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ON OBTAINING LARGE-SAMPLE TESTS FROM
ASYMPTOTICALLY NORMAL ESTIMATORS'

by T. W. F. STROUD
Queen’s University at Kingston

This is an extension of Wald’s asymptotic test procedure based on
unrestricted maximume-likelihood estimators. Wald showed that under
certain regularity conditions the test statistic has a limiting central chi-
square distribution under the hypothesis and a limiting noncentral chi-
square distribution under a sequence of local alternatives. We extend this
procedure, allowing it to be based on a broader class of estimators and to
obey simpler and less restrictive conditions. Sufficient conditions for
validity of the limiting distributions are local twice-differentiability of the
left side of the hypothesis and, under a sequence of local alternatives,
asymptotic normality of the estimator of the parameter defining the
distribution and stochastic convergence (to the appropriate asymptotic
value) of the estimator of the covariance matrix. The required asymptotic
behavior is verified for the case of independent sampling from two normal
distributions and formulas are presented which aid in computing the test
statistic.

1. Introduction and notation. The topic of this paper is an extension of an
asymptotic test procedure based on unrestricted maximum-likelihood estimators,
which was formulated by Wald (1943) under some rather restrictive regularity
conditions. The extension is to a wider class of estimators and to problems obeying
weaker conditions.

The well-known properties of consistency and asymptotic normality of
maximum-likelihood estimators have been proved, under certain regularity
assumptions, by Doob (1934). These properties suggest that, for the problem of
testing (under a parametric family of distributions) the hypothesis that a vector
parameter is equal to zero, an asymptotic chi-square test may be based on the
quadratic form obtained from the maximum-likelihood estimator of its asymptotic
covariance matrix, suitably normalized by the sample size.

Wald (1943) showed that, under certain conditions, this quadratic form has in fact
an asymptotic central chi-square distribution under the null hypothesis, and an
asymptotic noncentral chi-square distribution under a sequence of local alternatives
converging to the null hypothesis at the rate n~*. Wald also claimed an extension of
this to a certain global result involving uniform convergence, but this extension
has been shown to be incorrect (Stroud, 1970).

Wald also showed under the same conditions that, for testing the hypothesis
that the vector parameter is zero, the procedure that rejects when this quadratic
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form is greater than or equal to the constant necessary to produce a level-o test
is asymptotically most stringent, and that this procedure has further asymptotically
optimal properties concerning its power. In the same paper he showed that these
asymptotically optimal properties are shared by the likelihood-ratio test.

One of Wald’s conditions, which is particularly restrictive, is that the parameter
involved be obtainable from the parameters defining the distributions through a
transformation possessing uniformly continuous and bounded first and second
order partial derivatives. Wald’s results are based also on a number of assumptions
which are difficult to verify in practice, such as the uniform consistency of the
maximum-likelihood estimators.

In a paper by LeCam (1956), a number of theorems are proved which generalize
the asymptotic properties of maximum-likelihood estimators to a wider class of
estimators. It is stated there that, on the basis of these theorems, Wald’s results
can be generalized to a class of problems for which Wald’s restrictions are not
satisfied. However, the application of LeCam’s results to the general problem of
testing hypotheses has not been worked out in detail, so that these results have not
been used here.

In Section 2 of the current work, conditions are given under which an asymptotic-
ally normal estimator yields an asymptotic y>-test, where the noncentral behavior
is governed by a sequence of local alternatives of the order n~*. The regularity
conditions are simpler than Wald’s and are local conditions; in particular, global
uniform continuity and boundedness are not required. The use of maximum-
likelihood estimators as estimators of the parameters involved is not essential. It is
sufficient that the parameters defining the distributions be asymptotically normal
under the sequence of local alternatives; the estimator of the covariance matrix
need only converge stochastically under this sequence to its asymptotic value. (In
applications, of course, one would want to use asymptotically efficient estimators
whenever possible.) The transformation yielding the vector parameter is assumed
to possess continuous and bounded second partial derivatives locally within a
neighborhood of any parameter point.

The property of asymptotic stringency and the other asymptotically optimal
properties treated by Wald are not investigated here.

In Sections 3 and 4 the results are applied to a class of hypothesis testing prob-
lems where the observations are assumed to be the mean vectors and covariance
matrices of samples from two multivariate normal populations. Section 3 contains
a verification that the conditions required in Section 2 are met, and in Section 4
a method of computing the test statistic is indicated. The class of problems covered
is quite broad, encompassing any hypothesis which can be formulated by a twice-
differentiable vector equation which is to be tested against general alternatives.
The method is particularly valuable in cases where the likelihood-ratio test is
difficult to compute, such as the Behrens—Fisher problem (Kendall and Stuart
(1961)) (where the test generated by this method is equivalent to that of Welch
(1938)), or the extension of this problem in which one compares two regressions
under errors of measurement (Stroud (1968)).
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Parameters are denoted by Greek letters, statistics by Latin letters or by Greek
letters with the caret (A ) denoting an estimator. Bold-face capitals denote matrices,
bold-face lower-case letters denote vectors and light-face letters denote scalars.
The letter » is used to index a sequence of parameter values, whereas the letters
M and N refer to sample sizes. Light-face lower-case letters with two extra sub-
scripts are used to denote components of matrices labelled by the corresponding
bold-face capitals.

The law of the random vector x is denoted throughout by #(x). In particular,
N (u,X) refers to a normal law with mean vector g and covariance matrix X.
By Z(x,) - Z(y) or £(x,) = A '(u,X) is meant, respectively, that the law of x,
converges to the law of y or to the stated normal law, as n — oo. The notation
x,2(6?) refers to the noncentral chi-square distribution and is understood to mean
the distribution of the squared norm of a normal random r-dimensional vector with
covariance matrix equal to the identity and with mean vector having a norm of .

The definitions of the Mann-Wald symbols O, and 0, may be found in Chernoff
(1956, Section 2), as may the statements of some basic results of large-sample
theory which are used freely in the theory of the following two sections.

2. The proposed test statistic and conditions under which it has a limiting chi-
square distribution. Let t be a given estimator of a vector parameter 6 indexing a
family of distributions. For the problem of testing that a certain continuously
twice-differentiable vector-valued function y, defined on the parameter space, is
equal to zero when evaluated at 6, the following test procedure is proposed. The
procedure is to reject for large values of the quadratic form

J = [y()]'D~ (1),

where D is an estimator of the covariance matrix A of the column vector y(t) —
y(6). We consider properties of t and D, based on asymptotic theory, which yield
an approximate central (noncentral) chi-square distribution for J when the hypo-
thesis is true (false).

Consider a sequence 0, of parameter values such that 8, = n*(6,— 0,) converges
to some finite value &, where y(6,) = 0. For each n let t, be some estimator of 0,
and let D, and J, be defined relative to t, and 6, in the manner of D and J above.
It is shown in the following theorem that if for some positive definite X, the
limiting distribution of n*(t,—@,) is the normal law A4°(0,X,), and if D, = n~! x
G,S,G,” where S, converges in probability to £, and G, is the matrix of partial
derivatives of y evaluated at t,, then J, has a limiting noncentral chi-square
distribution (central if 6 = 0). The form D, = n™'G,S,G,’ is suggested by the
fact that if, for fixed 6, the distribution of n*(t,— 6) converges to 4'(0, ), then
the distribution of n*[y(t,) — y(0)] converges to 4"(0, TEI"), where I is the matrix
of partial derivatives of y evaluated at 6.

If t, is a maximum-likelihood estimator, and if y(0) can be thought of as a
subvector of a vector (), where the function § is one-to-one, then, because
maximum-likelihood estimators are invariant under one-to-one transformations,
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y(t,) may be regarded as a maximume-likelihood estimator of y(@,). If, in addition,
D, is a maximum-likelihood estimator, then the testing procedure proposed here
corresponds to the procedure described by Wald.

THEOREM. Let {0,} be a sequence of points in p-dimensional Euclidean space
&P of the form 0, = 0,+n"*8,, where lim 8, = & and 0,, & are fixed points. Let
{t,} be a sequence of p-dimensional random vectors such that Z[n*(t,—0,)] »
N(0,X,), where X, is nonsingular; and let {S,} be a sequence of p x p symmetric
random matrices, nonsingular with probability one, such that plim S, = X,.

Suppose y:6° — &'(r < p) is a function satisfying y(0,) = 0, with bounded
and continuous second partial derivatives in a sphere of radius p about 0, and such

that the matrix
Lo = (07:/00))1zi<r1 2550 (evaluated at 0,)

has rank r. Define
z, = Y(tn)’ Jn= nz,,'(G,,S,,G,,’)‘ lzm

where
G, =(07:/00)1 <i<r12j<p (evaluated at t,).

Then as n — oo the distribution of J, converges to the noncentral chi-square
distribution y,?(6'Ty'(LoEoLy) " 'Tod). If 8 = 0, the limit distribution is central
chi-square.

ProoF. The conclusion of the theorem will follow if the relation
(2‘1) "?[n%(GnSnGn/)-izn] - ‘/V((FOEOFOI)—%FO‘S’ I)
can be established.

As a preliminary, the limit distribution of n*z, is obtained. By Taylor’s theorem
for p variables [e.g. Apostol (1957) page 124], the following representation holds
for each i = 1,---, r and any 0 satisfying |0 —0,| < p:

22) 1O = % T 001 $ § O 00.)(0,—0
(2.2) 7:(0)=7(00) = X 55~ (0= 00a)+57 2, ;;;W(o“_ 02)(05—00p)

where 0* is some point on the open line segment joining 6 and 0,. Consider
n¥(t,—0o) = n(t,—0,)+n*@0,—0,).

The first term on the right side converges in distribution to a 47(0,X,) random

vector and the second term converges to 9. Hence

(23) ZIn*(t,—00)] 45, Zo).

In (2.2), let 6 assume, as n increases, the values of the random vectors t,; then
0* assumes corresponding values, denoted by t,* on the open line segment joining
0, and t,. Consider terms of the form

2

Yi
n* m(tm —00)(tas—00p)-
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From the continuity of the second partial derivative of y; and the fact that
plimt,* = 0, (a consequence of (2.3)), it follows that 9%y;/dt,kdtk = 0,(1).
From (2.3), n(ty— 004)(tss—00p) = 0,(1), and hence n*(t,,— 0o,)(tns— o) = 0,(1).

Hence
Z,y'
n%at*_atd;](tna_BOa)(tnﬂ_QOﬂ) = Op(l)’ i=1,,ra= 1""apaﬁ =1, D

If (2.2), for @ = t,, is multiplied by n*, then in view of the above and of the fact
that y,(0,) = 0, the result

nz, = nily(t,—0,)+o0,(1)
is yielded. Hence, by (2.3),
(2.4) L(ntz,) > N (T8, ToEoLy).
Now to establish (2.1), write
2.5)  n¥(G,S,G,) ¥z, = n*[(G,S,G,) F —(FoZoly) *]z,
+n¥(oEel,) 2z,

It follows from (2.4) that the second term on the right side of (2.5) is convergent in
distribution to A ((FeX,Ly) 3,6, I). If it can be shown that the first term is

stochastically convergent to zero, i.e., if
(2.6) n*[(G,S,G,') " —(LoEoLy) H]z, = 0,(1),
then (2.1) will be established.

From the fact that plimt, = 0, (from (2.3)), and from the continuity of the
partial derivatives {0y;/00;}, it follows that

(2.7) plim G, =T,
By hypothesis, plim S, = X,, which together with (2.7) yields
(2.8) plim (G,S,G,’) =T Iy .

Since I'yX,Iy’ is of full rank, the mapping f defined by f(A) = A~ % is continuous
at A = T'yX,I'y’; hence, because of (2.8),

(2.9 plim(G,S,G,’) "% = ([ E,Iy) "%

By (2.4), n*z, = O,(1), which together with (2.9) implies that
1[(G,8,G,)) " ~(ToEaly) ]z, = 0,(1)0,(1) = o,(1).

Thus (2.6), and hence (2.1), are established. []

The above theorem is designed for application in situations where the local
differentiability conditions on the function y and the full rank of its matrix of partial
derivatives hold for every 0, in a given subset ® of &”. © is to be regarded as the
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parameter space, and it may be smaller than the range of values of t,. If, for each
0, € © and every sequence {J,} converging to a point é € &7, the distributions of
t, and S, are determined in such a way that the relevant conditions of the theorem
are satisfied, then a test which rejects the hypothesis that y(6) = 0 for large values
of J, is an asymptotic y>-test of the hypothesis.

3. Application to normal testing problems: Verification of conditions. The
theorem of the preceding section is applied to obtain asymptotic distributions of a
proposed test statistic for the general hypothesis testing problem of the form
H:y(6) = 0, where 0 represents the parameters of two multivariate normal
populations, from which samples of unequal size are observed, and 7y is any
vector-valued function with continuous second partial derivatives and full linear
rank. The parameter space must be an open subset of the full-dimensional space of
conceivable values, such that the covariance matrices are always strictly positive
definite. If y involves the parameters of only one population the test statistic will
be based on the corresponding sample, so that one-sample problems are included
here as a special case. The method described below can clearly be extended to
problems involving samples from more than two populations.

Let the g-dimensional mean vectors of the two populations be g and v, and let
the covariance matrices be ® and W, respectively, assumed positive definite. The
parameter space © is a non-empty open subset of the g(¢+ 3)-dimensional space of
possible values of = (u, v, ®, ¥). Samples of sizes M and N are observed, on the
basis of which it is desired to test, against all alternatives, the hypothesis

H:y(0) =0,

where for any 6 € © the function y: ® — &" is assumed to have full rank r <
q(g+3).

The proposed test statistic is based on the sufficient statistic composed of the
sample means and sample covariance matrices. Denote this by (x¥, y¥, ®™, ¥V);
then x and y" have the normal distributions A4 (u, M~ '®) and A" (v, N~ '¥),
respectively, (M — 1) ®Mhas the Wishart distribution with M — 1 degrees of freedom
and expectation (M—1)®, denoted by #'(®, M—1), and (N—1)¥" has the
Wishart distribution #"(¥, N—1). The four quantities are stochastically independ-
ent.

The vector (x™, y", ®™, ¥") will be used in the theorem as the estimator of 0.
(The results will be essentially unchanged if ®" and ¥ are rescaled in some
asymptotically unimportant way, e.g., maximum-likelihood estimators.) Since for
convenience it is desirable that all quantities depend on a single index N, let M
depend on N in the manner M = [N/p], where p is a constant and [-] is the
greatest integer function. Denote

tV = (xM,y", M, V).

Then [see Anderson (1958, page 75)] tV has expectation 8 and the block-diagonal
covariance matrix diag [M ~'®, N™'¥, (M—1)"'H(®), (N—1)"'H(¥Y)], where
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H is the function which maps the gxg symmetric matrix A = (a;;) into the
q(g+1)/2xq(g+1)/2 symmetric matrix whose components are

[H(A)]iju = ana+ayaj, 15i£j<q,12k<iZyg,
arranged in lexicographic order. Hence the covariance matrix of N*(t"—0) is
EY = diag [(N/M)®, ¥, (N/(M — 1)) H(®), (N/(N — 1)) H(¥)].

For ¥ we have the obvious estimator
- SV =diag [(N/M)®Y, ¥, (N/(M —1))H(®),(N/(N - 1))H(FY)].

The proposed test statisticJ" is then constructed from t¥ and S" in the same manner
that J,, was defined in the statement of the theorem.

The quantities t¥ and S¥ have been defined on the basis of observations distri-
buted according to the parameter 6. The remainder of this section consists of a
verification that the conditions of the theorem hold for the problem under con-
sideration. We consider a sequence of parameter values 6, = (u,, v,, ®,, ¥,)
given by 0, = 0,+n"%3,, where 8, converges to some fixed é and 0, = (uo, vo,
®,, ¥,) is such that y(8,) = 0. For this purpose a subscript # will be appended to
the observed quantities, which also have superscripts M or N. The superscript
refers to the sample size, and the subscript # means that the distribution of the
observations is determined by the parameter value #,. For example, the symbol
t," refers to the statistic t¥ observed when the parameter value is 0,

Define
L, = diag[p®o, ¥, pH(D,), H(¥,)].

To apply the theorem we determine the sample size by setting N = n; the test
statistic J," is based on t,” and S,". The asymptotic distribution given by the theo-
rem will be shown valid when the relations X, > 0, plim S,” = X, and

Zn¥(t,"~0,)] > A(0,Zo)

are established.
By the following lemma, ®, > 0 and ¥, > 0 imply that H(®,) > 0 and
H(¥,) > 0, which together with the hypothesis p > 0 yields the result £, > 0.

LEMMA 1. Let A be a gxq symmétric matrix and let [H(A)];;y = ana;+
a“ajk = 5ij,k1‘ UA > 0, then H(A) > 0.

PRroOF. It needs to be shown that

LisisisqtsksisqWidijaWia > 0,

for all symmetric nonzero W = (w;;).
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Define X = (x;;) by

Xij = Wi
Then
(3.1) Zlgiéjéq,l§k§l§q wijﬁij,k,wk, =2trXAXA

To see this, note that the operator identity

Zaéﬁ = Za+%za¢ﬂ

is valid when the operand is symmetric in o and B; (3.1) then follows by direct

computation.
But, since A > 0, tr XAXA = tr A*XAXA? > 0. []

To show that plim S,” = X, it is sufficient to show plim ¥," = ¥,, for then
plim H(¥,") = H(¥,) follows from the continuity of H, and similar reasoning
can be applied to the @ quantities. Let ¢ > 0 be given; then

P{||¥,"—¥o|| > &} < P{||¥.,"—¥..,| > &/2} + P{||¥.— ¥o|, > ¢/2}

=< Zigjp{l'mij“lpnij, > a/q(q+1)}+P{H‘l’,,—‘l’O” > 8/2}
where ||-|| represents the vector norm in &4@*1/2 The last term on the right is

zero for sufficiently large n. Since E(Yy;) = Y,;; and Var (J2;) = (Yuiith; itV
(n—1), it follows by Chebyshev’s inequality that for each i, j

[9(q+ V)P Wridlhnj; + V)

P{Ilp:ij—wnijl > 8/q(q-l_l)} é. (n—l)sl
< 4La(q+ 1)1 Woidos; +¥5:))
= (n—1)e?

for n sufficiently large to ensure V,; < 2¢,,;; for all i,j=1,-,9. Thus
Yi<i PV — | > elg@+1)} S kj(n—1)e?,  where k= 2[q(q+1)]* max; ;
(Yoibojj+V¥5:;), and hence this term can be made arbitrarily small by making
nsufficiently large. Consequently plim ¥, = ¥,

The next step is to show that Z[n(t,"—0,)] - A4(0,X,), where t,* = (x,["/?1,
y." @171 ¥ " Since x,"/?1, y,", @, and ¥," are independent, it suffices to
show that each of these quantities, centered at its expectation and normalized by
n*, is asymptotically normal as n — oo with zero mean and covariance matrix,
respectively, p®,, ¥, pH(®,) or H(¥,).

Since n*[¥, *(y,"—v,)] has the distribution .40, I) and since ¥, *¥,* - I,
it follows that £ {n*[¥, *(y,"—v,)]} = 4(0, D), or equivalently,

g[n%(ynn_ vn)] - ‘/‘/(0’ ‘PO)

Similarly,
L[} (x,""1— )]~ (0, p®).
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To obtain the limiting distribution of #n*(¥,"—W¥,), we adapt the method
presented in Anderson ((1958) Theorem 4.2.4) to the needs of the present problem
which involves parameter values changing with n. Where Anderson uses a multi-
variate adaptation of the classical central limit theorem, we similarly adapt a limit
theorem for double sequences.

Consider the representation

(n - 1)\?11" = Z:;} “a“al

where u;, u,,:--are independent g-dimensional random vectors each with the
distribution A47(0, ¥,). Let w, be the column vector of the q(g+ 1)/2 products of
components of u,

ro__ 2 2 2 —_
W, = (ula?ulauZaa yUzgs "',uqa)a o= 1’ ""n_1°

The components of the matrix (n—1)¥,” are identical to the components of the
vector Y a={w,. Note the dependence of u;, and w, on n, which has been suppressed
in the notation. The mean vector and covariance matrix of w, are given by

(32) E(uiauja) = l//m'j?
Cov (Uiglh jgs Uglty) = YniWnji + Vit ji-

Let v, be the vector obtained from ) 7_iw, by subtracting away its expectation
and dividing by (n—1)*. Then the components of v, are the components of
(n—1)}(¥,"—¥,); i.e., these components are of the form (n—1)"*Y 2] (uyu;,
—/;;)- The limiting distribution of v, is determined by the limit of its characteristic
function f,(7) = Elexp (it'v,)], where t represents an arbitrary fixed vector.
Using the Cramér—Wold technique (Cramér (1970) page 104), we consider the
characteristic function of an arbitrary nontrivial linear functional of v,, say
A'v,: Elexp (itA'v,)] = f,(t4). Regard this as a function of an arbitrary scalar =,
with 4 fixed. We proceed to establish that

(33) Jleh) = exp((—7*/2) A [H(¥,)]4),

which by setting t = 74 implies f,(t) —» exp ((—3)7'[H(¥,)]r), proving that the

asymptotic distribution of v,, or equivalently that of n*(¥,"—¥,), is A (0, H(¥,)).
Relation (3.3) simply states that the limiting distribution of A'v, is

N0, ATH(¥)]4A). Since A'[H(WY,)]4 — A'[H(W¥,)]A, it is sufficient to prove that

(3.4) LV [NH(E)ATH) » #(0,1).

This is accomplished by the use of the Lévy-Feller normal convergence criterion
(Loéve (1963) page 295). In notation similar to Loéve’s, let

Xpa =(n—1)" * Zi <jihi j(uiau ja— Uni j)/ [;'IH(‘Pn)A’]*

fora = 1,---,n—1, where for i < j the real numbers 4;; are the components of
the g(g+ 1)/2-dimensional vector 4. Then (3.4) refers to convergence to A47(0, 1) of



LARGE-SAMPLE TESTS 1421

Y %21 X, which has mean zero and variance one. By the cited criterion, this is
assured if for every ¢ > 0

z:;ijlxlgaxzana_’Oa
where F,, is the cdf of X,,. Since for fixed n the X,, are identically distributed
(3.4) holds if we can show that
(35) E[X:ale(Xna)] = o(n_ 1)’
where I, is the indicator function of {x:|x| 2 ¢}. Relation (3.5) is established

with the aid of an inequality given by the following lemma.

LeMMA 2. If Y is any random variable such that E(Y) = 0 and Var (Y?) < o,
and 1,(-) is the indicator function of the set {x: |x| 2 ¢}, then

E(Y*1(Y)) £ [Var(Y)]?/e? +[Var (Y) Var (Y?)]¥/e.

PROOF. Application of the inequality E(UV) < E(U)E(V)+[Var (U) Var (V)]},
i.e. that the correlation coefficient is bounded by unity, yields

E( Yz[a(Y)) = E(Yz)Pe+ [pe(l —Pe) Var(Yz)]*,

where p, = P{IY | 2 ¢}. The lemma follows by applying Chebyshev’s inequality
to p, and by using the fact that p,(1—p,) < p,. []

We now show that

(3.6) [Var(X,,)]* = o(n™"),

Var(X,,) Var(X2) = o(n"?),
which on the basis of Lemma 2, with ¥ = X,,, will establish (3.5). By (3.2),
Var (uialtje) = Woiitnjj+ t//,f,.j, which remains bounded as n — oo by virtue of
¥, > ¥, A similar identity may be derived expressing the variance of
Uil joliatly, as a fourth degree expression in the y,;;, also bounded as n — oo.
It follows from ¥, — ¥, that AH(¥,)4A - A’H(¥,)4 > 0, so that the denomi-
nator of X,, is bounded away from zero. Thus the orders of magnitude of the
fourth and lower moments of X,, are governed solely by the factor (n—1)"%;
specifically, E(XZ2) = O(n™') and E(X}) = O(n ?). Hence [Var(X,)]* =
O(n~?) and Var (X,,) Var (X,%) = O(n~?), thus proving (3.6), and hence (3.5)
and (3.4). It has now been established that

[n*(¥,"—¥,)] > 4 (0, H(¥)).
It is similarly shown that 1

LTnH@"7—@,)] > (0, pH(®)).

This completes the verification of the conditions of the theorem of Section 2.

4. Application to normal testing problems: Computation of the statistic Jy.
Having verified that the asymptotic distribution, under {0,}, of the test statistic
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J," as defined in Sections 2 and 3 is central (noncentral) chi-square when the
hypothesis y(8) = 0 is true (false), we turn our attention to the computation of the
test statistic for given sample sizes M and N. As in Section 3, we make the
identification N = n, and for simplicity we write p = M/N. Instead of writing
t,” and S,"”, we now simply write ty = (X, Yy, @ar, ¥y) and Sy = diag (p®,
¥y, pH(®,,), H(¥,)), where we use subscripts instead of superscripts for con-
venience. Similarly we write zy = y(ty) and we write Gy for the matrix of partial
derivatives of y evaluated at ty. The test statistic is

Iy = NZN(GNSNGNI)_ 1ZN

which can be readily calculated if the matrix £y = GySyGy' is at hand. If the form
of @ = I'XI" is available, where I' is the matrix of partial derivatives of y evaluated
at an arbitrary 0 = (u, v, ®, ¥), and

(4.1) I = diag(p®, ¥, pH(d), H('Y)),

then € is obtained by simply evaluating © at @ = t,. The remainder of this paper
is devoted to obtaining a description of the matrix € for the general normal testing
problem of Section 3.

The (7, j)th component of £ is given by

(4.2) a)ij:ri.zrjl. (i,j=1,"‘,r),

where I';. denotes the ith row of I', and I';’. denotes its transpose. I';. is the row
vector whose components are

6%

(r )u (u =1a“'ap)’
where p = q(q¢+3). Hence, by (4.2),
. P 0y; Oy; .
o= L L7070, % (= 1,7),

where {g,,} are the components of the matrix X. To streamline the notation, let
a =7, B =7v;and w(x, f) = w;;. The problem of writing down the formula for
Q = I'ZI" is reduced to the problem of evaluating

(43) o@h)= 3 ¥ 5z o

for arbitrary real variables «, f8 expressible as differentiable functions of the vector
0.

Referring to (4.1), we may rewrite (4.3) in terms of the components of g, v,
® and ¥ as follows:

op s Oa 0f
auaaﬂ ¢ab Z av av '//ab

o(a, B) = p Z
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oo 0O
(4.4) 0 3 LT Gt duad)

as<b,c<d cd

O

0
+ ) mgf;(‘pac‘pbd‘ﬂpad‘//bc)-

asb,c=d
Equation (4.4) may be simplified by the use of a convenient notation for the
derivative of a real variable with respect to a matrix. In general, let f be a real-
valued function of a matrix A, and let y = f(A). By the matrix derivative dy/dA
we shall mean one of the matrices described below, according to whether A is
(i) mx n, or (ii) m x m symmetric.

(1) If A is m x n, then dy/dA is m x n, and its (i, j)th component is

9y . .
(4.5) (dy/dA);; =5~ (i=1,-,m;j=1,-,n).
ij

(ii) If A is m x m symmetric, then dy/dA is m x m symmetric, and its components
are given by

(4~6) (dy/dA)ii = 0y[da;; (i =1, m)§
(dy/dA);; = 10y|0a;; = $0y[0a; (i#j5i,j=1,--,m).

The application of the factor } in differentiation with respect to off-diagonal
elements of symmetric matrices was used by Aitken (1953).

If fis a real-valued function of two matrices A and B with y = f(A, B), then the
matrix partial derivative y, = dy/0A is defined as above holding B constant;
yp = 0y/0B is similarly defined.

It may be noted that the matrix derivative dy/dA defined in (4.6) can be thought
of as corresponding to the matrix X used in the proof of Lemma 1, where the
matrix W used in this proof corresponds to the matrix obtained simply by writing
down all the scalar partial derivatives dy/0a;;. Applying (3.1) to the third and fourth
expressions on the right-hand side of (4.4), we may write (4.4), using partial
matrix derivatives as defined by (4.5) and (4.6), in the form

4.7 o(a, B) = po,' OB+, VB, +2p tr ag®Po® +2 tr oy, ¥, P.

Since « and f represent components y; and y;, respectively, of the vector y(0),
with w(a, f) = w;;, (4.7) exhibits the components w;; of the matrix = I'ET".
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