to systems which
are currently isolated from each other, but might be put into contact. Those
physicists use arguments which are: clearly of an inductive character.

To begin with, let us consider an isolated system of energy « and let us put
it into contact with a heat reservoir of appropriately chosen temperature 1/3.
It is clear that the expected exchanges of energy can be made to vanish by choosing
Bs . Similarly, the most probable exchanges of energy vanish if one chooses Boa .

Further, let us put in contact two systems, of G-functions G(u) and G”(u),
‘which are now isolated and have the energies 4’ and »”. The condition that the
flow of energy be most probably zero happens to be conveniently expressed by
the equality of the 1/ 8,; temperatures of the two systems.

Proof. Given w' + w”, the most probable value of the energy of S’ in equi-
librium is obtained by maximizing

d@' (z) d@" (v + v — z)/dG(w + u”),
For the maximum to be attained when z = w’, it is necessary and sufficient that
9 10 oG (x) _ 9 1og 297 (2) ,
or 0T  |o=u’ OT 0T |z=ur
‘which expresses the equality of the temperatures 8,q .

The B, unfortunately have no similar property, for the same reason that the
‘related function R is not self-unbiased. However, in the special case where S’ and
S” are made up of * and »” replicas of some atom, equality of the B is again a
mnecessary and sufficient condition for the expected flow of energy to vanish.
Indeed, the equilibrium partition of the total energy 4’ + %” among S’ and S”
is obviously such that

expected conditioned energy of S8’ = [r'/(r' + r")(w + w"),
expected conditioned energy of 8” = [r”/(+' + r")](w' + w”).
In order that these energies be respectively equal to the initial energies 4’ and
u”, it is required that w'/r" = uw”/r”; that is, one must have

. —d log 2(8)/dBle=p;, = —d log 2(8)/dBls=ps »

which expresses the equality of the temperatures 1/ 8 .
The above properties of 3, and 8,; make many physicists say that one or the
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other of these expressions represents the best evaluation of the temperature for
an isolated system. Needless to say, this argument amounts to the reconstruction
(or the construction) of a heat reservoir, with which the currently isolated
system was (or might have been) originally in equilibrium. The temperature of
that reservoir is estimated, in the usual statistical sense of the word, using a
procedure that is mean—or mode—unbiased with respect to the function
E(U | B) of the parameter. B is also a maximum-likelihood estimator.

In the further development of the theory (see Section 7.3), each estimate of
temperature will be associated with an estimate of entropy. All these estimates
will converge, in relative values, for very large systems in equilibrium, but will
remain ambiguous for small systems. For systems which are not in equilibrium,
the various entropies may differ even for large physical bodies; hence, the ex-
tension of thermodynamics beyond equilibrium may well be undeterminate.

6.4. The role of the usual concept. of statistical consistency. Suppose now that the
system S has actually been prepared by contact with some heat reservoir. Then,
the ordinary consistency of the estimators 8 can be combined with their self-
consistency. Together, they show that, by making the system S sufficiently large,
one may reduce at will the probability that the isolation of S from a heat reservoir
perturb the value of any function R(U,, ---, Ux) significantly. Hence, one
proves that the heat reservoirs, the existence of which had been postulated and
axiomatized in earlier sections, can also be constructed effectively by adding
to our system S,, a large number of other systems, say of replicas of S, , and
by isolating the whole from outside thermal contact.

6.5. The role of the lower bound to the variance of B; the concept of temperature
JSluctuations. Let us now examine the role played in thermodynamics by efficiency,
the third of the major requirements which statisticians like to impose upon
parameter estimates. This will involve the theory of the fluctuations of physical
quantities other than.energy, density, volume, etc., which already occur in
mechanics. The question is very fundamental, but it has remained to this day
very obscure and quite- controversial. Without entering into any of the con-
troversies, we would like to say that we believe at least part of the difficulties
to be due to an inadequate recognition of the statistical conditioning relevant
to each case, so that progress in the understanding of the foundations may well
have practical implications.

The present exposition being centered upon systems with one random variable
and one parameter, the only non-trivial fluctuation concerns the temperature of
an isolated system. Landau and Lifshitz describe it in these words: “When
applied to an isolated body, the Gibbs distribution completely describes its
statistical properties, except that it gives very small, but nevertheless non-zero
fluctuations of the total energy of the body, which cannot exist in reality. Con-
yersely, if one assumes the energy to be a given quantity, then one cannot ascribe
a completely definite temperature to the body and one must assume that the
latter undergoes fluctuations which evidently determine the accuracy with
which the temperature of an isolated body can be specified” [11, p. 355]. From
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the physical viewpoint, this is clear enough. But, in order to really understand
what the authors mean, one must look up the result of their computation. One
finds that their formula for the square of the fluctuation of 8 is precisely
[d® log Z(B8)/dBT, that is, the Fisher-information lower limit to the variance
of B considered as an estimate. In the case of the estimate —d log Z(8:)d/Bs
for the parameter —a log Z(B)/dB, this limit is achieved irrespectively of the
size of the system; in the case of B8,, the lower limit is achieved only
asymptotically.

We believe that, if one adopts the variance as definition of temperature
fluctuation, there will be no reason for any reluctance in the use of this concept.
Actually, our definition also has a very intuitive Kinetic meaning. Indeed, in
a perfect gas, the mean kinetic energy of the molecules of a perfect gas is pro-
portional to the temperature. If one knows the mean of the energy over a finite
sample only, one will consider that it is compatible with any value of temperature
contained in some interval.

7. Generalizations and other remarks.

7.1. On the evaluation of G(u). Our theory includes a so-far unspecified function
‘G(u), which should be determined through measurements of such macroscopic
quantities as heat capacities. Hence, our approach can be kept “phenomenologi-
cal” all through, and realizes a dream of the 19th century ‘‘energetists’: to
describe matter-in-bulk without reference to atoms. It is a pity that all energetists
have passed away long ago.

7.2. A reference to statistical mechanics. In statistical mechanics, one does not
postulate the existence of heat reservoirs. The canonical law of Gibbs is derived,
as a self-consistent approximation, from assumptions which we also like to call
the zero-th and first principles (see [15]):

(A) zero-th principle: all microscopic states compatible with the constraints
have identical probabilities;

(B) first principle: the constraints are linked to a single invariant, the energy,
which is a sum-function of the form D u(Gu).

Of course, in order to link statistical and analytical mechanics, it is necessary
to derive these axioms from more elementary physical considerations. But, as
long as this aim has not been achieved, the axioms of this non-phenomenological
theory can usefully be numbered to make them parallel to those of the pheno-
menological approach.

In our approach, the fact that energy is a sum-function is replaced by the
existence of heat reservoirs, and hence is transferred from the “first principle”
to the ‘“zero-th.”

7.3. The need for a “second principle of thermodynamics.” The considerations
of the present paper will be continued in [15], and will in particular include a
treatment of the concept of entropy. We shall see that this continuation requires
a further fundamental assumption, which can always be associated with the
“second principle of thermodynamics.”

This restricts considerably the scope of physically admissible distributions
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of the exponential type; in particular, most random variables of the exponential
type cannot be divided into “work’ and ‘“heat’’, and the link between entropy-
information and heat has no counterpart in the general case.

7.4. Possitbility of a generalization of the scope of sufficiency, as used in thermo-
dynamics. The regularity and dimensionality considerations of Sections 2.5 and
3.1 raise an open problem. On the one hand, as of today, the converse derivation
of the canonical law from sufficiency can only be carried under the conditions of
E. B. Dynkin [3] or of H. Jeffreys [6], which are precisely those of the classical
and quantum cases; hence, the limitations of mathematics and of physics are
perfectly matched.

However, once equilibrium has been identified with sufficiency, it becomes
unclear what to do with regularity and dimensionality, and even with the in-
dependence postulated in Section 2.2.

First of all, Dynkin’s and Jeffreys’ derivations are of a global character. But
Dynkin has emphasized the local character of sufficiency, and E. W. Barankin
and M. Katz [1] have used this idea in the case where the U, are not independent.
They have shown that the minimal number of invariants, which generalize
energy, needs not be independent of the value of the parameter, which gen-
eralizes the temperature. Surely, the dependence between U, is not excluded
in physics; quite to the contrary, it is essential in order to generalize thermody-
namics.

But one can go further. It seems that, from the viewpoint of the general idea
of thermal equilibrium, ‘“such ideas as euclidean space, dimensionality, partial
differentiation and the distinction between the continuous and the discrete are
all extraneous”. P. R. Halmos and L. J. Savage [5], from whom we borrowed the
quotation, then proceed to introduce what amounts to abstract-space gen-
eralizations of the concepts of energy and of temperature, and to define sufficiency
in that case. Let G and B designate the state and the parameter of a generalized
canonical system. Halmos and Savage gave one possible meaning to the following
statement, which—as written—is made up of undefined terms:

“Consider the parameters that condition the distribution of the states G,
of a set of systems S, before and after this set is isolated from contact with
some ‘“‘environment.” ‘‘ The nature of thermal equilibrium” is such that a necessary
and sufficient statistic for the parameters-before-isolation is provided by the
parameters-after-isolation.”

Unfortunately, the Halmos-Savage interpretation of the above statement is
too general to be of use in thermodynamics. The reason for it will be addressed
to the reader familiar with [5], in order to avoid a heavy investment in notation.
Briefly, in the H-S case, the conditional distribution of the generalized states
G ., given the generalized state G, is defined with the help of the Radon-Nikodym
theorem, so that it needs not have the properties of an ordinary probability dis-
tribution. However, in physics, it must have all these properties. The difficulty
vanishes if one has a euclidean generalization of the state and of the parameter.
We know nothing, however, of whether thermodynamics can be generalized on
these lines in a way that is not physically void or mathematically trivial.
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