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Ecologists often interpret variation in the spatial distribution of popula-
tions in terms of responses to environmental features, but disentangling the
effects of individual variables can be difficult if latent effects and spatial and
temporal correlations are not accounted for properly. Here, we use hierarchi-
cal models based on a Poisson-lognormal mixture to understand the spatial
variation in relative abundance (counts per standardized unit of effort) of yel-
low perch, Perca flavescens, the most abundant fish species in Lake Saint
Pierre, Quebec, Canada. The mixture incorporates spatially varying environ-
mental covariates that represent local habitat characteristics, and random tem-
poral and spatial effects that capture the effects of unobserved ecological pro-
cesses. The sampling design covers the margins but not the central region of
the lake. We fit spatial generalized linear mixed models based on three differ-
ent prior covariance structures for the local latent effects: a single Gaussian
process (GP) over the lake, a GP over a circle, and independent GP for each
shore. The models allow for independence, isotropy, or nonstationary spatial
effects. Nonstationarity is dealt with using two different approaches, geomet-
ric anisotropy and the inclusion of covariates in the correlation structure of
the latent spatial process. The proposed approaches for specification of spa-
tial domain and choice of Gaussian process priors may prove useful in other
applications that involve spatial correlation along an irregular contour or in
discontinuous spatial domains.

1. Introduction.

1.1. Ecological motivation. Ecologists often seek to interpret variation in the
spatial distribution of populations in terms of responses to environmental features.
However, population distributions are influenced simultaneously by numerous en-
vironmental variables which vary in space and time and cannot always be directly
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observed. Disentangling the individual effects of these variables on populations
and, more generally, interpreting environmental effects in ecological analyses, can
be difficult if the influence of latent (unobserved) variables and spatial and tempo-
ral correlations are not accounted for properly. Our aim in this study is to under-
stand the spatial variation in relative abundance (counts per standardized unit of
effort) of yellow perch, Perca flavescens, the most abundant fish species in Lake
Saint Pierre, Quebec, Canada. To this end, we use a hierarchical modeling ap-
proach to incorporate spatially varying environmental covariates that represent lo-
cal habitat characteristics, and random spatial and temporal effects to capture the
effects of unobserved ecological processes. Hierarchical modeling has proven to
be a powerful tool for dealing with spatio-temporal variation and latent effects and
attaining improved inference on specific environmental effects [reviewed in Wikle
(2003, 2010); Clark and Gelfand (2006)]. To account for the spatial arrangement
of the sampling locations and the pronounced heterogeneity of environmental in-
fluences across the lake, we explore various alternative specifications of the spatial
domain and the spatial correlation structure.

1.2. Geostatistical models for counts: A brief overview. Animal counts are of-
ten highly variable in space and time and show overdispersion relative to the Pois-
son distribution. Poisson-lognormal mixtures naturally incorporate overdispersion
[Bulmer (1974)], and have been used to extend the conventional geostatistical
framework to spatially structured counts: Y(s) is assumed to follow a conditional
independent Poisson distribution with mean λ(s), where logλ(s) = X(s)β + Z(s),
X(s) is a p-dimensional row vector of covariates, β is the associated parameter col-
umn vector, and Z(s) is a local random effect [Diggle, Tawn and Moyeed (1998)].
Z(·) is assumed to follow a zero-mean Gaussian process, with common variance
σ 2 and valid correlation function ρ(s − s′), where s and s′ are arbitrary locations
in the study region [Diggle, Tawn and Moyeed (1998)]. The spatial process Z is
stationary if the correlation function ρ(·) is a function of the difference s − s′,
and is both stationary and isotropic under the stronger assumption that ρ(·) is a
function of the Euclidean distance between locations; the latter assumption im-
plies that the distribution of Z is invariant under translation and rotation. How-
ever, the distribution of Y(·) may not be stationary and isotropic even if ρ(·) is
a function only of the Euclidean distance between locations. The vector defined
as λ = (λ(s1), . . . , λ(sn))

′ follows a multivariate lognormal distribution, and the
marginal moments of the process Y(·) are obtained through the properties of the
lognormal distribution and conditional expectations, that is,

E
(
Y(s)

) = exp
(
μ(s) + σ 2/2

) = α(s),

Var
(
Y(s)

) = α(s) + α2(s)
[
exp

(
σ 2) − 1

]
,
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(
s′)[exp
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σ 2ρ

(
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,
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where μ(s) = X(s)β . If one of the elements of X(·) varies with location, then the
resultant covariance function for Y(·) will also vary with location.

Although the inclusion of spatially varying covariates can yield an anisotropic
process for Y(·), it may still be useful to consider models allowing a priori for
anisotropy in spatial process Z [Denison and Mallick (1998); Williams (1998)].
However, the performance of these models would depend critically on whether
the likelihood contains information to support inference on the parameters charac-
terizing the anisotropy [Diggle, Tawn and Moyeed (1998)]. Various geostatistical
approaches to modeling nonstationary continuous data, including the use of co-
variates in the dependence structure, are reviewed in Guttorp and Schmidt (2013).
Recent applications that use covariates in nonstationary dependence structures in-
clude Ingebrigtsen, Lindgren and Steinsland (2014) and Poppick and Stein (2014).
Inclusion of covariates in the dependence structure can be a parsimonious way of
capturing the effect of latent processes that modify the effective distance between
points, such as physical mechanisms that facilitate or hinder the transport of mate-
rials or energy between points. In the absence of detailed subject knowledge of the
mechanisms behind spatial connections, the covariates in the dependence struc-
ture can provide a simple proxy for those mechanisms, and their interpretation
may yield insight into potential sources of anisotropy in the study system.

1.3. Sampling design and data collection. Study system. Fish counts and en-
vironmental measurements were collected between 14 June and 22 August 2007
in Lake Saint Pierre (46◦12′N; 72◦50′W), a fluvial lake of the Saint Lawrence
River (Quebec, Canada). Environmental conditions in the lake show strong spa-
tial heterogeneity and temporal variability. The lake is large (surface area: annual
mean 315 km2; 469 km2 during the spring floods) and shallow (mean water depth
3.17 m; range 1.23 m). The ice-free (April–November) surface area of LSP fluctu-
ates between 387 and 501 km2 depending on water level [Hudon (1997)]. Lake
Saint Pierre has distinct water masses running along its northern, central, and
southern portions. These water masses originate from different sources and dif-
fer consistently in physical and chemical characteristics because lateral mixing is
limited. A deep (>14 m) central navigation channel runs along the major axis of
the lake; the channel has a strong current and may act as a barrier to fish movement
between the north and south shores (Figure 1).

Fish relative abundance. Fish were collected from the shallow littoral zone
(<2.5 m depth) by electrofishing (Smith–Root CataRaft boat). Counts of yellow
perch were obtained for n = 160 locations equally distributed between the north
and south shores of the lake (Figure 1). Each location represents the centroid of
a 20-min fishing trajectory measuring approximately 4 m in width and 650 m in
length and running parallel to the shoreline. The fishing trajectories provided ex-
tensive coverage of the available littoral habitat along both shorelines. All samples
were collected by a single team of trained operators. Fish sampling was carefully
standardized to reduce variation in sampling efficiency among locations: current
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FIG. 1. Study locations along the north and south shores of Lake Saint Pierre (circles). Each lo-
cation represents the centroid of a fishing trajectory approximately 650 m in length. Symbol shading
is proportional to geodetic lake depth. The central navigation channel is represented by the dotted
curve. Water flows from southwest to northeast.

intensity was always maintained between 6 and 7 amp to control for variation in
water conductivity; fish were only collected near the water surface to reduce the
effect of water transparency on visibility; operators were equipped with polarized
sunglasses and visors to reduce glare and improve visibility; mean depth at all lo-
cations (<1.56 m) allowed for coverage by the electric field of the entire water
column along the trajectory; sampling was only conducted on days with at most
moderate breeze (≤4 on the Beaufort scale). This protocol yielded a single mea-
surement of relative abundance (counts per 20 min of standardized sampling) for
each location. To reduce the time and effort required to move between locations,
samples were collected from a cluster of either four or eight adjacent locations
on each of 38 sampling dates (four locations on 36 dates; eight locations on two
dates). The sampling dates were unevenly spaced in time over a period of 70 days,
and the north and south shores were visited in alternation on consecutive sam-
pling dates. This sampling design yielded measurements that were clustered both
in space and in time, in contrast with the simultaneous sampling of all locations at
all occasions characteristic of many spatio-temporal sampling schemes.

Environmental covariates for the Gaussian process mean structure. In Lake
Saint Pierre, suitable habitat for yellow perch is concentrated in the shallow lit-
toral zones that border the lake shores. Fish counts are expected to respond lo-
cally to habitat conditions at the site of capture, which are characterized in this
study by a set of four environmental covariates measured at each location: water



1376 A. M. SCHMIDT, M. A. RODRÍGUEZ AND E. S. CAPISTRANO

depth, transparency, vegetation, and substrate composition. These four covariates
together with an intercept were included in the mean structure of all models con-
sidered here.

Geodetic covariate for the Gaussian process covariance structure. Two of the
models we consider include, in addition to the environmental covariates in the
mean structure, a covariate in the correlation function, geodetic lake depth, which
allows for nonstationarity of the covariance structure of the spatial random effects.
Including information on this covariate in the covariance structure of the spatial
process provides a flexible yet relatively simple means of capturing anisotropy
along the shorelines of the lake. Geodetic lake depth, measured as water depth
minus the lake level relative to a fixed International Great Lakes low-water da-
tum (IGLD55), was calculated for each location and sampling date. Locations at
a given geodetic depth lie along a common isobath, or equal-depth contour along
the lake bottom (Figure 1). Relative abundance at sites distant from each other
but having similar geodetic depth may be linked by dynamic processes such as
fish movements along lake depth contours. Large-scale processes such as move-
ment can generate spatial correlation in fish counts, yet their effects may not be
adequately captured by the local environmental covariates, which are typically se-
lected to reflect habitat preference at smaller scales. When information on move-
ment dynamics is not available for inclusion in the mean structure, inclusion of
covariates such as geodetic depth in the covariance structure may be useful for
capturing correlations generated by the underlying latent process.

This paper is organized as follows. Section 2 describes the spatial generalized
linear mixed models (SGLM) considered in this study. We explore three classes
of Gaussian processes for the local latent effects: one defined over the whole lake,
another defined over a circle, and, last, one that assumes independent Gaussian
processes for each shore. For the models that assume either a single Gaussian pro-
cess over the lake or independent Gaussian processes for each shore, we also allow
for anisotropy of the local effects. Anisotropy is represented either geometrically
or, alternatively, by use of a covariate in the correlation structure of spatial pro-
cesses. Section 3 describes the inference and model selection procedures. Section 4
presents and interprets the results obtained under the fitted models, including the
potential influence of spatial confounding. Section 5 concludes by discussing the
advantages of the fitted models for understanding the spatial distribution of yellow
perch in Lake Saint Pierre.

2. Modeling environmental covariate, temporal, and spatial effects. We
assume that observed fish counts are realizations from a Poisson-lognormal mix-
ture. Specifically, Y(s) is the number of fish observed at location s and

Y(s)|λ(s) ∼ Poi
(
λ(s)

)
follows a conditionally independent Poisson distribution. We assume

log
(
λ(s)

) = X(s)β + δ(s),(2.1)
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where X(s) is a K-dimensional row vector containing a value of 1 and the K − 1
environmental covariates observed at location s and β = (β0, β1, . . . , βK−1)

′ is
the corresponding parameter vector of regression coefficients (i.e., β0 is an inter-
cept). The second component in (2.1), δ(·), is a mixing component that comprises
temporal and spatial random effects and allows for overdispersion in the Poisson
distribution. We decompose this mixing component as the sum of two independent
terms,

δ(s) = γ
(
t (s)

) + Z(s),(2.2)

where γ (t (s)) captures temporal effects common to the nt locations sampled on a
particular day, and t (·) is a deterministic function that assigns to each location s the
ordinal rank corresponding to the Julian day on which the location was sampled,
that is, {t (·) ∈ 1, . . . , T }, where T = 38 is the total number of sampling days. The
spatial term Z(s) captures local effects that remain after accounting for environ-
mental covariate and temporal effects. The simplifying assumption of additivity
of temporal and spatial terms was required because substantially more replication
would have been needed to allow for inclusion of time–space interactions. In all,
11 models are considered, all of which include the four environmental covariates
as well as temporal effects. As well, all models but one (a nonspatial “baseline”
model; see below) include spatial effects.

2.1. Modeling the temporal effect γ (t (·)). Sampling days are unevenly
spaced. For each sampling day t we have observations at nt different locations.
We initially assumed that the temporal effects γ = (γ (1), . . . , γ (T ))′ follow
a multivariate zero-mean normal prior distribution and that the correlation be-
tween components of γ decay exponentially in time, with Cov(γ (t), γ (t ′)) =
τ 2 exp(− 1

φγ
|J (t) − J (t ′)|), where J (t) is the Julian day associated with the t th

sampling day, τ 2 represents the variance of γ , assumed constant across time, and
φγ > 0 captures time-dependent decay in the correlation structure among elements
of γ . Exploration of different prior specifications for φγ yielded no evidence of
correlation in the components of γ across time. We therefore retain a simpler in-
dependence structure in subsequent analyses; all results reported in Section 4 are
based on an independent normal prior distribution with zero mean and variance τ 2

for each γ (·).

2.2. Modeling the local effects Z(·). Let Z = (Z(s1), . . . ,Z(sn))
′ be the n-

dimensional vector obtained by stacking the latent local effects of all observed
locations Z(si ), i = 1, . . . , n. We assume that Z is a partial realization from a zero-
mean Gaussian process with covariance matrix �. A key aspect differentiating the
models we explore here is the definition of the covariance matrix �. To account for
spatial effects arising from unmeasured (latent) ecological processes, such as land–
water exchanges, barrier effects of the central navigation channel, or behavioral
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TABLE 1
Spatial domain and correlation structure of the 11 models considered in this study

Correlation structure

Anisotropy

Spatial domain None Independence Isotropy Geometric Covariate in correlation

M0
Whole lake M1 M2 M3 M4
Circular M5, M6
By shore M7 M8 M9 M10

aggregation, we examine 10 spatial models representing different combinations
of spatial domain and spatial correlation structure. For comparison we include as
well a baseline model with no spatial effects (M0), that is, Z(s) = 0,∀s. The spatial
domain and correlation structure of the 11 models under consideration, labeled M0
through M10, are summarized in Table 1.

2.2.1. Specification of spatial domain and choice of Gaussian process priors.
A single Gaussian process over the lake (models M1–M4). As a first approxima-
tion, the components of Z may be viewed as a partial realization from a random
field defined over the whole lake. We assume that the local effects Z follow a zero-
mean Gaussian process prior such that Z ∼ N(0,�), where � is a n-dimensional
covariance matrix, with each element given by �(s, s′) = σ 2ρ(s, s′;φ), where σ 2

is the variance of the process and ρ(s, s′;φ) is a valid correlation function that
depends on a parameter vector φ. The hyperparameters to be estimated for this
Gaussian process are ηZ = (σ 2, φ).

A single Gaussian process over a circle (models M5 and M6). The sam-
pling locations form an approximately elliptical arrangement along the north and
south shorelines of the lake (Figure 1a of Section 1 of the supplementary ma-
terial [Schmidt, Rodríguez and Capistrano (2015)]). Correlations between loca-
tions may therefore be induced by ecological processes associated with depth
contours that follow the shoreline, such as water flow and fish movements. We
examine this possibility by projecting the locations onto a unit circle and fit-
ting models that assume a Gaussian process over a circle. Let ω be the angular
distance between any two points c1 and c2 on the circle S. The Euclidean dis-
tance between points c1 and c2 (i.e., the chord distance) is ξ = 2r sin(ω/2). The
function ρξ (ω;φ) = exp{− 1

φ
2r sin(ω/2)} is a possible correlation function for

a homogeneous random field on the circle S [Yaglom (1987), pages 387–389].
Gneiting (2013) notes that the functions ρξ (ω;φ) and ρω(ω;φ) = exp(−ω/φ), for
ω ∈ [0, π], are both valid, positive definite correlation functions on the circle, and
have similar behavior, particularly in the critical neighbourhood of ω = 0. Here,
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we define an isotropic random field on a circle of radius r = 1 and fit the circular
models under both correlation functions, ρξ and ρω. The two correlation functions
yielded very similar results and, therefore, only those based on ρξ are presented in
Section 4. The hyperparameters to be estimated for the circular Gaussian process
are ηCirc = (σ 2, φ).

Two different circular projections of the sampling location coordinates are con-
sidered:

1. Model M5: An ellipse is fitted to the UTM location coordinates by orthogo-
nal least-squares (Figure 1a in Section 1 of the supplementary material [Schmidt,
Rodríguez and Capistrano (2015)]). The original space is then shrunk to yield iden-
tical ellipse semi-axes of unit length, and the shrunken location coordinates are
projected radially (scaling by vector norm) onto the resulting unit circle (Figure 1b
in Section 1 of the supplementary material [Schmidt, Rodríguez and Capistrano
(2015)]);

2. Model M6: The centered location coordinates are projected radially (scaling
by vector norm) onto a unit circle (Figure 1c in Section 1 of the supplementary
material [Schmidt, Rodríguez and Capistrano (2015)]).

Note that the assumption of isotropy of the local effects holds only after the pro-
jection of the original geographical locations onto a circle.

2.2.1.1. Separate Gaussian processes for the North and South shores (models M7–
M10). The potential of the navigation channel to act as a barrier to ecological
exchanges between shores, as well as previous work which points to marked dif-
ferences in the spatial structure of yellow perch growth between the two shores
[Glémet and Rodríguez (2007)], suggest that local effects may have different co-
variance structures in the north and south shores. We therefore explore models that
assume independent zero-mean Gaussian processes over each shore, each with
its own covariance structure: �N(s, s′) = σ 2

Nρ(s, s′;φN) for the north shore and
�S(s, s′) = σ 2

S ρ(s, s′;φZ) for the south shore.

2.2.2. Specification of spatial correlation structures: Isotropy and nonstation-
ary spatial effects. For the isotropic cases we assume an exponential correlation
function, ρ(d,φ) = exp(− 1

φ
‖s − s′‖), where d = ‖s − s′‖ denotes Euclidean dis-

tance between locations s and s′, and φ > 0 is the decay parameter of the corre-
lation function. The hyperparameters to be estimated in the isotropic covariance
structure are ηI = (σ 2, φ).

In the present study water flow, lake morphometry, land–water exchanges, and
the presence of the central navigation channel may all induce directional effects
on the correlations between fish counts. We therefore explore correlation functions
for the local spatial effects Z that relax the assumption of isotropy. Specifically, we
discuss two different approaches, geometric anisotropy and inclusion of covariates
in the correlation function.
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Geometric anisotropy (models M3 and M9). In this approach, a stationary co-
variance structure is transformed by differential stretching and rotation of the co-
ordinate axes to capture directional effects [Diggle and Ribeiro (2007)]. In the
models considered here, the spatial effects Z are correlated as a function of a
linear transformation of the original coordinate system. We assume �(s, s′) =
σ 2ρ(‖f (s) − f (s′)‖, φ), where f (s) = sA, and

A =
[

cosψA − sinψA

sinψA cosψA

][
1 0
0 ψ−1

R

]
,

where ψA ∈ (0,2π) is the anisotropy angle and ψR > 1 is the anisotropy ratio
[Diggle and Ribeiro (2007)]. The hyperparameters to be estimated in the geometric
anisotropy model are ηG = (σ 2, φ,ψA,ψR).

Inclusion of covariates in the spatial correlation function (models M4 and
M10). A potential limitation of geometric anisotropy models is that they rely
on a highly symmetrical representation that can describe global directional fea-
tures over the study region, but not local patterned variation. An alternative ap-
proach, which retains model simplicity while affording additional flexibility, is
to allow for inclusion of covariates in the correlation structure of Gaussian pro-
cesses. Following Schmidt and Rodríguez (2011a), we include geodetic depth as
a covariate in the correlation structure of Z to allow for nonstationarity of the re-
sultant covariance structure of the local random effects. Specifically, we assume
sc = (s1, s2, q(s1, s2))

′ = (s, q(s))′, where s1 and s2 are easting and northing co-
ordinates and q(s1, s2) is the observed geodetic depth at location s = (s1, s2). The
covariate q(·, ·) is a function of s1 and s2, and so one can think of this spatial
process as defined in a two-dimensional manifold [Schmidt, Guttorp and O’Hagan
(2011)]. We model the elements of � as

�
(
sc, s′

c

) = σ 2 exp
{
− 1

φ1

∥∥s − s′∥∥ − 1

φ2

∣∣q(s) − q
(
s′)∣∣},

with φ1, φ2 > 0. This covariance function is nonstationary in the two-dimensional
manifold. For this model, the hyperparameters to be estimated are ηC = (σ 2, φ1,

φ2).

3. Inference procedure and model comparison. Likelihood function. Let
y = (y(s1), . . . , y(sn))

′ be the observed count at each of the sampling locations
(Figure 1) over the sampling period. The vector θ comprises all the parameters
and hyperparameters involved in the model. The hyperparameters to be estimated
are those related to the prior specification for γ (·) and Z as discussed above. Con-
ditional on λ(si), each observation is an independent realization from a Poisson
distribution; therefore, the likelihood function follows the relationship

f (y|θ) ∝
n∏

i=1

exp
{−λ(si )

}[
λ(si )

]y(si ).
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We follow the Bayesian paradigm to obtain estimates of the unknowns in the
model.

Prior specification of the components of θ . We assume that all components of
θ are independent a priori. For the components of β we assume a normal prior
distribution with zero mean and some large variance to represent our lack of in-
formation on how each component of X(·) influences the mean of the Poisson
distribution. For the variances τ 2 and σ 2 we assume inverse gamma distributions
with infinite variance and mean based on the residual standard error estimate of a
log-linear fit. For the decay parameters of the correlation functions (φ) we assign
gamma prior distributions having unit mean and variance. The components of Z
were not expected a priori to show very strong spatial correlation, and so the prior
specification for φ sets the range of an isotropic spatial process at half or less of
the maximum observed distance, with 99% probability.

For the geometric anisotropy model we assume, a priori, ψA ∼ U(0, π) for
identifiability (to ensure that orientations are unique within the interval consid-
ered). Prior specifications for the anisotropy ratio hyperparameter must satisfy the
constraint ψR ≥ 1. We assign a Pareto prior distribution to ψR with scale parame-
ter 1 and shape parameter 2. This prior has mode 1 (corresponding to the isotropic
case), mean 2, and infinite variance.

Posterior distribution. Following the Bayesian paradigm, the posterior distri-
bution is proportional to likelihood times prior. For all models considered above,
the posterior distribution does not admit a simple closed form. Therefore, we used
Markov chain Monte Carlo algorithms, specifically Gibbs sampling with some
Metropolis–Hastings (M–H) steps [Hastings (1970), Metropolis et al. (1953)] to
sample from the posterior.

We reparametrized the model described in equations (2.1) and (2.2) to build a
more efficient MCMC sampling scheme. We let log(λ(si )) = X∗

i (si )β
∗ + W(si ),

and W(si ) = β0 + γ (t (si )) + Z(si ), where X∗
i (·) does not have a column of ones

and β∗ = (β1, . . . , βK−1). The covariate coefficients do not have full conditional
posteriors of closed form, so they were sampled using M–H steps whose proposal
distribution was based on the algorithm proposed by Gamerman (1997). The W(si )

were sampled using a random walk M–H step with the proposal variance tuned to
yield acceptance rates approaching 0.44 [Roberts and Rosenthal (2009)]. Let W
and Z be the vectors obtained by separately stacking the W(si ) and Z(si ). Z is
assumed to follow a zero-mean multivariate normal distribution, with covariance
matrix �. We can write W = 1nβ0 + Bγ + Z, which follows an n-dimensional
multivariate normal distribution, with mean 1nβ0 + Bγ , and covariance matrix
�. Here, γ = (γ (1), . . . , γ (T ))′ is the T -dimensional vector comprising the tem-
poral random effects, and B is a n × T matrix, where each row is given by the
T -dimensional row vector et having t th column equal to 1 and all other elements
equal to zero. Row vector ei enters in B nt times. Under this reparametrization, it
is easy to sample from the known full conditional posteriors of β0 and γ (normal
distributions), and of σ 2 and τ 2 (inverse-gamma distributions). The parameters in
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the spatial correlation function result in unknown full conditional posteriors from
which we sampled using M–H steps. For all models, we ran the MCMC algorithm
(two chains with overdispersed starting values) for 70,000 iterations, used 10,000
iterations as burnin, and stored every 60th iteration. The MCMC algorithm was
implemented in the Ox programming language, v. 6.20 [Doornik (2007)]. Con-
vergence was checked using the diagnostics in R package coda [Plummer et al.
(2006)].

Model comparison. Four different criteria were used to compare models: (i) de-
viance information criterion (DIC) [Spiegelhalter et al. (2002)], (ii) ranked prob-
ability score (RPS), (iii) logarithmic score (LS), and (iv) Dawid–Sebastiani score
(DSS) (Section 2 of the supplementary material [Schmidt, Rodríguez and Capis-
trano (2015)]). The last three criteria are proper scoring rules, proposed by
Gneiting and Raftery (2007) and discussed for discrete observations in Czado,
Gneiting and Held (2009). As emphasized by Czado, Gneiting and Held (2009),
propriety is an essential property of a scoring rule that encourages honest and co-
herent predictions and ensures that both calibration (consistency between predic-
tions and observations) and sharpness (concentration of predictive distributions)
are being addressed. Following Gschlößl and Czado (2008), we use the same data
for estimation and computation of the scores, as our focus is on understanding the
distribution of the counts over the lake rather than prediction. For all criteria, the
best model among those fitted is that having the smallest value for the criterion.

4. Results. Model comparisons based on DIC, RPS, LogS, and DSS. The
baseline model excluding spatial effects (M0) had very poor performance rela-
tive to all other models (Table 2). Comparisons among the models that assume a
single Gaussian process over the lake (M1 to M4), and among those that allow for
different local spatial processes on the north and south shores (M7 to M10), indi-
cate that anisotropic models provided better fits than the independent or isotropic
models (Table 2). Overall, the model that performed best under all four criteria
(M9) incorporated both anisotropy and a separate Gaussian process for each shore.
Posterior predictive checks for M9 (Figure 2 in Section 3 of the supplementary ma-
terial [Schmidt, Rodríguez and Capistrano (2015)]) show good agreement between
observed and fitted values. The importance of considering separate spatial struc-
tures for the north and south shores is also supported by the fact that M5, which
emphasizes the distance between shores relatively more than M6, performs better
than the latter under all criteria. These results suggest that after accounting for the
effects of time and of the measured environmental covariates, the spatial distri-
bution of yellow perch in Lake Saint Pierre is better modeled with local random
effects that originate from different processes in the north and south shores.

In what follows we focus on results obtained under the four models that assume
different local structures of the covariance matrix � for the north and south shores
(M7, M8, M9, and M10). Note that these four models can be viewed as nested:
M8 is a particular case of M9 if ψA = 0 and ψR = 1, M10 is in turn a particular
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TABLE 2
Model comparisons based on DIC, RPS, LogS, and DSS. For each criterion, the value associated

with the best-performing model is given in bold characters

Model Correlation structure D pD DIC RPS LogS DSS

M0 None 1591.7 36.6 1628.2 6.42 4.98 25.2

Whole lake
M1 Independence 905.0 133.6 1038.6 2.56 2.83 3.59
M2 Isotropy 906.9 127.2 1034.1 2.60 2.83 3.58
M3 Anisotropy–Geom. 906.2 127.2 1033.4 2.61 2.83 3.58
M4 Anisotropy–Cov. in cor. 902.9 128.4 1031.3 2.57 2.82 3.57

Circular
M5 Isotropy 910.1 131.0 1041.0 2.60 2.84 3.60
M6 Isotropy 918.5 133.1 1051.6 2.68 2.87 3.63

By shore
M7 Independence 909.0 133.4 1042.4 2.58 2.84 3.59
M8 Isotropy 899.3 126.5 1025.8 2.56 2.81 3.54
M9 Anisotropy–Geom. 897.3 125.1 1022.4 2.54 2.80 3.54
M10 Anisotropy–Cov. in cor. 900.8 129.1 1029.9 2.55 2.81 3.56

case of M8 if φ2 → ∞, and M7 is a particular case of M8, M9, and M10 obtained
by setting the appropriate decay parameters φ ≈ 0. For this reason, we examine
the posterior distributions of the parameters to assess the information gain relative
to the prior under each of these models, as suggested by Schmidt and Rodríguez
(2011b).

Environmental effects. The prior structure assumed for the latent local effects
does not seem to influence much the estimates of the effects of the environmental
covariates that determine the mean structure of the Gaussian process (Figure 2).
The responses to envrionmental covariates in models M7 through M10 suggest
that the relative abundance of yellow perch in Lake Saint Pierre is responding pri-
marily to transparency (positively) and depth (negatively), and not to vegetation
or substrate. The estimated effects of transparency and depth are very substantial,
and thus have major implications for the spatial distribution of yellow perch in the
lake. Over the observed ranges for these two covariates, these effects imply ap-
proximately fourfold (transparency) and elevenfold (depth) changes in the Poisson
mean for relative abundance.

Temporal effects. Posterior distributions of temporal effects γ (t (·)) under the in-
dependence model M7 seem to reflect structure in the data that is not apparent for
the models that incorporate spatial correlation, M8, M9, and M10, none of which
shows evidence of trends or other substantial temporal effects (Figure 3). M8, M9,
and M10 show a generalized reduction in the variance of the temporal effects rel-
ative to M7, as seen in the reduced spread of those temporal effects most distant
from zero, for example, for days 5, 6, 27, 33, and 42. This reduction presumably
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FIG. 2. Posterior summary of regression coefficients (β1, β2, β3, β4)′, for the four environmental
covariates (depth, transparency, vegetation, and substrate) included in the mean structure of the
model. Results are shown for the four models that assume different local structures of the covariance
matrix � for the north and south shores: M7, M8, M9, and M10. Solid circles: posterior mean of β;
vertical lines: 95% credible interval.

reflects the use of information contained in spatial correlations to explain some of
the variation attributed to the temporal effects in M7.

Anisotropy. Estimates of the decay parameters of the exponential correlation
functions (φN and φS ) under M8, M9, and M10 suggest independence of the lo-
cal effects on the south shore (second row of Figure 4). However, the posterior
distributions for the anisotropy ratio (ψR) and anisotropy angle (ψA) under M9
provide strong evidence of anisotropy associated with the spatial process on the
north shore, indicating a slower decay of correlation along the SW–NE direc-
tion (third and fourth columns of Figure 4). Strong evidence for anisotropy also
emerges when geodetic depth is considered in the correlation structure of Z under
M10 (fifth and sixth columns of Figure 4). The presence of spatial correlation in the
north shore and apparent spatial independence in the south shore is consistent with
the previous finding that individual growth of yellow perch shows marked spa-
tial heterogeneity on the north shore, but spatial homogeneity on the south shore
[Glémet and Rodríguez (2007)].

Geometric anisotropy can be readily represented graphically, for example, by
means of elliptical contours on a map. In contrast, the anisotropy estimated from
covariate-in-correlation models can be difficult to visualize because it reflects un-
derlying variation in the covariates, which may show little spatial pattern. There-
fore, we used generalized additive model [GAM; Wood (2006)] analyses of spatial
correlation as a heuristic device to understand the orientation of anisotropic effects

FIG. 3. Posterior summary of the temporal effects γ (t (si )), for each of the I = 38 sampling dates,
under models M7, M8, M9, and M10. Solid circles: posterior mean of γ (·); vertical lines: 95%
credible interval.
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FIG. 4. Posterior distribution (histogram) and prior density (curve) of each of the hyperparameters
in the respective correlation functions of models M8, M9, and M10 (columns), for the north and south
shores (rows).

in the covariate-in-correlation model M10. We calculated the pairwise geographi-
cal distances between all sampling locations and the smallest positive angle � sub-
tended by the line connecting each pair of locations and the equator. A GAM was
used to represent the spatial correlation fitted under the covariate-in-correlation
model M10 as a function of the angle � and geographical distance. The results
from this analysis were used to generate partial smooths showing change in spatial
correlation as a function of angle � after adjustment for geographical distance.
For comparison, this analysis was also performed for the spatial correlation fitted
under the geometric anisotropy model M9. The GAM analyses for the covariate-
in-correlation model M10 and the geometric anisotropy model M9 show close
agreement and successfully retrieve the direction of least change in correlation
specified by the fitted anisotropy angle ψA (Figure 5). Both anisotropic models in-
dicate that spatial correlation decays most rapidly along a direction approximately
perpendicular to the north shoreline and to the lake’s major axis.

Latent spatial effects. To better understand the behavior of spatial effects on the
north and south shores, we examined samples from the posterior distribution of
the correlation among the components of ZN and ZS . Models M8, M9, and M10
yield substantially different estimates for decay with distance (Figure 3, top left,
in Section 3 of the supplementary material [Schmidt, Rodríguez and Capistrano
(2015)]) and variability (Figure 3, top right, in Section 3 of the supplementary
material [Schmidt, Rodríguez and Capistrano (2015)]) of spatial correlation among
the local components on the north shore. Ranges of the posterior 95% credible
intervals of correlations under the geometric anisotropic model (M9) are much
wider than those obtained under models M8 and M10; this may be related to the
relatively uninformative prior assigned to ψR . In comparison to M8 and M9, M10
yields narrower ranges of the posterior 95% credible intervals of correlations on the
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FIG. 5. (a) Spatial correlation as a function of angular distance from the equator (�). Dashed
curve: GAM smooth for the covariate-in-correlation model M10 (adjusted for geographical distance;
y axis on the right). Dotted curve: GAM smooth for the geometric anisotropy model M9 (y axis on
the left). Vertical line: posterior mean of the anisotropy angle ψA. (b) Anisotropic effects on the
north shore. Sampling locations are shown together with (1) direction of lake major axis (solid line);
(2) ellipse representing the anisotropy angle ψA and ratio ψR from model M9; (3) direction of least
change in spatial correlation from model M10 (dashed line).

north shore (top right panel of Figure 3 in Section 3 of the supplementary material
[Schmidt, Rodríguez and Capistrano (2015)]). In contrast with the results for the
north shore, models M8, M9, and M10 yield similar estimates of spatial correlation
for the south shore, showing rapid decay of correlation with distance and providing
another indication that the local latent effects are not spatially correlated on the
south shore.

For the two shores, substantial spatial variation in relative abundance of yellow
perch still remains after accounting for temporal and observed environmental ef-
fects (Figure 6). This local variation in relative abundance may be linked to unmea-
sured environmental effects, such as changes in optical, thermal, or chemical prop-
erties arising from the influence of tributaries that enter the lake. Local variation
may also result from the concentration of mature adult fish at favorable spawning
grounds during the reproductive season and subsequent downstream movement of
groups of young fish from the spawning grounds. Larval fish have limited swim-
ming ability and may be transported downstream by advection during the first
weeks after spawning, until they have grown sufficiently to hold position against
the flow. Interestingly, the strongest local latent effects appear to be concentrated
in four areas located downstream of the four known spawning grounds identified
in Bertolo et al. (2012).

Spatial confounding. A key objective in many applications involving spatial re-
gression is to estimate the fixed effects while accounting for spatial correlation
[Reich, Hodges and Zadnik (2006); Hughes and Haran (2013)]. Spatial confound-
ing, which arises when the covariates and the spatial effects are not independent,
can lead to estimates of the posterior mean and variance of fixed effects that
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FIG. 6. Posterior mean of the local latent effects Z for the north and south shores under model M9
(open circles). The diameters of the open circles are proportional to eZ(si ), i = 1, . . . , n. Locations
corresponding to the 10 greatest posterior mean values of Z are shown as darker (black) circles. The
approximate locations of the four known spawning areas in the lake are shown as shaded circles.

markedly differ from those of the nonspatial regression model [Reich, Hodges
and Zadnik (2006); Paciorek (2010); Hodges and Reich (2010); Hughes and Ha-
ran (2013)]. The most common approach for dealing with spatial confounding is
restricted spatial regression (RSR), in which the spatial random effects are con-
strained to the orthogonal complement (residual space) of the fixed effects [Hodges
and Reich (2010); Hanks et al. (2015)]. The conditional likelihood functions of
the data under SGLM and RSR are identical and, therefore, one cannot choose be-
tween the two approaches based on in-sample data alone, which can be problem-
atic when the interpretation of fixed effects is of interest and the two approaches
yield different estimates of these effects [Hanks et al. (2015)].

In the geostatistical (continuous spatial support) setting, Hanks et al. (2015)
show that RSR provides computational benefits relative to the spatially confounded
SGLM, but that Bayesian credible intervals under RSR can be inappropriately nar-
row under model misspecification. To mitigate this potential problem, they pro-
pose a posterior predictive approach (RSR-PPD) which adjusts the variance of the
regressor coefficients to reflect possible collinearity between fixed and random ef-
fects.

To investigate possible spatial confounding between the covariates and the spa-
tial effects Z(·), we adapted the restricted spatial regression (RSR) model proposed
by Hanks et al. (2015) to deal with a Poisson response variable, as detailed in Sec-
tion 4 of the supplementary material [Schmidt, Rodríguez and Capistrano (2015)].
As all model comparison criteria pointed to the models with different spatial pro-
cesses per shore as the best among those fitted under the SGLM approach (M8,
M9, and M10; Table 2), we implemented the RSR and RSR-PPD approaches un-
der the correlation structures corresponding to these models. We then compared
the posterior summaries of the coefficients of the four environmental covariates
under the SGLM (β), RSR (α), and RSR-PPD (β̃) approaches. Similarly to Hanks
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et al. (2015), the posterior 95% credible intervals of the covariate coefficients un-
der RSR were narrower than those obtained under SGLM and RSR-PPD (Figure 4
in Section 4 of the supplementary material [Schmidt, Rodríguez and Capistrano
(2015)]). The intervals for vegetation and substrate overlapped zero under SGLM
and RSR-PPD but were strictly positive under RSR (Figure 4 in Section 4 of the
supplementary material [Schmidt, Rodríguez and Capistrano (2015)]). The spatial
covariance structure assumed for the spatial effect (M8, M9, or M10) did not seem
to influence the posterior distribution of the coefficients. Interestingly, although
the posterior means for the regressor coefficients under RSR and RSR-PPD were
shifted relative to those under SGLM, substantive interpretation of covariate ef-
fects based on the 95% credible intervals (i.e., whether intervals overlap zero) was
similar under SGLM and RSR-PPM (only depth and transparency are important),
and this interpretation contrasted with that under SRS (all covariates are impor-
tant).

Following Hanks et al. (2015), we also ran a simulation study to examine the
influence of model misspecification on the coverage of covariate credible intervals.
We generated multiple data sets from each of two models, a SGLM and a SRS,
and then fit each model to all the data sets. For data generated from the SGLM,
coverage of the true value of covariate coefficients was adequate for the SGLM and
the RSR-PPD, but the RSR was unable to recover the true value, with the exception
of transparency (Figure 5 in Section 4 of the supplementary material [Schmidt,
Rodríguez and Capistrano (2015)]). Conversely, for data generated from the RSR,
coverage of the true value of covariate coefficients was similar for SGLM, RSR,
and RSR-PPD (Figure 5 in Section 4 of the supplementary material [Schmidt,
Rodríguez and Capistrano (2015)]). In agreement with Hanks et al. (2015), we
found that under model misspecification the covariate coefficients resulting from
the RSR-PPD and SGLM approaches were conservative, whereas those from RSR
could be inappropriately narrow.

Our results on spatial confounding are consistent with the caveat issued by
Hanks et al. (2015), that when the generating mechanism for spatially autocor-
related observations is a spatially missing covariate, choosing the RSR over the
SGLM assumes that this missing covariate is orthogonal to the measured covari-
ates. Because smooth covariates are likely to be collinear, this generally is a strong
assumption.

5. Discussion. A hierarchical modeling approach was used to examine the
variation in relative abundance of a fish species in a lake. We focused on a Poisson-
lognormal mixture to model counts observed at locations along the shores of the
lake over a 70-day period. We examined different candidate structures for the log-
normal mixing structure, which include a temporal and a spatial component. The
temporal component accounts for potential effects shared by locations sampled
on the same day, whereas the spatial component accounts for effects arising from
latent ecological processes. Environmental effects are incorporated by means of
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spatially varying covariates that reflect local habitat characteristics. In all, we ex-
amined 11 models which incorporated the same covariates and temporal effects
but considered different combinations of spatial domain and spatial correlation
structure (Table 1).

The local effects in models M5 and M6 are assumed to follow a Gaussian pro-
cess over a circle once the sampling locations are rescaled by projection onto the
unit circle. Gaussian processes defined on the circle have been used previously in
biological applications, for example, to describe the spread of an airborne plant
disease from a point source [Soubeyrand, Enjalbert and Sache (2008)]. This ap-
proach can be placed into the Sampson and Guttorp (1992) framework, in which
isotropy holds only after an unknown nonlinear transformation of the geographical
locations. However, instead of seeking a nonlinear transformation to attain isotropy
in the deformed space derived from the original configuration, we selected the cir-
cular transformations a priori based on ecological considerations. Specifically, the
first projection (M5) reduces intra-shore distances relative to inter-shore distances,
and thereby emphasizes the potential for the central navigation channel to reduce
inter-shore correlations, for example, by acting as a barrier to fish movement. In
comparison, the second projection (M6) more closely approximates a scenario in
which spatial correlations are determined by distance along the shoreline, with
little influence of the navigation channel. This projection therefore emphasizes
longitudinal effects related to water flow, such as contaminant or nutrient gradi-
ents along the plumes created by tributary streams and rivers entering the lake.
The better performance of M5 relative to M6 points to the importance of inter-
shore differences and hints at the operation of different ecological processes in the
north and south shores. However, the poor performance of M5 and M6 relative to
models that treat shores separately (Table 2) suggests that the circular projection
framework was not sufficiently flexible to capture differences between shores.

For the nested models M7–M10, which treat shores separately, comparisons of
the prior–posterior information gain for the key parameters that differentiate the
models (Figure 4) were a useful complement to the model comparison criteria
when assessing the relative merits of the models. The inclusion of information on
geodetic lake depth as a covariate in the covariance structure of the spatial pro-
cess (M10) provided a flexible means of capturing anisotropy along the shorelines
of the lake. However, the geometric anisotropy (M9) and covariate-in-correlation
(M10) models yielded similar substantive results, presumably because the shape
of the lake is compact and the arrangement of depth contours along both shores is
regular. Spatial correlations induced by shoreline-related processes therefore have
a simple structure that was captured adequately by either model.

Estimates of environmental effects are very similar for models M7–M10, show-
ing little sensitivity to assumptions about the spatial term of the mixing compo-
nent in those models. Among the environmental covariates considered, only water
transparency and depth seem to influence the spatial distribution of yellow perch.
The effects of transparency and depth on relative abundance of yellow perch are
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strong, which points to water depth and transparency as potential determinants of
the spatial distribution of this species in the lake. This finding agrees with earlier
biological studies of local habitat preferences in yellow perch, which are reported
to be most abundant in shallow, open waters of clear lakes with moderate veg-
etation and relatively fine substrate (silt to gravel) [Scott and Crossman (1973)].
However, we find no effect of vegetation and substrate in the present study. Vegeta-
tion, transparency, depth, and substratum covary naturally in lakes; therefore, their
effects on the distribution of yellow perch may have been confounded in previous
studies that did not consider covariates, latent spatial effects, and temporal effects
simultaneously.

The model that performed best (M9) incorporated both anisotropy and a sep-
arate Gaussian process for each shore. The model comparisons point to marked
differences in the posterior structure of latent spatial effects for the two shores:
anisotropy was conspicuous in the north shore, whereas spatial structuring was
weak in the south shore. The rate of decay in spatial correlation in the north
shore had marked directionality and was generally slower in the SW–NE direction,
broadly in alignment with the shoreline [Figure 5(b)]. Likely environmental can-
didates responsible for these intershore differences in latent spatial effects include
known differences in physical and chemical properties of water masses between
the two shores, which are influenced by contributions from different tributaries
and diffuse sources of nutrients and pollutants. Exposure to more differentiated
water masses in the north shore has been invoked as an explanation for the greater
variability in growth of yellow perch on the north shore of the lake [Glémet and
Rodríguez (2007)]. The importance of local effects indicates that traditional co-
variates such as water depth and transparency provide only a partial picture of
environmental influences on the spatial distribution of yellow perch in the lake.
Further research on the effects of shoreline-dependent processes and larval trans-
port from the spawning grounds may therefore prove fruitful.

Although fish sampling was carefully standardized, we cannot rule out the pos-
sibility that sampling efficiency and thus probability of detection were influenced
by environmental characteristics, which could confound inference on environmen-
tal effects. Identifying environmental effects on abundance separately from those
on detection in an open population of unmarked individuals would require more
complex sampling designs and observational models, such as N -mixture mod-
els [Royle (2004)]. However, these models invoke an assumption of closure over
repeated observations that may be difficult to justify when using active gear to
sample populations of highly mobile fish.

The approaches discussed here might pose computational challenges when the
number of locations is large. In such cases, alternative approaches based on Gaus-
sian random Markov fields [Lindgren, Rue and Lindström (2011)] may be useful
to provide a prior distribution for Z.

An important feature of the present study is its treatment of nonstandard spatial
features of the example, including the spatial arrangement of samples along the
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lake shoreline and the presence of the channel running through the lake. The cir-
cular models are expected to be most applicable in situations in which the spatial
domain is approximately oval, but more flexible anisotropic models, such as M10,
may perform better under more complex domain topologies. Concerns about the
influence of irregular domain shapes and complex boundaries on the outcome of
spatial analyses have been voiced previously [(Legates (1991); Ramsay (2002);
Soubeyrand, Enjalbert and Sache (2008); Miller and Wood (2014)]. Recently de-
veloped methods, such as the soap film smoother [Wood, Bravington and Hedley
(2008)] and generalized distance splines [Miller and Wood (2014)], are promising
alternative approaches for dealing effectively with complex irregular boundaries
or interior holes. However, little effort has been devoted to developing approaches
that systematically compare competing representations of the spatial domain. The
approaches presented here for specification of spatial domain and choice of Gaus-
sian process priors may prove useful in other applications that involve spatial corre-
lation along regular, possibly discontinous, contours. Biological examples include
samples collected along a mountain perimeter within an altitudinal range, at dif-
ferent heights on the bark of a tree trunk, along the edges of growing structures
(e.g., bacterial colonies, diffusing chemicals), and at interfaces between habitats
(ecotones).
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SUPPLEMENTARY MATERIAL

Additional results for “Population counts along elliptical habitat contours:
Hierarchical modeling using Poisson-lognormal mixtures with nonstation-
ary spatial structure” (DOI: 10.1214/15-AOAS838SUPP; .pdf). This supplement
contains four sections which provide further results on: (1) circular transforma-
tions, (2) model comparison criteria, (3) analyses of model fit and correlation of
local effects, and (4) restricted spatial regression.

REFERENCES

BERTOLO, A., BLANCHET, A. F. G., MAGNAN, P., BRODEUR, P., MINGELBIER, M. and LEG-
ENDRE, P. (2012). Inferring processes from spatial patterns: The role of directional and non-
directional forces in shaping fish larvae distribution in a freshwater lake system. PLoS ONE 7
1–11.

BULMER, M. G. (1974). On fitting the Poisson lognormal distribution to species-abundance data.
Biometrics 30 101–110.

CLARK, J. S. and GELFAND, A. E. (2006). Hierarchical Modelling for the Environmental Sciences:
Statistical Methods and Applications. Oxford Univ. Press, Oxford, UK.

CZADO, C., GNEITING, T. and HELD, L. (2009). Predictive model assessment for count data. Bio-
metrics 65 1254–1261. MR2756513

http://dx.doi.org/10.1214/15-AOAS838SUPP
http://www.ams.org/mathscinet-getitem?mr=2756513


1392 A. M. SCHMIDT, M. A. RODRÍGUEZ AND E. S. CAPISTRANO

DENISON, D. G. T. and MALLICK, B. K. (1998). Discussion of model-based geostatistics. Applied
Statistics 47 336.

DIGGLE, P. J. and RIBEIRO, P. J. JR. (2007). Model-Based Geostatistics. Springer, New York.
MR2293378

DIGGLE, P. J., TAWN, J. A. and MOYEED, R. A. (1998). Model-based geostatistics. J. R. Stat. Soc.
Ser. C. Appl. Stat. 47 299–350. MR1626544

DOORNIK, J. (2007). Object-Oriented Matrix Programming Using Ox, 3rd ed. Timberlake Consul-
tants Press and Oxford, London.

GAMERMAN, D. (1997). Sampling from the posterior distribution in generalized linear mixed mod-
els. Stat. Comput. 7 57–68.

GLÉMET, H. and RODRÍGUEZ, M. A. (2007). Short-term growth (RNA/DNA ratio) of yellow perch
(Perca flavescens) in relation to environmental influence and spatio-temporal variation in a shal-
low fluvial lake. Canadian Journal of Fisheries and Aquatic Sciences 64 1646–1655.

GNEITING, T. (2013). Strictly and non-strictly positive definite functions on spheres. Bernoulli 19
1327–1349. MR3102554

GNEITING, T. and RAFTERY, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.
J. Amer. Statist. Assoc. 102 359–378. MR2345548

GSCHLÖSSL, S. and CZADO, C. (2008). Modelling count data with overdispersion and spatial ef-
fects. Statist. Papers 49 531–552. MR2399219

GUTTORP, P. and SCHMIDT, A. M. (2013). Covariance structure of spatial and spatio-temporal
processes. WIREs Computational Statistics 5 279–287.

HANKS, E. M., SCHLIEP, E. M., HOOTEN, M. B. and HOETING, J. A. (2015). Restricted spatial
regression in practice: Geostatistical models, confounding, and robustness under model misspec-
ification. Environmetrics 26 243–254.

HASTINGS, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applica-
tions. Biometrika 57 97–109.

HODGES, J. S. and REICH, B. J. (2010). Adding spatially-correlated errors can mess up the fixed
effect you love. Amer. Statist. 64 325–334. MR2758564

HUDON, C. (1997). Impact of water level fluctuations on St. Lawrence River aquatic vegetation.
Canadian Journal of Fisheries and Aquatic Sciences 54 2853–2865.

HUGHES, J. and HARAN, M. (2013). Dimension reduction and alleviation of confounding for spatial
generalized linear mixed models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 75 139–159. MR3008275

INGEBRIGTSEN, R., LINDGREN, F. and STEINSLAND, I. (2014). Spatial models with explanatory
variables in the dependence structure. Spat. Stat. 8 20–38. MR3326819

LEGATES, D. R. (1991). The effect of domain shape on principal components analyses. International
Journal of Climatology 11 135–146.

LINDGREN, F., RUE, H. and LINDSTRÖM, J. (2011). An explicit link between Gaussian fields and
Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat.
Soc. Ser. B. Stat. Methodol. 73 423–498. MR2853727

METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N., TELLER, A. H. and TELLER, E.
(1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics
21 1087–1092.

MILLER, D. L. and WOOD, S. N. (2014). Finite area smoothing with generalized distance splines.
Environ. Ecol. Stat. 21 715–731. MR3279587

PACIOREK, C. J. (2010). The importance of scale for spatial-confounding bias and precision of
spatial regression estimators. Statist. Sci. 25 107–125. MR2741817

PLUMMER, M., BEST, N., COWLES, K. and VINES, K. (2006). CODA: Convergence diagnosis and
output analysis for MCMC. R News 6 7–11.

POPPICK, A. and STEIN, M. L. (2014). Using covariates to model dependence in nonstationary,
high-frequency meteorological processes. Environmetrics 25 293–305. MR3258008

http://www.ams.org/mathscinet-getitem?mr=2293378
http://www.ams.org/mathscinet-getitem?mr=1626544
http://www.ams.org/mathscinet-getitem?mr=3102554
http://www.ams.org/mathscinet-getitem?mr=2345548
http://www.ams.org/mathscinet-getitem?mr=2399219
http://www.ams.org/mathscinet-getitem?mr=2758564
http://www.ams.org/mathscinet-getitem?mr=3008275
http://www.ams.org/mathscinet-getitem?mr=3326819
http://www.ams.org/mathscinet-getitem?mr=2853727
http://www.ams.org/mathscinet-getitem?mr=3279587
http://www.ams.org/mathscinet-getitem?mr=2741817
http://www.ams.org/mathscinet-getitem?mr=3258008


NONSTATIONARITY IN POPULATION COUNTS MODELS 1393

RAMSAY, T. (2002). Spline smoothing over difficult regions. J. R. Stat. Soc. Ser. B. Stat. Methodol.
64 307–319. MR1904707

REICH, B. J., HODGES, J. S. and ZADNIK, V. (2006). Effects of residual smoothing on the posterior
of the fixed effects in disease-mapping models. Biometrics 62 1197–1206. MR2307445

ROBERTS, G. O. and ROSENTHAL, J. S. (2009). Examples of adaptive MCMC. J. Comput. Graph.
Statist. 18 349–367. MR2749836

ROYLE, J. A. (2004). N -mixture models for estimating population size from spatially replicated
counts. Biometrics 60 108–115. MR2043625

SAMPSON, P. and GUTTORP, P. (1992). Nonparametric estimation of nonstationary spatial covari-
ance structure. J. Amer. Statist. Assoc. 87 108–119.

SCHMIDT, A. M., GUTTORP, P. and O’HAGAN, A. (2011). Considering covariates in the covariance
structure of spatial processes. Environmetrics 22 487–500. MR2843403

SCHMIDT, A. M. and RODRÍGUEZ, M. A. (2011a). Modelling multivariate counts varying con-
tinuously in space. In Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P.
Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) 611–629. Oxford Univ. Press, Oxford.
MR3204020

SCHMIDT, A. M. and RODRÍGUEZ, M. A. (2011b). Reply to the discussion of Boys, Farrow, and
Germain. In Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid,
D. Heckerman, A. F. M. Smith and M. West, eds.) 630–638. Oxford Univ. Press, Oxford.

SCHMIDT, A. M., RODRÍGUEZ, M. A. and CAPISTRANO, E. S. (2015). Supplement to “Population
counts along elliptical habitat contours: Hierarchical modeling using Poisson-lognormal mixtures
with nonstationary spatial structure.” DOI:10.1214/15-AOAS838SUPP.

SCOTT, W. B. and CROSSMAN, E. J. (1973). Freshwater Fishes of Canada. Fisheries Research
Board of Canada, Bulletin 184, Ottawa, Canada.

SOUBEYRAND, S., ENJALBERT, J. and SACHE, I. (2008). Accounting for roughness of circular
processes: Using Gaussian random processes to model the anisotropic spread of airborne plant
disease. Theor. Popul. Biol. 73 92–103.

SPIEGELHALTER, D. J., BEST, N. G., CARLIN, B. P. and VAN DER LINDE, A. (2002). Bayesian
measures of model complexity and fit. J. R. Stat. Soc. Ser. B. Stat. Methodol. 64 583–639.
MR1979380

WIKLE, C. K. (2003). Hierarchical models in environmental science. Int. Stat. Rev. 71 181–199.
WIKLE, C. K. (2010). Hierarchical modeling with spatial data. In Handbook of Spatial Statistics

(A. Gelfand, P. Diggle, M. Fuentes and P. Guttorp, eds.). Chapman & Hall/CRC Handb. Mod.
Stat. Methods 89–106. CRC Press, Boca Raton, FL. MR2730947

WILLIAMS, C. K. I. (1998). Discussion of model-based geostatistics. Applied Statistics 47 342.
WOOD, S. N. (2006). Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC,

Boca Raton, FL. MR2206355
WOOD, S. N., BRAVINGTON, M. V. and HEDLEY, S. L. (2008). Soap film smoothing. J. R. Stat.

Soc. Ser. B. Stat. Methodol. 70 931–955. MR2530324
YAGLOM, A. M. (1987). Correlation Theory of Stationary and Related Random Functions. Vol. I:

Basic Results. Springer, New York. MR0893393

A. M. SCHMIDT

E. S. CAPISTRANO

DEPARTAMENTO DE MÉTODOS ESTATÍSTICOS

INSTITUTO DE MATEMÁTICA—UFRJ
CAIXA POSTAL 68530
RIO DE JANEIRO—R.J. CEP.: 21945-970
BRAZIL

E-MAIL: alex@im.ufrj.br
estelina@dme.ufrj.br

URL: http://www.dme.ufrj.br/~alex

M. A. RODRÍGUEZ

DÉPARTEMENT DES SCIENCES DE L’ENVIRONNEMENT

UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES

3351, BOULEVARD DES FORGES

TROIS-RIVIÈRES, QUÉBEC G9A 5H7
CANADA

E-MAIL: marco.rodriguez@uqtr.ca
URL: http://www.uqtr.ca/marco.rodriguez

http://www.ams.org/mathscinet-getitem?mr=1904707
http://www.ams.org/mathscinet-getitem?mr=2307445
http://www.ams.org/mathscinet-getitem?mr=2749836
http://www.ams.org/mathscinet-getitem?mr=2043625
http://www.ams.org/mathscinet-getitem?mr=2843403
http://www.ams.org/mathscinet-getitem?mr=3204020
http://dx.doi.org/10.1214/15-AOAS838SUPP
http://www.ams.org/mathscinet-getitem?mr=1979380
http://www.ams.org/mathscinet-getitem?mr=2730947
http://www.ams.org/mathscinet-getitem?mr=2206355
http://www.ams.org/mathscinet-getitem?mr=2530324
http://www.ams.org/mathscinet-getitem?mr=0893393
mailto:alex@im.ufrj.br
mailto:estelina@dme.ufrj.br
http://www.dme.ufrj.br/~alex
mailto:marco.rodriguez@uqtr.ca
http://www.uqtr.ca/marco.rodriguez

	Introduction
	Ecological motivation
	Geostatistical models for counts: A brief overview
	Sampling design and data collection

	Modeling environmental covariate, temporal, and spatial effects
	Modeling the temporal effect gamma(t(·))
	Modeling the local effects Z(·)
	Speciﬁcation of spatial domain and choice of Gaussian process priors
	Separate Gaussian processes for the North and South shores (models M7-M10)

	Speciﬁcation of spatial correlation structures: Isotropy and nonstationary spatial effects


	Inference procedure and model comparison
	Results
	Discussion
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

