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Microsimulation models (MSMs) are used to inform policy by predict-
ing population-level outcomes under different scenarios. MSMs simulate
individual-level event histories that mark the disease process (such as the
development of cancer) and the effect of policy actions (such as screening)
on these events. MSMs often have many unknown parameters; calibration
is the process of searching the parameter space to select parameters that re-
sult in accurate MSM prediction of a wide range of targets. We develop In-
cremental Mixture Approximate Bayesian Computation (IMABC) for MSM
calibration which results in a simulated sample from the posterior distribu-
tion of model parameters given calibration targets. IMABC begins with a
rejection-based ABC step, drawing a sample of points from the prior dis-
tribution of model parameters and accepting points that result in simulated
targets that are near observed targets. Next, the sample is iteratively up-
dated by drawing additional points from a mixture of multivariate normal
distributions and accepting points that result in accurate predictions. Pos-
terior estimates are obtained by weighting the final set of accepted points
to account for the adaptive sampling scheme. We demonstrate IMABC by
calibrating CRC-SPIN 2.0, an updated version of a MSM for colorectal
cancer (CRC) that has been used to inform national CRC screening guide-
lines.

1. Introduction. Microsimulation models (MSMs) are used to inform policy
by predicting population-level outcomes under different policy scenarios. MSMs
are characterized by simulation of agents that represent individual members of an
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idealized population of interest. For each agent, the model simulates event histories
that catalog landmarks in the disease process. In general, disease processes mod-
eled are not directly observable, though outcomes from these processes may be ob-
served. For example, the process of developing colorectal cancer (CRC) cannot be
observed, but the prevalence of both precursor lesions (adenomas) and preclinical
(asymptomatic) CRC can be estimated from screening trials, and CRC incidence
can be observed from national registry data.

Model calibration involves selecting parameter values that result in model pre-
dictions that are consistent with observed data and expected findings. Once param-
eters are selected, MSMs can be used to make predictions about population trends
in disease outcomes, effectiveness of interventions and the comparative effective-
ness of interventions, especially those without direct empirical comparisons. For
example, models have been used to inform U.S. Preventive Services Task Force
screening guidelines for breast (Mandelblatt et al. (2016)), cervical (Kim, Burger,
Regan and Sy (2019)), colorectal (Knudsen et al. (2016)) and lung cancer (de
Koning et al. (2014)) by comparing the effectiveness of different screening reg-
imens.

MSM calibration involves searching a high-dimensional parameter space to
predict many targets. Several approaches have been proposed. The simplest cal-
ibration method involves perturbing parameters one at a time and evaluating the
goodness of fit to calibration data, but this is only feasible when calibrating a few
parameters. Directed searches, such as the Nelder–Mead algorithm (Nelder and
Mead (1965)), provide a derivative-free hillclimb to identify a single best value for
each parameter. Kong, McMahon and Gazelle (2009) used search algorithms from
engineering (simulated annealing and a genetic algorithm) for model calibration.
Bayesian calibration methods estimate the joint posterior distribution of MSM pa-
rameters which provides information about parameter uncertainty and enables es-
timation of functions of parameters. Rutter, Miglioretti and Savarino (2009) used
Markov chain Monte Carlo (MCMC) to simulate draws from the posterior dis-
tribution of MSM parameters given calibration targets. However, MCMC can be
difficult and costly to apply to MSM calibration and, because MCMC is based on
a process of sequentially updating draws, it is not easy to parallelize the process to
take advantage of modern computing resources.

Approximate Bayesian Computation (ABC) offers an alternative approach to
MSM calibration. ABC is a likelihood-free technique for simulating draws from
the posterior distribution that approximates likelihood-based algorithms by choos-
ing parameters that produce a close match to data rather than calculating the likeli-
hood (Conlan et al. (2012), Marin et al. (2012), Sisson, Fan and Beaumont (2019)).
The validity of ABC algorithms, in the sense that they result in samples from
the approximate posterior distribution, relies on the validity of the correspond-
ing exact algorithms (Sisson, Fan and Tanaka (2007)). The idea underlying ABC
is simple. For a parameter θ with prior distribution π(θ) and observed data y,
we can write the posterior probability as p(θ |y) = p(y|θ)π(θ) implying that we
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can approximate p(θ |y) by sampling θ from π(·) and retaining only points with
p(y|θ) ≈ 1. However, ABC is inefficient and can fail when the parameter space
is high dimensional, when there are many calibration targets, or when the prior
distributions are very different from the posterior distributions. McKinley et al.
(2018) found that popular ABC variants that improve the algorithm’s efficiency
were not computationally feasible for calibrating stochastic epidemiological mod-
els. We propose an Incremental Mixture ABC (IMABC) approach for MSM model
calibration that begins with a basic rejection-sampling ABC step (e.g., Pritchard
et al. (1999)) and then incrementally adds points to regions where targets are well
predicted.

In the next sections we describe the CRC-SPIN MSM for the natural history of
colorectal cancer (CRC) (Section 2), calibration targets used to inform CRC-SPIN
model parameters (Section 3), the IMABC calibration approach (Section 4) and
results of CRC-SPIN model calibration based on IMABC (Section 5). We conclude
with general remarks about the proposed approach and discussion of future work
(Section 6).

2. Microsimulation model for the natural history of colorectal cancer.
The ColoRectal Cancer Simulated Population Incidence and Natural history model
(CRC-SPIN) (Rutter, Miglioretti and Savarino (2009), Rutter and Savarino (2010))
describes the natural history of CRC based on the adenoma-carcinoma sequence
(Leslie et al. (2002), Muto, Bussey and Morson (1975)). Four model components
describe the natural history of CRC: (1) adenoma risk; (2) adenoma growth; (3)
transition from adenoma to preclinical cancer; and (4) transition from preclinical
to clinical cancer (sojourn time).

CRC-SPIN has been used to provide guidance to the Centers for Medicare and
Medicaid Services (CMS) (Zauber et al. (2009)) and to inform U.S. Preventive Ser-
vices Task Force CRC screening guidelines (Knudsen et al. (2016)). Model vali-
dation, based on comparison of model predictions to observed outcomes, revealed
that while CRC-SPIN predicted many aspects of CRC well (including clinically
detected cancer, cancer mortality and the effectiveness of screening), it predicted
detection of too few preclinical cancers at screening, indicating that the simulated
times spent in the preclinical cancer phase (sojourn times) were too short (Rutter
et al. (2016)). In this paper we present CRC-SPIN 2.0, an update to the original
CRC-SPIN 1.0. CRC-SPIN 2.0 contains 22 calibrated parameters (Table 1). Be-
cause this is a model recalibration, prior distributions are based on results from the
previous calibration of CRC-SPIN 1.0 (Rutter, Miglioretti and Savarino (2009)). In
this section we provide an overview of the model. Additional details are provided
in Appendix A and online at cisnet.cancer.gov (National Cancer Institute
(2018)).

2.1. Adenoma risk model. The occurrence of adenomas is modeled using a
nonhomogeneous Poisson process with a piecewise age effect. We assume zero
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TABLE 1
Summary of CRC microsimulation model components. Calibrated parameters associated with the
four components of the natural history model, including parameter notation, associated equations,

prior distributions and posterior estimates (mean and 95% credible interval). TN[a,b](μ,σ ) denotes
a truncated normal distribution with mean μ and standard deviation σ , restricted to the interval
(a, b). U(a,b) denotes a uniform distribution over (a, b). Refer to Section 2 for details of the four

model components

Prior Posterior Estimates

Component Distribution Mean 95% CI

Adenoma Risk (eqn (1))
Baseline log-risk A ∼ TN[−7.5,−5.9](−6.6, 0.4) −6.56 −6.89 to −6.11
Standard deviation, baseline log-risk σα ∼ TN[0.25,1.75](1.1, 0.3) 1.62 1.43 to 1.74
Female α1 ∼ TN[−0.5,0.1](−0.5, 0.1) −0.62 −0.70 to −0.49
Age effect, age ∈ [20,50) α20 ∼ TN[0.02,0.05](0.04, 0.01) 0.044 0.034 to 0.050
Age effect, age ∈ [50,60) α50 ∼ TN[0.01,0.05](0.03, 0.01) 0.038 0.021 to 0.049
Age effect, age ∈ [60,70) α60 ∼ TN[−0.01,0.05](0.03, 0.01) 0.022 −0.006 to 0.047
Age effect, age ≥ 70 α70 ∼ TN[−0.02,0.03](0.03, 0.03) −0.002 −0.018 to 0.022

Time to 10mm (eqn (2))
Shape, colon β1C ∼ U(1.1, 5) 1.43 1.16 to 1.70
Shape, rectum β1R ∼ U(1.1, 5) 3.39 1.97 to 4.76
Scale, colon∗ β2C ∼ U(10.7, 40) 37.7 34.0 to 39.9
Scale, rectum∗ β2R ∼ U(10.7, 40) 15.3 11.8 to 19.5

Adenoma Growth Curve (eqn (3))
Shape parameter p ∼ TN[0.5,3.2](1.0, 0.5) 0.69 0.56 to 0.83

Transition to Preclinical Cancer (eqn (4))
Intercept γ0 ∼ TN[2.6,3.6](3.1, 0.5) 3.16 3.03 to 3.35
Female (versus male) γ1 ∼ TN[−0.5,0.3](−0.06, 0.2) −0.13 −0.19 to −0.07
Rectal (versus colon) γ2 ∼ TN[−0.5,0.5](0.25, 0.25) −0.05 −0.24 to 0.13
Female & rectal γ3 ∼ TN[−0.35,0.25](−0.14, 0.2) 0.07 −0.03 to 0.17
Age at initiation γ4 ∼ TN[−0.24,0.02](−0.08, 0.04) −0.11 −0.14 to −0.08
Squared age at initiation γ5 ∼ U(−1.5, 1.5) 0.01 0.00 to 0.02
Standard deviation σγ ∼ U(0.5, 1.0) 0.56 0.50 to 0.65

Sojourn Time (eqn (5))
Scale λ1 ∼ U(2.25, 4.25) 2.57 2.27 to 3.06
Shape λ2 ∼ U(2.0, 5.0) 3.72 2.20 to 4.92
log-hazard ratio, rectal cancer λ3 ∼ U(−1.0, 1.0) −0.35 −0.96 to 0.67

∗Scale parameters, β2, were also restricted to range from 10(− ln(0.25))1/β1 to (− ln(0.0001))1/β1 ,
corresponding to the probability of an adenoma reaching 10mm within 10 years ranging from 0.0001
to 0.25.

risk before age 20. We focus on CRC in adults because CRC is very rare before
age 20 with incidence of about one in 10 million (Koh et al. (2015)). The ith
agent’s baseline instantaneous risk of an adenoma at age a = 20 years is given
by ψi(20) = exp(α0i + α1femalei) where α0i ∼ N(A,σα) and α1 captures the
difference in risk for women (femalei = 1 indicates agent i is female). Adenoma
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risk changes over time, generally increasing with age, a process we model using a
linear change-point for log-risk with knots at ages 50, 60 and 70.

(1)

ln
(
ψi(a)

) = α0i + α1sexi + δ(a ≥ 20)min(a − 20,30)α20

+ δ(a ≥ 50)min
(
(a − 50),10

)
α50

+ δ(a ≥ 60)min
(
(a − 60),10

)
α60

+ δ(a ≥ 70)(a − 70)α70.

2.2. Adenoma growth model. For each adenoma we simulate a hypothetical
time to reach 10mm, t10mm which may exceed the agent’s lifespan. We assume
that t10mm has a Frèchet distribution with shape parameter β1, scale parameter β2,
and cumulative distribution function given by

(2) F(t) = exp
[
−

(
t

β2

)−β1
]

for t ≥ 0. Prior distributions for adenoma growth parameters specify that most
adenomas grow very slowly. We allow different scale and shape parameters for
adenomas in the colon and rectum.

Adenoma size at any point in time is simulated using the Richard’s growth
model which incorporates a wide range of sigmoidal growth patterns (Tjørve and
Tjørve (2010)). The diameter of the j th adenoma in the ith agent at time t after
initiation is given by

(3) dij (t) = d∞
[
1 +

((
d0

d∞

)1/p

− 1
)

exp(−λij t)

]p

,

where d0 = 1mm is the minimum adenoma diameter in millimeters (mm) and
d∞ = 50 is the maximum adenoma diameter. The calibrated parameter p deter-
mines the shape of the growth curve. The growth rate for the j th adenoma within
the ith agent, λij , is calculated by setting t = t10mm and d = 10 in equation (3).

2.3. Model for transition from adenoma to preclinical invasive cancer. For the
j th adenoma in the ith agent, the size at transition to preclinical cancer (in mm) is
simulated using a log-normal distribution; the underlying (exponentiated) normal
distribution is assumed to have standard deviation σγ and mean

μij = γ0 + γ1femalei + γ2rectumij + γ3femaleirectumij

+ γ4ageij + γ5age2
ij ,

(4)

where rectumij is an indicator of rectal versus colon location and ageij is the age at
adenoma initiation in decades, centered at 50 years. Based on this model, the prob-
ability that an adenoma transitions to preclinical cancer increases with increasing
size. Most adenomas do not reach transition size, and small adenomas are unlikely
to transition to cancer.
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2.4. Model for sojourn time. Sojourn time is the time between the transition
to preclinical (asymptomatic) CRC and the transition to clinical (symptomatic and
detected) cancer. We simulate sojourn time using a Weibull distribution with sur-
vival function

(5) S(t) = exp
(
−

(
t

λ1

)λ2
)
,

for preclinical cancer in the colon, and assume a proportional hazards model, with
hazard ratio exp(λ3rectumij ), to allow sojourn time to systematically differ for
preclinical cancers in the colon and rectum.

2.5. Simulation of lifespan and colorectal cancer survival. Once a cancer be-
comes clinically detectable, we simulate stage and tumor size at clinical detec-
tion based on SEER data from 1975 to 1979, prior to diffusion of CRC screening
(National Cancer Institute (2004)). Survival time after CRC diagnosis is simulated
using relative survival estimates from analysis of SEER data from individuals di-
agnosed with CRC from 1975 through 2003 (Rutter et al. (2013)). CRC survival
is based on the first diagnosed CRC and depends on sex, age at diagnosis, cancer
location (colon or rectum) and stage at diagnosis. We assume proportional haz-
ards of CRC and other-cause mortality within sex and birth-year cohorts. Other-
cause mortality is modeled using survival probabilities based on product-limit esti-
mates for age and birth-year cohorts from the National Center for Health Statistics
Databases (National Center for Health Statistics (2000)).

3. Calibration data. Calibration data are derived from published studies and
typically take the form of summary statistics with known distributions, such as
binomial, multinomial and Poisson. For example, when we calibrate to incidence
rates from a population of a given size, we assume, given the population size,
the number of incident cancers follows a binomial distribution. This is a unique
feature of our calibration problem, in that calibration targets are summary statis-
tics drawn from published studies rather than multiple user-defined summaries of
a single dataset. We calibrate to 40 targets from six sources, SEER registry data
(National Cancer Institute (2004), 20 targets, Section 3.1) and five published stud-
ies (20 targets, Section 3.2). We also bounded adenoma growth parameters, based
on information from a recent study of repeated screening colonoscopies (Ponugoti
and Rex (2017)), so that the probability of an adenoma reaching 10mm within
10 years ranged from 0.0001 to 0.25, by requiring 10(− ln(0.25))1/β1 ≤ β2 ≤
10(− ln(0.0001))1/β1 .

Calibration targets are based on individual-level data that is reported in aggre-
gate. Calibration requires simulating targets by simulating a set of agents with risk
that is similar to the study population based on age, gender, prior screening patterns
and the time period of the study which may affect both overall and cancer-specific
mortality.
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TABLE 2
Observed and predicted annual incidence of clinically detected cancers in 1975–1979, per 100,000

individuals

Posterior Predicted

Location Gender Age Observed Mean Tolerance Interval Mean 95% CI

Colon Female 20–49 4.9 3.1 to 6.7 3.9 3.1 to 5.2
50–59 43.3 32.9 to 53.7 42.7 34.9 to 51.2
60–69 101.5 83.2 to 119.9 105.6 89.3 to 118.7
70–84 221.5 191.8 to 251.2 217.7 194.5 to 244.8
85+ 308.4 225.4 to 391.5 343.0 281.0 to 388.0

Colon Male 20–49 4.7 2.9 to 6.4 4.1 3.0 to 5.4
50–59 46.0 34.9 to 57.1 48.4 39.3 to 56.1
60–69 122.4 100.7 to 144.2 124.0 105.9 to 141.2
70–84 274.5 233.5 to 315.5 261.0 235.5 to 294.9
85+ 399.1 259.3 to 538.9 427.1 350.1 to 507.2

Rectal Female 20–49 1.9 0.8 to 3.0 2.0 1.2 to 2.9
50–59 20.5 13.3 to 27.6 19.3 14.3 to 25.6
60–69 42.9 31.0 to 54.9 42.5 32.7 to 53.2
70–84 75.2 57.8 to 92.5 75.0 60.5 to 89.9
85+ 105.1 56.6 to 153.7 102.8 69.7 to 139.1

Rectal Male 20–49 2.3 1.1 to 3.6 2.9 2.0 to 3.5
50–59 29.9 20.9 to 38.9 29.9 23.4 to 36.8
60–69 71.6 55.0 to 88.3 66.1 56.1 to 79.7
70–84 129.8 101.6 to 158.0 117.3 102.8 to 138.2
85+ 164.9 74.9 to 254.9 157.6 116.4 to 203.2

3.1. SEER registry data. SEER colon and rectal cancer incidence rates in
1975–1979 are a key calibration target (Table 2). Incidence rates reported are per
100,000 individuals. These rates are based on the first observed invasive colon or
rectal cancer during the years 1975–1979, the most recent period prior to dissem-
ination of CRC screening tests. We assume that given the SEER population size,
the number of incident CRC cases in any year follows a binomial distribution.

To simulate SEER incidence rates, we generate a population of individuals from
20 to 100, with an age and sex distribution that matches the SEER 1978 popula-
tion (to capture risk levels within each age category), who are free from clinically
detected CRC. Model-predicted CRC incidence is based on the number of people
who develop CRC in the next year.

3.2. Other published targets. Table 3 summarizes calibration targets from five
studies. To simulate these targets, we generated separate populations for each tar-
get that match the age and gender distribution of study participants during the
time-period of the study. One study (Church (2004)) describing the pathology of
lesions (i.e., adenomas and preclinical cancers) did not provide information about
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TABLE 3
Observed and predicted calibration targets from published studies

Posterior Predicted

Target Mean Tolerance Interval Mean 95% CI

Corley et al. (2013)
Adenoma Prevalence, Women 50–54 15 12.9 to 20.8 18.9 17.0 to 20.7
Adenoma Prevalence, Women 55–59 18 15.5 to 25.0 22.5 20.3 to 24.5
Adenoma Prevalence, Women 60–64 22 19.4 to 30.1 26.1 23.7 to 28.2
Adenoma Prevalence, Women 65–69 24 20.6 to 33.4 29.5 26.9 to 31.6
Adenoma Prevalence, Women 70–74 26 21.5 to 37.0 32.5 29.9 to 34.7
Adenoma Prevalence, Women ≥75 26 20.8 to 37.7 35.6 32.6 to 37.8

Adenoma Prevalence, Men 50–54 25 22.1 to 34.2 27.7 25.0 to 30.5
Adenoma Prevalence, Men 55–59 29 25.6 to 39.7 32.3 29.2 to 35.2
Adenoma Prevalence, Men 60–64 31 27.5 to 42.3 36.6 33.4 to 39.7
Adenoma Prevalence, Men 65–69 34 29.6 to 46.9 40.6 37.1 to 43.8
Adenoma Prevalence, Men 70–74 39 33.2 to 54.6 44.1 40.3 to 47.5
Adenoma Prevalence, Men ≥75 38 31.6 to 53.9 47.5 43.3 to 51.1

Pickhardt et al. (2003)∗
Percent of Detected Adenomas ≤ 5mm 62.0 55.3 to 68.8 63.2 59.0 to 66.2
Percent of Detected Adenomas 6–9mm 28.7 22.4 to 35.0 24.7 22.5 to 28.6
Percent of Detected Adenomas ≥ 10mm 9.2 5.2 to 13.2 12.0 10.7 to 13.1

Imperiale et al. (2000)
Detected Preclinical Cancers per 1000 People 6.0 0.3 to 117.1 2.6 2.1 to 3.3

Lieberman et al. (2008)∗
Preclinical CRCs per 1000 Lesions 6–9mm 2.5 0.0 to 8.4 7.5 6.2 to 8.3
Preclinical CRCs per 1000 Lesions ≥ 10mm 32.8 11.6 to 54.0 27.9 23.1 to 34.7

Church (2004)
Preclinical CRCs per 1000 Lesions [6,10)mm 2.4 0.0 to 10.3 7.1 5.9 to 8.4
Preclinical CRCs per 1000 Lesions ≥ 10mm 42.3 12.6 to 72.1 16.4 12.8 to 22.0

∗Size was reported categorically as ≤ 5mm, 6 to 9mm, and ≥ 10mm. We operationalized these
categories as: [1,5.5)mm, [5.5,9.5)mm and ≥ 9.5mm.

the age or sex of patients, and so we simulated a population that was 50% male
with an average age of 65 (standard deviation of five) and an age range of 20 to 90
years.

Simulation of targets in Table 3 also requires simulating the detection of le-
sions (adenomas and preclinical cancers). Sensitivity is a function of lesions size
and is informed by back-to-back colonoscopy studies (Hixson et al. (1990), Rex
et al. (1997); additional details provided in Appendix A). We assume that study
participants are free from symptomatic (clinically detectable) CRC and have not
been screened for CRC prior to the study. This is a reasonable assumption because
studies used for model calibration were conducted prior to widespread screening
or were based on minimally screened samples. CRC screening guidelines have
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been in place since the late 1990s (Winawer et al. (1997)), and screening rates
have since risen steadily (Centers for Disease Control (2011), Meissner et al.
(2006)).

4. Posterior inference via incremental mixture approximate Bayesian com-
putation (IMABC). The basic rejection-based ABC algorithm (Pritchard et al.
(1999), Tavare et al. (1997)) generates model parameter vectors θ from the prior
distribution, π(θ), and then uses the model to simulate data, y∗. Draws that result
in simulated data that are similar to observed data, y, are accepted. Similarity be-
tween y∗ and y is based on user-defined summary statistics, a distance metric and
a tolerance level that defines the distance of acceptable points.

In practice, simulating θ from the prior distribution can be very inefficient be-
cause the prior and posterior distributions are often poorly aligned. Many versions
of ABC have been developed to address inefficiencies. Two popular variants are
ABC-MCMC (Marjoram et al. (2003)) and sequential Monte Carlo ABC (ABC-
SMC, Sisson, Fan and Tanaka (2007), Toni et al. (2009)). ABC-MCMC involves
proposing a new value of θ by sampling u from a user-specified jumping distri-
bution, q(θ | θ(t)) that is centered at zero with θ(t+1) = θ(t) + u. If simulated data
based on θ(t+1) are within tolerance levels for observed data, then, similarly to
MCMC, θ(t+1) is accepted with a probability equal to the minimum of 1 and

q(θ(t+1) | θ(t))π(θ(t+1))

q(θ(t) | θ(t+1))π(θ(t))
.

Drawbacks of ABC-MCMC include the usual problems with MCMC, such as cor-
related samples, low acceptance rates, the possibility of getting stuck in low poste-
rior probability regions and slow mixing requiring simulation of very long chains.
ABC-SMC is based on importance sampling with the prior used as the proposal
distribution. ABC-SMC starts by simulating a set of draws from the prior dis-
tribution. Each subsequent set of draws is simulated by drawing an (importance)
weighted sample from the previous set of draws and for each sampled point adding
a random deviate u that is drawn from a user-specified jumping distribution. For
each sampled point this process is repeated until the perturbed point is accepted
(i.e., falls within the tolerance interval). When using the ABC-SMC approach,
users specify the total number of iterations, T , and a sequence of T increasingly
stringent tolerance intervals, which require accepted points to be nearer to targets
as the algorithm proceeds. After T iterations, draws from the posterior distribu-
tion are simulated by drawing a weighted sample of θ ’s using final importance
weights that are based on the sequence of jumping distributions. The population
Monte Carlo ABC algorithm (ABC-PMC) is closely related to ABC-SMC and
also draws on importance sampling (Beaumont et al. (2009), Marin et al. (2012)).
ABC-PMC uses a multivariate normal jumping distribution with covariance matrix
that is based on prior draws.
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In general, ABC and its variants can be impractical or can fail when the pa-
rameter space is high dimensional, or there are many summary statistics that the
simulated data must approximate (Blum and François (2010)). McKinley et al.
(2018) encountered this issue and proposed using a history matching algorithm,
which is similar to ABC, to identify regions of the parameter space that produce
acceptable matches to data. Implausibility measures are used to sequentially rule
out regions of the input space. Here, we propose a new ABC approach that we
call incremental mixture approximate Bayesian computation (IMABC), which is
well suited to MSM calibration, that involves both high-dimensional parameter
spaces and many calibration targets. IMABC is an approximate Bayesian version
of adaptive importance sampling, similar to IMIS (Raftery and Bao (2010), Steele,
Raftery and Emond (2006)), with samples drawn from the parameter space using a
proposal distribution that is a mixture of normal distributions. Posterior estimates
are based on accepted draws that are weighted to account for differences between
the prior and proposal distributions. IMABC is most similar to the ABC-PMC ap-
proach (Beaumont et al. (2009)). IMABC adds new points in regions near a subset
of points that produce simulated targets closest to observed targets, whereas ABC-
PMC samples points based on an approximation to the joint distribution using
importance weights.

4.1. The IMABC algorithm. The IMABC algorithm begins with a rejection-
sampling ABC step, and updates this initial sample by adding points near a set
of “best” points that result in simulated targets that are closest to corresponding
observed targets.

Let O1, . . . ,OJ denote the J calibration targets, which we assume are summary
statistics. We specify tolerance bounds around targets based on (1 − αj ) × 100%
confidence intervals, for j = 1, . . . , J . Let α = (α1, α2, . . . , αJ ). The IMABC
algorithm updates tolerance intervals so they become more stringent in later it-
erations. Let α(0) be the alpha levels used for tolerance intervals for the initial
ABC step, α(t) are alpha levels for the t th iteration and α∗ are the final (user-
specified) alpha-levels, corresponding to convergence of the IMABC algorithm.
When searching a high-dimensional parameter space, it is practical to begin with
very wide tolerance intervals, corresponding to small values of α. If tolerance inter-
vals are too narrow, there may be very few points that lie within tolerance regions,
which is inefficient for exploring the parameter space to identify the regions with
high posterior probability. Final alpha levels used to calculate tolerance intervals
may vary across targets, depending on the quality of and confidence in calibration
targets.

Let Sij denote the j th simulated target (corresponding to Oj ) for the ith sam-
pled point, and let δj (θi, αj ) = 1 if Sij falls within the (1−αj )×100% confidence
interval for target Oj . We use an intersection criterion for acceptance (Conlan et
al. (2012), Ratmann et al. (2014)), where θi is accepted when all Sij lie within
ABC tolerance bounds, so that δ(θi, α) = ∏J

j=1 δj (θi, αj ).
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At the first IMABC step, a sample of N0 points is drawn from the prior distri-
bution of model parameters, π(θ). The algorithm then enters an updating phase.
Iteration (t + 1) in the IMABC algorithm proceeds as outlined below:

Step 1: Identify the best points and sample new points nearby.

1A. Calculate p-values, ρij , for each accepted θi , based on two-sided tests of
H0: Sij = Oj vs. HA: Sij 	= Oj for j = 1, . . . , J , treating Sij as fixed and Oj as
estimated with error. Often, as in our application, Oj is a summary statistic and
is approximately normally distributed. The calculated p-values are comparable
across targets as they are on the same scale regardless of the sample size that
generated the targets or the distribution of the test statistic, so we summarize model
fit across multiple targets with ρi· = mini (ρij ) the worst fit across the J targets.

1B. Select the N(c) points with the largest ρi·. When there are ties, calculate
the distance between the simulated and observed targets, di· = ∑

j dij where dij =
(Sij − Oj)

2/O2
j , and select points with the largest ρi· and smallest di· which are

the best fitting points based on the p-value criteria and in terms of distance from
observed targets.

1C. Simulate B new draws around each of the θ
(t+1)
(k) , k = 1, . . . ,N(c) best

points by sampling from a normal distribution with mean θ
(t+1)
(k) and covariance

�
(t+1)
(k) .
Let p be the dimension of θ (i.e., the number of calibrated parameters). If there

are fewer than 25p accepted points, then �
(t+1)
(k) is set to a diagonal covariance

matrix with standard deviation set to half the prior distribution standard deviation
for each parameter. If there are at least than 25p accepted points, �

(t+1)
(k) is cal-

culated using the 25p accepted points nearest to θ
(t+1)
(k) . This means that until the

algorithm accepts 25p points, the same covariance matrix is used for all normal
mixtures. This approach allows wider exploration of the parameter space during
initial iterations and, after a moderate number of points have been accepted, more
directed sampling of new points based on a mixture distribution with a correlation
structure computed from a neighborhood of nearby points that are within tolerance
intervals.

1D. Simulate calibration targets, Sij , for each new draw, and resimulate targets

at center points, θ
(t+1)
(k) . Accept or reject new draws and previously sampled center

points based on δ(θi, α
(t)). Resimulation of targets at center points enables the

algorithm to move away from center points with Sij that are, by chance, similar
to Oi .

Step 2: Update tolerance intervals.
If any α

(t)
j < α∗

j and there are 50p or more accepted points, check to see if the
tolerance can be updated. Identify i ′ associated with the median ρi· with di· as a tie
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breaker. For each potentially updated tolerance level, set α
(t+1)
j = min(ρi′j , α∗

j ),

then update the accepted θ ’s, so that they are based on δ(θi, α
(t+1)), removing up

to half of the previously accepted points that are furthest from the targets.
Step 3: Evaluate stopping criteria.
If α(t+1) = α∗, calculate sampling weights and the corresponding effective

sample size (ESS). Sampling weights account for sampling of points from the
normal mixture rather than the prior distribution, wi = π(θi)/qt (θi). The mix-

ture sampling distribution, qt , is given by qt = N0
Nt

π + B
Nt

∑t
s=1

∑N(c)

k=1 H
(s)
k where

H
(s)
k is the kth normal distribution at iteration s, given by N(θ

(s)
(k) ,�

(s)
(k)), and

Nt = N0 + N(c)Bt , the total number of draws through iteration t .
ESS provides the expected number of unique points obtained from a weighted

random sample of size equal to the number of in range points. The closer ESS
is to the number of in-range points, the better our representation of the posterior

distribution. ESS for the N(t+1) draws is equal to (
∑N(t+1)

i=1 w2
i )

−1, where wi = 0
if δ(θi, α

(t+1)) = 0 (Kish (1965), Liu (2001)). The algorithm stops when ESS ≥
Npost, having obtained the desired number of draws from the posterior distribution.
If α(t+1) = α∗ and ESS < Npost the algorithm continues to iterate but without
further updates to tolerance intervals.

Once the IMABC algorithm is complete, independent draws from the poste-
rior distribution are simulated by taking a weighted sample from accepted points
with replacement, using the wi . Alternatively, posterior means and 95% credible
intervals (CIs) can be estimated using weighted means and percentiles based on all
accepted draws.

When implementing the IMABC algorithm, we recommend using a large initial
sample size, N0, to ensure exploration of the parameter space and because few
initially sampled points may lie in high posterior probability regions. The number
of normal mixture components used to draw new points at each step, N(c), can be
selected to optimize use of computing resources, as new points from each center
(mixture component) can be drawn in parallel. The number of centers should be
chosen to balance computational constraints and gains, arising from the number of
available processors, with the total number of points to be drawn at each iteration,
BN(c). The effective sample size of the final set of accepted points, Npost, will
depend on the planned uses of the calibrated targets. For example, 2000 is a good
choice when the goal is to provide interval estimates of model predictions based on
percentile intervals, but larger samples may be desired when estimating functions
of parameters.

Using IMABC to calibrate an MSM requires multiple model evaluations at each
parameter draw, and the user needs to specify mj , the number of simulated agents
used to obtain Sij . The number of simulated agents may be smaller for common
outcomes (such as adenoma prevalence) and larger for rare outcomes (such as can-
cer incidence). Setting mj too low will result in too much stochastic variation in
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Sij and inaccurate identification of acceptable θi . Setting mj too high will unnec-
essarily slow the algorithm.

5. CRC-SPIN 2.0 calibration results.

5.1. IMABC implementation. To calibrate CRC-SPIN 2.0, we used N0 =
22,000 with Latin hypercube sampling from the prior distribution to ensure cov-
erage of the parameter space at the initial draw. With the exception of the SEER
target, we began with α(0) = 0.0001 and worked toward α∗ = 0.001. For SEER
targets we began with α(0) = 0, accepting all points regardless of nearness to
SEER targets, and worked toward α∗ = 1 × 10−7 which results in narrow bands
around these registry-based incidence rates. Tolerance intervals are wider for
study-derived targets because of the smaller sample sizes. These wider tolerance
intervals also reflect the greater uncertainty in these targets due to a range of factors
related to their simulation, including uncertainty about population characteristics,
sensitivity of lesion detection and lesion size measurement and categorization.

We specified asymmetric tolerance limits for the Corley et al. (2013) target, ex-
tending the upper tolerance range by adding 0.25Oj to the upper tolerance limit
because of uncertainty about prior screening of the study sample. The Corley et
al. (2013) study is based on insured patients who underwent colonoscopies from
1/1/2006 to 12/31/2008. Although Corley et al. (2013) excluded exams from in-
dividuals with evidence of prior screening, the study occurred during the CRC
screening era and did not restrict their sample to continuously enrolled individuals
and so could not completely identify individuals who had a previous colonoscopy.
Therefore, the adenoma prevalence estimates from Corley et al. (2013) may be
lower than expected in an unscreened population.

To take advantage of high performance computing and parallel processing (Ap-
pendix B), we used N(c) = 10, drawing B = 1000 points from each normal mix-
ture so that 10,000 new points were evaluated at each updating iteration. We as-
sumed a normal distribution for sample statistics when estimating (1 −α)× 100%
confidence intervals and p-values. We set the final effective sample size, Npost, to
5000.

When simulating target data, we used mj equal to 5 × 104 for Pickhardt et al.
(2003); 2 × 105 for Corley et al. (2013) and Imperiale et al. (2000); 3 × 105 for
Church (2004), 5 × 105 for Lieberman et al. (2008) and 5 × 106 for the SEER
registry data. To improve efficiency of the IMABC algorithm, we sequentially cal-
culated Sij for each new θi in Step 1 of the algorithm, working from targets that
are least to most computationally intensive. After calculating each target, we eval-
uated δj (θi, αj ) and once δj (θi, αj ) = 0; the point is rejected without simulating
the remaining, more computationally intensive, targets.

Both the IMABC algorithm and the CRC-SPIN 2.0 model were implemented
in the R programming language (R Core Team (2014)). They were coupled to pro-
duce an integrated, dynamic, high-performance computing workflow with the use
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of the Extreme-scale Model Exploration with Swift (EMEWS) framework (Ozik
et al. (2016)). Further details about the computing environment are provided in
Appendix B.

5.2. Posterior estimates. The IMABC algorithm completed 16 iterations, ob-
taining 5815 parameter draws within tolerance limits with an effective sample size
of 5582 draws from the joint posterior distribution. Sampling weights ranged from
9.9 × 10−5 to 5.7 × 10−4 with a mean and median of 1.7 × 10−4.

Posterior estimated means and 95% CIs of model parameters were based on
weighted means and percentiles of accepted draws from the joint posterior distri-
bution (shown in Table 1). We estimated that adenoma risk is higher for men than
women, increases with age and increases more rapidly at younger (than older)
ages. Parameters that govern the time for an adenoma to reach 10mm were tightly
estimated with the exception of β1R . The shape of the CRC-SPIN 2.0 adenoma
growth curve is determined by the parameter p. Because the posterior mean of
p is less than 1.0, this means that CRC-SPIN 2.0 simulates adenomas that ini-
tially grow slowly, and this allows the model to simulate a relatively large fraction
of small adenomas. Consistent with prior ranges placed on growth parameters,
the model predicted that 0.2% of adenomas in the colon reach 10mm within 10
years (95% CI 0.1% to 0.8%) and 4.0% of adenomas in the rectum reach 10mm
within 10 years (95% CI 0.2% to 19.7%). The predicted percent of adenomas
reaching 10mm within 20 years rises to 8.6% (95% CI 5.9% to 12.1%) of ade-
nomas in the colon and 66.4% (95% CI 38.1% to 86.9%) of adenomas in the
rectum.

We estimated that adenomas transition to preclinical cancer at smaller sizes for
women, for adenomas in the rectum and for adenomas initiated at older ages. The
quadratic age effect slows the decrease in size at transition at older ages. The gen-
der effect on size at transition was stronger for adenomas in the colon than for
adenomas in the rectum. There was considerable variability in posterior estimates
of sojourn time parameters, indicating little information in targets about these pa-
rameters. Estimated mean sojourn times (in years), which are functions of sojourn
time parameters, were 2.32 with 95% CI 2.05 to 2.74 for preclinical cancers in
the colon and 2.12 with 95% CI 1.62 to 2.95 for preclinical cancers in the rec-
tum.

Sojourn time estimates largely reflect prior distributions. Sojourn time is in-
formed by screening studies, and our targets include a single imprecise screening
study (Imperiale et al. (2000)). We explored the impact of reducing the width of
the tolerance interval around this target by increasing the alpha-level to 0.05. The
resulting tolerance interval was 3.2 to 8.9 preclinical cancers detected per 1000
screened. We found that, although 2486 parameter draws met this criteria (with an
ESS equal to 2395), there was little change in posterior mean parameter estimates
(data not shown).
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FIG. 1. Joint posterior distribution of model parameters associated with adenoma risk, and the
growth and sojourn time in the colon.

By simulating draws from the posterior distribution, we were able to examine
correlations and relationships among model parameters. For example, Figure 1 dis-
plays the bivariate posterior distributions of baseline log-adenoma risk (A) and the
annual increase in risk between the ages of 20 and 50 years (α20). When baseline
adenoma risk is lower, risk increases more rapidly from 20 to 50 years to accu-
rately predict observed adenoma prevalence which largely is based on prevalence
after age 50 when guidelines recommend initiation of CRC screening (correlation
is −0.87). Similarly, the intercept term for size at adenoma transition to preclini-
cal cancer, γ0, is negatively correlated (correlation is −0.52) with the effect of age
on size at adenoma transition γ4. Larger values of γ0 imply that, on average, ade-
nomas transition at larger sizes, and the model compensates for this with a larger
decrease in the size at transition with increasing age.

The posterior predicted means of SEER targets were near point estimates of
observed rates and posterior 95% CIs include SEER targets (Table 2). Posterior
95% CIs do not always include point estimates of targets (Table 3). For example,
the model predicted higher adenoma prevalence than observed by Corley et al.
(2013), especially at older ages, acknowledging the possibility that prior screening
had occurred in the Corley et al. (2013) population which could explain why our
model does not predict these targets accurately. The model also predicted a larger
number of adenomas ≥10mm than observed by Pickhardt et al. (2003). The prob-
ability of detecting preclinical cancer came from three studies (Church (2004),
Imperiale et al. (2000), Lieberman et al. (2008)), and the accuracy of model pre-
dictions demonstrates how the IMABC calibration approach combines information
across targets.
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6. Discussion. We addressed the problem of calibrating microsimulation
models by developing IMABC, an ABC algorithm based on the ideas of incre-
mental mixture importance sampling (IMIS) (Raftery and Bao (2010), Steele,
Raftery and Emond (2006)), an adaptive Sampling Importance Resampling algo-
rithm (SIR; Rubin (1987)). We illustrate our approach by calibrating CRC-SPIN
2.0, an MSM for colorectal cancer, a problem that involves a relatively high di-
mensional parameter space and multiple targets.

Like IMIS, the IMABC algorithm iteratively updates the proposal distribution
at each iteration to obtain samples from regions of the parameter space that are
consistent with calibration targets. The resulting mixture of normal distributions
with locally adaptive covariance matrices is a very flexible distribution, and the
algorithm can sample from a distribution that is multimodal to better approximate
the posterior distribution. We used a new approach to select tolerance levels, based
on (1 − α)% confidence intervals, with α-levels updated using p-values associ-
ated with a test for equality of the simulated and observed targets. This approach
implicitly incorporates the precision of calibration targets. IMABC also provides
a straightforward approach to tuning these tolerance intervals, requiring users to
specify only the initial and final alpha values, whereas ABC-SMC requires pre-
specification of the sequence of tolerance intervals. The IMABC approach could
also be implemented by specifying initial and final tolerance interval widths (dis-
tances) for each target, with an updating scheme based on scaled distances (as
opposed to p-values) between simulated and observed targets.

Other advantages of IMABC include clear stopping rules based on the effec-
tive sample size, the ability to specify which targets are most important through
final tolerance intervals and the ability to take advantage of parallelized code. The
IMABC approach was able to provide posterior samples of parameters that include
strong correlation among parameters. This is an important feature of the algorithm
because models for the natural history of disease are often complex, and it can be
difficult to justify simpler models unless they are scientifically plausible.

A limitation of the IMABC algorithm, especially as applied to MSM calibra-
tion, is that IMABC can be computationally demanding. Evaluation of a very large
number of points may be necessary, and calibration targets must be simulated for
each point. The computational expense can be reduced through the ordering of
target evaluations and ceasing evaluation of a point when the first set of targets
fails to fall within tolerance bounds. We implemented IMABC as a dynamic high-
performance computing (HPC) workflow via the EMEWS framework (Ozik et al.
(2016)). While the HPC environment was advantageous for development of the
IMABC approach, we found that it was not ultimately necessary for its applica-
tion.

The application of ABC to MSM calibration differs in important ways from typ-
ical ABC applications used to analyze a single dataset. The data used to calibrate
an MSM (calibration targets) are summary statistics drawn from published studies.
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A goal of MSM calibration is to combine information across these studies. To cal-
ibrate the MSM, we require matching across multiple targets, but inconsistencies
among targets are possible. In addition, while the behavior of the ABC estimator in
a typical application depends on user-defined data summaries, the behavior of the
estimator used for MSM calibration will also depend on how well the targets rep-
resent and inform the simulated disease process. For example, in our application
we found that sojourn time parameters were not well informed by our calibration
targets.

The IMABC approach worked well for calibration of CRC-SPIN 2.0, finding
points within a high dimensional parameter space that result in a good match
to multiple calibration targets. In typical applications the ABC estimator of the
posterior mean has an asymptotic normal distribution (Li and Fearnhead (2018))
though coverage of CIs depends on both the large sample behavior of the sum-
mary statistics used by the algorithm and tolerance levels (Frazier et al. (2018));
smaller tolerance levels (i.e., those that produce model predictions nearer to sum-
mary statistics) are needed to accurately estimate credible intervals at nominal
confidence levels than are needed to obtain accurate point estimates for model pa-
rameters. This suggests that IMABC can be used to estimate the posterior means
of model parameters. However, further research is needed to determine CI interval
coverage from MSM model calibration. Future work will use smaller scale mod-
els to carry out such exploration. We also plan to release publicly available code
to allow others to work with IMABC. In addition, because calibration requires
simulation of a large number of model evaluations, each with a large number of
agents, we plan to explore ways to improve the efficiency of IMABC model cal-
ibration. Finally, we plan to examine efficient approaches to parameter updating
when new targets become available (such as screening data to inform CRC-SPIN
sojourn time parameters), and sequential calibration approaches that can be used
to efficiently build from simpler to more complex models.

APPENDIX A: CRC-SPIN 2.0: ADDITIONAL MODEL INFORMATION

This appendix provides information about the CRC-SPIN 2.0 model that that
may be useful for understanding the model but is not essential to understanding
the calibration approach. Complete model description can be found on the can-
cer.cisnet.gov (National Cancer Institute (2018)) in the section describing
model profiles.

CRC-SPIN 2.0 is an update to the validated CRC-SPIN 1.0 model (Rutter and
Savarino (2010), Rutter et al. (2016)). Therefore, we were able to base prior distri-
butions for many model parameters on the results from CRC-SPIN 1.0 calibration
(Rutter, Miglioretti and Savarino (2009)).

A.1. Adenoma risk model. Once adenomas are initiated, they are assigned
a location. The distribution of adenomas throughout the large intestine follows a
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multinomial distribution based on data from nine autopsy studies (Blatt (1961),
Bombi (1988), Chapman (1963), Eide and Stalsberg (1978), Johannsen, Mom-
sen and Jacobsen (1989), Rickert et al. (1979), Stemmermann and Yatani (1973),
Szczepanski, Urban and Wierzchowski (1992), Williams, Balasooriya and Day
(1982)). The probabilities associated with six sites in the large intestine (from dis-
tal to proximal) are: Pr(rectum) = 0.09; Pr(sigmoid colon) = 0.24; Pr(descending
colon) = 0.12; Pr(transverse colon) = 0.24; Pr(ascending colon) = 0.23; and
Pr(cecum) = 0.08. For many purposes it is important to distinguish between colon
and rectal locations; more detailed location information is sometimes used for de-
termining screening test accuracy.

A.2. Adenoma growth model. We parameterized the growth model in terms
of the time it takes for the adenoma diameter to reach 10mm (t10mm) to improve
our ability to relate adenoma growth to observable data and clinical knowledge.
The mean and median time to reach 10mm are β2(1 − 1/β1) and β2 ln(2)−1/β1 ,
respectively, where (·) is the gamma function.

CRC-SPIN uses a function describing the adenoma growth trajectory to deter-
mine adenoma size at any point in time which is needed to determine the time at
transition to preclinical cancer and size-dependent sensitivity of screening tests.
CRC-SPIN 2.0 generalizes the growth model used by CRC-SPIN 1.0 by calibrat-
ing the shape parameter, p, in equation (3). CRC-SPIN 1.0 specified p ≡ 1, cor-
responding to the negative exponential model, but this resulted in relatively fast
early adenoma growth and resulted in prediction of relatively few small adeno-
mas. The prior distribution for p is centered at 1, with a prior range that is limited
to clinically plausible values.

A.3. Model for transition from adenoma to preclinical invasive cancer.
The CRC-SPIN 2.0 model for adenoma transition is a reparameterized and sim-
plified version of the CRC-SPIN 1.0 model for adenoma transition, restated as a
regression model to better evaluate differences based on agent and adenoma char-
acteristics. The mean and median size at adenoma transition to preclinical cancer
are exp(μγ + 0.5σ 2

γ ) and exp(μγ ), respectively, where μ is given by equation (4).

The variance in the size at transition is (exp(σ 2
γ ) − 1)) exp(2μγ + σ 2

γ ).
Prior distributions of adenoma transition parameters are based on estimated pos-

terior distributions from CRC-SPIN 1.0 calibration when parameters are function-
ally related. For other parameters (i.e., γ5 and σγ ) we used uniform prior distri-
butions with wide, but plausible, ranges. The minimum prior value for σγ was set
to 0.5 to ensure a minimum amount of between-adenoma variability in the size
at adenoma transition, which is a characteristic that may not be well informed by
calibration targets, yet can impact the effectiveness of CRC screening.
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A.4. Model for sojourn time. CRC-SPIN 2.0 uses a Weibull distribution to
model sojourn times for preclinical cancers in the colon with scale parameter λ1

and shape parameter λ2, as shown in equation (5). Under the proportional hazards
model sojourn time for preclinical cancers in the rectum also have a Weibull distri-
bution, with scale parameter λ1,rectum = λ1 exp(λ3)

−1/λ2 and shape parameter λ2.
Under this model mean sojourn time is λ1(1 + 1/λ2) for cancers in the colon
and λ1,rectum(1 + 1/λ2) for cancers in the rectum, where (·) is and the gamma
function. Prior distributions allow sojourn time to range from 2.0 to 3.9 years for
cancers in the colon and from 1.2 to 6.2 years for cancers in the rectum. This range
for mean sojourn time is consistent with published estimates (e.g., the TAMACS
study (Chen et al. (1999)) reported an estimated mean sojourn time of 2.85 years
with a 95% confidence interval 2.15 to 4.30 years) and findings from a validation
study (Rutter et al. (2016)) which suggested that mean sojourn times are in the
range of two to four years.

A.5. Simulation of lifespan and colorectal cancer survival. The CRC-SPIN
2.0 model first simulates the stage at clinical detection given sex and age at detec-
tion, and then simulates size at detection conditional on stage. (In contrast, the
CRC-SPIN 1.0 model simulated size, and then stage conditional on size.) The
CRC-specific probability of survival after diagnosis is calculated given agent sex,
cancer location (colon versus rectum), age at diagnosis and year of diagnosis using
an approach described by Hakulinen (1977).

A.6. Simulated screening. Colonoscopy sensitivity for adenoma and pre-
clinical CRC detection is based on a quadratic function of lesion size (s) that
was successfully used in the CRC-SPIN 1.0 model. For adenomas we assume
P(miss|size = s ≤ 15mm) = 0.34 − 0.0349s + 0.0009s2, P(miss|size = 15 < s ≤
30mm) = 0.01, P(miss|size = 30 < s ≤ 40mm) = 0.005 and P(miss|size = s ≥
40mm) = 0.001. This function results in sensitivity that is consistent with a ob-
served findings from the 1990s (Hixson et al. (1990), Rex et al. (1997)). Sensitiv-
ity is 0.76 for a 3mm adenoma, 0.87 for a 7.5mm adenoma and 0.95 for a 12mm
adenoma. For preclinical cancers we assume sensitivity that is the maximum of
0.95 and sensitivity based on adenoma size, so that colonoscopy sensitivity is 0.95
for preclinical cancers 12mm or smaller, and sensitivity is greater than 0.95 for
preclinical cancers larger than 12mm.

Participants in the Pickhardt et al. (2003) study underwent both computed to-
mography colonography (CTC) and colonoscopy for the purposes of evaluating the
accuracy of CTC, primarily for adenomas 6mm and larger. To simulate receipt of
both CTC and colonoscopy, we assume that the probability of missing an adenoma
on CTC, given that it was missed on colonoscopy, is equal to P(miss|size = s)0.25

to build in correlation in the two tests due to adenoma characteristics.
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APPENDIX B: PROGRAMMING AND COMPUTING ENVIRONMENT

We utilized the EMEWS framework (Ozik et al. (2016)) to implement a dy-
namic HPC workflow controlled by the IMABC algorithm. EMEWS is free and
open source code that is available at https://emews.github.io. EMEWS, built on
the general-purpose parallel scripting language Swift/T (Wozniak et al. (2013)),
allows for the direct integration of multilanguage software components (in this
case IMABC and CRC-SPIN 2.0) and can be used on computing resources rang-
ing from desktops and campus clusters to supercomputers. The resulting IMABC
EMEWS workflow is driven directly by the IMABC R source code, obviating the
need for porting the code to alternate programming languages or platforms for
the sole purpose of running large-scale computational experiments. An IMABC
R-package is under development. Collaborators interested in working with a pre-
liminary version of the code should contact corresponding author.

The experiments were performed on the Cray XE6 Beagle at the University of
Chicago, hosted at Argonne National Laboratory. Beagle has 728 nodes, each with
two AMD Operton 6300 processors, each having 16 cores, for a total of 32 cores
per node; the system thus has 23,296 cores in all. Each node has 64 GB of RAM.
Experiments were also run on the Midway2 cluster at the University of Chicago
Research Computing Center. Midway2 is a hybrid cluster and includes both CPU
and GPU resources. For this work the CPU resources were used, consisting of 370
nodes of Intel E5-2680v4 processors, each with 28 cores and 64 GB of RAM.
Swift/T, the underlying EMEWS workflow engine, allows for the abstraction of
resource specific settings (e.g., scheduler type and compute layouts) for a variety
of target computing resources. Thus, once the IMABC EMEWS workflow was
developed, it could be run on both the Beagle and Midway2 clusters with only
minimal configuration modifications.

The experiment reported here used 80 nodes on Beagle with four worker pro-
cesses per node (to account for the memory footprint of CRC-SPIN 2.0) for a total
of 320 worker processes, each of which could concurrently execute an individual
model run. The total compute time was 29.4 hours or 2352 node-hours.
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