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Ratings of teachers’ instructional practices using standardized classroom
observation instruments are increasingly being used for both research and
teacher accountability. There are multiple instruments in use, each attempt-
ing to evaluate many dimensions of teaching and classroom activities, and
little is known about what underlying teaching quality attributes are being
measured. We use data from multiple instruments collected from 458 middle
school mathematics and English language arts teachers to inform research
and practice on teacher performance measurement by modeling latent con-
structs of high-quality teaching. We make inferences about these constructs
using a novel approach to Bayesian exploratory factor analysis (EFA) that,
unlike commonly used approaches for identifying factor loadings in Bayesian
EFA, is invariant to how the data dimensions are ordered. Applying this ap-
proach to ratings of lessons reveals two distinct teaching constructs in both
mathematics and English language arts: (1) quality of instructional practices;
and (2) quality of teacher management of classrooms. We demonstrate the
relationships of these constructs to other indicators of teaching quality, in-
cluding teacher content knowledge and student performance on standardized
tests.

1. Introduction. National, state and local education policy is undergoing a
dramatic shift focused on individual teacher accountability. Encouraged by federal
initiatives such as the Race to the Top grant competition, state legislation mandat-
ing that teacher evaluations based on individual performance measures be used for
consequential decisions such as pay or retention is rapidly diffusing across the na-
tion. Numerous instruments for measuring the quality of teaching are being used
or developed, including measures of instructional practices, teacher subject-matter
and pedagogical knowledge, quality and rigor of work assigned to students, student
perceptions of teacher quality, and student learning outcomes [Bill and Melinda
Gates Foundation (2013)]. While there is general agreement that these measures
are important, it is not well understood what underlying constructs define “teach-
ing quality” and to what extent different measures capture these constructs. We
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do know that the quality of teachers’ instructional practice is modest for the ma-
jority of teachers in research studies [Bill and Melinda Gates Foundation (2013),
Gitomer et al. (2014)]. We also know that student achievement in the United States
lags behind other countries and falls short of our own national standards [Peterson
et al. (2011)]. The goal of restructuring teacher evaluation systems is to change
these circumstances by improving the average quality of teaching in the teacher
workforce.

Yet, without understanding the underlying constructs that define teaching qual-
ity, it is difficult to design systems to achieve this goal. If the constructs that define
high-quality teaching are not easily malleable, the most effective systems might fo-
cus on hiring strong teachers and firing weak teachers [Gordon, Kane and Staiger
(2006)]; however, if the constructs are not intrinsic to individuals, then systems
might instead focus on improving teaching practice through professional develop-
ment. Therefore, both what constructs to measure and how to use those measures
to take action require understanding what makes an effective teacher capable of
promoting student learning.

We contribute to this goal by investigating the underlying constructs of high-
quality teaching using data from over 450 middle school teachers who participated
in the Understanding Teacher Quality (UTQ) study (www.utqstudy.org). The data
include ratings of participating teachers’ instructional practices from four differ-
ent standardized instruments that were developed from different theoretical per-
spectives on teaching quality. Our primary research question is whether those per-
spectives are defining common or distinct teaching quality constructs, which we
address using exploratory factor analysis (EFA) on the instructional practice rat-
ings to uncover latent teaching quality attributes. We perform the factor analysis
within a latent hierarchical model for the ordinal instructional ratings to separate
the teacher-level variation, of direct interest, from the other sources of variance
such as day-to-day lesson variation and errors introduced by the raters who assign
scores. We develop a novel Bayesian implementation of this model that improves
upon existing Bayesian approaches for EFA. We then examine how estimated fac-
tor scores extracted from the instructional practice ratings relate to assessments
of teacher knowledge and teacher impacts on student achievement growth to pro-
vide validity evidence about the latent constructs. Collectively, our investigations
provide an important step toward validating commonly used measures as provid-
ing useful indicators of teaching quality, and offer insight into the distinguishable
components of teaching.

2. Understanding teaching quality data. The UTQ study took place in mid-
dle schools of three large school systems from the same United States metropoli-
tan region. It includes 458 teachers teaching mathematics (n = 231) or English
language arts (ELA; n = 227) to 6th–8th graders (typically ages 11–14). Partici-
pation in the study was voluntary. Data were collected over two years, with about
half of the teachers participating in each year.

http://www.utqstudy.org
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TABLE 1
Summary of protocols used to rate instructional practice

Instrument Description # Dimensions Scale

CLASS Classroom Assessment & Scoring System 10 1–7
FFT Framework for Teaching 11 1–4
PLATO Protocol for Language Arts Teaching 13 1–4
MQI Mathematics Quality of Instruction 8 1–3

From each participating teacher we collected three types of measures: (1) eval-
uations of instruction based on ratings of video-recorded lessons, (2) scores on a
teacher knowledge test, and (3) estimates of teachers’ effects on student standard-
ized achievement tests. In this section we describe the evaluations of instruction
based on ratings of video-recorded lessons. We describe the other two measures
in Section 6.3 where we examine their relationships to the constructs derived from
the lesson ratings.

For each study teacher, four lessons were video recorded during the school year.
The study schools followed a traditional middle school format where each teacher
taught multiple classrooms across different periods of the day. For each teacher
we sampled two study classrooms, which we refer to as the two different sections
for that teacher, and for each section we recorded two lessons from different days.
For the purposes of applying the rating instruments, a lesson is divided into a
set of disjoint time intervals called segments lasting seven, 15, 30 or 45 minutes,
depending on the rating instrument.

Video-recorded lessons were rated using four different standardized observation
instruments (or “protocols”), summarized in Table 1. Each instrument consists of
multiple dimensions. The Classroom Assessment and Scoring System [CLASS;
Hamre et al. (2012)] measures 10 dimensions of classroom interactions including
the teachers’ management and organization of the classroom, their engagement
of and responsiveness to students, and aspects of their instruction. The Frame-
work for Teaching [FFT; Danielson (2011)] consists of 11 dimensions focusing
on the domains of classroom environment and quality of instruction. The Proto-
col for Language Arts Teaching Observations [PLATO; Grossman et al. (2010)]
is specific to ELA and defines 13 dimensions that measure specific instructional
practices, strategies for encouraging student participation, behavioral management
and time management. Finally, the Mathematical Quality of Instruction [MQI;
Learning Mathematics for Teaching Project (2006)] evaluates various aspects of
mathematics instruction; for this study we focus on 8 of these dimensions. Two
of the instruments (CLASS and FFT) apply to both math and ELA instruction,
while the others (PLATO for ELA and MQI for math) are specific to only one sub-
ject. All four instruments use ordered scores intended to record the level of quality
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expressed in each dimension. Further details on the dimensions are provided in
Table 2 in the Appendix.

Eleven raters conducted all scoring of the video-recorded lessons, six with
math expertise and five with ELA expertise. All raters scored using CLASS and
FFT. Only raters with the corresponding subject expertise scored using MQI and
PLATO. Raters received extensive training in all instruments and demonstrated
proficiency prior to rating lessons. They also underwent regular calibration checks
for the duration of scoring to promote accuracy in scores. See Casabianca, Lock-
wood and McCaffrey (2015) for details.

The lesson scoring data are multivariate with a combination of nested and
crossed structures. There are 458 teachers, 916 sections (two for each teacher),
1828 video-recorded lessons (two for each section except for a tiny amount of
missing data) and 6141 segments (approximately 3–4 per lesson). These units are
structured hierarchically. Each lesson was scored on exactly three instruments:
CLASS, FFT, and one of PLATO or MQI. A scoring event consists of a rater as-
signing a vector of scores to the dimensions of a particular instrument for each
segment of the lesson. For each instrument, about 80% of the lessons were scored
by a single rater, while the remainder were scored by two separate raters. The
rating process introduces partial crossing because for each instrument, each rater
scored lessons from multiple different teachers and sections, but all raters do not
score lessons from all teachers on any instrument, and no lessons were scored by
all raters.

Our goal was to test if teaching quality observed in classrooms can be decom-
posed into a lower-dimensional set of latent teaching quality constructs. We used
the ratings data on all dimensions of the observation instruments (34 dimensions
across three instruments for ELA, and 29 dimensions across three instruments for
math) to conduct EFA at the teacher level. The measurement structure for the in-
structional practice ratings is complex when viewing the scores as indicators of
constructs for individual teachers: we have multivariate ordinal categorical data
from multiple instruments, and all scores are contaminated by errors related to the
particular sections, lessons, and raters who scored the lesson, with errors at all lev-
els potentially being correlated across dimensions. As demonstrated by McCaffrey
et al. (2015), not accounting for these errors can distort inferences about factor
structure at the teacher level. Likelihood approaches to estimating factor struc-
ture at the teacher level would be challenged by the large number of dimensions,
the ordinal data, and the mixed hierarchical and crossed measurement structure.
Bayesian approaches simplify the estimation of a model requiring integration over
so many latent variables where both the teacher factor structure and aspects of the
measurement process are modeled. We thus proceed in Section 3 by presenting
a hierarchical model for the ratings which includes a standard exploratory factor
model at the teacher level. We then present a method for conducting Bayesian EFA
to yield interpretable factors to support our goal of understanding the constructs
of teaching, starting with a discussion of a practical problem with Bayesian EFA
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in Section 4, then turning to our solution to that problem in Section 5. We present
results of our application in Section 6 and concluding remarks in Section 7.

3. Model for instructional ratings data.

3.1. Relating observations to latent effects. We model the data from each sub-
ject (math and ELA) separately. For each subject, the data consist of vectors of
scores from N scoring events. For a scoring event, a rater, using one of the three
instruments, assigned scores on all the dimensions of the instrument for a seg-
ment of a lesson taught by one of the study teachers to one of two of the study
sections for that teacher. We index such observations by i. For each subject, the
data have j = 1, . . . ,Nteach teachers and we use ji to identify the teacher whose
lesson was scored in observation i. Similarly, there are s = 1, . . . ,Nsect sections
and v = 1, . . . ,Nlesson lessons, and we use si and vi to denote the section and
lesson corresponding to observation i. Finally, there are r = 1, . . . ,Nrater raters
for each subject and ri denotes the rater who conducted observation i. We let
Pi denote the instrument (protocol) used for scoring observation i. For math,
Pi ∈ {CLASS,FFT,MQI} and for ELA, Pi ∈ {CLASS,FFT,PLATO}. We let yi

denote the vector of scores assigned by the rater for observation i and yid be the
score on dimension d , d = 1, . . . ,DPi

. Each yid takes one of a discrete set of
possible ordinal scores that depends on the protocol, yid ∈ {1, . . . ,LPi

}.
We assume that each ordinal score yid has a latent tid such that

yid = � ∈ {1, . . . ,LPi
} ⇔ γPi ,d,�−1 < tid ≤ γPi ,d,�,

tid |μid
ind∼ N (μid,1),

as described in Albert and Chib (1993), Congdon (2005), Johnson (1996) and
Savitsky and McCaffrey (2014). We model μi = (μi1, . . . ,μiDPi

) as

μi = δji ,Pi
+ φsi ,Pi

+ θvi ,Pi
+ κri ,Pi

+ ζ vi ,ri ,Pi
,(3.1)

where δji ,Pi
= the vector of teacher effects for teacher ji ; φsi ,Pi

= the vector of
section effects for section si ; θvi ,Pi

= the vector of lesson effects for lesson vi ;
κri ,Pi

= the vector of rater effects for rater ri ; and ζ vi ,ri ,Pi
= the vector of rater

by lesson effects for lesson vi and rater ri . Each is a vector of DPi
effects for the

dimensions of protocol Pi .
The model for μi does not include terms for either segments or rater by segment

interactions. Hence, any variability in scores due to those sources is captured by
Var(tid |μid), which is specified as 1. In addition, any nonzero covariances in rater
errors in the dimension scores for a segment, like those found by McCaffrey et al.
(2015), will contribute to the covariances among the elements of the rater by lesson
effects, ζ vi ,ri ,Pi

.
Our goal is to study the structure among the dimensions from all the pro-

tocols used in each subject. Hence, we need to jointly model the random
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effects from all the protocols. To do this for math teachers, we define for
each teacher j = 1, . . . ,Nteach the combined vector of teacher effects δj =
(δ′

j,CLASS, δ′
j,FFT, δ′

j,MQI)
′ with elements δjq for q = 1, . . . ,Dmath, where Dmath =

DCLASS + DFFT + DMQI = 29, the total number of dimensions across the three
protocols. We use the subscript j rather than ji because we are referring to the
effects for teacher j that apply to all of the observations i for which he or she
is the corresponding teacher. We similarly define φs and θv for the classes and
lessons, and κr for the raters. The rater by lesson interactions are protocol-specific
because any given rater uses only one protocol to score any given lesson. Hence,
we do not use combined vectors for these effects. We define the analogous set of
combined teacher, section, lesson, and rater random effect vectors for the ELA
data. These vectors have DELA = 34 elements corresponding to the total number
of dimensions in the three protocols used to score ELA observations.

3.2. Model for the latent effects. To complete the model, we need to specify
priors for the cutpoints that link the ordinal observed scores to the latent variables,
and priors for the random effects. For a given dimension d of a protocol P , we
define γP,d,0 = −∞ and γP,d,LP = ∞, but must specify priors for the remaining
LP − 1 cutpoints. These cutpoints can be estimated from the data because (1) we
fixed the conditional variance of tid to be 1; (2) multiple scores given by an indi-
vidual rater to segments from the same lesson share a common μid ; and (3) the
marginal mean of μid = 0 since, as discussed below, each of the latent effects in
equation (3.1) is mean zero. To specify the prior for unknown cutpoints, we fol-
low Ishwaran (2000) and assume γd,� ≡ ∑�

l=1 exp(ρd,l), where ρd,l ∼ N (0, τ 2
d )

and τd
IID∼ Uniform(0,100), without order restrictions. We selected this prior as

a possible means of improving mixing on draws for the cutpoints [Savitsky and
McCaffrey (2014)].

For teacher effects, we specify a factor model for the D × 1 vectors {δj } of
combined effects from all three protocols for teachers in each subject area:

δj = �ηj + εj .(3.2)

Here � is the D × K loadings matrix and ηj is the K × 1 vector of factor scores
for teacher j , where K denotes the number of factors. We drop the subject-specific
subscript in D to simplify the presentation, but the dimensions will differ for math

and ELA. The uniqueness is εj
IID∼ ND(0,U), where U is the diagonal matrix of

uniqueness variances. We specify ηj ∼ NK(0, IK) to identify the scale of loadings.
Marginalizing over the factors gives Cov(δj ) = ��′ + U = Q + U, with commu-
nality, Q, and uniqueness, U. Additional information about our prior distributions
for the loadings and uniqueness variances are in Section 5.1. We model the remain-
ing random effects from equation (3.1) as multivariate Gaussian with mean zero
and a precision matrix that has a Wishart prior with an identity scale matrix and
degrees of freedom equal to one plus the dimension of the random effect vectors.
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3.3. Identification issues in EFA. A well-known limitation of the factor
model (3.2) is that there is no unique set of loadings. Orthogonal rotations of
the loadings and factor scores yield identical values of δ. For any K × K orthog-
onal rotation matrix P′, if �∗ = �P′ and η∗ = Pη, then �∗η∗ = �P′Pη = �η.
The loadings are not identified by the likelihood; rather, the communality matrix
Q is identified. That is, for any D × K full-column rank loadings matrices, � and
�∗ where �∗ = �P′ for some K × K orthogonal rotation matrix, Q∗ = �∗�∗′

is
equal to Q = ��′. In maximum likelihood (MLE) inference, the lack of identifi-
cation of the loadings is resolved by picking an arbitrary � such that ��′ = Q̂MLE
and then rotating � to meet criteria for interpretability. A common goal is to seek
a rotation that results in a so-called “simple structure” of the loadings where each
dimension loads relatively strongly on one factor and weakly on all others. Simple
structure is encouraged by choosing loadings that optimize an external criterion
such as varimax [Kaiser (1958)] or related criteria [Browne (2001)]. However, we
want to conduct a Bayesian analysis and determine if a simple interpretable factor
structure exits. Bayesian methods to identify the factors use different criteria, so
we must modify the traditional methods, which we now describe.

4. Bayesian EFA. Bayesian EFA models commonly identify loadings sepa-
rately from factors by restricting the structure of the loadings matrix to be lower
triangular, with nonnegative diagonals to account for sign reflections, and then
specifying priors for the free parameters of the resulting constrained loadings ma-
trix [Geweke and Zhou (1996), Lopes and West (2004)].1 This restriction yields
a unique loadings representation [Früwirth-Schnatter and Lopes (2013)]. The row
index of each leading nonzero factor loading increases from left to right along the
diagonal under the lower triangular restriction. The dimension associated with a
leading nonzero loading for a factor is referred to as a “founder” dimension for
that factor [Carvalho et al. (2008)].

This approach has a few disadvantages for our application. First, the restric-
tion to lower triangular loadings matrices is not substantively motivated. This re-
striction is chosen solely for identification. In other applications, lower triangular
loadings may support a substantive interpretation and these constraints may be ap-
propriate; see, for example, Hahn, Carvalho and Scott (2012). However, that is not
the case with teacher observations.

Second, the lower triangular restriction induces a prior for the communality
Q that is sensitive to the ordering of the dimensions [Bhattacharya and Dunson
(2011), Carvalho et al. (2008), Früwirth-Schnatter and Lopes (2013), McParland
et al. (2014)]. Specifically, assuming exchangeable prior distributions for nonzero
loadings under the lower triangular restriction, the induced prior distributions for

1Note lower triangular structure is not required for identification. Identification requires elements
of the columns of the loadings matrix to be zero but the ordering of those columns does not matter.
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elements of Q associated with founder dimensions [Carvalho et al. (2008)] are dif-
ferent than those for elements of Q associated with other dimensions. Thus, for
given matrices Q and Q∗ where Q∗ equals Q with its row and column elements
permuted as they would be if we permuted the order of the variables, the induced
prior probability on Q does not equal the induced prior probability on Q∗. Our
inferences about communalities, and consequently about any rotation of the load-
ings, would be sensitive to variable ordering. This is unlike the MLE EFA solution,
where the permutation invariance of the likelihood function implies that a permu-
tation of Q̂MLE is equal to the MLE solution Q̂∗

MLE under the permuted data, and
so inferences with respect to any optimized rotation criterion that does not depend
on variable ordering will also be permutation invariant.

The sensitivity to variable ordering is potentially problematic in our application.
We are interested in factor structure at the teacher level, which must be inferred
with only about 225 teachers per subject using coarsened ordinal data subject to
multiple sources of nuisance measurement error (e.g., sections, lessons, segments
and raters). The amount of data information about the constructs of interest may
not overwhelm the prior distribution, leaving us potentially vulnerable to sensitiv-
ities to variable ordering imposed by the prior. Also, the computational burdens of
estimating the model in Section 3 precludes trying many different orderings of the
variables to explore sensitivity of the findings. Thus, our goal was to use a prior
distribution that is exchangeable across dimensions so that the prior probability
on any communality matrix Q equals the prior probability on PQP′, where P is a
(D×D) permutation matrix. When combined with an exchangeable prior distribu-
tion for the uniqueness variances U, this would provide Bayesian EFA inferences
that shared the same permutation invariance as MLE EFA.

4.1. Alternative Bayesian identification strategies. An alternative to sampling
loadings is to sample the communality and derive loadings from it. The commu-
nality is identified and, moreover, every Q defines a unique infinite set of loadings
matrices �, such that ��′ = Q. Hence, if a satisfactory prior for the commu-
nality can be specified, inferences about loadings can be made by setting a rule
to select a loading matrix from the set of loadings associated with the commu-
nality. However, because the communality is not full rank, standard conjugate or
other widely used priors for random positive definite symmetric matrices cannot be
used. Carmeci (2009) directly samples the rank-deficient Q through a Metropolis–
Hastings scheme with a prior distribution specified as a mixture of singular Wishart
distributions. He pointed out that his approach is computationally burdensome
compared to directly sampling the loadings matrix, such that it is recommended
only for small and medium size factor models. Given we have 34 dimensions
for ELA and 29 for math and we are conducting EFA in the context of a cross-
classified, hierarchical, ordinal data model, which also increases computational
time, this solution was unacceptable for our case study. His approach also requires
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a specialized MCMC sampler, and we were interested in an approach that could
be straightforwardly coded in the BUGS language.

Carvalho et al. (2008) use the lower triangular restriction and incorporate se-
lection of founders into their model to find dimensions with high probabilities for
having nonzero founder loadings, though they did not address nonexchangeabil-
ity of the induced priors for the communality parameters among the dimensions.
Früwirth-Schnatter and Lopes (2013) addressed the prior sensitivity to dimension
ordering by making inferences about a generalized lower triangular matrix, which
is a matrix in which all the elements above the diagonal are zero but some of the
diagonal and lower triangular elements can be zero. As with the lower triangular
matrix, we did not have a specific substantive interest in loadings from the general-
ized lower triangular matrix. Früwirth-Schnatter and Lopes (2013) state that their
method “handles the ordering problem in a more flexible way” (page 4), but they
do not specifically address the issue of exchangeability of the induced prior on the
communalities. Moreover, even if their approach induces an exchangeable prior,
their method requires a specialized MCMC sampler.

Bhattacharya and Dunson (2011) introduce a class of shrinkage priors intended
to estimate reduced-rank covariance matrices for high-dimensional data. This can
be used to obtain a permutation-invariant prior distribution for Q, but by con-
struction will tend to shrink away weakly expressed factors. In our application we
anticipated that factors could be weakly expressed because of both the possible
subtleties inherent to effective teaching and the fact that our measures on teachers
are contaminated by relatively large measurement errors at the section, lesson and
rating level. We thus determined this approach would not be suitable for our appli-
cation. Rather, we blend the ideas of Bhattacharya and Dunson (2011) of obtaining
a permutation-invariant prior distribution for Q with the parameter-expansion ap-
proach to parameterizing loadings of Ghosh and Dunson (2009) to induce a prior
distribution for Q that is better tuned to our application. We next describe our prior
specification and our procedure for determining identified loadings.

5. Permutation-invariant Bayesian EFA. We use a three-step approach to
sample communalities and derive our final loadings estimates in a manner that
yields permutation-invariant inferences about loadings for the factor structure. In
the first step we model the elements of an unrestricted � with exchangeable prior
distributions to induce a prior distribution on the communality Q that is permu-
tation invariant. When combined with an exchangeable prior for the uniqueness
variances U, this achieves the goal of having a permutation-invariant prior distri-
bution for Cov(δj ) = Q + U. In the second step, we rotate sampled � to obtain
loadings with simple structure using the varimax criterion [Kaiser (1958)]. Finally,
because loadings meeting the varimax criterion are not unique (2KK! solutions ex-
ist by permuting or changing the signs of columns of any given solution), the third
step of our approach reorients the varimax rotations draw by draw to move them
all to a common orientation. We describe each of these steps in turn.
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5.1. Exchangeable priors on loadings and uniqueness. The key requirements
of our approach are (1) to place no restrictions on the elements λdk of the work-
ing loadings matrices � (e.g., do not use lower triangular restrictions); and (2) to
use exchangeable prior distributions for the λdk . These two conditions ensure that
if G[ij ](q) is the induced prior for the row i and column j element of Q, then
G[ii](q) = G[i′i′](q) for any i and i′ and G[ij ](q) = G[i′j ′](q) for any i, j , i′, j ′
where both i 
= j and i′ 
= j ′. That is, there is one common exchangeable prior for
the diagonal elements of Q and another common exchangeable prior for the off-
diagonal elements. This makes the induced prior for Q invariant to permutations
of the data dimensions.

Any exchangeable prior distribution for λdk would suffice, including IID, but we
adopt the parameter expansion approach of Ghosh and Dunson (2009) to improve
mixing of the working loadings. We use the following reparameterized model:

δj = �#η#
j + εj ,

η#
j

IID∼ N
(
0,
−1)

,


 = diag(φ1, . . . , φK),

where the elements λ#
dk of �# are modeled with independent standard normal pri-

ors and φ−1
k are IID Gamma(a, b) with common mean a/b and variance a/b2.

We use a = b = 1.5. The inverse transforms λdk = λ#
dkφ

−1/2
k and ηjk = η#

jkφ
1/2
k

remove the redundant 
 and induce a marginal t prior for λdk .
To complete the permutation invariance of the prior distribution for the factor

model, we also need an exchangeable prior on the diagonal elements of U, udd ,
d = 1, . . . ,D. Following the common approach, u−1

dd are IID Gamma(a, b) with
a = b = 1.5. Again, any exchangeable prior would suffice. We also tested sensi-
tivity to an alternative prior distribution where the square roots of the udd were
modeled as IID uniform [Gelman (2006)]. Inferences about the latent teaching
constructs and their relationships to other teaching quality indicators were not sen-
sitive to this alternative prior.

5.2. The varimax rotation. In the second step, for each �b, b = 1, . . . ,B sam-
pled from the posterior where B is the total number of MCMC samples, we rotate
�b to obtain loadings satisfying the varimax criterion [Kaiser (1958)]. Specifi-
cally, given a candidate loadings matrix �, the varimax criterion results in loadings
�RV (�) where

RV (�) = arg max
R

K∑
k=1

(
1

D

D∑
d=1

(�R)4
dk −

(
1

D

D∑
d=1

(�R)2
dk

)2)
,

and (�R)dk denotes the d, k element of the matrix �R. The notation RV (�) is
used to emphasize that the chosen rotation matrix depends on the input matrix �.



1494 J. R. LOCKWOOD, T. D. SAVITSKY AND D. F. MCCAFFREY

However, the final varimax loadings �RV (�) are specific to the communality ma-
trix Q in that if � and �∗ satisfy ��′ = �∗�∗′ = Q, then �RV (�) = �∗RV (�∗)
up to an equivalence class of 2KK! matrices that differ by 2K column sign reflec-
tions and K! column permutations. That is, for a given Q there are 2KK! loadings
matrices that meet the varimax criterion, differing only by column order and sign.
For each draw we obtain RV (�b) and �V b = �bRV (�b). However, we cannot
guarantee that all draws are oriented to the same column ordering and sign. Hence,
by using the varimax criterion to select loadings for interpretable factors, we re-
duced the infinite dimensional problem of selecting a loadings matrix from Q to a
2KK! dimensional problem of selecting the orientation of varimax solutions.

5.3. Identifying varimax loadings. In our final step we reorient the varimax
loadings from each draw, �V b, to a common orientation. The need for post hoc
reorientation of samples to deal with indeterminacies in Bayesian factor analysis
is commonplace, and our approach is similar to ones developed by Hoff, Raftery
and Handcock (2002), Früwirth-Schnatter and Lopes (2013), Erosheva and Curtis
(2013) and McParland et al. (2014), as well as that of Stephens (2000) for mixture
models.

Following Hoff, Raftery and Handcock (2002) and McParland et al. (2014), we
select the orientation �V b which makes each of its columns closest, in Euclidean
distance, to the columns of a reference matrix. That is, for a given target �V b∗ we
find the matrix Tb that minimizes

tr
[
(�V b∗ − �V bTb)

′(�V b∗ − �V bTb)
]

(5.1)

among all of the 2KK! matrices which equal a K-dimensional identity matrix with
its rows permuted and multiplied by either 1 or −1. We find Tb by testing all the
reorientation matrices and selecting the one that minimizes the distance, which for
small values of K of interest in our application is not computationally expensive.
To define our target, we draw a “pivot” �V b∗ at random. We reorient all the �V b

to �V b∗ . We then calculate the vector of mean loadings across all draws under the
reorientation decisions and use this mean as the pivot in the next iteration of the
algorithm. We iterate until convergence of the mean, which implies convergence
of the reorientation decisions. As a final step, we examine the orientation of the
converged mean and apply a single sign relabeling step to all draws that gives the
varimax loadings a desired interpretation. We refer to the final reoriented varimax
loadings by {�Fb}. In Section 6.2 and in the supplemental material [Lockwood,
Savitsky and McCaffrey (2015)], we present evidence that our algorithm success-
fully translated the {�V b} into a common, interpretable orientation for the {�Fb}.
Our approach is similar to the method of Hoff, Raftery and Handcock (2002). They
also use equation (5.1) to select loadings; however, they use the criterion to select
not only the column permutations and sign reflections, but also the rotation. They
find a closed form for the solution. Because we want to use the varimax rotation,



CONSTRUCTS OF EFFECTIVE TEACHING 1495

we cannot use their solution. They also use an external target. Because we do not
have such a target, we use our iterative procedure instead.

Rotation of the working loadings {�b} to the final varimax loadings {�Fb} ne-
cessitates rotation of the sampled factor scores {ηb} to factor scores {ηFb} con-
cordant with final loadings. Elementary linear algebra can be used to show that
the required orthogonal rotation is ηFb = �′

Fb�b(�
′
b�b)

−1ηb. We use these fac-
tor scores in our second stage analysis examining the relationships between la-
tent teaching constructs inferred from the classroom observation scores and other
teacher quality indicators.

Taken together, our three-step approach (exchangeable prior distributions, draw-
by-draw varimax rotation and reorientation of varimax draws to a common ori-
entation) provides Bayesian EFA inferences that are invariant to permutations of
the data dimensions. The chosen prior distributions provide permutation-invariant
posterior distributions for Q and U. The varimax criterion is itself permutation
invariant because it is constant across reordering of rows. Finally, the relabeling
algorithm depends on only Euclidean distances and, consequently, behaves iden-
tically across different orders of the variables. Thus, we can be confident that our
inferences about the factor structure, loadings and factor scores are not sensitive to
the arbitrary choice about how the variables are ordered.

6. Analysis of instructional ratings data.

6.1. Model selection. Our model assumes a known number of factors K , but
we need to determine K from our data. We evaluated possible values of K using
the log pseudo marginal likelihood (LPML) leave-one-out fit statistic as described
in Congdon (2005). The LPML calculations use importance sampling reweighting
of the posterior distributions over model parameters to estimate the conditional
predictive ordinate f (yi |y−i ,K) [Geisser and Eddy (1979)], where y−i denotes
all data vectors excluding yi . The LPML for a given value of K is then defined as
log(

∏N
i=1 f (yi |y−i ,K)). The leave-one-out property induces a penalty for model

complexity and helps to assess the possibility for overfitting.
The LPML statistic has nontrivial Monte Carlo error for chains of the length

that we could feasibly post-process. Hence, we based our calculations on five in-
dependent chains for each K = 1, . . . ,5 and for each subject. We average values
across chains to produce our final LPML estimates for each K and subject. We
adapted each chain for 1000 iterations, and then ran each chain for an additional
80,000 iterations, discarding the first 50,000 for burn-in. We used the Gelman–
Rubin statistics to assess convergence of the elements of Q and U and they all had
values near 1. Posterior sampling for our models is conducted in the Just Another
Gibbs Sampler (JAGS) platform of Plummer (2003).

To further evaluate the appropriate number of factors, we also examined the
eigenvalues of the correlation matrix for δ. To estimate the eigenvalues, we fit the
EFA model with K = 10 factors at the teacher level, calculated the correlation
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FIG. 1. Estimated LPML by subject for models with K = 1, . . . ,5 factors. Black triangles equal
the average from five independent chains and gray dots are the values for each chain. Larger values
indicate better fit.

matrix and its eigenvalues from each draw of Q + U, and used the posterior distri-
bution of the ordered eigenvalues for our inferences. We used Horn’s parallel anal-
ysis [Horn (1965)] which compares the estimated eigenvalues to those that would
be obtained if the dimensions were actually independent. Let ξ̃1, . . . , ξ̃10 equal the
posterior means of the ordered eigenvalues of Q + U. We generated 100,000 inde-
pendent samples of Nteach D-dimensional independent Gaussian random vectors
and for each sample estimated the ordered eigenvalues of the sample correlation
matrix. Let ξ̂1, . . . , ξ̂10 equal the 95th percentiles across the 100,000 samples of the
first 10 ordered eigenvalues. Horn’s parallel analysis selects K as the largest value
such that ξ̃K > ξ̂K , that is, the largest K for which the corresponding eigenvalue
estimated from the data would be unlikely to occur if the dimensions were truly
independent. Finally, we also evaluated the simple structure of the loadings for
interpretability, examined their credible intervals, and compared the factor scores
to the teacher knowledge test scores and student achievement growth to assess
whether the factors appeared to be identifying meaningful attributes of teaching.

Figure 1 presents the estimated LPML for both math and ELA. Since larger
values of LPML indicate better fit, for both subjects, K > 3 is clearly too many
factors. For math, K = 1 appears to yield a poorly fitting model as well. The best fit
for math is for K = 2, but the variability across chains is large for K = 3 and the fit
statistic does not rule out K = 3. Also, as shown in Figure 2, the parallel analysis
suggests K = 3 as a plausible number of factors because the posterior mean of
the fourth eigenvalue is below the corresponding bound. Hence, we estimate the
loadings and compare factor scores from fits with K = 2 and 3. For ELA, K = 3
yields the largest average LPML across the five chains, but there is sufficient noise
so that K = 2 and perhaps even K = 1 cannot be ruled out. The parallel analysis
again suggests K = 3. We thus explore models with K = 1, 2 and 3 and present
results for K = 2 and 3.
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FIG. 2. Horn parallel analysis to assess the number of factors by subject. Dots equal the posterior
mean of the eigenvalues of the estimated correlation matrix for latent teacher level dimension scores
from a model with K = 10. Gray bars are the 95% credible intervals for the eigenvalues. The dotted
line is the 95th percentile for the eigenvalues of a correlation matrix estimated from a sample of
D-dimensional vectors of independent random Gaussian variables. The suggested number of factors
is the largest value of K such that the corresponding mean eigenvalue is greater than the dotted line.

6.2. Identifying constructs of high-quality teaching. For each subject and for
each of K = 2 and 3, we calculated posterior distributions of reoriented vari-
max loadings, and corresponding factor scores, using the procedure given in Sec-
tion 5.3. We validated that the reorientation step was functioning well using three
criteria. The first confirmed that unlike the “raw” distributions of varimax solutions
(before reorientation), which were multimodal due to the sign and column indeter-
minacy, the reorientation produced unimodal, approximately symmetric distribu-
tions for the loadings. We used both visual inspection of the densities and the “dip”
test [Hartigan and Hartigan (1985)] to test for unimodality. The dip test rejected
unimodality for most of the raw varimax distributions, with p-values near zero,
but the p-values for the tests on the reoriented distributions were almost all nearly
one. Second, we confirmed that the MCMC samples of reoriented loadings vectors
were generally close (in Euclidean distance) to the posterior mean loading vector,
whereas prior to reorientation, the distances of individual draws to the posterior
mean were larger and multimodal, again due to sign and column indeterminacy
of the raw varimax solutions. Third, we used multidimensional scaling to confirm
that groups of MCMC samples of the raw varimax solutions that were clustered to-
gether in multidimensional space received the same reorientation decision. These
investigations involve a large number of plots that are presented in the supplemen-
tal material, along with additional details on the assessment of unimodality of the
loadings distributions [Lockwood, Savitsky and McCaffrey (2015)]. Finally, we
ran our algorithm multiple times with different choices for the initial pivot and the
inferences about the loadings were unaffected.
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FIG. 3. Posterior mean varimax loadings normalized to percentage of variance explained for
K = 2.

The resulting loadings for K = 2 and 3 are presented in Figures 3 and 4. The
figures show the standardized squared loadings by factor for each dimension of all
the protocols. Dark values indicate a large loading that explains a large proportion
of the variability in the latent teacher-level dimension score. Light values indicate
little variance is explained by the factor and a weak loading. For both math and
ELA, the loadings on the third factor when K = 3 in Figure 4 are generally weak
for all dimensions. For ELA, all of the 95 percent credible intervals for the loadings
on the third factor include zero (i.e., none of the loadings are significant) and for
math, only one loading is significant. This is in contrast to the first two factors,
which each have multiple dimensions with clearly positive loadings.

Moreover, the loadings patterns for the first two factors for K = 3 are nearly
identical to those for K = 2. In both cases, dimensions from all protocols that
are related to management of student behavior and productivity, in the sense of
keeping the classroom on task, load heavily on the second factor. These include
the Behavior Management and Productivity dimensions of CLASS, the Manage-
ment of Student Behaviors and Management of Classroom Procedures for FFT,
the MQI Moves Math Along indicator for math, and the PLATO Time Manage-
ment and Behavioral Management dimensions for ELA (the labels of which are
bold in the figures). All of the protocols assess the teacher’s ability to manage the
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FIG. 4. Posterior mean varimax loadings normalized to percentage of variance explained for
K = 3.

class, and they are finding a common attribute that is distinct from the other un-
derlying features of teaching. Similarly, the dimensions from all protocols that are
related to instructional quality and student support load heavily on the first factor.
Evidently the constructs of teaching assessed in our classroom observation ratings
are the teacher’s Instructional Practices and support, and his or her Classroom
Management, where we use the italicized labels to refer to these constructs for the
remainder. Table 2 in the Appendix presents the posterior mean loadings for K = 2
along with brief descriptions of each dimension.

6.3. Relationships of factors to other teacher measures. Understanding how,
if at all, the latent instructional constructs derived from the lesson ratings relate to
other indicators of teaching quality is critical to assessing the validity of the con-
structs. If the estimated constructs relate in predictable ways to other measures,
we can be more confident in the substantive interpretations of the constructs based
on the loadings patterns and the conclusion that the constructs capture relevant
dimensions of instructional quality. We thus used two other proposed measures
of teaching quality—namely, teacher knowledge and teacher’s students’ achieve-
ment growth—to explore the validity of the teaching constructs derived from the
instructional practice ratings.
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First, each teacher in the study was administered a test of content and pedagog-
ical content knowledge [Shulman (1987)] specific to their subject-area specialty
(math or ELA), which we refer to as “Teacher Knowledge (TK).” The tests con-
sisted of dichotomously scored items (30 for ELA and 38 for math) drawn from
established teacher knowledge assessments. We fit a one-parameter item response
theory (IRT) model [van der Linden and Hambleton (1997)] to estimate teacher
knowledge. The IRT estimates correlated above 0.97 with the percentage correct,
for both ELA and math, and had reliabilities of 0.85 for math and 0.78 for ELA.

Second, we constructed measures of “Teacher Value-Added (TVA)” for each
teacher in the study. TVA equals the growth in a teacher’s students’ standardized
achievement test scores. It is typically estimated by a regression of student test
scores on prior year scores and other student background variables. Such measures
are increasingly being used as part of states’ and districts’ formal teacher evalu-
ation systems due to the growing belief that they at least partially reflect causal
relationships between teacher instruction and student learning [Bill and Melinda
Gates Foundation (2013)]. To calculate TVA, we used administrative data collected
from the participating school districts. The data include links between individual
students and their teachers and classrooms, and they include students’ background
information and standardized test scores on the state’s accountability test, both
for the study school years and multiple prior years. We estimated TVA using the
latent regression methods of Lockwood and McCaffrey (2014), which regresses
outcome test scores on teacher indicator variables, student background character-
istics and student prior test scores while accounting for the measurement error in
the prior test scores. TVA equals the estimated coefficients on the teacher indicator
variables. The reliability of the estimated TVA equals 0.89 for math and 0.80 for
ELA.

To examine the relationships between TK and TVA and the estimated teaching
constructs from the instructional practice ratings, we used the methods described
in Section 5.3 to obtain posterior samples of the factor scores {ηFbj } for each
teacher and each of K = 2 and K = 3. Let {ηFbj1} equal the sample of Instruc-
tional Practices factor scores for the 231 math teachers for the K = 2 model. Let
θ̂j equal their estimated TK. For each posterior draw, we estimated the sample cor-
relation between ηFbj1 and θ̂j as C1,TK,b. To obtain the correlation on the latent
variable scale, we use C̃1,TK,b = C1,TK,b/

√
r , where r is the estimated reliability

of TK. We use {C̃1,TK,b} to approximate a posterior sample of the disattenuated
correlation between the Instructional Practices attribute and teacher knowledge.
We then repeated this procedure with the remaining factor for math and for both
ELA factors. We also repeated the analysis for TVA and for the factors from the
models with K = 3.

Figure 5 plots the estimated posterior densities of these disattenuated correla-
tions for models with K = 2. The factor scores for Instructional Practices are
related to both TVA and TK, for both subjects, with estimated correlations in the
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FIG. 5. Estimated posterior densities of disattenuated correlations between instructional ratings
factors and external measures, by subject (row) and external measure (column). Different factors
given by different line types within each frame. Dots on the densities correspond to the 0.025 and
0.975 quantiles of each distribution.

0.15 to 0.30 range. This aligns with theoretical predictions in that more knowl-
edgeable teachers should be more capable of providing more effective instruction,
which in turn leads to improved student achievement. The relationships are some-
what stronger with TK than with their students’ achievement gains. The Classroom
Management factor, on the other hand, is unrelated with TK for ELA teachers, but
related to TVA for both subjects and to TK in math. The relationship of the Class-
room Management factor to TVA is at least as strong as the relationship of Instruc-
tional Practices to TVA, and perhaps stronger. The difference between subjects in
how Classroom Management relates to TK may indicate differences in the skills
necessary to effectively manage math and ELA classes, or it might reflect differ-
ences in the focus of the observation protocols. For example, the MQI productivity
dimension specifically focuses on keeping the math content moving, which might
require teachers to have sufficient knowledge to retain a focus on mathematics.
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The PLATO dimensions that load on Classroom Management are very focused on
managing behavior and classroom operations and may require less content knowl-
edge.

We repeated the analysis using the factor scores from the models with K = 3.
The inferences for the Instructional Practices and Classroom Management factors
were virtually identical, consistent with the nearly identical loadings patterns for
these factors in the K = 2 and K = 3 models shown in Figures 3 and 4. Conversely,
the third factor was not significantly related to either TK or TVA for either subject,
which we interpreted as further evidence that this factor was most likely spurious.

7. Discussion. We are encouraged that like dimensions across different rat-
ing instruments load together on the same constructs; for example, the dimensions
from different instruments that connote the management of student behavior all
load to the Classroom Management factor in our data. This provides support for
interpreting the dimensions from different instruments purported to measure sim-
ilar constructs as doing so. It also suggests that the instruments are not creating
spurious differences in the measurement of the primary constructs of Instructional
Practices and Classroom Management. This is practically useful for states and
districts having to decide among different instruments because it suggests that in-
ferences about these broad domains of teaching quality may not be very sensitive
to the choice.

We are also encouraged that the estimated latent constructs from the instruc-
tional ratings relate in sensible ways to measures of both teacher knowledge and
student achievement outcomes. The Instructional Practices and Classroom Man-
agement constructs emerge as distinct in the factor analysis and have some evi-
dence of relating differently to the external measures. The finding that effective
management of student behavior appears to be more strongly related to student
achievement outcomes than to teacher knowledge underscores the notion that both
effective instruction and effective behavioral management may be important at-
tributes of classroom environments that are successful at promoting student learn-
ing.

On the other hand, our results raise some challenging questions given the sig-
nificant resource investments being made across the country in fielding and using
these measures. Our discovery of only two main constructs across all of the dimen-
sions that various protocols intend to evaluate raises questions about the validity
of using scores to differentiate among teachers’ performances on particular dimen-
sions, an activity valued by stakeholders for targeting professional development.
Perhaps we would discover more constructs were we to allow for correlated fac-
tors, though the results of McCaffrey et al. (2015) suggest the correlations among
those constructs would be over 0.9. Similarly, observing more dimensions might
help to differentiate additional factors. For example, Hamre et al. (2013) hypothe-
size three domains to classroom practices: classroom management, emotional sup-
port, and instructional support. The dimensions from the latter two all load onto our
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Instructional Practices factor. With additional dimensions specific to each domain
we might be able to measure them separately. It also may be important for fu-
ture research to examine those dimensions that express relatively large uniqueness
variances. Returning to Figures 3 and 4, several dimensions of the subject-specific
protocols (PLATO and MQI) load only weakly on both of our identified factors
and may be capturing important aspects of instruction that are particular to their
respective subject areas.

Another concern is that while the patterns of correlations of our estimated factor
scores with the other teaching quality indicate help to validate the constructs, the
magnitudes of the correlations are very modest even after disattenuation for mea-
surement error. For instance, our findings suggest that the Instructional Practices
construct explains less than 10% of the variation among teachers in their effects
on student achievement as measured by the state’s accountability test. Our findings
of only modest correlations among different modes of measuring teaching quality
(e.g., ratings of instruction and student achievement outcomes) replicate those of
previous studies [Bill and Melinda Gates Foundation (2013)] and add to a growing
body of evidence that there remain fundamental uncertainties about the constructs
that define teaching quality and how they can be measured accurately. It is impor-
tant to stipulate that it was not the goal of our analysis to find the combination of di-
mensions that would best predict either TVA or TK, but rather to examine whether
the factors determining the communalities of the dimensions behaved sensibly. It
is likely that alternative combinations of the dimensions that included both the
communality and uniqueness of each dimension could lead to better predictions,
although preliminary investigations with our data suggested that the magnitude of
the improvements over the correlations summarized in Figure 5 are not large.

It is also possible that the modest correlations of the instructional ratings con-
structs with other teaching quality indicators may reflect intrinsic limitations of our
observation measures. The dimensions may not fully measure the practices they in-
tend to evaluate. For example, there may be infrequent but high-leverage student–
teacher interactions that are critical for enhancing learning that tend to be missed
due to the limited number of observations on each teacher. Another example of
incomplete measurement is the evaluation of classroom management practices,
where a high score is ambiguous because it could reflect either actively effective
management or simply that the students were well behaved and the teacher did not
have to demonstrate management proficiency. This ambiguity could be partially
responsible for the fact that the dimensions designed to measure the Classroom
Management factor tended to have stronger rater agreement than other dimen-
sions, which in turn could be related to its emergence as a distinct factor in our
analysis. Further refinements to the scoring rubrics may improve the ability of the
instruments to reliably distinguish different behaviors. Finally, the modest corre-
lations of the constructs with student outcomes as measured by state standardized
exams might also reflect limitations of the exams. More research is needed to un-
derstand to what degree state exams and student performances on them reflect
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student learning outcomes that are expected to be malleable through observable
classroom practices.

Our results may also be sensitive to the sample of teachers and schools partici-
pating in the study. The teachers and schools were volunteers. Given that teachers
knew that their lessons would be observed and rated during the study, a poten-
tial concern with our sample is that teachers who felt their practices would not
rate highly might have been less likely to participate. Similarly, principals who
were uncertain about their teachers’ performances might have been more likely to
decline our invitation for his/her school to participate. Such censoring could atten-
uate correlations. We do not have classroom practice measures for all teachers in
the participating districts, but we do have TVA for all teachers in the districts. The
mean TVA for math teachers in our sample is about 0.2 standard deviation units
greater than the overall mean, and the mean TVA for the ELA teachers is about
0.1 standard deviation units greater than the overall mean, where standard devia-
tion units are for the latent TVA. The average prior achievement in math, reading
and language of students in the participating teachers’ classrooms also tended to
be higher than the average for all the students in the districts. These results are
consistent with the concern that higher-performing teachers and classes were more
likely to participate. However, the variance of the latent TVA in the sample is only
very weakly attenuated relative to the variance of the latent TVA for all teachers:
the ratio of the variance for the UTQ teachers to that of all teachers is 1.0 for ELA
teachers and 0.9 for math teachers. Also, Gitomer et al. (2014) find that teach-
ers are relatively weak judges of the quality of their classroom practices, so it is
unlikely that teacher self-selection into the study on the basis of perceived instruc-
tional quality would lead to significant censoring of instructional practice ratings.
Indeed, our data contain many low scores on both instructional practice ratings, as
well as on the TK assessments. Our interpretation is that our sample has sufficient
variability to study relationships among teaching quality measures. Some relation-
ships may be attenuated, but we suspect any attenuation is not large. Beyond being
volunteers, our study was restricted to middle school math and ELA teachers in
three large suburban school districts in the same metropolitan area. Conducting
similar studies in other schools, grade levels and subject areas would help to un-
derstand whether the constructs and relationships we identified generalize to other
settings.

Our approach to permutation-invariant Bayesian EFA has strengths and weak-
nesses for applied research relative to the standard lower triangular specification. It
is ideally suited to applications where (1) there exists little prior knowledge for the
number and composition of constructs; (2) the amount of data is modest so that the
potential influence of the prior is a practical concern; and (3) trying many differ-
ent variable orderings is computationally prohibitive. It also applies to models that
do not model factor loadings and scores during estimation, such as the approach
of Carmeci (2009) that directly models the reduced-rank communality matrix Q.
Like the lower triangular specification, our approach requires few hyperparameter
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settings, no tuning of the sampler, and is readily implemented in standard BUGS
language software. Its main shortcoming is the need for post hoc identification of
the desired loadings. While post hoc identification is not uncommon, it can lead
to ambiguities in reorientation decisions for individual draws that may hamper in-
ference when either the sample size is very small or when K is large. The lower
triangular specification does not have this problem, and especially when there are
sufficient data to dominate the prior or when the computational costs of refitting
the model many times are minimal, it may be a more practical choice than our
method.

Finally, our approach to post hoc reorientation of MCMC draws of working
loadings to achieve simple structure may be of general interest because it applies
not only to our permutation-invariant prior, but also to the lower triangular spec-
ification. It can also be easily adapted to orthogonal rotation methods other than
varimax. Additional work would be required to extend the approach to oblique ro-
tations, which are often valuable in applications for improved interpretability of
the factors. Also, as noted by Hahn, Carvalho and Scott (2012), sparsity priors can
be beneficial for factor models, yielding more interpretable loadings and balancing
between bias and variance in exploratory models of structure. For our model, spar-
sity can be obtained by the choice of distribution for components of our loadings
in the parameter expansion by the methods of Bhattacharya and Dunson (2011) or
Carvalho, Polson and Scott (2010).

APPENDIX: POSTERIOR MEAN LOADINGS

TABLE 2
Posterior means of loadings for each subject and dimension from the K = 2 models. “Inst” denotes

Instructional Practices and “Mgmt” denotes Classroom Management

ELA Math

Instrument Dimension Inst Mgmt Inst Mgmt

MQI richness of math content (rm) 0.18 0.28
procedural and computational work (pcw) −0.04 0.02
no errors in mathematics (err_m) 0.05 0.04
math interactions with students (m_int) 0.14 0.23
student cognitive demand (s_cog) 0.17 0.27
class work connected to math (cnctmath) −0.21 0.33
moving the math along (movemath) 0.06 0.46
time spent on math (tmonmath) 0.05 0.27

PLATO demonstrate purpose (purp) 0.18 0.16
representation of content (rc) 0.36 0.15
connections to prior academic knowledge (cpk) 0.18 0.04
connections to prior personal experience (cpe) 0.33 0.08
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TABLE 2
(Continued)

ELA Math

Instrument Dimension Inst Mgmt Inst Mgmt

use of models and modeling (mod) 0.06 −0.06
explicit strategy instruction (esi) 0.10 0.03
guided practice (gp) 0.10 0.17
accommodations for language learners (all) 0.24 0.11
intellectual content (intc) 0.26 0.21
classroom discourse (cd) 0.48 0.28
text-based instruction (tbi) 0.23 0.20
behavioral management (bmn) 0.20 0.63
time management (tmn) 0.12 0.35

FFT create environment of respect, rapport (rr) 0.70 0.96 0.83 0.62
establish a culture of learning (cl) 0.76 0.99 0.82 0.64
manage classroom procedures (mcp) 0.29 0.82 0.30 0.58
manage student behavior (msb) 0.32 1.15 0.75 1.04
organize physical space (ops) 0.49 0.36 0.42 0.09
communicate with students (cs) 0.76 0.64 0.57 0.46
demonstrate content knowledge (kc) 0.90 0.59 0.40 0.31
use question and discussion techniques (qdt) 0.61 0.47 0.33 0.35
engage students in learning (esl) 0.55 0.83 0.67 0.57
use assessment in instruction (uai) 0.39 0.35 0.54 0.08
flexibility and responsiveness (fr) 0.64 0.55 0.61 0.17

CLASS positive climate (posc) 0.67 0.36 0.76 0.24
teacher sensitivity (tsen) 0.47 0.29 0.54 0.13
regard for adolescent perspective (rgap) 0.43 0.24 0.34 0.11
negative climate (negc) 0.30 0.43 0.38 0.43
behavior management (behm) 0.25 0.65 0.38 0.59
productivity (prd) 0.15 0.40 0.20 0.43
instructional learning formats (ilf) 0.44 0.31 0.32 0.22
content understanding (cu) 0.36 0.18 0.29 0.29
analysis and problem solving (aps) 0.30 0.20 0.22 0.27
quality of feedback (qf) 0.39 0.19 0.38 0.20
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SUPPLEMENTARY MATERIAL

Supplement to “Inferring constructs of effective teaching from classroom
observations: An application of Bayesian exploratory factor analysis without
restrictions” (DOI: 10.1214/15-AOAS833SUPP; .pdf). This document contains
detailed evidence on the effectiveness of our reorientation algorithm for the vari-
max loadings.

http://dx.doi.org/10.1214/15-AOAS833SUPP
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