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We consider the task of discovering gene regulatory networks, which are
defined as sets of genes and the corresponding transcription factors which
regulate their expression levels. This can be viewed as a variable selection
problem, potentially with high dimensionality. Variable selection is espe-
cially challenging in high-dimensional settings, where it is difficult to de-
tect subtle individual effects and interactions between predictors. Bayesian
Additive Regression Trees [BART, Ann. Appl. Stat. 4 (2010) 266–298] pro-
vides a novel nonparametric alternative to parametric regression approaches,
such as the lasso or stepwise regression, especially when the number of rel-
evant predictors is sparse relative to the total number of available predic-
tors and the fundamental relationships are nonlinear. We develop a principled
permutation-based inferential approach for determining when the effect of a
selected predictor is likely to be real. Going further, we adapt the BART pro-
cedure to incorporate informed prior information about variable importance.
We present simulations demonstrating that our method compares favorably
to existing parametric and nonparametric procedures in a variety of data set-
tings. To demonstrate the potential of our approach in a biological context,
we apply it to the task of inferring the gene regulatory network in yeast (Sac-
charomyces cerevisiae). We find that our BART-based procedure is best able
to recover the subset of covariates with the largest signal compared to other
variable selection methods. The methods developed in this work are readily
available in the R package bartMachine.

1. Introduction. An important statistical problem in many application areas
is variable selection: identifying the subset of covariates that exert influence on a
response variable. We consider the general framework where we have a continuous
response variable y and a large set of predictor variables x1, . . . ,xK . We focus
on variable selection in the sparse setting: only a relatively small subset of those
predictor variables truly influences the response variable.

One such example of a sparse setting is the motivating application for this pa-
per: inferring the gene regulatory network in budding yeast (Saccharomyces cere-
visiae). In this application, we have a collection of approximately 40 transcription
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factor proteins (TFs) that act to regulate cellular processes in yeast by promoting
or repressing transcription of specific genes. It is unknown which of the genes in
our yeast data are regulated by each of the transcription factors. Therefore, the goal
of the analysis is to discover the corresponding network of gene–TF relationships,
which is known as a gene regulatory network. Each gene, however, is regulated
by only a small subset of the TFs which makes this application a sparse setting
for variable selection. The available data consist of gene expression measures for
approximately 6000 genes in yeast across several hundred experiments, as well as
expression measures for each of the approximately 40 transcription factors in those
experiments [Jensen, Chen and Stoeckert (2007)].

This gene regulatory network was previously studied in Jensen, Chen and
Stoeckert (2007) with a focus on modeling the relationship between genes and
transcription factors. The authors considered a Bayesian linear hierarchical model
with first-order interactions. In high-dimensional data sets, specifying even first-
order pairwise interactions can substantially increase the complexity of the model.
Additionally, given the elaborate nature of biological processes, there may be inter-
est in exploring nonlinear relationships as well as higher-order interaction terms.
In such cases, it may not be possible for the researcher to specify these terms in a
linear model a priori. Indeed, Jensen, Chen and Stoeckert (2007) acknowledge the
potential utility of such additions, but highlight the practical difficulties associated
with the size of the resulting parameter space. Thus, we propose a variable selec-
tion procedure that relies on the nonparametric Bayesian model, Bayesian Addi-
tive Regression Trees [BART, Chipman, George and McCulloch (2010)]. BART
dynamically estimates a model from the data, thereby allowing the researcher to
potentially identify genetic regulatory networks without the need to specify higher
order interaction terms or nonlinearities ahead of time.

Additionally, we have data from chromatin immunoprecipitation (ChIP) bind-
ing experiments [Lee et al. (2002)]. Such experiments use antibodies to isolate
specific DNA sequences which are bound by a TF. This information can be used to
discover potential binding locations for particular transcription factors within the
genome. The ChIP data can be considered “prior information” that one may wish
to make use of when investigating gene regulatory networks. Given the Bayesian
nature of our approach, we propose a straightforward modification to BART which
incorporates such prior information into our variable selection procedure.

In Section 2 we review some common techniques for variable selection. We
emphasize the limitations of approaches relying on linear models and highlight
variable selection via tree-based techniques. We provide an overview of the BART
algorithm and its output in Section 3.1. In Sections 3.2 and 3.3 we introduce how
BART computes variable inclusion proportions and explore the properties of these
proportions. In Section 3.4 we develop procedures for principled variable selec-
tion based upon BART output. In Section 3.5 we extend the BART procedure to
incorporate prior information about predictor variable importance. In Section 4 we
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compare our methodology to alternative variable selection approaches in both lin-
ear and nonlinear simulated data settings. In Section 5 we apply our BART-based
variable selection procedure to the discovery of gene regulatory networks in bud-
ding yeast. Section 6 concludes with a brief discussion. We note that our variable
selection procedures as well as the ability to incorporate informed prior informa-
tion are readily available features in the R package bartMachine [Kapelner and
Bleich (2014)], currently available on CRAN.

2. Techniques for variable selection.

2.1. Linear methods. The variable selection problem has been well studied
from both the classical and Bayesian perspective, though most previous work fo-
cuses on the case where the outcome variable is assumed to be a linear function
of the available covariates. Stepwise regression [Hocking (1976)] is a common ap-
proach for variable selection from a large set of possible predictor variables. Best
subsets regression [Miller (2002)] can also be employed, although this option be-
comes too computationally burdensome as K becomes large. Other popular linear
variable selection methods are lasso regression [Tibshirani (1996)] and the elastic
net [Zou and Hastie (2005)]. Both of these approaches enforce sparsity on the sub-
set of selected covariates by imposing penalties on nonzero coefficients. Park and
Casella (2008) and Hans (2009) provide Bayesian treatments of lasso regression.

Perhaps the most popular Bayesian variable selection strategies are based on
linear regression with a “spike-and-slab” prior distribution on the regression coef-
ficients. Initially proposed by Mitchell and Beauchamp (1988), who used a mixture
prior of a point mass at zero and a uniform slab, George and McCulloch (1993)
went on to use a mixture-of-normals prior, for which a Markov chain Monte Carlo
stochastic search of the posterior could be easily implemented. Eventually, most
applications gravitated toward a limiting form of the normal mixture with a de-
generate point mass at zero. More recent work involving spike-and-slab models
has been developed in Ishwaran and Rao (2005), Li and Zhang (2010), Hans, Do-
bra and West (2007), Bottolo and Richardson (2010), Stingo and Vannucci (2011),
and Rockova and George (2014). In these approaches, variable selection is based
on the posterior probability that each predictor variable is in the slab distribution,
and sparsity can be enforced by employing a prior that strongly favors the spike
distribution at zero.

2.2. Tree-based methods. Each of the aforementioned approaches assumes
that the response variable is a linear function of the predictor variables. A ma-
jor drawback of linear models, both in the frequentist and Bayesian paradigms, is
that they are ill-equipped to handle complex, nonlinear relationships between the
predictors and response. Nonlinearities and interactions, which are seldom known
with certainty, must be specified in advance by the researcher. In the case where
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the model is misspecified, incorrect variables may be included and correct vari-
ables excluded.

As an alternative, we consider nonparametric methods which are flexible
enough to fit a wide array of functional forms. We focus on tree-based methods, ex-
amples of which include random forests [RF, Breiman (2001)], stochastic gradient
boosting [Friedman (2002)], BART, and dynamic trees [DT, Taddy, Gramacy and
Polson (2011)]. Compared with linear models, these procedures are better able to
approximate complicated response surfaces but are “black-boxes” in the sense that
they offer less insight into how specific predictor variables relate to the response
variable.

Tree-based variable selection makes use of the internals of the decision tree
structure which we briefly outline. All observations begin in a single root node.
The root node’s splitting rule is chosen and consists of a splitting variable xk and a
split point c. The observations in the root node are then split into two groups based
on whether xk ≥ c or xk < c. These two groups become a right daughter node and a
left daughter node, respectively. Within each of these two nodes, additional binary
splits can be chosen.

Existing tree-based methods for variable selection focus on the set of splitting
variables within the trees. For example, Gramacy, Taddy and Wild (2013) develop
a backward stepwise variable selection procedure for DT by considering the aver-
age reduction in posterior predictive uncertainty within all nodes that use a par-
ticular predictor as the splitting variable. Also, the splitting variables in RF can
be used to develop variable selection approaches. For instance, one can consider
the reduction in sum of square errors (node impurity in classification problems)
associated with a particular predictor. Additionally, Díaz-Uriarte and Alvarez de
Andrés (2006) consider reduction in out-of-bag mean square error associated with
each predictor to develop a backward stepwise selection procedure.

We too consider the splitting variables for BART in developing our method, but
our approach differs from the previously mentioned work in two aspects. First, we
do not propose a backward stepwise selection, but rather develop a permutation-
based inferential approach. Second, we do not consider the overall improvement to
fit provided by each predictor variable, but instead consider how often a particular
predictor appears in a BART model. While simple, this metric shows promising
performance for variable selection using BART.

3. Calibrating BART output for variable selection.

3.1. Review of Bayesian Additive Regression Trees. BART is a Bayesian en-
semble approach for modeling the unknown relationship between a vector of ob-
served responses y and a set of predictor variables x1, . . . ,xK without assuming
any parametric functional form for the relationship. The key idea behind BART is
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to model the regression function by a sum of regression trees with homoskedastic
normal additive noise,

y =
m∑

i=1

Ti (x1, . . . ,xK) + E, E ∼ Nn

(
0, σ 2In

)
.(1)

Here, each Ti (x1, . . . ,xK) is a regression tree that partitions the predictor space
based on the values of the predictor variables. Observations with similar values of
the predictor variables are modeled as having a similar predicted response ŷ.

Each regression tree Ti consists of two components: a tree structure Ti and a
set of terminal node parameters μi . The tree Ti partitions each observation into a
set of Bi terminal nodes based on the splitting rules contained in the tree. The ter-
minal nodes are parameterized by μi = {μi1, . . . ,μiBi

} such that each observation
contained within terminal node b is assigned the same response value of μib. Re-
gression trees yield a flexible model that can capture nonlinearities and interaction
effects in the unknown regression function.

As seen in equation (1), the response vector y is modeled by the sum of m

regression trees. For each observation, the predicted response ŷj is the sum of the
terminal node parameters μib for that observation j from each tree Ti . Compared
to a single tree, the sum of trees allows for easier modeling of additive effects
[Chipman, George and McCulloch (2010)]. The residual variance σ 2 is considered
a global parameter shared by all observations.

In this fully Bayesian approach, prior distributions must also be specified for all
unknown parameters, which are the full set of tree structures and terminal node
parameters (Ti ,μi ), as well as the residual variance σ 2. The prior distributions for
(Ti ,μi ) are specified to give a strong preference to small simple trees with mod-
est variation of the terminal node parameter values, thereby limiting the impact
on the model fit of any one tree. The result is that BART consists of an ensem-
ble of “weak learners,” each contributing to the approximation of the unknown
response function in a small and distinct fashion. The prior for σ 2 is the inverse
chi-square distribution with hyperparameters chosen based on an estimate of the
residual standard deviation of the data.

The number of trees m in the ensemble is considered to be a prespecified hy-
perparameter. The usual goal of BART is predictive performance, in which case
a large value of m allows for increased flexibility when fitting a complicated re-
sponse surface, thereby improving predictive performance. However, Chipman,
George and McCulloch (2010) recommend using a smaller value of m for the pur-
poses of variable selection (we default to m = 20). When the number of trees in
the ensemble is smaller, there are fewer opportunities for predictor variables to
appear in the model and so they must compete with each other to be included.
However, if m is too small, the Gibbs sampler in BART becomes trapped in local
modes more often, which can destabilize the results of the estimation procedure
[Chipman, George and McCulloch (1998)]. Also, there is not enough flexibility in
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the model to fit a variety of complicated functions. However, when the number of
trees becomes too large, there is opportunity for unimportant variables to enter the
model without impacting the overall model fit, thereby making variable selection
more challenging.

Our explorations have shown that m = 20 represents a good compromise, al-
though similar choices of m should not impact results. Under the sparse data set-
tings we will examine in Sections 4 and 5, we show that this medium level of m

aids the selection of important predictor variables even when the number of pre-
dictor variables is relatively large.

It is also worth noting that in the default BART formulation, each predictor
variable xk has an equal a priori chance of being chosen as a splitting variable
for each tree in the ensemble. However, in many applications, we may have real
prior information that suggests the importance of particular predictor variables. In
Section 3.5, we will extend the BART procedure to incorporate prior information
about specific predictor variables, which will be used to aid in discovering the
yeast gene regulatory network in Section 5.

The full posterior distribution for the BART model is estimated using Markov
chain Monte Carlo methods. Specifically, a Gibbs sampler [Geman and Geman
(1984)] is used to iteratively sample from the conditional posterior distribution
of each set of parameters. Most of these conditional posterior distributions are
standard, though a Metropolis–Hastings step [Hastings (1970)] is needed to alter
the tree structures Ti . Details are given in Chipman, George and McCulloch (2010)
and Kapelner and Bleich (2014).

3.2. BART variable inclusion proportions. The primary output from BART is
a set of predicted values ŷ for the response variable y. Although these predicted
values ŷ serve to describe the overall fit of the model, they are not directly useful
for evaluating the relative importance of each predictor variable in order to select
a subset of predictor variables. For this purpose, Chipman, George and McCul-
loch (2010) begin exploring the “variable inclusion proportions” of each predictor
variable. We extend their exploration into a principled method.

Across all m trees in the ensemble (1), we examine the set of predictor variables
used for each splitting rule in each tree. Within each posterior Gibbs sample, we
can compute the proportion of times that a split using xk as a splitting variable
appears among all splitting variables in the ensemble. Since the output of BART
consists of many posterior samples, we estimate the variable inclusion propor-
tion pk as the posterior mean of the these proportions across all of the posterior
samples.

Intuitively, a large variable inclusion proportion pk is suggestive of a predic-
tor variable xk being an important driver of the response. Chipman, George and
McCulloch (2010) suggest using p = (p1, . . . , pK) to rank variables x1, . . . ,xK in
terms of relative importance. These variable inclusion proportions naturally build
in some amount of multiplicity control since the pk’s have a fixed budget (in that
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they must sum to one) and that budget will become more restrictive as the number
of predictor variables increases.

However, each variable inclusion proportion pk cannot be interpreted as a pos-
terior probability that the predictor variable xk has a “real effect,” defined as the
impact of some linear or nonlinear association, on the response variable. This mo-
tivates the primary question being addressed by this paper: how large does the
variable inclusion proportion pk have to be in order to select predictor variable
xk as an important variable?

As a preliminary study, we evaluate the behavior of the variable inclusion pro-
portions in a “null” data setting, where we have a set of K predictor variables xk

that are all unrelated to the outcome variable y. Specifically, we generate each re-
sponse variable yi and each predictor variable xik independently from a standard
normal distribution. In this null setting, one might expect that BART would choose
among the predictor variables uniformly at random when adding variables to the
ensemble of trees [equation (1)]. In this scenario, each variable inclusion propor-
tion would then be close to the inverse of the number of predictor variables, that
is, pk ≈ 1/K for all k.

However, we have found empirically that in this scenario the variable inclusion
proportions do not approach 1/K for all predictor variables. As an example, Fig-
ure 1 gives the variable inclusion proportions from a null simulation with n = 250
observations and K = 40 predictor variables, all of which are unrelated to the re-
sponse variable y.

In this setting, the variable inclusion proportions do not converge to 1/40 =
0.025. As seen in Figure 1, some variable inclusion proportions remain substan-
tially larger than 1/K and some are substantially smaller. We observed this same
phenomenon with different levels of noise in the response variable.

FIG. 1. Variable inclusion proportions from BART model in null setting where each predictor vari-
able is unrelated to the response variable. (Left) variable inclusion proportions for all K = 40 pre-
dictor variables over 12,000 Gibbs samples. (Right) tracking of the maximum and minimum of the
variable inclusion proportions.
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3.3. Further exploration of null simulation. We hypothesize that the variation
between pk’s in Figure 1 can stem from two causes. First, even though the re-
sponse and predictors were generated independently, they will still exhibit some
random association. BART may be fitting noise, or “chance-capitalizing;” given
its nonparametric flexibility, BART could be fitting to perceived nonlinear associ-
ations that are actually just noise. Second, there might be inherent variation in the
BART estimation procedure itself, possibly due to the Gibbs sampler getting stuck
in a local maximum.

Thus, we consider an experiment to explore the source of this variation among
the pk’s. We generate 100 data sets under the same setting as that in Figure 1.
Within each data set, we run BART 50 times with different initial values for the
model parameters randomly drawn from the respective prior distributions. Let pijk

denote the variable inclusion proportion for the ith data set, j th BART run, and
the kth predictor variable. We then consider the decomposition into three nested
variances listed in Table 1. Note that we use standard deviations in our illustration
that follows.

First consider what may happen if the source of Figure’s 1 observed pathology
is purely due to BART’s Gibbs sampler getting stuck in different local posterior
modes. On the first run for the first data set, BART would fall into a local mode
where some predictors are naturally more important than others and, hence, the
p11k’s would be unequal. In the same data set, second run, BART might fall into
a different local mode where the p12k’s are unequal, but in a way that is different
from the first run’s p11k’s. This type of process would occur over all 50 runs. Thus,
the s1k , the standard deviation of pijk over runs of BART on the first data set, would
be large. Note that if there is no chance capitalization or overfitting, there should
be no reason that averages of the proportions, the p̄1·k’s, should be different from
1/K over repeated runs. Then, when the second data set is introduced, BART will
continue to get stuck in different local posterior modes and the s2k’s should be
large, but the p̄2·k’s should be near 1/K . Hence, over all of the data sets, p̄i·k’s
should be approximately 1/K , implying that the sk’s should be small. In sum,
BART getting stuck in local modes suggests large sik’s and small sk’s.

Next consider what may happen if the source of Figure’s 1 observed pathology
is purely due to BART chance-capitalizing on noise. On the first data set, over each

TABLE 1
The three nested variances

s2
ik = 1

50
∑50

j=1(pijk − p̄i·k)2 The variability of BART estimation for a particular predictor k in

a particular data set i

s2
k = 1

100
∑100

i=1(p̄i·k − p̄··k)2 The variability due to chance capitalization of the BART procedure
for predictor k across data sets

s2 = 1
40

∑40
k=1(p̄··k − p̄···)2 The variability across predictors
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FIG. 2. The boxplots represent the distribution of sik for each predictor. The circles represent the
values of sk and the dashed line corresponds to s. Note that the results are reported as standard
deviations and points in the boxplots beyond the whiskers are omitted.

run, BART does not get stuck in local modes and, therefore, the pi1k’s across runs
would be fairly stable. Hence, the s1k’s would be small. However, in each of the
runs, BART overfits in the same way for each data set. For example, perhaps BART
perceives an association between x1 and y on the first data set. Hence, the p1j1’s
would be larger than 1/K on all restarts (BART would select x1 as a splitting rule
often due to the perceived association) and, thus, p̄1·1 > 1/K . Then, in the second
data set, BART may perceive an association between x3 and y, resulting in p2j3’s
being larger on all runs (p̄2·3 > 1/K). Thus, BART overfitting is indicated by small
sik’s and large sk’s.

Figure 2 illustrates the results of the simulations. Both sources of variation ap-
pear, but for all predictors, the average sik is significantly smaller than the sk . This
finding suggests that within a particular data set, BART is chance-capitalizing and
overfitting to the noise, which prevents the pk’s from converging to 1/K .2

Also note the overall average inclusion proportion p̄··· is 0.025 = 1/K , so across
data sets and BART runs the variable inclusion proportions are correct on average.
Further, the standard deviation across predictors s is small. This implies that the
p̄··k’s are approximately 1/K as well, which indicates there is no systematic favor-
ing of different covariates once the effect of overfitting by data set and remaining
in local modes by run is averaged out.

We believe this experiment demonstrates that there is a large degree of chance
capitalization present in the variable inclusion proportions in the “null” model.
This implies that it is not possible to decide on an appropriate threshold for the
pk’s when selecting a subset of important predictor variables in real data settings.

2We also considered this experiment with orthogonalized predictors (not shown). This reduces
the sk ’s (chance capitalization) in Figure 2 slightly, but the sk ’s are still larger than the average
sik ’s. Hence, even if there is no linear correlation between the predictors and the response, BART is
capitalizing on nonlinear associations.
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Further, the chance capitalization is idiosyncratic for any data set, making it chal-
lenging to pose a simple parametric model for the behavior in Figure 1 that would
be useful in practice. This motivates our nonparametric approach to establishing
thresholds for the variable inclusion proportions based on permutations of the re-
sponse variable y.

As noted above, there is some variability in the pk’s between BART runs from
different starting points. We found that averaging over results from five repetitions
of the BART algorithm from different starting points was sufficient to provide sta-
ble estimates of the variable inclusion proportions and use these averaged values
as our variable inclusion proportions for the remainder of the article.

3.4. Variable inclusion proportions under permuted responses. We now ad-
dress our key question: how large does the variable inclusion frequency pk have
to be in order to select predictor variable xk? To determine an appropriate selection
threshold, we employ a permutation-based approach to generate a null distribution
for the variable inclusion proportions p = (p1, . . . , pK).

Specifically, we create P permutations of the response vector: y∗
1,y∗

2, . . . ,y∗
P .

For each of these permuted response vectors y∗
p , we run the BART model using

y∗
p as the response and the original x1, . . . ,xK as predictor variables. This per-

mutation strategy preserves possible dependencies among the predictor variables
while removing any dependency between the predictor variables and the response
variable.

We retain the variable inclusion proportions estimated from the BART run using
each permuted response y∗

p . We use the notation p∗
k,p for the variable inclusion

proportion from BART for predictor xk from the pth permuted response, and we
use the notation p∗

p for the vector of all variable inclusion proportions from the
pth permuted response. We use the variable inclusion proportions p∗

1,p∗
2, . . . ,p∗

P

across all P permutations as the null distribution for our variable inclusion propor-
tions p from the real (unpermuted) response y.

The remaining issue is selecting an appropriate threshold for predictor xk based
on the permutation null distribution p∗

1,p∗
2, . . . ,p∗

P . We will consider three dif-
ferent threshold strategies that vary in terms of the stringency of their resulting
variable selection procedure.

The first strategy is a “local” threshold: we calculate a threshold for each vari-
able inclusion proportion pk for each predictor xk based only on the permutation
null distribution of pk . Specifically, we take the 1−α quantile of the distribution of
p∗

k,1,p
∗
k,2, . . . , p

∗
k,P and only select predictor xk if pk exceeds this 1 − α quantile.

The second strategy is a “global max” threshold: we calculate a thresh-
old for the variable inclusion proportion pk for predictor xk based on the
maximum across the permutation distributions of the variable inclusion pro-
portions for all predictor variables. Specifically, we first calculate p∗

max,p =
max{p∗

1,p,p∗
2,p, . . . , p∗

K,p}, the largest variable inclusion proportion across all
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predictor variables in permutation p. We then calculate the 1 − α quantile of
the distribution of p∗

max,1,p
∗
max,2, . . . , p

∗
max,P and only select predictor xk if pk

exceeds this 1 − α quantile.
The first “local” strategy and the second “global max” strategy are opposite

extremes in terms of the stringency of the resulting variable selection. The local
strategy is least stringent since the variable inclusion proportion pk for predictor
xk needs to only be extreme within its own permutation distribution in order to
be selected. The global maximum strategy is most stringent since the variable in-
clusion proportion pk for predictor xk must be extreme relative to the permutation
distribution across all predictor variables in order to be selected.

We consider a third strategy that is also global across predictor variables, but
is less stringent than the global max strategy. The third “global SE” strategy uses
the mean and standard deviation from the permutation distribution of each vari-
able inclusion proportion pk to create a global threshold for all predictor variables.
Specifically, letting mk and sk be the mean and standard deviation of variable in-
clusion proportion p∗

k for predictor xk across all permutations, we calculate

C∗ = inf
C∈R+

{
∀k,

1

P

P∑
p=1

I
(
p∗

k,p ≤ mk + C · sk) > 1 − α

}
.

The value C∗ is the smallest global multiplier that gives simultaneous 1 − α

coverage across the permutation distributions of pk for all predictor variables. The
predictor xk is then only selected if pk > mk +C∗ · sk . This third strategy is a com-
promise between the local permutation distribution for variable k (by incorporating
each mean mk and standard deviation sk) and the global permutation distributions
of the other predictor variables (through C∗). We outline all three thresholding
procedures in more detail in the Appendix.

As an example of these three thresholding strategies, we provide a brief pre-
view of our application to the yeast gene regulatory network in Section 5. In that
application, the response variable y consists of the expression measures for a par-
ticular gene across approximately 300 conditions and the predictor variables are
the expression values for approximately 40 transcription factors in those same 300
conditions.

In Figure 3, we give the fifteen predictor variables with the largest variable in-
clusion proportions from the BART model implemented on the data for a particular
yeast gene YAL004W. In the top plot, we see the different “local” thresholds for
each predictor variable. Four of the predictor variables had variable inclusion pro-
portions pk that exceeded their local threshold and were selected under this first
strategy. In the bottom plot, we see the single “global max” threshold for all pre-
dictor variables as well as the different “global SE” thresholds for each predictor
variable. Two of the predictor variables had variable inclusion proportions pk that
exceeded their global SE thresholds, whereas only one predictor variable exceeded
the global max threshold.
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FIG. 3. The fifteen largest variable inclusion proportions from BART implemented on the yeast
gene YAL004W with α = 0.05. (Top) the tips of the green bands are the “local” thresholds of our
first variable selection strategy. Solid dots are selected predictor variables, whereas hollow dots are
unselected predictor variables. (Bottom) the red line is the threshold from our second “global max”
strategy. The tips of the blue bands are the thresholds from our “global SE” strategy. The one solid
dot is the predictor selected by both strategies. The star is the additional predictor variable selected
by only the global SE strategy. The hollow dots are unselected predictor variables.

This example illustrates that our three threshold strategies can differ substan-
tially in terms of the stringency of the resulting variable selection. Depending on
our prior expectations about the sparsity in our predictor variables, we may pre-
fer the high stringency of the global max strategy, the low stringency of the local
strategy, or the intermediary global SE strategy.

In practice, it may be difficult to know a priori the level of stringency that is
desired for a real data application. Thus, we propose a cross-validation strategy
for deciding between our three thresholding strategies for variable selection. Using
k-fold cross-validation, the available observations can be partitioned into training
and holdout subsets. For each partition, we can implement all three thresholding
strategies on the training subset of the data and use the thresholding strategy with
the smallest prediction error across the holdout subsets. We call this procedure
“BART-Best” and provide implementation details in the Appendix.

Our permutation-based approach for variable selection does not require any ad-
ditional assumptions beyond those of the BART model. Once again, the sum-of-
trees plus normal errors is a flexible assumption that should perform well across a
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wide range of data settings, especially relative to methods that make stronger para-
metric demands. Also, it is important to note that we view each of the strategies de-
scribed in this section as a procedure for variable selection based on well-founded
statistical principles, but do not actually associate any particular formal hypoth-
esis testing with our approach. Finally, a disadvantage of our permutation-based
proposal is the computational cost of running BART on a large set of permuted
response variables y∗. However, it should be noted that the permuted response
vector runs can be computed in parallel on multiple cores when such resources are
available.

3.5. Real prior information in BART-based variable selection. Most variable
selection approaches do not allow for a priori preferences for particular predictor
variables. However, in many applications, there may be available prior information
that suggests particular predictor variables may be more valuable than others.

As an example, the yeast regulatory data in Section 5 consist of expression mea-
sures yg for a particular gene g as the response variable with predictor variables xk

being the expression values for ≈40 transcription factors. In addition to the expres-
sion data, we also have an accompanying ChIP-binding data set [Lee et al. (2002)]
that indicates for each gene g which of the ≈40 transcription factors are likely
to bind near that gene. We can view these ChIP-binding measures as prior prob-
abilities that particular predictor variables xk will be important for the response
variable y.

The most natural way to give prior preference to particular variables in BART
is to alter the prior on the splitting rules. As mentioned in Section 3.1, by default
each predictor xk has an equal a priori chance of being chosen as a splitting rule for
each tree branch in the BART ensemble. We propose altering the prior of the stan-
dard BART implementation so that when randomly selecting a particular predictor
variable for a splitting rule, more weight is given to the predictor variables that
have a higher prior probability of being important. Additionally, the prior on the
tree structure, which is needed for the Metropolis–Hastings ratio computation, is
appropriately adjusted. This strategy has some precedent, as Chipman, George and
McCulloch (1998) discuss nonuniform criteria for splitting rules in the context of
an earlier Bayesian Classification and Regression Tree implementation. Note that
when employing one of the strategies discussed in Section 3.4, the prior is reset
to discrete uniform when generating the permutation distribution, as it is assumed
that there is no relationship between the predictors and the response.

In Section 4.3 we present a simulation-based evaluation of the effects on correct
variable selection when an informed prior distribution is either correctly specified,
giving additional weight to the predictor variables with true influence on the re-
sponse, or incorrectly specified, giving additional weight to predictor variables
that are unrelated to the response. Before our simulation study of the effects of
prior information, we first present an extensive simulation study that compares our
BART-based variable selection procedure to several other approaches.
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4. Simulation evaluation of BART-based variable selection. We use a vari-
ety of simulated data settings to evaluate the ability of our BART-based procedure
to select the subset of predictor variables that have a true influence on a response
variable. We examine settings where the response is a linear function of the pre-
dictor variables in Section 4.1 as well as settings where the response is a nonlinear
function of the predictor variables in Section 4.2. We also examine the effects of
correctly versus incorrectly specified informed prior distributions in Section 4.3.
For each simulated data setting, we will compare the performance of several dif-
ferent variable selection approaches:

(1) BART-based variable selection: As outlined in Section 3, we use the vari-
able inclusion proportions from BART to rank and select predictor variables. We
will evaluate the performance of the three proposed thresholding strategies as well
as “BART-Best,” the (five-fold) cross-validation strategy for choosing among our
thresholding strategies. In each case, we set α = 0.05 and the number of trees m is
set to 20. Default settings from Chipman, George and McCulloch (2010) are used
for all other hyperparameters. The variable selection procedures are implemented
in the R package bartMachine [Kapelner and Bleich (2014)].

(2) Stepwise regression: Backward stepwise regression using the stepAIC
function in R.3

(3) Lasso regression: Regression with a lasso (L1) penalty can be used for vari-
able selection by selecting the subset of variables with nonzero coefficient esti-
mates. For this procedure, an additional penalty parameter λ must be specified,
which controls the amount of shrinkage toward zero in the coefficients. We use
the glmnet package in R [Friedman, Hastie and Tibshirani (2010)], which uses
ten-fold cross-validation to select the value of the penalty parameter λ.

(4) Random forests (RF): Similarly to BART, RF must be adapted to the task of
variable selection.4 The randomForest package in R [Liaw and Wiener (2002)]
produces an “importance score” for each predictor variable: the change in out-
of-bag mean square error when that predictor is not allowed to contribute to the
model. Breiman and Cutler (2013) suggest selecting only variables where the im-
portance score exceeds the 1 − α quantile of a standard normal distribution. We
follow their approach and further suggest a new approach: using the Bonferroni-
corrected (1 − α)/p quantile of a standard normal distribution. We employ a five-
fold cross-validation approach to pick the best of these two thresholding strategies
in each simulated data setting and let α = 0.05. Default parameter settings for RF
are used.

3We also considered forward stepwise regression but found that backward stepwise regression
performed better in our simulated data settings.

4Existing variable selection implementations for RF from Díaz-Uriarte and Alvarez de Andrés
(2006) and Deng and Runger (2012) are not implemented for regression problems to the best of our
knowledge.
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(5) Dynamic trees (DT): Gramacy, Taddy and Wild (2013) introduce a back-
ward variable selection procedure for DT. For each predictor, the authors compute
the average reduction in posterior predictive uncertainty across all nodes using
the given predictor as a splitting variable. The authors then propose a relevance
probability, which is the proportion of posterior samples in which the reduction in
predictive uncertainty is positive. Variables are deselected if their relevance proba-
bility does not exceed a certain threshold. After removing variables, the procedure
is repeated until the log-Bayes factor of the larger model over the smaller model is
positive, suggesting a preference for the larger model. We construct DT using the
R package dynaTree [Taddy, Gramacy and Polson (2011)] with 5000 particles
and a constant leaf model. We employ the default relevance threshold suggested
by the authors of 0.50.

(6) Spike-and-slab regression (Spike-slab): We employ the spike-and-slab
regression procedure outlined in Ishwaran and Rao (2005) and Ishwaran and Rao
(2005). The procedure first fits a spike-and-slab regression model and then per-
forms variable selection via the generalized elastic net. Variables with nonzero
coefficients are considered relevant. The method is applicable to both high- and
low-dimensional problems, as in the high-dimensional setting, a filtering of the
variables is first performed for dimension reduction. The procedure is implemented
in the R package Spikeslab [Ishwaran, Rao and Kogalur (2013)].

Each of the above methods will be compared on the ability to select “useful”
predictor variables, the subset of predictor variables that truly affect the response
variable. We can quantify this performance by tabulating the number of true pos-
itive (TP) selections, false positive (FP) selections, true negative (TN) selections,
and false negative (FN) selections. The precision of a variable selection method
is the proportion of truly useful variables among all predictor variables that are
selected,

Precision = TP

TP + FP
.(2)

The recall of a variable selection method is the proportion of truly useful vari-
ables selected among all truly useful predictor variables,

Recall = TP

TP + FN
.(3)

We can combine the precision and recall together into a single performance
criterion,

F1 = 2 · Precision · Recall

Precision + Recall
,(4)

which is the harmonic mean of precision and recall, balancing a procedure’s capa-
bility to make necessary identifications with its ability to avoid including irrelevant
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predictors. This F1 measure is called the “effectiveness” by van Rijsbergen (1979)
and is used routinely in information retrieval and categorization problems.

While many variable selection simulations found in the literature rely on out-
of-sample root mean square error (RMSE) to assess performance of a procedure,
we believe the F1 score is a better alternative. Out-of-sample RMSE inherently
overweights recall vis-à-vis precision since predictive performance depends more
heavily on including covariates which generate signal. This is especially true for
adaptive learning algorithms.

We chose the balanced5 F1 metric because we want to demonstrate flexible per-
formance while balancing both recall and precision. For example, if an investigator
is searching for harmful physiological agents that can affect health outcomes, iden-
tifying the complete set of agents is important (recall). If the investigator is looking
to fund new, potentially expensive research based on discoveries (as in our appli-
cation in Section 5), avoiding fruitless directions is most important (precision).

4.1. Simulation setting 1: Linear relationship. We first examine the perfor-
mance of the various variable selection approaches in a situation where the
response variable is a linear function of the predictor variables. Specifically, we
generate each predictor vector xj from a normal distribution

x1, . . . ,xp
i.i.d.∼ Nn(0, I),(5)

and then the response variable y is generated as

y = Xβ + E, E ∼ Nn

(
0, σ 2I

)
,(6)

where β = [1p0,0p−p0]	. In other words, there are p0 predictor variables that are
truly related to the response y, and p−p0 predictor variables that are spurious. The
sparsity of a particular data setting is reflected in the proportion p0/p of predictor
variables that actually influence the response.

Fifty data sets were generated for each possible combination of the following
different parameter settings: p ∈ {20, 100, 200, 500, 1000}, p0/p ∈ {0.01, 0.05,
0.1, 0.2} and σ 2 ∈ {1, 5, 20}. In each of the 60 possible settings, the sample size
was fixed at n = 250.

Figure 4 gives the F1 performance measure for each variable selection method
for 8 of the 60 simulation settings. We have chosen to illustrate these simulation
results, as they are representative of our overall findings. Here, higher values of F1
indicate better performance. Complete tables of precision, recall, and F1 measure
values for the simulations shown in Figure 4 can be found in the supplementary
materials [Bleich et al. (2014)].

We first focus on the comparisons in performance between the four thresholding
strategies for our BART-based variable selection procedure: our three thresholding

5The F1 measure can be generalized with different weights on precision and recall.
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FIG. 4. Average F1 measures for different variable selection approaches on simulated data under
the linear model setting across 50 simulations. The black bars represent 90% error bars for the
average. Results for p = 200 and p = 500 are shown. Within each choice of p, moving down a
column shifts from high to low sparsity and moving across a row shifts from low to high noise.

strategies plus the BART-Best cross-validated threshold strategy. First, we con-
sider the case where p = 200. In the more sparse settings [Figure 4(a) and (b)],
the more stringent global max and global SE strategies perform better than the
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less stringent local thresholding strategy. However, the local thresholding strategy
performs better in the less sparse settings [Figure 4(c) and (d)]. The BART-Best
procedure with a cross-validated threshold performs slightly worse than the best
of the three thresholds in each setting, but fares quite well uniformly. Hence, the
cross-validated threshold strategy represents a good choice when the level of spar-
sity is not known a priori.

For the settings where p = 500, the findings are relatively similar. The local
thresholding strategy performs well given the fact that the data is less sparse.
Performance also degrades when moving from the low noise settings [Fig-
ure 4(e) and (f)] to the high noise settings [Figure 4(g) and (h)]. Note that BART-
Best does not perform particularly well in Figure 4(h).

Comparing with the alternative approaches when p = 200, we see that
BART-Best performs better than all of the alternatives in the lower noise, more
sparse setting [Figure 4(a)] and is competitive with the lasso in the lower noise,
less sparse setting [Figure 4(c)]. BART-Best is competitive with the lasso in the
higher noise, more sparse setting [Figure 4(b)] and beaten by the linear methods
in the higher noise, less sparse setting [Figure 4(d)]. When p = 500, the cross-
validated BART is competitive with the lasso and Spike-slab and outperforms
the nonlinear methods when p0 = 25 [Figure 4(e) and (f)]. When p0 = 50 [Fig-
ure 4(g) and (h)], the cross-validated BART performs worse than the lasso and
Spike-slab, and has performance on par with the cross-validated RF.

Overall, the competitive performance of our BART-based approach is especially
impressive since BART does not assume a linear relationship between the response
and predictor variables. One would expect that stepwise regression, lasso regres-
sion, and Spike-slab would have an advantage since these methods assume a
linear model which matches the data generating process in this setting. Like BART,
RF and DT also do not assume a linear model, but in most of the cases we exam-
ined, our BART-based variable selection procedure performs better than RF and
DT. We note that DT does not perform well on this simulation, possibly suggesting
the need for a cross-validation procedure to choose appropriate relevance thresh-
olds in different data settings.

Additionally, we briefly address the computational aspect of our four proposed
approaches here by giving an estimate of the runtimes. For this data with n = 250
and p = 200, the three strategies (local, global max, and global SE) are estimated
together in one bartMachine function in about 90 seconds. The cross-validated
BART-Best procedure takes about 7 minutes.

4.2. Simulation setting 2: Nonlinear relationship. We next examine the per-
formance of the variable selection methods in a situation where the response vari-
able is a nonlinear function of the predictor variables. Specifically, we generate
each predictor vector xj from a uniform distribution,

x1, . . . ,xp
i.i.d.∼ Un(0,1),
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and then the response variable y is generated as

y = 10 sinπx1x2 + 20(x3 − 0.5)2 + 10x4 + 5x5 + E,
(7)

E ∼Nn

(
0, σ 2I

)
.

This nonlinear function from Friedman (1991), used to showcase BART in
Chipman, George and McCulloch (2010), is challenging for variable selection
models due to its interactions and nonlinearities. In this data setting, only the first
five predictors truly influence the response, while any additional predictor vari-
ables are spurious.

Fifty data sets were generated for each possible combination of σ 2 ∈ {5, 100,
625} and p ∈ {25, 100, 200, 500, 1000}. Since the number of relevant predictor
variables is fixed at five, we simulate over a wide range of sparsity values ranging
from p0/p = 0.2 down to p0/p = 0.005. In each data set, the sample size was
fixed at n = 250.

Figure 5 illustrates the F1 performance measure for each variable selection
method for four of the (p,σ 2) simulation pairs. We have chosen to illustrate these
simulation results, as they are representative of our overall findings. Backward
stepwise regression via stepAIC could not be run in these settings where n < p

and is excluded from these comparisons (values in Figure 5 for this procedure are
set to 0). Complete tables of precision, recall, and F1 measure values for the sim-
ulations shown in Figure 5 are given in our supplementary materials [Bleich et al.
(2014)].

Just comparing the four thresholding strategies of our BART-based procedure,
we see that the more stringent selection criteria have better F1 performance mea-
sures in all of these sparse cases. The cross-validated threshold version of our
BART procedure performs about as well as the best individual threshold in each
case.

Compared to the other variable selection procedures, the cross-validated BART-
Best has the strongest overall performance. Our cross-validated procedure out-
performs DT and RF-CV in all situations. The assumption of linearity puts the
lasso and Spike-slab at a disadvantage in this nonlinear setting. Spike-slab
does not perform well on this data, although lasso performs well.6 BART-Best
and the cross-validated RF have the best performance in the low noise settings
[Figure 5(a) and (c)], as they do not assume linearity. Moving to the high noise
settings [Figure 5(b) and (d)], BART and RF both see a degradation in perfor-
mance, and BART-Best and the lasso are the best performers, followed by the
cross-validated RF.

6We note that the lasso’s performance here is unexpectedly high. For this example, lasso is able to
recover the predictors that are interacted within the sine function. This seems to be an artifact of this
particular data generating process, and we would expect lasso to perform worse on other nonlinear
response functions.
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FIG. 5. Average F1 measures across 50 simulations for different variable selection approaches on
simulated data under the Friedman model setting. The black bars represent 90% error bars for the
average. Moving from the top row to the bottom shifts from low to high dimensionality and moving
from the left column to the right shifts from low to high noise.

4.3. Simulation setting 3: Linear model with informed priors. In the next set
of simulations, we explore the impact of incorporating informed priors into the
BART model, as discussed in Section 3.5. We will evaluate the performance of our
BART-based variable selection procedure in cases where the prior information is
correctly specified as well as in cases where the prior information is incorrectly
specified.

We will use the linear model in Section 4.1 as our data generating process. We
will consider a specific case of the scheme outlined in Section 3.5 where partic-
ular subsets of predictor variables are given twice as much weight as the rest of
the predictor variables. With a noninformative prior, each predictor variable has a
probability of 1/p of being selected as the splitting variable for a splitting rule.
For the informed prior, a subset of p0 predictor variables is given twice as much
weight, which gives those variables a larger probability of 2/(p + p0) of being
selected as a splitting variable.
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FIG. 6. Average F1 measures across 50 simulations for BART-based variable selection under three
different prior choices. The black bars represent 90% error bars for the average. The settings shown
are the same as those in Figure 4(a)–(d).

For the fifty data sets generated under each combination of the parameter set-
tings in the simulations of Section 4.1, we implemented three different versions of
BART: (1) BART with a noninformative prior on the predictor variables, (2) BART
with a “correctly” informed prior (twice the weight on the subset of predictor vari-
ables that have a true effect on response), and (3) BART with an “incorrectly” in-
formed prior (twice the weight on a random subset of spurious predictor variables).
For each of these BART models, predictor variables were then selected using the
cross-validated threshold strategy.

Figure 6 gives the F1 measures for the three different BART priors in four of the
data settings outlined in Section 4.1.

There are two key observations from the results in Figure 6. First, correct prior
information can substantially benefit the variable selection ability of our BART
adaptation, especially in higher noise settings [Figure 6(b) and (d)]. Second, in-
correct prior information does not degrade performance in any of the cases, which
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suggests that our BART-based variable selection procedure is robust to the mis-
specification of an informed prior on the predictor variables. This seems to be a
consequence of the Metropolis–Hastings step, which tends to not accept splitting
rules that substantially reduce the model’s posterior value, regardless of how often
they are proposed.

To summarize our simulation studies in Section 4, our BART-based variable se-
lection procedure is competitive with alternative approaches when there is a linear
relationship between the predictor variables and the response, and performs better
than alternative approaches in a nonlinear data setting. BART-based variable se-
lection can be further improved by correctly specifying prior information (when
available) that gives preference to particular predictor variables and appears to be
robust to misspecification of this prior information.

5. Application to gene regulation in yeast. Experimental advances in molec-
ular biology have led to the availability of high-dimensional genomic data in a
variety of biological applications. We will apply our BART-based variable selec-
tion methodology to infer the gene regulatory network in budding yeast (Saccha-
romyces cerevisiae). One of the primary mechanisms by which genes are regulated
is through the action of transcription factors, which are proteins that increase or de-
crease the expression of a specific set of genes.

The data for our analyses are expression measures for 6026 genes in yeast across
314 experiments. For those same 314 experiments, we also have expression mea-
sures for 39 known transcription factors. For each of the 6026 genes, our goal is
to identify the subset of the 39 transcription factors that have a real regulatory
relationship with that particular gene.

We consider each of the 6026 genes as a separate variable selection problem. For
a particular gene g, we model the expression measures for that gene as a 314 × 1
response vector yg and we have 39 predictor variables (x1, . . . ,x39) which are
the expression measures of each of the 39 transcription factors. This same data
was previously analyzed using a linear regression approach in Jensen, Chen and
Stoeckert (2007), but we will avoid assumptions of linearity by employing our
BART-based variable selection procedure.

We also have additional data available for this problem that can be used as prior
information on our predictor variables. Lee et al. (2002) performed chromatin im-
munoprecipitation (ChIP) experiments for each of the 39 transcription factors that
we are using as predictor variables. The outcome of these experiments is the es-
timated probabilities mgk that gene g is physically bound by each transcription
factor k. Guang, Jensen and Stoeckert (2007) give details on how these probabili-
ties mgk are derived from the ChIP data.7

We will incorporate these estimated probabilities into our BART-based variable
selection approach as prior information. When selecting predictor variables for

7Probabilities were truncated to be between 5% and 95%.
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splitting rules, we give more weight to the transcription factors k with larger prior
probabilities mgk in the BART model for gene g. Specifically, we have a splitting
variable weight wgk for predictor xk in the BART model for gene g, which we
calculate as

wgk = 1 + c · mgk.(8)

In the BART model for gene g, each predictor xk is chosen for a splitting rule
with probability proportional to wgk . The global parameter c controls how influen-
tial the informed prior probabilities mgk are on the splitting rules in BART. Setting
c = 0 reduces our informed prior to the uniform splitting rules of the standard
BART implementation. Larger values of c increase the weights of predictor vari-
ables with large prior probabilities mgk , giving the informed prior extra influence.

In a real data setting such as our yeast application, it is difficult to know how
much influence to give our informed priors on the predictor variables. We will con-
sider several different values of c = {0, 1, 2, 4, 10,000} and choose the value that
results in the smallest prediction error on a subset of the observed data that is held
out from our BART model estimation. Specifically, recall that we have 314 expres-
sion measures for each gene in our data set. For each gene, we randomly partition
these observations into an 80% training set, 10% tuning set, and 10% hold-out
set. For each value of c = {0, 1, 2, 4, 10,000}, we fit a BART model on the 80%
training set and then choose the value of c that gives the smallest prediction error
on the 10% tuning set. This same 10% tuning set is also used to choose the best
threshold procedure among the three options outlined in Section 3.4. We will use
the terminology “BART-Best” to refer to the BART-based variable selection pro-
cedure that is validated over the choice of c and the three thresholding strategies.
While we could also cross-validate over the significance level α, we fix α = 0.05
due to computational concerns given the large number of data sets to be analyzed.

For each gene, we evaluate our approach by refitting BART using only the vari-
ables selected by our BART-based variable selection model and evaluate the pre-
diction accuracy on the final 10% hold-out set of data for that gene. This same
10% hold-out set of data for each gene is also used to evaluate the prediction accu-
racy of various alternative variable selection methods. We consider the alternative
methods of stepwise regression, lasso regression, RF, DT, and Spike-slab in
similar fashions to Section 4. The 10% tuning set is used to choose the value of the
penalty parameter λ for lasso regression as well as the importance score thresh-
old for RF. For DT, we use a constant leaf model for variable selection and then
construct a linear leaf model using the selected variables for prediction.

We also consider three simpler approaches that do not select particular pre-
dictor variables: (1) “BART-Full” which is the BART model using all variables,
(2) ordinary least squares regression (OLS) with all predictor variables included,
and (3) the “null” model: the sample average of the response which does not make
use of any predictors. In the null model, we do include an intercept, so we are pre-
dicting for the hold-out set of expression measures for each gene with the average
expression level of that gene in the training set.
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We first examined the distribution of RMSEs across the 6026 genes. We found
that each procedure improves over the null model with no covariates, suggesting
that some subset of transcription factors is predictive of gene expression for most
of the 6026 genes. However, for a minority of genes, the null model is competi-
tive, suggesting that the 39 available transcription factors may not be biologically
relevant to every one of these genes. The nonnull variable selection methods show
generally similar performance in terms of the distribution of RMSEs, and a corre-
sponding figure can be found in the supplementary materials [Bleich et al. (2014)].
It is important to note that predictive accuracy in the form of out-of-sample RMSE
is not the most desirable metric for comparing variable selection techniques be-
cause it overweights recall relative to precision.

In Figure 7, we show the distribution of the number of selected predictor vari-
ables (TFs) across the 6026 genes, where we see substantial differences between
the variable selection procedures. Figure 7 confirms that BART-G.max is selecting
very few TFs for each gene. Even more interesting is the comparison of BART-
Best to stepwise regression, lasso regression, RF, and Spike-slab. BART-Best
is selecting far fewer TFs than these alternative procedures. Interestingly, DT, the
other Bayesian tree-based algorithm, selects a number of TFs most comparable to
BART-Best.

Given the relatively similar performance of methods in terms of RMSE and
the more substantial differences in number of variables selected, we propose the

FIG. 7. Distributions of the number of predictor variables selected for each method across all
6026 genes. Blue bars represent the average number of selected predictor variables. Not shown are
the null model which uses no predictors as well as OLS and the full BART model which both use all
predictors. Points beyond the whiskers are omitted.
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FIG. 8. Distributions of the RMSE reduction per predictor for each method across all 6026 genes.
Blue bars represent the average RMSE reduction per predictor. Points beyond the whiskers are omit-
ted.

following combined measure of performance for each variable selection method:

(RMSE reduction per predictor)method = RMSEnull − RMSEmethod

NumPredmethod
,

where RMSEmethod and NumPredmethod are, respectively, the out-of-sample RMSE
and number of predictors selected for a particular method. This performance met-
ric answers the question: how much “gain” are we getting for adding each predic-
tor variable suggested by a variable selection approach? Methods that give larger
RMSE reduction per predictor variable are preferred.

Figure 8 gives the RMSE reduction per predictor for each of our variable selec-
tion procedures. Note that we only plot cases where at least one predictor variable
is selected, since RMSE reduction per predictor is only defined if the number of
predictors selected is greater than zero.

Our BART-Best variable selection procedure gives generally larger (better) val-
ues of the RMSE reduction per predictor measure than stepwise regression, lasso
regression, RF, and Spike-slab. DT is the closer competitor, but does slightly
worse, on average, than BART-Best. Also, both the BART-Full and OLS proce-
dures, where no variable selection is performed, perform worse than the variable
selection procedures.
BART-G.max, the BART-based procedure under the global max threshold,

seems to perform even better than the BART-Best procedure in terms of the RMSE
reduction per predictor measure. However, recall that we are plotting only cases
where at least one predictor was selected. BART-G.max selects at least one tran-
scription factor for only 2866 of the 6026 genes, though it shows the best RMSE
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TABLE 2
Distribution of prior influence values c used

across the 6026 genes

c value Percentage of genes

0 23.3%
0.5 16.1%
1 15.4%
2 14.9%
4 14.6%

10,000 15.7%

reduction per predictor in these cases. By comparison, BART-Best selects at least
one transcription for 5459 of the 6026 genes while showing better RMSE reduction
per predictor than the non-BART variable selection procedures.

Additionally, Table 2 shows the proportion of times each choice of prior in-
fluence c appeared in the “BART-Best” model. Almost a quarter of the time, the
prior information was not used. However, there is also a large number of genes for
which the prior was considered to have useful information and was incorporated
into the procedure.

Jensen, Chen and Stoeckert (2007) also used the same gene expression data (and
ChIP-based prior information) to infer gene–TF regulatory relationships. A direct
model comparison between our BART-based procedures and their approach is dif-
ficult since Jensen, Chen and Stoeckert (2007) fit a simultaneous model across
all genes, whereas our current BART-based analysis fits a predictive model for
each gene separately. In both analyses, prior information for each gene–TF pairing
from ChIP binding data [Lee et al. (2002)] was used.8 However, in Jensen, Chen
and Stoeckert (2007) the prior information for a particular TF was given the same
weight (relative to the likelihood) for each gene in the data set. In our analysis,
each gene was analyzed separately and so the prior information for a particular TF
can be weighted differently for each gene.

A result of this modeling difference is that the prior information appears to have
been given less weight by our BART-based procedure across genes, as evidenced
by the substantial proportion of genes in Table 2 that were given zero or low weight
(c = 0 or c = 0.5). Since that prior information played the role in Jensen, Chen
and Stoeckert (2007) of promoting sparsity, a consequence of that prior informa-
tion being given less weight in our BART-based analysis is reduced promotion of
sparsity.

This consequence is evident in Figure 9, where we compare the number of se-
lected TFs. The x-axis gives the 39 transcription factors that served as the predictor

8Jensen, Chen and Stoeckert (2007) used additional prior information based on promoter sequence
data that we did not use in our analysis.
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FIG. 9. Number of genes for which each TF was selected. Results are compared for BART-Best,
BART-G.Max, and the linear hierarchical model developed in Jensen, Chen and Stoeckert (2007).

variables for each of our 6026 genes. The y-axis is the number of genes for which
that TF was selected as a predictor variable by each of three procedures: BART-
Best, BART-G.max, and the analysis of Jensen, Chen and Stoeckert (2007). The
most striking feature of Figure 9 is that each TF was selected for many more genes
under our BART-Best procedure compared to BART-G.max, which also selected
more variables than the analysis of Jensen, Chen and Stoeckert (2007). This result
indicates that selecting more TFs per gene leads to the best out-of-sample predic-
tive performance (i.e., BART-Best). It could be that Jensen, Chen and Stoeckert
(2007) were over-enforcing sparsity, but that previous method also differed from
our current approach in terms of assuming a linear relationship between the re-
sponse and predictor variables.

6. Conclusion. Chipman, George and McCulloch’s (2010) Bayesian Additive
Regression Trees is a rich and flexible model for estimating complicated relation-
ships between a response variable and a potentially large set of predictor variables.
We adapt BART to the task of variable selection by employing a permutation pro-
cedure to establish a null distribution for the variable inclusion proportion of each
predictor. We present several thresholding strategies that reflect different beliefs
about the degree of sparsity among the predictor variables, as well as a cross-
validation procedure for choosing the best threshold when the degree of sparsity is
not known a priori.

In contrast with popular variable selection methods such as stepwise regression
and lasso regression, our BART-based approach does not make strong assump-
tions of linearity in the relationship between the response and predictors. We also
provide a principled means to incorporate prior information about the relative im-
portance of different predictor variables into our procedures.
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We used several simulated data settings to compare our BART-based approach
to alternative variable selection methods such as stepwise regression, lasso regres-
sion, random forests, and dynamic trees. Our variable selection procedures are
competitive with these alternatives in the setting where there is a linear relation-
ship between response and predictors, and performs better than these alternatives
in a nonlinear setting. Additional simulation studies suggest that our procedures
can be further improved by correctly specifying prior information (if such infor-
mation is available) and seem to be robust when the prior information is incorrectly
specified.

We applied our variable selection procedure, as well as alternative methods, to
the task of selecting a subset of transcription factors that are relevant to the expres-
sion of individual genes in yeast (Saccharomyces cerevisiae). In this application,
our BART-based variable selection procedure generally selected fewer predictor
variables while achieving similar out-of-sample RMSE compared to the lasso and
random forests. We combined these two observations into a single performance
measure, RMSE reduction per predictor. In this application to inferring regula-
tory relationships in yeast, our BART-based variable selection demonstrates much
better predictive performance than alternative methods such as lasso and random
forests while selecting more transcription factors than the previous approach of
Jensen, Chen and Stoeckert (2007).

While we found success using the variable inclusion proportions as the basis
for our procedure, fruitful future work would be to explore the effect of a variance
reduction metric, such as that explored in Gramacy, Taddy and Wild (2013) within
BART.

APPENDIX: PSEUDO-CODE FOR VARIABLE SELECTION PROCEDURES

Procedure 1 Local threshold procedure
Compute p1, . . . , pK 
 Inclusion proportions from original data
for i ← {1, . . . ,P } do 
 P is the number of null permutations

y∗ ← Permute(y)

Run BART using y∗ as response
Compute p∗

i1, . . . , p
∗
iK 
 Inclusion proportions from permuted data

end for
for j ← {1, . . . ,K} do

q∗
j ← Quantile(p∗

1j , . . . , p
∗
Pj ,1 − α) 
 1 − α quantile of xj permutation

distribution
if pj > q∗

j then Include pj in Vars end if
end for
return Vars
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Procedure 2 Global maximum threshold procedure
Compute p1, . . . , pK 
 Inclusion proportions from original data
for i ← {1, . . . ,P } do 
 P is the number of null permutations

y∗ ← Permute(y)

Run BART using y∗ as response
Compute p∗

i1, . . . , p
∗
iK 
 Inclusion proportions from permuted data

gi ← Max(p∗
i1, . . . , p

∗
iK) 
 Maximum of proportions from permuted data

end for
g∗ ← Quantile(gi, . . . , gP ,1 − α) 
 1 − α Quantile of maxima
for j ← {1, . . . ,K} do

if pj > g∗ then Include pj in Vars end if
end for
return Vars

Procedure 3 Global standard error threshold procedure
Compute p1, . . . , pK 
 Inclusion proportions from original data
for i ← {1, . . . ,P } do 
 P is the number of null permutations

y∗ ← Permute(y)

Run BART using y∗ as response
Compute p∗

i1, . . . , p
∗
iK 
 Inclusion proportions from permuted data

end for
for j ← {1, . . . ,K} do

mj ← Avg(p∗
1j , . . . , p

∗
Pj ) 
 Sample average of xj permutation distribution

sj ← SD(p∗
1j , . . . , p

∗
Pj ) 
 Sample sd of xj permutation distribution

end for
C∗ ← infC∈R+{∀j , 1

P

∑P
i=1 I(p

∗
ij ≤ mj + C · sj ) > 1 − α} 
 Simultaneous

coverage
for j ← {1, . . . ,K} do

if pj > mj + C∗ · sj then Include pj in Vars end if
end for
return Vars
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Procedure 4 Cross-Validated Comparison of Threshold Procedures
Divide the data into K training-test splits
for k ← {1, . . . ,K} do

for method ← {Local, Global Maximum, Global SE} do
Varmethod ← Selected variables using method on BART
BARTmethod ← BART built from kth training set using only Varmethod
L2k,method ← L2 error from BARTmethod on kth test set

end for
end for
for method ← {Local, Global Maximum, Global SE} do

L2method ← ∑K
k=1 L2k,method 
 Aggregate L2 error over entire training set

end for
method∗ ← arg minmethod{L2method} 
 Choose the best method from the three
return Selected variables using method∗ for BART on full training set
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SUPPLEMENTARY MATERIAL

Additional results for simulations and gene regulation application (DOI:
10.1214/14-AOAS755SUPP; .pdf). Complete set of results for simulations in Sec-
tion 4 and additional output for Section 5.
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