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An idealized version of a label-free discovery mass spectrometry pro-
teomics experiment would provide absolute abundance measurements for a
whole proteome, across varying conditions. Unfortunately, this ideal is not
realized. Measurements are made on peptides requiring an inferential step to
obtain protein level estimates. The inference is complicated by experimental
factors that necessitate relative abundance estimation and result in widespread
nonignorable missing data. Relative abundance on the log scale takes the form
of parameter contrasts. In a complete-case analysis, contrast estimates may be
biased by missing data, and a substantial amount of useful information will
often go unused.

To avoid problems with missing data, many analysts have turned to single
imputation solutions. Unfortunately, these methods often create further diffi-
culties by hiding inestimable contrasts, preventing the recovery of interblock
information and failing to account for imputation uncertainty. To mitigate
many of the problems caused by missing values, we propose the use of a
Bayesian selection model. Our model is tested on simulated data, real data
with simulated missing values, and on a ground truth dilution experiment
where all of the true relative changes are known. The analysis suggests that
our model, compared with various imputation strategies and complete-case
analyses, can increase accuracy and provide substantial improvements to in-
terval coverage.

1. Introduction. Label-free mass spectrometry proteomics experiments pro-
vide quintessential applications for the field of missing data statistics. The sources
of missing data are rooted in known technological and scientific processes, and
the proportion of missing values will often exceed 50% of a dataset [Karpievitch
et al. (2009)]. Consequently, well-informed missing data models can be used to
substantially impact the final results of an analysis. However, straightforward ap-
plications of missing data techniques are complicated by the unusual nature of pro-
teomics data. In the experiments we explore, all of the parameters of interest are
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contrasts. Understanding how missing data affects these contrasts has profound im-
plications for informing data analysis techniques and interpreting the results. Mod-
eling a missing data mechanism allows us to avoid numerous pitfalls associated
with complete-case analyses and imputation based methods while utilizing infor-
mation in the data that would otherwise not contribute to estimation. Specifically,
we create a selection model which is informed by all the observed and missing
values within each protein, along with an overall estimated relationship between
outcomes and the probability of missingness. An R package for the implementation
of the selection model can be installed from www.github.com/ColtoCaro/missMS.

At the highest level proteomics is the large scale study of the structure and func-
tion of proteins. The properties and methods discussed in this paper pertain to a set
of experiments called data-dependent, label-free, bottom-up, discovery proteomics
[Chen and Yates (2007)]. This paper does not apply to methods using isobaric tags
[Ross et al. (2004), Thompson et al. (2003)], top-down proteomics [Catherman,
Skinner and Kelleher (2014)], data-independent analysis [Röst et al. (2014)] or
targeted proteomics [Liebler and Zimmerman (2013)]. Furthermore, our discus-
sion is limited to a single step in a complicated workflow, where peptide level
measurements are used to make protein level inferences. The full workflow for a
proteomics experiment goes far beyond this with software packages typically per-
forming analyte identification, quality control, false discovery rate filtration and
many other essential informatics tasks. These aspects of the experimental work-
flow are outside of the scope of this paper, but their importance cannot be over-
stated.

If the rest of the workflow has not been done well, then no statistical modeling
will ever make up for the loss in quality. However, we will demonstrate that the
choice of statistical methodology alone can profoundly alter the final results of a
discovery mass spectrometry experiment. The challenges to statistical inference
posed by missing data are substantial and progress can only be made by isolating
one problem at a time. With this goal in mind we will explore the challenges of
estimating relative protein abundance without regard to the prerequisite steps in the
overall workflow. Consequently, the dangers and advances discussed in this paper
can be applied to any workflow capable of exporting peptide level intensities prior
to protein level estimation.

In Section 2 we will discuss the pertinent experimental details that motivate our
data generating model, with a special focus on sources of missing data and the
necessity of relative quantification. In Section 3 we discuss various methods that
have been proposed for handling missing data in proteomics experiments. We then
define our selection model and discuss a general framework for protein estimation.
In Section 4 we analyze simulated data, real data with simulated missing values
and finally a ground truth dataset with known relative changes that we created with
a series of dilution experiments. The first two analyses are designed to demonstrate
the basic relationships between missing data and contrast estimation in the simplest
possible setting. We show that our missing data model can improve accuracy and
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that nonignorable missingness can cause a divergence between methods that would
otherwise provide identical results. This divergence has important implications for
how the results of a study are summarized and used in downstream analyses. The
analysis of the ground truth dilution experiment presents more complicated pat-
terns of missing data and shows the advantages of our selection model in terms of
accuracy and interval coverage. Section 5 contains a discussion of our findings and
highlights areas for future research.

2. Pertinent experimental details. The label-free quantification (LFQ) ex-
periments described in this paper are referred to as bottom-up proteomic methods
because inference about relative protein abundance is made from measurements
on protein fragments called peptides. A typical bottom-up proteomic workflow
involves the extraction of proteins from cells, tissues or biological secretions fol-
lowed by proteolysis which cleaves proteins into peptides. Typically cleaving pro-
teins into peptides is achieved by adding a protease (usually trypsin) that breaks
the peptide bond after lysine and arginine amino acid residues. After this digestion
peptides from the sample are separated according to each peptide’s hydrophobic-
ity, where the more hydrophobic peptides will be the last to elute. This process is
referred to as liquid chromatography. As they elute peptides are ionized into the
gas phase and enter a mass spectrometer, where the number of ions corresponding
to each mass is measured. How exactly the measurement is made depends on the
specific technology. Two commonly used types of mass spectrometers are time of
flight and Orbitrap® instruments. All of the data generated in this paper were an-
alyzed with Orbitrap® mass spectrometers. Regardless of the specific technology,
the process of separating ions and measuring their masses happens continuously
as analytes elute.

Peptides with the largest signals (relative to whatever else is simultaneously pro-
cessed) will be selected for fragmentation, and a second mass measurement (MS2)
will be used to sequence the peptide. The process of selecting peptides for a sec-
ond mass measurement, based on the relative magnitude of the counts, is called
data-dependent analysis (DDA). In an iTRAQ or TMT experiment quantification
also takes place during or after MS2, which has important consequences for the
missing data mechanism and places these technologies beyond the scope of this
paper. Each identified peptide may be associated with many ion counts measured
through time. The term “peptide intensity” refers to a summary of these measure-
ments, which is usually computed as either an area under an interpolated curve or
as the maximum observed measurement [Cox and Mann (2008)]. A more compre-
hensive description of the LFQ workflow can be found in Sandin et al. (2011). In
this manuscript we will focus on only the experimental details which motivate our
statistical model.

2.1. Relative abundance. Advances in mass spectrometry technology have
provided us with a tremendous ability to manipulate ions. Consequently, ioniza-
tion of peptide molecules is an indispensable aspect of a mass spectrometry based
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proteomics experiment. Critically, not all of the peptides from the sample will suc-
cessfully ionize and enter the mass spectrometer. Certain peptides tend to ionize
more efficiently, while others will not ionize at all. The probability that a given
peptide molecule will ionize can be referred to as ionization efficiency.

Ionization efficiency is a function of the chemical structure of a peptide and
other properties of the solution at the time of ionization. For example, the
presence of other co-eluting peptides, sometimes referred to as matrix interfer-
ences, or changes in the salinity of the solution could alter ionization efficiency.
Schliekelman and Liu (2014) found that competition for charge between back-
ground peptides may actually be a more important factor than abundance in de-
termining if a peptide will be detected. Regardless of which factors are most im-
portant, ionization efficiency can cause the proportion of peptides that enter into
the mass spectrometer to be drastically altered. Consequently, intensities are not a
monotone increasing function of concentration.

One peptide might be far more abundant than another in a given sample, but
a lower ionization efficiency could reverse the relationship for peptide intensities.
The observed intensities represent the abundance of a peptide found in the sample
multiplied by the proportion of those molecules that are successfully measured by
the mass spectrometer. Fortunately, if the proportion parameter, p, is considered to
be a property of the individual peptide, it will cancel out when put into a ratio with
the same peptide from another sample. This relationship is outlined in Table 1.
In theory the assumption of equivalent ionization efficiencies for each peptide
is sound since the determining factors should be equivalent from run-to-run. Of
course in practice this may not be true. Unexpected changes in electrospray volt-
age or flow rate could lead to slightly different probabilities from run-to-run. One
of the motivations for multiplexing with isobaric tags [Thompson et al. (2003)]
is that such variations will affect all of the experimental conditions in the same
way since they are measured concurrently. Thus, peptide by run interactions can
be used as a blocking variable. However, in a label free experiment, condition and
run are usually confounded, leaving little choice but to allow run-to-run variations
to increase to the overall experimental error.

TABLE 1
This table shows the relationship between relative protein abundance and the intensities of a peptide

belonging to that protein. p is the probability that the peptide ionizes and enters into the mass
spectrometer. pW and pZ represent the expected intensities from samples A and B, respectively

Protein abundance Peptide abundance Ion abundance

Sample A X W pW

Sample B Y Z pZ

Ratio X
Y

= μ W
Z

= X
Y

= μ
pW
pZ

= μ
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Ionization efficiency explains why proteomics experiments are often referred to
as relative quantification experiments. When modeling the data from a log-normal
distribution, parameter ratios take the form of contrasts on the log scale. The con-
trasts give us information on the relative abundance that existed in the original
sample, whereas estimates of parameters that describe the average log intensity for
a protein are confounded by variations in the ionization efficiency. This distinction
becomes especially important when considering the impact of missing data.

2.2. Intensity-dependent missingness. Unlike microarray experiments in
which missing values often comprise about 1–11% of the data [de Brevern, Hazout
and Malpertuy (2004)], proteomics datasets almost always have a much higher per-
centage of missing data. A multitude of sources create this missing data problem.
When combined, the missing data mechanisms yield data where both missing at
random (MAR) and nonignorable missing values, are found throughout the en-
tire range of intensities. We say that a missing value is nonignorable when the
probability that the random variable will be unobserved is dependent on the under-
lying value. In contrast, MAR peptides are missing for reasons entirely unrelated
to their intensities. In this section we will explain some of the primary sources of
both MAR and nonignorable missingness.

2.2.1. Detection limit. Mass spectrometers have both theoretical and practi-
cal limits of detection (LOD). The theoretical LOD is the minimum number of
ions a given instrument can capture while still producing an ion current with ad-
equate signal enhancement. Although any peptide exceeding this number of ions
could theoretically be detected by the mass spectrometer, every sample contains
a considerable amount of noise. This noise results in a practical detection limit,
whereby the software fails to distinguish peptide peaks from background noise.
How exactly the processing software delivers signal intensities depends on both
the type of mass spectrometer and even the instrument vendor. For this reason
sample-related factors that either result in a higher practical detection limit or a
decreased intensity due to the nature of the sample can result in missing values.
As discussed previously, a major driver in this setting is the peptide ionization effi-
ciency. If the ionization efficiency is low then the intensity will be low and may fall
below the detection limit. This is a form of nonignorable missingness where the
probability of a missing value is directly related to the magnitude of the intensity.

2.2.2. Data-dependent tandem mass spectrometry. Sequence identification
occurs by selecting a peptide peak from the first scan (MS1) in a mass spectrom-
eter and then mass analyzing the fragments of the ions that generated the MS1
peak. Many methods utilize DDA, whereby peptides are selected for MS2 accord-
ing to the rank order of their signal intensities during a brief window of time. In a
DDA analysis peptides that are not identified will usually result in missing values.
Thus, even above the practical LOD, an intensity dependent process can result in
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nonignorable missing values. Consequently, in DDA experiments we need to con-
sider two sources of nonignorable missingness, one which occurs below a random
detection limit and another above.

2.2.3. Sources of random missingness. A peptide might appear in one sample
and not in another simply because it was misidentified. Identification algorithms
are designed to minimize this problem, but false identifications will still be present
in every dataset. A similar problem comes from shared peptides; that is, peptides
that are properly identified but that could belong to more than one protein. Many
software programs assign shared peptides to the candidate protein highest number
of other identified peptides; see Cox and Mann (2008). However, more conserva-
tive approaches could treat peptides with no unique labels as missing. Missingness
of this sort would be due to the sequence mapping and not the magnitude of the
outcome. It is also possible that due to interfering ions, a particular peptide will
simply fail to be identified with any certainty, resulting in more missing values.
It is probably safe to classify missingness caused by classification errors as MAR
since the mechanisms are independent of the intensities.

The MAR distinction is important because ignoring MAR values will not result
in biased estimates. However, since MAR values can occur throughout the whole
range of intensity values, the problem of determining which peptides are MAR is
likely intractable. In the next section we present a way to incorporate a missing
data mechanism without attempting to decipher the exact source of missing data
for each peptide.

3. Methods.

3.1. The mean model. We first need discuss the mean model for a complete
case analysis. For the rest of this paper we assume that intensities have undergone
a log base 2 transformation so that additive models are appropriate, and the ratios
of interest are contrasts.

A common experimental design might include factors for protein, peptide
within protein, sample and run. Protein parameters might represent unique pro-
tein identifications nested within conditions, biological replicates or even groups
of proteins that researchers expect to share a parameter. Similarly, the condition
parameters might represent disease states, time courses or just biological replica-
tion. The exact design of the experiment is not relevant for the purposes of this
paper.

Let the j th peptide j (i) = 1, . . . , Ji , be nested within the ith protein, i =
1, . . . , I , in condition k, k = 1, . . . ,K and replicate l, l(k) = 1, . . . ,Lk . Then for a
given peptide the number of molecules in a sample should depend on the sample,
the peptide and possibly some systematic experimental deviations in the form of a
run effect. The mean model for peptide abundance, aijkl , is given by

E(aijkl) = β0 + αi + βj(i) + γk + δl(k) + ηik,
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where the difference in protein abundance across conditions, ηik , would typically
be the parameter of interest. Systematic variations in conditions, γk and replicates
δl(k) are usually considered to be artifacts since the experiments are built on the
assumption that overall protein abundance will be the same from run-to-run. Note
that this is more than a theoretical assumption. Multiple steps in the experimental
procedure, prior to mass analysis, repeatedly alter sample concentration to ensure
that an equal amount of total protein is contained in each sample.

Unfortunately, we never directly observe the peptide abundance that was in the
solution. So the model for aijkl is purely theoretical. When considering a model
for the observed intensities yijkl , we must first consider a model for the probability
that a peptide will ionize and enter a mass spectrometer πijkl . This unobserved
probability can be conceptualized with a slightly different framework,

πijkl = β∗
0 + β∗

j (i) + δ∗
l(k),

where the sum of parameters is constrained between 0 and 1.
Notice that we have not included an interaction term for peptide level ionization

effects. Such an interaction could be used to model peptides sticking to an elution
column or run-to-run variations in ionization efficiency, labeling efficiency, pep-
tide digestion, spray instability and over-labeling. Unfortunately, in a label-free
experiment a peptide-by-run interaction results in a saturated model. Attempting
to estimate anything else, including the contrasts of interest, will result in identifi-
ability problems. Accordingly, great care must be taken to minimize the run-to-run
variation experimentally.

Having decided on appropriate models for abundance and ionization we can
describe the model for the observed intensities with the sum

E(yijkl) = (
β0 + β∗

0
) + αi + (

βj(i) + β∗
j (i)

) + γk + (
δl(k) + δ∗

l(k)

) + ηik.

Notice that in this model, though many parameters can only be interpreted as a
combination of ionization and abundance effects, the contrast between two sam-
ples k and k′ with all other factors fixed, (γk + ηik − γk′ − ηik′), only contains
parameters from the abundance model. Thus, even though we only make observa-
tions on the number of ions that enter a mass spectrometer, estimating contrasts
still provides a way to make inference on the original sample.

A potential alteration to this model may be needed for researchers working with
large population level studies who need to differentiate between biological and
technical replicates. One way to achieve this would be to completely nest bio-
logical replicates within a protein and technical replicates within each biological
replicate. The parameter of interest, at the population level, could then be defined
as a hierarchical mean parameter for the contrasts shared by all of the biological
replicates; for example, if q(i), q = 1, . . . ,Q indexes biological replicates, then
letting the contrast parameter ηqk ∼ N(μi, τ ) would make μi be the parameter of
interest in the population level study. This example highlights an important and
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unusual aspect of proteomics experiments; statistical inference is required just to
figure out what was in a single sample. Simultaneously making inference to both
protein levels within individual samples and population level parameters would
require complex models like the one just suggested. However, exploring the prop-
erties of such models goes beyond the scope of this paper where we aim to study
the effects of missing data on even the simplest of models.

We now define the notation used in this paper for an arbitrary design matrix
Xn×p , parameter vector θ , of length p and outcome vector y, of length n. The mean
model can be described as E(y) = Xθ . We use the matrix subscripts to denote sub-
matrices such that X[·,i] denotes the ith column of X and θ[j ] denotes the j th entry
of θ . Negative indices imply a vector component, matrix column or row has been
removed. For the Bayesian formulation we assume that y|θ ∼ N(Xθ, σ 2In×n),
where In×n is an identity matrix. Further, let the ith entry of θ , θi ∼ N(βi, τ

2
i ),

and for all i �= j , θ i ⊥ θ j . The hyperparameters βi, τ
2
i , σ 2 could be treated as ran-

dom variables, or they could be fixed real numbers. Later in this paper we will
assign noninformative distributions to the hyperparameters. However, the use of
informative priors might be a desirable alternative as researchers often have a very
good idea of the range of values their experiments will produce.

3.2. Modeling missingness. Many efforts have been made to correct for miss-
ing data biases in proteomics experiments. However, the vast majority of solu-
tions involve using single imputations. By default, MSstats [Clough et al. (2012)]
uses an imputation from an accelerated failure time (AFT) model which is sim-
ilar to the approach proposed by Tekwe, Carroll and Dabney (2012). Inferno
by Taverner et al. (2012) allows for K-Nearest Neighbors (KNN) imputation
[Troyanskaya et al. (2001)] and in previous versions allowed for imputation from
a mixture model proposed by Karpievitch et al. (2009). Many more single impu-
tation methods have been evaluated in review papers by Lazar et al. (2016) and
Webb-Robertson et al. (2015) including simple imputations of column means and
column minimums as well as an imputation based on the singular value decompo-
sition originally proposed for microarray data [Owen and Perry (2009)].

A few imputations operate on the protein level including an algorithm in the
popular Perseus software package [Keilhauer, Hein and Mann (2015)] and another
based on a survival model Tekwe, Carroll and Dabney (2012). Since these imputa-
tions occur after protein estimation has occurred, they do not address the problems
discussed in this manuscript and will not be discussed further.

Lazar et al. (2016) reported that missing not at random (MNAR) imputation
methods were problematic since the range of imputed values is not representative
of the true range of missing values. These MNAR imputations along with the the
AFT model assume that every missing value falls below or at some lower limit of
detection. As discussed in Section 2.2, MAR values can occur throughout the entire
range of values. Thus, imputing below a detection limit may inappropriately take
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values that should be MAR above the estimated detection limit and forces them
to be too small. Webb-Robertson et al. (2015) evaluated many different single im-
putation methods in regards to accuracy and downstream effects on classification
problems. They found that no one method was superior and in certain situations not
using any imputations improved performance. Consequently, they recommended
only using imputation when absolutely necessary. We largely share their concerns
but believe that the dangers of single imputation methods go further still.

Imputing from an inappropriate model may bias point estimates, but a larger
problem is poor estimation of experimental error. As explained by Little and
Rubin [(1987), Chapter 4.4], standard errors are systematically underestimated
when nothing is done to account for imputation uncertainty. Karpievitch, Dabney
and Smith (2012) sought to resolve the underestimated variance through a post-
estimation adjustment of p-values. Whether or not this effort succeeds, it only
aims to correct p-values, and does not address concerns regarding point and in-
terval estimation. Furthermore, though not accounting for imputation uncertainty
may underestimate error on average for any given protein, which will often have
only a small number observations, the results are unpredictable. The error may be
too small or, as we will show, it may be far too large as a result of imputing values
far away from where the true values would have been.

Problems with single imputations are amplified in the field of proteomics due
to the nature of a relative quantification experiment. Since the parameters of in-
terest are contrasts, imputations might hide the fact that certain contrasts are ines-
timable. Furthermore, even if the contrast is estimable, it might only be estimable
through the recovery of interblock information [Scheffé (1999), pages 170–178].
In the absence of missing data, most estimation techniques will rely solely on in-
trablock contrasts. Consequently, an imputation may result in the failure to recover
interblock information precisely when it is most needed. For these reasons we will
attempt to model missing data without using any imputations.

One missing data solution that does not use single imputations is the mixture
model proposed by Karpievitch et al. (2009), which proposes a maximum likeli-
hood based approach. They explicitly model a combination of censored values be-
low a peptide-specific detection limit and a missing at random mechanism above
this detection limit. This does not exactly meet our requirement for allowing non-
ignorable missingness throughout the whole range of values, but it is a very inter-
esting idea and might serve as a useful approximation. Unfortunately, their algo-
rithm relies on the existence of fixed effects estimates as initial conditions. This
works well for the authors because they employ a filtering algorithm that removes
proteins with either low information content or that contain any inestimable con-
trasts. While this almost certainly leads to a more reliable final set of inferences,
the amount of discarded data could be substantial, potentially resulting in lost dis-
coveries that would have been detected by simpler methods.

To escape the dangers of single imputations while attempting to utilize the en-
tirety of a collected dataset, we model the probability of missingness in the form
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of a selection model [Little and Rubin (1987), Chapter 15]. In a selection model
the likelihood is parametrized in terms of the probability of a missing value con-
ditional on the outcome. We refer to this as the selection model for proteomics
(SMP).

Let I () be an indicator function, and let Ri = I (yi is observed), where yi is the
ith response, so that Ri = 1 when the ith outcome is observed and Ri = 0 when the
value is missing. We assume (Ri |yi) ∼ Bernoulli(�(a + byi)) where a and b are
real valued parameters and �() is the cumulative distribution function of a N(0,1)

random variable. We use R to denote the vector of all Ri values for i = 1, . . . , n.
This missing data mechanism combined with the mean model from the previ-

ous section defines the data generating model. An advantage of this missing data
mechanism is that full conditionals, for use in a Gibbs sampler, are straightfor-
ward to derive. Two nonstandard relationships are required: the distribution of a
missing value, y, given everything else f(y|θ ,R,a,b), and the distribution of θ i given
everything else, f(θi |Y,θ [−i],R).

Derivations (shown in the Supplementary Material [O’Brien et al. (2018b)])
reveal that if the mth data point, ym, is missing then the full conditional has an
extended skew normal distribution [Azzalini (2014)],

f(ym|θ ,R,a,b)(x) = φ(
x−μx

σ
)�(−a − bx)

σ�(ω)
,

where

μx = (Xθ)[m], ω = −a − bμx√
1 + (σb)2

.

We also find that

(θi |y, θ [−i],R) ∼ N

(βiσ
2 + τ 2

i

∑J
j (yi − (Xθ)∗[j ])

σ 2 + τ 2
i I

,
σ 2τ 2

i

σ 2 + τ 2
i J

)
,

where (Xθ)∗ is the product of the matrix X without the ith column, with the vector
θ without the ith component. The indices j, . . . , J represent the row indices for
which X[·,i] = 1. In other words, j, . . . , J represent the data points that depend
on θi .

It should be noted that this model is similar to one proposed for iTRAQ data
by Luo et al. (2009), where the probability of a missing value is modeled with a
logistic regression. However, iTRAQ and other types of isobaric tag data are fun-
damentally different from LFQ data. With isobaric labeling ions from all of the
conditions contribute to the MS1 signal. Consequently, the missing data mecha-
nism should not be a function of a single intensity, rather it would be a function of
the ion count from all conditions combined. This is a very difficult problem since
changes to any one of the conditions could have resulted in a smaller sum. Further
complicating the situation, the sum of observed intensities in an isobaric tag exper-
iment will not actually add up to the corresponding observed MS1 signal. This is
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in part because the observed signals are constrained, resulting in a type of compo-
sitional data [O’Brien et al. (2018a)]. Consequently, the reasoning that motivated
the SMP model is not valid when considering data from an isobaric tag proteomics
experiment.

4. Results. To test model performance we analyze simulated data, real data
with simulated missing values and a new ground truth dataset with known relative
abundances. The first two analyses are designed to elucidate the important rela-
tionship between missing values and relative abundance estimates in the simplest
possible setting. The ground truth experiment is used to highlight more complex
missing data patterns and to evaluate model performance in terms of accuracy and
interval coverage without resorting to any simulations.

We first explore the relationship between missing data and contrasts taken
within peptide blocks. We will show that missing data can result in a substantial
divergence between contrast estimates from models that would otherwise yield
equivalent results. As explained in Section 2, the parameters of interest should
be the contrasts between conditions. The danger we wish to emphasize is that
researchers might plot or report estimates of nonrelative parameters without real-
izing that these results are not equivalent to what would be obtained if contrasts
were estimated directly. Scientifically, it should be clear that ionization efficiency
prevents the estimation of absolute abundance. Yet, in a statistical model a protein
term exists, and it is difficult to see why some sort of quasi-absolute abundance
should not be estimated directly.

This notion of quasi-absolute abundance is similar to the a number of published
methods including a linear model based protein quantification proposed by Clough
et al. (2012), iBAQ, which is computed as the average protein intensity adjusted
for the theoretical number of peptides that could be observed [Fabre et al. (2014)],
and QRollup, which estimates proteins using the average of the upper 66% of pep-
tides within a protein [Polpitiya et al. (2008)]. Clough et al. (2012) are careful to
explain that their protein quantification estimates differ from absolute abundance
estimates because they should not be used to make any comparisons between dif-
ferent proteins. They also observe that their protein quantification will differ from
relative quantification when missing data is present and suggest that the relative
estimates will be more accurate. It is this relationship between relative abundance
estimates and missing data that we wish to explore by analyzing the simplest pos-
sible LFQ proteomics experiment: the comparison of proteomes between just two
conditions where the contrast is estimable given the observed data alone.

4.1. Two-sample model. Data was simulated from the SMP model where the
design matrix contains factors for protein within sample and peptide within pro-
tein. Details of the simulation, including the full specification of the SMP model,
are provided in the Supplementary Material [O’Brien et al. (2018b)]. We examine
accuracy in terms of root mean squared error (RMSE) of the posterior means from
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the SMP model along with estimates from five other methods for relative protein
estimation: a two-way ANOVA (twoway), a one-way ANOVA (oneway), a mixed
model (MM), the two-way ANOVA after imputing column minimums (cMin), and
the two-way ANOVA after imputing column means (cMean). Details of model im-
plementation are provided in the Supplementary Material [O’Brien et al. (2018b)].
Notice that in the absence of missing data contrast estimates from the mixed model
and the one-way and two-way ANOVAs would all be equivalent.

When simulating missing values, not all protein contrasts will be estimable. For
the rest of this paper we will refer to proteins as either estimable or inestimable
based on whether or not the contrasts would be estimable in the complete case
two-way ANOVA model. This terminology will be used even in conjunction with
Bayesian models for which estimability is not relevant. In a two-sample fixed ef-
fects model that includes peptide blocks, for a protein contrast to be estimable
at least one peptide must be observed in both samples. In larger datasets the dis-
tinction becomes more complicated. An algorithm for determining which model
parameters are estimable is detailed in the Supplementary Material [O’Brien et al.
(2018b)]. For the simulation we examine estimates from only estimable contrasts
so that comparisons are being made on equivalent sets of simulated proteins.

The results in Figure 1 show that the SMP model does appear to provide an
increase in accuracy; the column based imputation methods appear to be purely
detrimental, and there is a clear divergence in performance between the one- and
two-way ANOVAs. The contrast in a one-way ANOVA is essentially just the av-
erage intensity in one condition minus the average from the other. While in the
two-way ANOVA, when a peptide is observed in one sample but not in the other,
the observed peptide contributes nothing to the contrast estimate. Consequently,
the divergence between the one- and two-way ANOVAs demonstrates why it is ill
advised to estimate nonrelative protein effects. When dealing with nonignorable
missing data, the contrast between protein averages is not the same as the direct
estimate of a protein contrast.

Two obvious weaknesses to this study are that the simulation is unfairly biased
toward the SMP model, and that there are more intelligent ways to perform an im-
putation. The former concern will be addressed by repeating the simulations with
two distinct missing data mechanisms—analyzing real data with simulated miss-
ing values and finally testing performance on a dilution experiment with known
true ratios. The latter concern will be addressed only with the dilution experiment
as better imputation methods often rely on an abundance of samples in order to
identify patterns in the data. Two samples provide very little information to rely
upon for imputation, hence the use of simple column summary statistics.

Simulation results from data generated with different missing data mechanisms
(one using a quadratic logit probability model and another using a combination
of random detection limits and a missing completely at random mechanism) can
be found in the Supplementary Material [O’Brien et al. (2018b)]. Interestingly,
these analyses provide very similar results in terms of accuracy. In all cases SMP
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FIG. 1. Root mean squared error (RMSE) of log base 2 fold changes from 500 simulated data
sets where missing values were simulated from a probit missing data mechanism. Only estimable
contrasts are included in this plot.

provides a substantial improvement; there is a noticeable divergence between the
ANOVAs and the imputations always perform poorly.

To further validate these results, we analyze data obtained from two breast can-
cer tumor tissues (Basal and Luminal A). The data, described in the Supplementary
Material [O’Brien et al. (2018b)], can be found in the Supplementary Tables. The
problem with using real data to evaluate methodologies is that we never know the
true values. However, we can still use the data to to analyze the effects of non-
ignorable missingness on contrast estimation. To this end, we reduced the cancer
data to only peptides that were observed in both conditions. We then simulated
missing values with a combination of MAR and random limits of detection. By
increasing the mean of the random detection limits and the percentage of random
missingness, details in the Supplementary Material [O’Brien et al. (2018b)], we
generated seven datasets with approximately 1, 5, 10, 20, 30, 40 and 50 percent
missing values. Each dataset was analyzed with the six methods, and root mean
squared error was computed by using estimates from the two-way ANOVA com-
puted on the complete data as the truth. Divergence from these baseline results are
shown in Figure 2.

These results provide further support for the three lessons from the simulation
studies. Once again the SMP provided a substantial improvement to accuracy, and
both the mixed model and the two-way ANOVA steadily outperformed the one-
way ANOVA and the two imputation methods.
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FIG. 2. Root mean squared error (RMSE) of log base 2 fold changes with varying amounts of
simulated data. The cancer data was reduced to remove all missing values. Missing data was then
simulated and the estimates on the complete data were treated as the true values for computing
RMSE. Only contrasts estimable at all levels of missingness are included in the analysis.

While these studies offer simplicity and a clear demonstration of the divergence
between methods, a larger dataset is necessary to show the full complexity of miss-
ing data patterns and the effects of different methodologies on both point and in-
terval estimation.

4.2. Accuracy and coverage. The assessment of accuracy in a mass spec-
trometry experiment is a difficult task because we rarely know what proteins
will be observed, let alone their true values. Nevertheless, many datasets that in-
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clude known relative abundances of proteins can be found on websites such as
http://compms.org/resources/reference-data. We expect the effects of missing data
to be the strongest for label-free experiments that utilize DDA. Unfortunately, we
were able to find only one benchmark dataset generated with this technology, and
it contains only six proteins with known abundance ratios [Mueller et al. (2007)].
For this reason we conducted our own dilution experiment. Using three different
human cell lines analyzed at four different dilution levels (1 : 4 : 16 : 100) with
either one or two technical replicates, we generated LFQ DDA data with known
relative abundances. Details of the dilution experiment and models used for anal-
ysis can be found in the supplement [O’Brien et al. (2018b)].

Having established a ground truth dataset, we compare seven estimation strate-
gies in terms of accuracy and coverage. The SMP model is compared against the
two-way ANOVA, the mixed model and four different imputation strategies. Now
that we have more data we can utilize more advanced imputation techniques. In
addition to the column minimum imputation from the previous section, we also
add a KNN imputation, an SVD imputation and the imputation of the minimum
observed intensity for each peptide sequence (pMin). Of critical importance, we
no longer confine our analysis to parameters that are estimable. The distinction
between estimable and nonestimable parameters proves to be very important as
some methods do not adequately capture the error associated with estimation in
these particularly difficult situations. Consequently, reference selection also be-
comes highly important as the reference choice will determine what comparisons
are estimable, and in a complete case analysis it will determine which data points
end up being used in estimation.

The results presented in Table 2 show convincingly that the effects of miss-
ing data can be profound. This analysis provides further support for the lessons
from the simulation analyses and the cancer data. SMP once again provides the
best accuracy and the imputation methods continue to hurt performance relative to
complete case analyses. Regarding the inestimable contrasts, SMP still provides
the most accurate estimates and the cMin and pMin imputations outperform both
SVD and KNN.

TABLE 2
Root mean squared error from the dilution experiment

SVD KNN pMin cMin SMP MM 2-Way

Estimable 1.72 2.28 1.43 2.08 0.94 1.13 1.19
Inestimable 4.39 5.48 3.51 3.48 3.30 NA NA

Accuracy of different missing data methods found in our dilution experiment. The square root of the
mean of squared errors, across all proteins, of log base 2 fold changes are presented for seven different
methods of analysis. Results are shown separately for proteins with estimable and inestimable relative
abundance contrasts.

http://compms.org/resources/reference-data
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TABLE 3
Interval coverage from the dilution experiment

SVD KNN pMin cMin SMP MM 2-Way

Estimable 0.66 0.66 0.76 0.85 0.82 0.61 0.71
Inestimable 0.14 0.25 0.24 0.79 0.65 NA NA

Interval coverage from different missing data methods found in our dilution experiment. Only pro-
teins that have intervals from all methods are included, that is, proteins with only a single peptide
have been removed. Results are shown separately for proteins with estimable and inestimable con-
trast parameters.

Just as important as our ability to accurately estimate relative abundance is the
ability to estimate the associated error. To this end, we examine the frequency in
which 95% confidence and credible intervals contain the true values. The results
are shown in Table 3. Interestingly, the best coverage comes from the cMin impu-
tation for both estimable and inestimable parameters while the second best perfor-
mance comes from the SMP model. The other imputation methods yield compa-
rable coverage numbers to the complete case analyses for estimable contrasts but
completely fail to compensate for the imputation uncertainty when the contrasts
are inestimable. This finding strongly highlights the risk of allowing imputations
to hide an inestimable contrast as many of these cases could end up creating false
positive discoveries.

To better visualize the performance of different algorithms, Figure 3 high-
lights two interesting proteins from this study. The contrast between condition
1 and 3 for protein A0A1W2PPX5, from the HEK cell line, can be estimated
in a complete case analysis only through the recovery of interblock information
[shown in part (A)]. The path to estimability is shown by the connecting lines in
part (C). In part (B), we show the contrast between conditions 1 and 2 for protein
A0A087X054, also from the HEK cell line, is inestimable in the two-way ANOVA
[however none of the conditions is completely missing as shown in part (D)].

Figure 3 reveals why the cMin method had the best coverage—the intervals are
substantially larger. This shows that in general it is not always true that imputations
will artificially decrease error estimation. The cMin method always imputes very
small values which works decently well in a dataset dominated by large changes,
but it also tends to drastically increase the error estimate.

We also see in Figure 3(A) that the SVD, KNN and pMin estimates are a bit
shifted to the left of the SMP, MM and 2-way estimates. The former methods
all rely solely on intrablock estimates while the latter are informed by interblock
information. In Figure 3(B) we can see that the SVD, KNN and pMin imputations
did not impute values that brought the estimate near to the true values. The SMP
estimate came close, and the interval is far removed from zero suggesting that
SMP would have been useful here to detect an interesting change even though
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FIG. 3. Two examples of how different techniques handle missing data. (A), (B) Point estimates and
95% intervals for seven different methods for relative abundance estimates between Run1 and Run3
in (C) and Run1 and Run2 in (D). The true values are shown with vertical dashed lines. (C), (D) Ob-
served peptides are shown with solid dots, and the connecting line shows a path to estimability.

the parameter was not estimable. cMin also would have achieved this goal, but
it does so with a rather high increase to the error estimation. Notice further that
only the error from the SMP model changes dramatically from the estimable to the
inestimable scenario (as it should).

Many software packages have various safeguards to remove proteins with se-
vere missing data problems. However, while these criteria will mitigate the prob-
lems, they are not sufficient to prevent imputations from hiding inestimable con-
trasts. Furthermore, these results shows that removing inestimable contrasts from
the dataset may not be desirable. Our predictions for inestimable contrasts have
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more error than the estimable ones, but there seems to be little reason to discard
this information so long as the increased error is properly taken in account.

5. Discussion. The combination of nonignorable missingness and relative
abundance estimation complicates the analysis of label-free discovery proteomics
experiments. Complete case analyses may yield biased results and often result in
discarding, or simply not making use of, large amounts of data. Single imputa-
tion solutions create a whole new set of problems by failing to account for impu-
tation uncertainty, masking inestimable contrasts and preventing the recovery of
interblock information.

Label-free data sets will commonly be missing upwards of 50% of the peptide
level data. Some efforts have been made to alleviate the missing data problem by
matching peptides across runs so that intensities can be obtained in the absence
of an identification [Cox et al. (2014)]. However, this approach does not solve the
missing data problem. A recent paper that used a peptide matching algorithm pro-
vides a dataset where 56.5% of the peptide level data is still missing even after the
matching [Sacco et al. (2016)]. Nonetheless, the concept of matching between runs
does introduce a new source of information not utilized in our analysis. Attempt-
ing to incorporate information from the matching into the missing data modeling
would be a very promising direction for future research.

Another common approach to dealing with missing values is to avoid making
inference on proteins that fail to meet some threshold percentage of observed val-
ues. This approach is prudent and has served the field well. However, a necessary
consequence of this decision is that large amounts of valuable data will essentially
be discarded. We contend that all of the data can be used, so long as efforts are
made to properly adjust for the uncertainty caused by missing values. Even keep-
ing track of which parameters are estimable and which are not would be a great
improvement.

Based on the experimental process, we know that the probability a peptide will
be missing should be a monotone increasing function of the underlying intensity.
This means that the missing values contain valuable information about relative
abundance. If dozens of peptide replicates appear with high intensities in one con-
dition, but the values are almost all missing in another, this is highly suggestive
of a large relative abundance. In a complete case analysis this change may not be
estimable and neither the missing data pattern nor peptides observed in only one
condition would ever be put to use. By estimating a missing data mechanism, our
selection model improves contrast prediction by incorporating this otherwise lost
information.

The selection model approach relies heavily on model assumptions (the form
of the missing data mechanism, distributional assumptions, shared variance com-
ponents, etc.). However, with nonignorable missing data, this is always the case.
Even using a complete case analysis assumes (falsely) that the missing values are
missing at random. The analysis presented on a ground truth data set is especially
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useful because it suggests that our selection model improves performance despite
any deficiencies in the model assumptions. Relative to complete case analyses, we
were able to increase overall accuracy, expand the depth of discovery and greatly
improve on interval coverage.

We hope that our model will be a useful framework for future research. Better
models may be developed, but they should all take into account the main lessons of
this paper: the parameters of interest are relative abundance estimates which take
the form of contrasts; single imputations greatly simplify data analysis, but they do
so at a severe cost to performance; relative to a complete case analysis, modeling
a missing data mechanism can provide gains to accuracy, depth of discovery and
interval coverage.
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