
The Annals of Applied Statistics
2014, Vol. 8, No. 1, 176–203
DOI: 10.1214/13-AOAS695
© Institute of Mathematical Statistics, 2014

BAYESIAN METHODS FOR GENETIC ASSOCIATION ANALYSIS
WITH HETEROGENEOUS SUBGROUPS: FROM META-ANALYSES

TO GENE–ENVIRONMENT INTERACTIONS1

BY XIAOQUAN WEN AND MATTHEW STEPHENS

University of Michigan and University of Chicago

Genetic association analyses often involve data from multiple potentially-
heterogeneous subgroups. The expected amount of heterogeneity can vary
from modest (e.g., a typical meta-analysis) to large (e.g., a strong gene–
environment interaction). However, existing statistical tools are limited in
their ability to address such heterogeneity. Indeed, most genetic association
meta-analyses use a “fixed effects” analysis, which assumes no heterogene-
ity. Here we develop and apply Bayesian association methods to address this
problem. These methods are easy to apply (in the simplest case, requiring
only a point estimate for the genetic effect and its standard error, from each
subgroup) and effectively include standard frequentist meta-analysis meth-
ods, including the usual “fixed effects” analysis, as special cases. We apply
these tools to two large genetic association studies: one a meta-analysis of
genome-wide association studies from the Global Lipids consortium, and
the second a cross-population analysis for expression quantitative trait loci
(eQTLs). In the Global Lipids data we find, perhaps surprisingly, that ef-
fects are generally quite homogeneous across studies. In the eQTL study we
find that eQTLs are generally shared among different continental groups, and
discuss consequences of this for study design.

1. Introduction. We consider the following problem, which arises frequently
in genetic association analysis: how to test for association while allowing for het-
erogeneity of effects among subgroups. We are motivated particularly by the fol-
lowing applications:

Motivating application 1: The Global Lipids genome-wide association study.
The Global Lipids consortium [Teslovich et al. (2010)] conducted a large meta-
analysis of genome-wide genetic association studies of blood lipids phenotypes
[total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C) and triglycerides (TG)]. This study, like most
meta-analyses, aimed to increase power by combining information across studies.
The consortium amassed a total of more than 100,000 individuals, through 46 sep-
arate studies. These studies involve different investigators, at different centers, with
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different enrollment criteria. Consequently one would expect genetic effect sizes to
differ among studies. However, Teslovich et al. (2010), following standard practice
in this field, analyzed the data assuming no heterogeneity. This analysis appeared
highly successful, identifying genetic associations at a total of 95 different genetic
loci, 53 of them novel. Our work here was motivated by a desire to analyze these
data, and others like them, taking account of potential heterogeneity among stud-
ies, and to see whether this would identify additional genetic associations.

Motivating application 2: Assessing heterogeneity of genetic effects on gene
expression (eQTLs) among populations. An expression quantitative trait locus
(eQTL) is a genetic variant that is associated with expression (activity) of a gene.
Identifying eQTLs is important because such variants are candidates for being
functional (i.e., actually causing changes in gene expression), and hence candi-
dates for having other, perhaps medically important, consequences. See Gilad,
Rifkin and Pritchard (2008) for more on insights to be gained from eQTL studies.

Here we analyze data from Stranger et al. (2007), who measured gene expres-
sion on lymphoblastoid cell lines derived from unrelated individuals sampled from
three major continental groups: Europeans (CEU), Asians (ASN), and Africans
(YRI). The main aim of our analysis is to assess heterogeneity of eQTL effects
across groups: for example, do eQTL effects tend to vary among groups, and
do some eQTLs appear to be active in only some groups? Understanding hetero-
geneity in this context could yield insights into differences in the gene-regulatory
mechanisms acting in each group, and also has important implications for gen-
eralizability of studies performed in one subgroup to other subgroups. Similar
questions also arise frequently in eQTL studies involving different tissue or cell
types [Dimas et al. (2009), Brown, Mangravite and Engelhardt (2012), Flutre et al.
(2013)].

Motivating application 3: Identifying biological interactions with environment.
Our third example is more generic, but nonetheless important: identifying genetic
associations in the presence of environmental interactions. Strong environmental
interactions can result in genetic effects varying among subgroups, and in extreme
cases could even cause effects to have different signs in different subgroups. In
such cases ignoring heterogeneity would substantially reduce power. For example,
by separately analyzing male and females, Kong et al. (2008) identified a strong
genetic association with recombination rate that is missed by a standard analysis
that ignores heterogeneity. However, separately analyzing subgroups is less at-
tractive than analyzing them jointly and allowing for potential heterogeneity; this
motivated development of methods described here.

These three applications differ in their expected heterogeneity. For example,
whereas interactions could cause genetic effects to differ in sign among subgroups,
differences in sign seem less likely in the meta-analysis setting. However, they
also share an important element in common: the vast majority of genetic variants
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are unassociated with any given phenotype within all subgroups. Consequently,
it is of considerable interest to identify genetic variants that show association in
any subgroup or, in other words to reject the “global” null hypothesis of no as-
sociation within any subgroup. This focus on rejecting the global null hypothesis
distinguishes genetic association analyses from other settings and calls for anal-
ysis approaches tailored to this goal; see Lebrec, Stijnen and van Houwelingen
(2010) for relevant discussion. Thus, although there has been previous work on
Bayesian methods for meta-analysis [e.g., Sutton and Abrams (2001), Stangl and
Berry (2000), DuMouchel and Harris (1983), Whitehead and Whitehead (1991),
Li and Begg (1994), Eddy, Hasselblad and Schachter (1990), Givens, Smith and
Tweedie (1997), Verzilli et al. (2008), De Iorio et al. (2011), Burgess et al. (2010),
Mila and Ngugi (2011)], the nature of our applications calls for a different focus.
Specifically, our applications need tools for association testing and model com-
parison, via Bayes Factors (BFs), rather than for estimation. In addition, because
genetic association studies often involve very many association tests, computa-
tional speed is important, so we focus on obtaining fast numerical approximations
to BFs (rather than using MCMC say). Finally, because in many cases, including
the Global Lipids data above, only summary data (e.g., effect size estimates and
standard errors in the different subgroups) are easily available, we need methods
that can work with summary data.

Although our methods are Bayesian, they have close connections with related
frequentist methods. Indeed, while this work was in progress, Lebrec, Stijnen and
van Houwelingen (2010) [and, later, Han and Eskin (2011)] published frequentist
approaches to association testing based on models very similar to those used here.
Further, as we show in Section 4, some standard frequentist meta-analysis tests
correspond closely to BFs obtained under certain priors. Consequently, ranking
SNP associations by these standard test statistics is equivalent to making specific
(and not necessarily realistic) prior assumptions. Thus, although our primary goal
is to provide a practical solution to a common applied problem, we also provide
theoretical results linking our methods to widely used existing methods.

2. Models and methods. The problems outlined above have two key goals:

1. To test whether a genetic variant is associated with phenotype in any subgroup,
allowing for potential heterogeneity of effects among subgroups.

2. Given that an association exists, assess the support for different levels of het-
erogeneity.

We tackle these problems by specifying a family of alternative models with vary-
ing levels of heterogeneity, and by developing computational tools to calculate the
support in the data (the BF) for each alternative model compared with the null
model of no association. Within this framework the goal of testing the global null
(1 above) is accomplished by assessing the overall support for any of the alter-
native hypotheses, whereas the goal of examining heterogeneity among groups is
achieved by comparing the relative support for different alternative models.
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All our motivating examples involve quantitative outcomes, and we focus on
this case. However, in common to many meta-analysis methods, the simplest of our
methods requires only an estimated effect size in each study and its corresponding
standard deviation, and thus can be applied to any setting where such estimates are
available (e.g., generalized linear models). See Appendix B of the supplementary
material [Wen and Stephens (2014)] for details.

2.1. Notation and assumptions. Assume quantitative phenotype data and
genotype data are available on S predefined subgroups. Like most association
analyses, we analyze each genetic variant in turn, one at a time. Assume that the
data within subgroup s come from ns randomly sampled unrelated individuals.
Let the ns -vectors ys and gs denote, respectively, the corresponding phenotype
and genotype data, and Y := (y1, . . . ,yS) and G := (g1, . . . ,gS). Here each geno-
type is coded as 0, 1 or 2 copies of a reference allele, so gs ∈ {0,1,2}ns . (For
imputed genotypes we replace each genotype with its posterior mean [Guan and
Stephens (2008)], in which case gs ∈ [0,2]ns .)

2.2. Models for effect-size heterogeneity. Within each subgroup, we model
genotype–phenotype association using a standard linear model:

ys = μs1 + βsgs + es, es ∼ N
(
0, σ 2

s I
)

(2.1)

with residual errors es assumed independent across subgroups. [Additional, pos-
sibly study-specific, covariates are easily added to the right-hand side of (2.1). If
independent flat priors are used for the coefficients of these covariates within each
study, then our main results below still hold, effectively unchanged. This treat-
ment is analogous to the frequentist mixed-effects model, where such covariates
are typically assumed to have study-specific effects.]

The “global” null hypothesis is no genotype–phenotype association within any
subgroup, that is, βs = 0 for all s.

Under the alternative hypothesis the genetic effects are nonzero. To allow
for heterogeneity among subgroups, we assume that these effects are normally
distributed about some unknown common mean. We consider two different
definitions of genetic effects: the “standardized effects”, bs := βs/σs , and the un-
standardized effects, βs , leading to the following models:

1. Exchangeable standardized effects (ES model). The standardized effects bs

are normally distributed among subgroups, about some unknown mean b̄, to which
we assign a normal prior:

bs |b̄, σs ∼ N
(
b̄, φ2) [

or, equivalently, βs |σs ∼ N
(
σsb̄, σ 2

s φ2)]
,(2.2)

b̄ ∼ N
(
0,ω2)

.(2.3)

Alternatively, and equivalently, the vector b = (b1, . . . , bS) is multivariate nor-
mally distributed:

b ∼ NS(0,�b),(2.4)
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where �b is an S × S matrix with diagonal elements Var(bs) = φ2 + ω2 and off-
diagonal elements Cov(bs, bs′) = ω2.

2. Exchangeable effects (EE model). The unstandardized effects βs are nor-
mally distributed about some unknown mean β̄ , to which we assign a normal prior:

βs |β̄ ∼ N
(
β̄,ψ2)

,(2.5)

β̄ ∼ N
(
0,w2)

.(2.6)

Alternatively, and equivalently, the vector β = (β1, . . . , βS) is multivariate nor-
mally distributed:

β ∼ NS(0,�β),(2.7)

where �β is an S × S matrix with diagonal elements Var(βs) = ψ2 + w2 and
off-diagonal elements Cov(βs, βs′) = w2.

In both ES and EE models we assume conjugate priors for (μs, σs):

ES :μs |σs ∼ N
(
0, σ 2

s u2
s

); σ−2
s ∼ �(ms/2, ls/2),(2.8)

EE :μs ∼ N
(
0, u2

s

); σ−2
s ∼ �(ms/2, ls/2).(2.9)

Specifically, we consider posteriors and BFs that arise in the limits u2
s → ∞ and

ls,ms → 0. These limiting priors correspond to standard improper priors for nor-
mal regressions and ensure that the BFs satisfy certain invariance properties [see
Servin and Stephens (2008)].

Both ES and EE have two key hyperparameters, one (ω in ES; w in EE) that
controls the prior expected size of the average effect across subgroups, and another
(φ in ES; ψ in EE) that controls the prior expected degree of heterogeneity among
subgroups. A complimentary view is that ω2 + φ2 (resp., w2 + ψ2) controls the
expected (marginal) effect size in each study and φ/ω (resp., ψ/w) controls the
degree of heterogeneity. Thus, one can allow for different levels of heterogeneity
by considering different values of these hyperparameters (see below). Note that
φ = 0 (resp., ψ = 0) corresponds to the assumption, commonly used in practice,
of no heterogeneity among subgroups.

Of the two models, ES has the advantage that it results in analyses (e.g., BFs)
that are invariant to the phenotype measurement scale used within each subgroup.
This makes it robust to users accidentally specifying phenotype measurements in
different subgroups on different scales (a nontrivial issue in complex analyses in-
volving collaboration among many research groups). It also makes it applicable
when measurement scales are difficult to harmonize across subgroups, for exam-
ple, due to use of different measurement technologies. For these reasons we prefer
ES for general use. However, in some cases EE may be easier to apply. For exam-
ple, if one has access only to published point estimates and standard errors for the
effect size βs in each study, then this suffices to approximate the BF under EE, but
not under ES. Note that ES and EE will produce similar results if the residual error
variances are similar in all subgroups.
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2.2.1. Limiting heterogeneity: A curved exponential family normal prior. The
above priors assume independence of the mean (b̄) and variance (ω2) of the effects.
In some settings this assumption may be unattractive. For example, in a typical
meta-analysis we expect effects to show “limited heterogeneity” across studies and
typically to have the same sign [Owen (2009)], regardless of whether b̄ is small or
large. But the independence assumption implies that the probability that the effects
have the same sign is much larger when b̄ is large than when it is small. To address
this, we can replace the priors (2.2) and (2.5) with, respectively,

bs ∼ N
(
b̄, k2b̄2)

,(2.10)

βs ∼ N
(
β̄, k2β̄2)

.(2.11)

Here k determines the amount of heterogeneity, with smaller k indicating less het-
erogeneity and k = 0 indicating no heterogeneity. Under these priors the probabil-
ity of effects differing in sign depends only on k and not on b̄,

Pr(bs has a different sign from b̄) = 	

(
− 1

|k|
)
,(2.12)

where 	 is the cumulative distribution function of a standard normal distribution.
For example, when k = 1/2, (2.12) is approximately 2.3%.

We call these priors “Curved Exponential Family Normal” (CEFN) priors, re-
flecting their functional relationship between the mean and variance.

2.3. Bayes factors for testing the global null hypothesis. For simplicity we fo-
cus on calculations for the ES model; details for EE, and modifications for CEFN,
are given in the appendices [supplementary material Wen and Stephens (2014)].

The ES model has two hyperparameters, φ and ω. The global null hypothesis,
which is most naturally written as βs ≡ 0 for all s, can also be written as

H0 :φ = ω = 0.(2.13)

The support in the data for a particular alternative model, specified by hyperpa-
rameters (φ,ω), vs H0, is given by the Bayes Factor (BF):

BFES(φ,ω) = P(Y|G, φ,ω)

P (Y|G,H0)
.(2.14)

Each value of (ω,φ) corresponds to a particular alternative model, with ω con-
trolling the typical average effect size, and φ controlling the degree of heterogene-
ity among subgroups (or in a reparametrization, ω2 + φ2 controls the expected
marginal effect size in each subgroup and φ/ω controls the degree of heterogene-
ity). To allow for uncertainty about appropriate values for φ and ω, we use a (dis-
crete) prior distribution on a set of plausible values {(φ(i),ω(i)) : i = 1, . . . ,M}
(see applications for details). (This induces a prior on the effects that is a mixture
of multivariate normals.) A discrete prior is more flexible than fixing φ,ω to spe-
cific values, while maintaining computational convenience. Indeed, if πi denotes
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the prior weight on (φ(i),ω(i)), then the resulting BF against H0 is the weighted
average of the individual BFs:

BFES
av :=

M∑
i=1

πiBFES(
φ(i),ω(i)).(2.15)

This average could be extended to include other models (e.g., some using the
CEFN prior, others not). The fact that BFs under different assumptions for het-
erogeneity can be both averaged in this way (to assess evidence against the global
null, allowing for heterogeneity), and compared with one another (to assess the
evidence for different levels or types of heterogeneity), is one nice feature of the
Bayesian framework.

We make two comments regarding the need to specify the prior weights π

in (2.15). First, the usual practice of simply ignoring heterogeneity is implicitly
making a particular, and rather strong, decision about π . In this sense, specifying
weights for different amounts of heterogeneity is simply turning a usually implicit
decision into an explicit decision. [See Wakefield (2009) for analogous discussion
regarding choice of priors on effect sizes.] Second, in some applications it will
be possible, and desirable, to learn these weights from the data via a hierarchi-
cal model, reducing the subjectivity of the analysis. Indeed, the ability of BFs to
be naturally incorporated into a hierarchical model is one advantage over analo-
gous frequentist test statistics [Lebrec, Stijnen and van Houwelingen (2010)] that
maximize over φ,ω. This idea is illustrated in Section 3.3.

2.3.1. Calculating Bayes factors. Calculating BFES(φ,ω) involves evaluating
a multidimensional integral. In Appendix A of the supplementary material [Wen
and Stephens (2014)] we present two different approximations, both based on ap-
plying Laplace’s method and both having error terms that decay inversely with the
average sample size across subgroups. The first of these, which effectively follows
methods from Butler and Wood (2002) for computing confluent hyper-geometric
functions, is very accurate, even for small sample sizes. Indeed, for the special case
of a single subgroup (S = 1), the approximation becomes exact, and for small num-
bers of subgroups we have checked numerically (Appendix D of the supplemen-
tary material [Wen and Stephens (2014)]) that it provides almost identical results
to an alternative approach based on adaptive quadrature (which is practical only
for small S). However, it requires a numerical optimization step and has a some-
what complex form, which, although not a practical barrier to its use, does hinder
intuitive interpretation. In what follows we use B̂FES to denote this approximation.

The second approximation is less accurate for small samples sizes, but con-
verges asymptotically (with average sample size) to the correct answer. Further,
a simple modification, described in Appendix C of the supplementary material
[Wen and Stephens (2014)], yields much greater accuracy. For the special case of
S = 1 it yields an analogue of the approximate BFs from Wakefield (2009) and
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Johnson (2008), and in what follows we use ABFES to denote this approximation
under the ES model. The nice feature of ABFES is that it has an intuitive analytic
form, which is detailed after the applications, in Section 4 (Proposition 4.1).

2.3.2. Special cases. Our ES and EE models include, in the special cases
φ = 0 and ψ = 0, the case where there is no heterogeneity of effects across
subgroups. The assumption of no heterogeneity also underlies standard “fixed ef-
fects” meta-analysis methods, and so we use ABFES

fix and ABFEE
fix to denote ABFs

computed under these assumptions. These ABFs are the Bayesian analogues of
standard frequentist test statistics for “fixed effect” analyses; see Section 4.2.1 for
details.

At the other extreme, the cases ω = 0 (ES model) and w = 0 (EE model) max-
imize heterogeneity across subgroups, and we use ABFES

max H, ABFEE
max H to de-

note ABFs computed under these assumptions. These ABFs can be viewed as
the Bayesian analogues of frequentist methods that combine information across
subgroups, ignoring the direction of the effect in each subgroup (e.g., Fisher’s
method); see Section 4.2.2 for details.

2.3.3. Bayes factors from summary statistics. It turns out that both the true
BFs (BFES, BFEE) and the approximations (B̂FES, B̂FEE, ABFES, ABFEE) depend
on the observed data in each subgroup only through a set of summary statistics,
a 6-tuple (ns,1′ys,1′gs,y′

sys,g′
sgs,y′

sgs). Furthermore, for the simplest approx-
imations (the ABFs), the summary statistics needed from each subgroup are re-
duced to only (b̂s, se(b̂s)) for the ES model and (β̂s, se(β̂s)) for the EE model.
These are exactly the quantities used in traditional meta-analysis applications.

These properties have important practical implications. First, they aid collabo-
ration among groups, where sharing of raw data can be more difficult than sharing
summary data. Second, and perhaps more importantly, it means that the methods,
particularly the ABFs, are extremely flexible. Indeed, in any setting where an effect
size estimate and its standard error can be obtained for each subgroup, these can
be plugged in to compute an ABF. This can be viewed as an additional Laplace
approximation (Appendix B of the supplementary material [Wen and Stephens
(2014)]). Thus, the methods can easily handle study-specific covariates, and non-
normal data (e.g., using a generalized linear model within each subgroup).

2.3.4. Software. We implemented these methods in a software package MeSH
(Meta-analysis with Subgroup Heterogeneity), available from http://www.github.
com/xqwen/mesh.

3. Applications.

3.1. Illustrative example: deCODE recombination study. We first illustrate the
methods on motivating application 3 where heterogeneity of effects is known to
occur. The example involves three correlated genetic variants (SNPs) that were

http://www.github.com/xqwen/mesh
http://www.github.com/xqwen/mesh
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found, in a genetic association study of recombination rate by Kong et al. (2008), to
be strongly associated with both male and female recombination rates, but with es-
timated effects in opposite directions (i.e., the allele associated with lower recom-
bination rate in males is associated with higher recombination rate in females).2

We applied our methods to these data, exploiting the ability to compute ABFs
from summary data. Specifically, Table 1 of Kong et al. (2008) gives estimated
effect sizes β̂male and β̂female for three relevant SNPs, as well as corresponding
p-values, from which we infer approximate values for the standard errors se(β̂male)

and se(β̂male). These summaries suffice to compute ABFs under the EE model.
We treat males and females as two subgroups and consider 4 levels of expected

marginal overall effect sizes with
√

ψ2 + w2 = 5,10,20,40 (the phenotype scale

being centi-Morgans) and 5 levels of heterogeneity with ψ2/w2 = 0,0.5,1,2,∞.
This yields a grid of 4 × 5 different (ψ,w) combinations, and we treat every grid
value as a priori equally likely when computing ABFEE

av . (A denser grid could be
used to obtain more precise estimates of ψ and w, but this coarse grid suffices for
our purposes here.)

The resulting BFs are shown in Table 1. Notably, the association signal in the
joint analysis of males and females, allowing for heterogeneity, ABFEE

av , is many
orders of magnitude larger than either of the subgroup-specific BFs, which are
themselves larger than the BF under a fixed effects model, ABFEE

fix . This analy-
sis illustrates two simple but important points. First, a joint analysis can yield a

TABLE 1
Bayesian analysis of genetic associations with recombination rate. The SNPs, estimated effect sizes

and p-values are taken directly from Kong et al. (2008), Table 1. We compute approximate BFs
under the EE model using these summary statistics. ABFEE

single,male and ABFEE
single,female are

approximate BFs computed using only male subgroup and female subgroup data, respectively.
ABFEE

fix and ABFEE
av are approximate BFs computed using both males and females jointly, either

assuming no heterogeneity (ABFEE
fix ) or averaging over a range of values of heterogeneity (ABFEE

av )

Male Female Meta BFs

SNP Effect (p-value) ABFEE
single,male Effect (p-value) ABFEE

single, female ABFEE
fix ABFEE

av

rs3796619 −67.9 (1.1 × 10−14) 1011.12 67.6 (7.9 × 10−6) 102.81 103.07 1013.91

rs1670533 −66.1 (1.8 × 10−11) 108.06 92.8 (4.1 × 10−8) 104.55 101.10 1012.58

rs2045065 −66.2 (1.6 × 10−11) 108.11 92.2 (6.0 × 10−8) 104.40 101.18 1012.49

2A subsequent study suggests that this genetic region may actually contain more than one genetic
variant affecting recombination rates, some acting in males and others in females, rather than a single
genetic variant with antagonistic effects in the two groups [Fledel-Alon et al. (2011)]. This finding
emphasizes the fact that apparent heterogeneity may differ from actual heterogeneity, particularly
when examining genetic markers that are not the causal variant. The power benefits of accounting for
heterogeneity in an association analysis largely depend on apparent, rather than actual, heterogeneity.
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considerably stronger signal than subgroup-specific analyses. Second, a standard
fixed-effects meta-analysis would be ineffective in this case. Of course, in general,
the “right” level of heterogeneity is unknown; ABFEE

av deals with this by averaging
over different levels of heterogeneity. This ability to average over unknown quanti-
ties is an attractive feature of the Bayesian approach, although it can also be helpful
to examine the components of this average separately (see the next application).

Our methods can also assess which associations show evidence for heterogene-
ity. This could help identify potentially interesting interactions (as in this case) or
potentially suspect association signals (see next example). In these data ABFEE

av is
substantially larger than ABFEE

fix , indicating that the data are inconsistent with the
fixed effects assumption of equal effects in both subgroups. This comparison is
a Bayesian analogue of the frequentist test for heterogeneity in a random effects
meta-analysis. To further investigate heterogeneity, we compare BFs for different
values of the heterogeneity parameter (ψ2/w2); in this case the data are consistent
with infinite values for this parameter (i.e., w2 = 0).

This example illustrates that an association analysis accounting for heterogene-
ity can identify associations that would be missed by a fixed effects analysis that
ignores heterogeneity. Next we attempt to exploit this to identify novel associations
in a large-scale genome-wide association study.

3.2. Global Lipids genome-wide association study. We now return to motivat-
ing application 1, a large scale meta-analysis of genome-wide genetic association
studies of blood lipids phenotypes conducted by the Global Lipids consortium
[Teslovich et al. (2010)]. In this study, more than 100,000 individuals of Euro-
pean ancestry were amassed through 46 separate studies (grouped into 25 studies
in their final analysis). For each individual, measures of total cholesterol (TC),
low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol
(HDL-C) and triglycerides (TG) were obtained. Genotypes at 2.7 million SNPs
across the genome were also measured or imputed. In each study, the pheno-
types were independently quantile normal transformed; single SNP association
tests were performed for all SNPs and all phenotypes using the linear model (2.1)
and estimated effects and their standard errors were computed. The meta-analysis
combined these summary data using the software METAL [Willer, Li and Abecasis
(2010)] to compute a weighted Z statistic that we discuss later [specifically they
used equation (4.10) with weights ws = √

ns ]. This can be viewed as an approxi-
mation to a fixed effects analysis under the ES model (see Section 4.2.1). Teslovich
et al. (2010) reported 168 SNP-phenotype associations exceeding their “genome-
wide significant” threshold (p-value < 5 × 10−8) and identified 95 genes, with 59
showing genome-wide significant association for the first time.

We hypothesized that taking account of heterogeneity among subgroups might
help identify additional novel associations, so we reanalyzed the data using our
Bayesian tools to allow for heterogeneity. We were able to obtain access to sum-
mary data from each study, in the form of an estimated effect size (computed from
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the quantile-transformed phenotype data) and its standard error for each SNP in
each study. With these data we can perform analyses under the EE model for the
quantile normalized data (rather than the ES model effectively used in the orig-
inal analysis). We computed ABFs under increasing amounts of heterogeneity:
the fixed effects model, the “limited heterogeneity” CEFN model, and the maxi-
mum heterogeneity model. In each case we assumed a discrete uniform prior on
the overall genetic effect size [i.e., (k2 + 1)w2 in the CEFN model and w2 + ψ2

in the other models] on the set {0.12,0.22,0.42,0.62,0.82}. For the fixed effects
model, ψ = 0; for the maximum heterogeneity model, w = 0; and for the CEFN
model, we set k = 0.326, which gives a prior probability of 1/1000 that the ge-
netic effect in each study has an opposite sign to β̄ . Although a fully automated
Bayesian analysis would naturally average over the different models for hetero-
geneity, in practice, because of their different sensitivity to particular data features
(see below), we found it helpful to examine each separately.

As an initial check on data handling we verified that our Bayesian fixed effects
analysis produced similar results to the original fixed effects analysis. As expected,
we found that ABFEE

fix ranked SNP associations very similarly to the original re-
ported (ES model) p-values. However, there were some notable exceptions. In par-
ticular, a few SNPs showed a much stronger association signal in ABFEE

fix than the
original analysis. Further investigation suggested that these results likely reflected
the EE analysis being less robust to data processing errors than the original ES
analysis. For example, SNP rs17061870 with LDL phenoype had a huge signal in
our EE analysis (ABFEE

fix > 1017) and a very modest signal in the original analysis
(p-value = 0.028), but examination of the study-specific data for this SNP showed
a suspicious pattern: the p-value was 2 × 10−31 in one study (the Family Heart
Study, FHS), but no smaller than 0.1 in the 5 other studies for which this SNP had
genotype data available. Furthermore, the very small p-value in FHS was driven
primarily by a very small, probably erroneous, estimate of the residual error in
that study (the sample size of this particular study is not large) which under the
EE model results in a very high weight on that study, but in the ES model does not
(see Section 4.2.1). We emphasize that we performed the EE analysis here because
it was what we were able to do easily with the available summary data, rather than
because we prefer it.

Next we assessed evidence for heterogeneity of effects in the 168 associa-
tion signals reported by the original analysis. We did this by comparing the sup-
port for the limited heterogeneity model (ABFEE

cefn) with the support for the no
heterogeneity model (ABFEE

fix ). The majority of phenotype-SNP pairs (111/168)
showed stronger support for the no heterogeneity model (Figure 1). This result
was surprising to us: this meta-analysis involved a large number of different
studies, encompassing a range of different enrollment criteria, so we expected
to find much stronger evidence for heterogeneity among studies. We did find
three strong associations that showed overwhelming support for heterogeneity
(ABFEE

cefn/ABFEE
fix > 1010; Figure 1). Forest plots for these SNPs (Figure 2) sug-
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FIG. 1. Assessment of evidence for heterogeneity in 168 reported phenotype-SNP association sig-
nals from Teslovich et al. (2010). Large values on the y axis indicate stronger support for the
model, allowing for limited heterogeneity (ABFEE

cefn) compared with the model with no heterogeneity

(ABFEE
fix ). The three highlighted points correspond to associations with overwhelming evidence for

heterogeneity, ABFEE
cefn/ABFEE

fix > 1010; forest plots for these are shown in Figure 2.

gest that in all three cases this signal for heterogeneity comes from modest varia-
tion in effect size among all studies, rather than a strong difference in one or a few
studies (although the B58C-WTCCC study is, arguably, something of an outlier at
rs3764261).

Finally, we addressed the primary question of interest: whether allowing for
heterogeneity across studies yields novel associations. To do this, we performed
a genome-wide analysis for each phenotype, in each case excluding all SNPs
within 1 Mb of any SNPs originally reported as associated with that phenotype.
We searched for SNPs that showed strong evidence for association under one of
the heterogeneity models (ABFEE

cefn or ABFEE
max H ≥ 106, where ABFEE

max H denotes
the approximate Bayes factor computed by restricting w = 0, see Section 4.2.2
for precise definition) but not under the fixed-effects model (ABFEE

fix < 106). This
threshold (106) corresponds very roughly to, and is perhaps slightly more con-
servative than, the threshold effectively used in the initial analysis. (We used the
same threshold for all three models for simplicity, but different thresholds might
be more appropriate; for example, one might prefer a more stringent threshold for
ABFEE

max H because strong heterogeneity is unexpected in this context.)
Overall we found 42 SNP-phenotype associations satisfying this criteria (af-

ter removing SNPs in LD with one another), representing associations potentially
missed by the original analysis. However, detailed investigation suggested that 36
of these were not genuine associations. Specifically, these 36 associations, which
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FIG. 2. Forest plots for the three highlighted association signals in Figure 1, which showed overwhelming evidence for heterogeneity of (apparent)
effects.
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TABLE 2
Association signals that show strong association under the models allowing for heterogenetiy

(ABFEE
cefn or ABFEE

max H ≥ 106) but less strong under a model with no heterogeneity

(ABFEE
fix < 106). It seems likely that the last two of these represent false positive associations, but

we include them in the table for completeness (see text for discussion)

Phenotype SNP Gene region log10(BFEE
fix ) log10(BFEE

max H) log10(BFEE
cefn)

LDL rs1800978 5’UTR of ABCA1 5.2 3.4 6.0
TG rs1562398 Flanking KLF14 5.3 −0.2 6.5
HDL rs11229165 Flanking OR4A16 4.6 4.9 6.4
HDL rs7108164 Flanking OR4A42P 4.2 4.9 6.3
HDL rs11984900 N.A. −1.1 16.6 6.2
HDL rs6995137 Flanking SFRP1 −0.4 6.9 4.8

showed strong signals in ABFEE
max H only, were driven by strong associations in

the FHS study that are likely due to data processing errors (the FHS p-values at
these SNPs for quantile transformed phenotypes were many orders of magnitude
smaller than for the original phenotypes). We therefore dropped the FHS data and
re-performed the association analysis.

After dropping FHS, all 6 remaining signals from the previous analysis still
satisfy our association criteria (Table 2). Of those, the first two listed are almost
certainly genuine: the genes ABCA1 and KLF14 are reported in Teslovich et al.
(2010) as associated with other lipid phenotypes (ABCA1 with HDL and TC;
KLF14 with HDL), but not with the phenotypes we listed in Table 2, and both
reflect associations that just missed being significant in the original fixed effects
analysis. The next two associations may also be real: they map approximately
6 Mb apart on chromosome 11, in a region that is densely populated with ol-
factory receptor genes, and this same genetic region is also identified in a mul-
tivariate association analysis of these same data [Stephens (2013)], although we
know of no further independent evidence to support them. One slight cause for
caution is that, in humans, SNPs this far apart would usually not be correlated with
one another, but these two are slightly correlated (r2 ≈ 0.07 in the European 1000
Genomes data), raising the possibility of mapping errors. That is, the precise lo-
cations of these SNPs may be in question, and certainly it is difficult to say which
genes they might implicate; the table simply lists the nearest gene for reference.
Finally, based on examination of the raw data, we suspect that the last two associ-
ations are false positives, driven by apparent anomalies in a single study (this time
B58C-WTCCC).

In summary, we find that the original fixed effects analysis in Teslovich et al.
(2010) was highly effective. This may seem surprising, since these data seem to
provide ample opportunities for heterogeneity of effects. Indeed, some of the as-
sociations identified by the original study do show a substantially stronger signal
in analyses allowing for heterogeneity (Figure 1), and a genome-wide association
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analysis allowing for heterogeneity identified at least two apparently real associ-
ations that just missed being significant under the original fixed effects analysis.
Thus, despite the success of the fixed effects analysis, analyses allowing for het-
erogeneity could modestly increase in power for GWAS meta-analyses in general.
On the other hand, our results also provide a cautionary tale: in the context of
meta-analysis of genetic association studies, when associations appear only under
models allowing for strong heterogeneity, and not under fixed effects models, the
reasons for the discrepancy must be examined carefully and the results interpreted
critically. Indeed, we found that searching for SNPs showing strong heterogene-
ity is an effective way to identify data processing errors that may otherwise lurk
undetected!

3.3. Heterogeneity of eQTLs among populations. Now we consider our sec-
ond motivating application, examining heterogeneity in the effects of expression
quantitative trait loci (eQTLs) among populations. An eQTL is a genetic variant
(here, a SNP) that is associated with gene expression. Understanding heterogene-
ity of eQTL effects among population subgroups is important for several reasons.
For example, it is important for designing and interpreting experiments, because
it influences how generalizable results obtained in one subgroup are to other sub-
groups. In addition, identifying heterogeneous effects could yield insights into bi-
ological differences among subgroups: if an eQTL is more active in one subgroup
than others, it may indicate a difference in the regulatory mechanisms operating in
that subgroup.

To assess heterogeneity of eQTLs among European, African and Asian sub-
groups, we analyzed gene expression measurements from Stranger et al. (2007),
obtained using the Illumina Sentrix Human-6 Expression BeadChip, on lym-
phoblastoid cell lines. Specifically, we considered the subset of 141 cell lines
[41 Europeans (CEU), 59 Asians (ASN) and 41 Africans (YRI)] that were fully se-
quenced in the pilot project of the 1000 Genomes project [Durbin et al. (2010)]. We
analyzed the 8427 distinct autosomal genes that were confirmed to be expressed in
the same African samples by an independent experiment [Pickrell et al. (2010)].
We used SNP genotype data on 14.4 million SNPs from the final release (March,
2010) of the pilot SNP calls from the 1000 genomes project, with no additional
allele frequency filtering. In addition to the original normalization Stranger et al.
(2007), we performed quantile normal transformations to expression values for
each gene, separately within each population group, to reduce the influence of out-
liers or other deviations from normality. Previous studies have shown that most
eQTLs are located near to the gene whose expression they influence (so-called
“cis-eQTLs”). Therefore, for each gene we restricted our association analysis to
the “cis SNPs” which lie within the region 500 kb upstream of the transcription
start site and 500 kb downstream of the transcription end site.

Our analysis focuses on the question: how much do eQTL effects vary among

continental groups? To assess this, we applied the ES model with
√

φ2 + ω2 ∈
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{0.1,0.2,0.4,0.8,1.6} and φ2/ω2 ∈ {0,1/4,1/2,1,2,4,∞}, producing a total
grid of 35 different (φ,ω) combinations. These values were chosen to cover a wide
range of possible effect sizes and levels of heterogeneity. Since the amount of het-
erogeneity is our main interest, we estimate the weights (π) on the 35 combina-
tions using a Bayesian hierarchical model that jointly analyzes all 8427 genes. In
brief, this model assumes the following: (i) the data at each gene are independent;
(ii) each gene has at most one eQTL, with each SNP being equally likely; and (iii)
that each eQTL draws its (φ,ω) value from the grid of 35 different values, accord-
ing to π . In addition, we assign a uniform prior to π . Under these assumptions,
we implement a Markov Chain Monte Carlo (MCMC) algorithm to perform pos-
terior inference on π . [See Wen (2011), Flutre et al. (2013) for full details of the
computational methods and modeling assumptions.]

The results (Table 3) suggest that eQTL effects typically vary little among sub-
groups: the estimates from the hierarchical model put 97% of the total weight on
the two smallest heterogeneity parameters, 0 and 1/4. (For completeness we also
include estimated grid weights on φ2 +ω2, which control the average eQTL effect
sizes, in Table 4.)

The above analysis effectively assumes that each eQTL is active in all three
populations and allows for heterogeneity by allowing that the effect size may vary
among populations. That is, it is effectively a model for “quantitative heterogene-
ity”. A different model for heterogeneity is that some eQTLs may be active in
only a subset of the populations, with no effect in others, that is, that heterogeneity
might be qualitative, with some eQTLs being “population-specific”.3 Although our
quantitative-heterogeneity analysis above suggests that heterogeneity is generally

TABLE 3
Estimated heterogeneity of eQTL effects among

Europeans, Africans and Asians, obtained by fitting a
hierarchical model to combine information across genes

φ2/ω2 Posterior mean 95% credible interval

0 0.700 (0.640, 0.753)
1/4 0.265 (0.195, 0.330)
1/2 0.015 (0.002, 0.052)
1 0.008 (0.003, 0.016)
2/1 0.007 (0.002, 0.015)
4/1 0.004 (0.001, 0.012)
∞ 0.003 (0.000, 0.010)

3It could be objected that the notion of a “population-specific” eQTL is too simplistic and that
apparent absence of effects in some populations more likely reflects very small, nonzero, effects.
While sympathetic to this argument, we also find the simplicity has a certain appeal, and we view
such models as potentially useful nonetheless.
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TABLE 4
Estimated standard deviation of average eQTL effects

(
√

ω2 + φ2), obtained by fitting a hierarchical model to
combine information across genes

√
ω2 + φ2 Posterior mean 95% credible interval

0.1 0.004 (0.001, 0.008)
0.2 0.004 (0.001, 0.007)
0.4 0.008 (0.003, 0.014)
0.8 0.976 (0.966, 0.983)
1.6 0.007 (0.002, 0.015)

low, it does not preclude the existence of some population-specific effects, so we
performed an additional analysis to assess how common such population-specific
effects might be. To apply our methods to this situation, we introduce C to denote
a binary string of indicators for whether an eQTL is active (i.e., has nonzero ef-
fect) in each population. For example, C = (110) would indicate that the eQTL
is active only in the first two populations. For the three populations in our data,
C has 23 possible values, which we refer to as “configurations”. The support (BF)
for each configuration, relative to the null model C = (000), is easily computed.
For example, for C = (110),

BFC=(110) = P(y1,y2,y3|g1,g2,g3,C = (110))

P (y1,y2,y3|g1,g2,g3,C = (000))
(3.1)

= P(y1,y2|g1,g2)

P (y1,y2|H0)
.

[The simplification is due to the assumption that the vectors of residual errors
in (2.1) are independent across populations.]

To estimate the proportion of eQTLs that follow each (nonnull) configuration,
we introduce hyperparameters, η001, . . . , η111, to represent the frequency of each
nonnull configuration. So each eQTL draws its configuration C independently ac-
cording to η. Furthermore, given C, we assume the standardized eQTL effect sizes
follow the CEFN prior with k = 0.314 and ω drawn independently from a grid
{0.1,0.2,0.4,0.8,1.6} according to weights π ′. Putting this all together into a sin-
gle hierarchical model, with uniform priors on π ′ and η, we use MCMC to sample
from the joint posterior distribution on all parameters. Full details are given in Wen
(2011), Flutre et al. (2013).

The resulting estimates for η are given in Table 5. Consistent with the conclu-
sions on low overall heterogeneity above, the vast majority of eQTLs behave con-
sistently across populations: indeed, we estimate 95% of eQTLs to be active in all
three populations. Nonetheless, we find some evidence for occasional deviations
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TABLE 5
Estimated proportion of eQTLs that are shared among the three continental subgroups, represented

by CEU (European), ASN (Asian) and YRI (African) samples. Estimates come from fitting a
hierarchical model to combine information across genes; see text. The vast majority of eQTLs are

estimates to be shared among all three subgroups

Configuration Estimate (posterior mean) 95% credible interval

CEU only 0.001 (0.000, 0.003)
ASN only 0.001 (0.000, 0.008)
YRI only 0.001 (0.000, 0.004)
CEU and YRI 0.001 (0.000, 0.013)
ASN and YRI 0.017 (0.010, 0.035)
CEU and ASN 0.026 (0.014, 0.041)
CEU and ASN and YRI 0.953 (0.934, 0.970)

from this pattern, with approximately 2% of eQTLs being active only in European
and Asian samples, and 2% being active only in Asian and African. Illustrative
examples of potential exceptions to the general rule of sharing among populations
are shown in Figures 3 and 4.

FIG. 3. Example of a potential population specific eQTL presented only in CEU and ASN. A: Box-
plots of the gene expression levels of gene CMAH (Ensemble ID ENSG00000168405) according to
genotypes of SNP rs6906102 in the three Hapmap populations. B: forest plot of estimated effect sizes
of this eQTL. Allele A of this SNP has allele frequencies 0.22, 0.08 and 0.67 in ASN, CEU and YRI,
respectively.
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FIG. 4. Example of a potential population specific eQTL presented only in ASN and YRI. A: Box-
plots of the gene expression levels of gene PAQR8 (Ensemble IDENSG00000170915) according to
genotypes of SNP rs3180068 in the three Hapmap populations. B: forest plot of estimated effect sizes
of this eQTL. Allele A of this SNP has sample allele frequencies 0.14, 0.22 and 0.07 in ASN, CEU
and YRI, respectively.

4. Analytic expressions for the Bayes factors and connections with frequen-
tist statistics. We now provide analytic expressions for the ABFs mentioned
above (Proposition 4.1 below). These expressions provide intuitive insights and
highlight connections with standard frequentist test statistics, effectively establish-
ing the “implicit prior assumptions” underlying some standard frequentist proce-
dures. We start by introducing necessary notation:

• Association testing in a single subgroup. Consider analyzing a single sub-
group, s. Let β̂s and σ̂s denote the least square estimates of βs and σs from
the linear regression model (2.1) using only data from subgroup s. The follow-
ing expressions give an estimate for the standardized effect bs (b̂s ), its standard
error under H0 (δs) and a t-statistic for testing bs = 0 (Ts):

b̂s := β̂s/σ̂s,(4.1)

δ2
s := 1

g′
sgs − nsḡ2

s

,(4.2)

T 2
s := b̂2

s

se(b̂s)2
= β̂2

s

σ̂ 2
s δ2

s

.(4.3)

Note that Ts is also equal to β̂s/ se(β̂s), which is the usual t-statistic for testing
βs = 0.
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Both Wakefield (2009) and Johnson (2008) derive the following approximate
BF for testing bs ∼ N(0, φ2) vs. bs = 0:

ABFES
single(Ts, δs;φ) :=

√
δ2
s

δ2
s + φ2 exp

(
T 2

s

2

φ2

δ2
s + φ2

)
.(4.4)

As noted by Wakefield, if φ is chosen differently for each SNP, and proportional
to the value of δ2

s for that SNP, then ABFES
single ranks the SNPs in the same

way as the usual test statistic Ts . This result connects the standard frequentist
analysis to a particular (approximate) Bayesian analysis in the case of a single
subgroup. Proposition 4.1 below extends this to multiple subgroups, allowing
for heterogeneity among subgroups.

• Testing average effect in a random effect meta-analysis model. Consider the
standard frequentist test of b̄ = 0 in a random effect meta-analysis of all sub-
groups, with bs ∼ N(b̄, φ2). If φ is considered known, then an estimate for b̄, its
standard error ζ and a test statistic T 2

ES for testing b̄ = 0 are given by

ˆ̄b :=
∑

s(δ
2
s + φ2)−1b̂s∑

s(δ
2
s + φ2)−1 ,(4.5)

ζ 2 := 1∑
s(δ

2
s + φ2)−1 ,(4.6)

T 2
ES :=

ˆ̄b2

se( ˆ̄b)2
.(4.7)

Applying Johnson’s idea [Johnson (2005, 2008)], we can “translate” this test
statistic into an approximate BF for testing b̄ ∼ N(0,ω2) vs. b̄ = 0, which yields

ABFES
single

(
T 2

ES, ζ ;ω) :=
√

ζ 2

ζ 2 + ω2 exp
(T 2

ES

2

ω2

ζ 2 + ω2

)
.(4.8)

Now ABFES(φ,ω) can be written as a simple product of the ABFs (4.4)
and (4.8).

PROPOSITION 4.1. Under the ES model, applying a version of Laplace’s
method to approximate BFES(φ,ω) yields the approximation

BFES(φ,ω) ≈ ABFES(φ,ω)
(4.9)

:= ABFES
single

(
T 2

ES, ζ ;ω) · ∏
s

ABFES
single

(
T 2

s , δs;φ)
and ABFES(φ,ω) converges (almost surely) to BFES(φ,ω) as ns → ∞ for all
subgroups s.
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PROOF. See Appendix A.1 of the supplementary material [Wen and Stephens
(2014)]. �

NOTE 4.1. If the study-specific residual error variances, σs , are consid-
ered known (rather than being assigned a prior distribution) and used in place
of σ̂s to compute ABFES, then the approximation is exact, and ABFES(φ,ω) =
BFES(φ,ω). This fact, together with the fact that the estimators σ̂s are consistent
for σs , explains, intuitively, why the proposition holds.

NOTE 4.2. The numerical accuracy of ABFES as an approximation to BFES

depends on sample sizes, and for small sample sizes it may be too inaccurate for
routine application. However, a simple modification, described in Appendix C of
the supplementary material [Wen and Stephens (2014)], yields much greater accu-
racy.

Proposition 4.1 partitions the evidence for association into two parts: one part
reflects the evidence in each subgroup (the second term) and the other reflects
consistency of effects among subgroups (the first term). In particular, if all sub-
groups show effects in the same direction, then the first term may be large (� 1)
and “boost” the evidence for association. A similar result holds for the EE model
(Appendix A.2 of the supplementary material [Wen and Stephens (2014)]).

4.1. Properties of Bayes factors.

4.1.1. Induced single study Bayes factors. For the ES model, in the special
case of one subgroup (S = 1), both the actual BF and our approximations reduce
to results from previous work. Specifically, the approximation B̂FES becomes exact
in this case, and equal to the BF derived by Servin and Stephens (2008), whereas
ABFES is equal to the ABF in Wakefield (2009) [see also Johnson (2005, 2008)].

4.1.2. Noninformative subgroup data. Suppose that in one subgroup, s, sam-
ple genotypes vary very little. This might arise, for example, in cross-population
genetic studies, if one SNP allele is very rare in one population. Intuitively, sub-
group s then contains little information for testing H0. Indeed, this will be reflected
in the standard error for the effect size, δs , being large, which will result in study s

contributing little to the BF. Specifically, in the limit δs → ∞, the ABF (4.9) is
unaffected by the association data in study s (Ts); a similar result holds for the
exact BF (Appendix A of the supplementary material [Wen and Stephens (2014)])
and for both EE and ES. Thus, the BF correctly reflects the noninformativeness
of the data from study s. Although one might expect every reasonable statistical
procedure to possess this very intuitive property, many widely used methods do
not (e.g., Fisher’s combined probability test).



GENETIC ASSOCIATION ANALYSIS WITH HETEROGENEOUS SUBGROUPS 197

4.2. Extreme models and connections with frequentist tests. The proposed
models are very flexible, covering a wide range of types and degrees of hetero-
geneity by setting different values for (φ,ω) (or k in the CEFN prior). Here we
discuss the two extremes of no heterogeneity (“fixed effects”) and maximum het-
erogeneity, and establish connections with frequentist testing approaches in these
settings.

4.2.1. The fixed effects model. The fixed effects model assumes genetic effects
to be homogeneous across subgroups, and corresponds to φ = 0 in ES or ψ = 0
in EE. In these cases the test statistics TES and TEE have particularly simple forms,
being a weighted sum of individual Ts statistics from each study (often referred to
as a weighted sum of Z scores when sample sizes are large). Specifically,

T =
∑

s wsTs√∑
s′ w2

s′
,(4.10)

where,

1. For the ES model, ws = se(b̂s)
−1 ≈ √

2nsfs(1 − fs),
2. For the EE model, ws = se(β̂s)

−1 ≈ σ̂−1
s

√
2nsfs(1 − fs),

and fs denotes the allele frequency of the target SNP in subgroup s. (The approx-
imations come from assuming Hardy–Weinberg equilibrium in each subgroup.)
These representations clarify a key practical difference between the ES and EE
models: EE upweights studies with small residual error variance. Note also that
Ts is the same for both EE and ES, and independent of measurement scale, but
σs depends on measurement scale, so TES is robust to studies using different mea-
surement scales (or different transformations of the phenotypes) but TEE is not. In
addition, these representations clarify the connection between these statistics and
the methods used in the meta-analysis software METAL [Willer, Li and Abecasis
(2010)]. Specifically, METAL implements tests using the weighted statistic (4.10)
with two different weighting schemes, one corresponding to the EE model weights
above and the other with the weights equal to

√
ns . This latter scheme corresponds

to the ES model only if fs is equal across studies. [Where fs varies across stud-
ies the weighting in the ES model seems, to us, preferable to the METAL scheme
since studies with small fs(1 − fs) provide less information.]

Returning now to the BFs, when φ = 0 the ABF (4.9) simplifies to

ABFES
fix (ω) := ABFES(φ = 0,ω) =

√
ζ 2

ζ 2 + ω2 · exp
(T 2

ES

2

ω2

ζ 2 + ω2

)
,(4.11)

where

ζ 2 = 1∑
s δ−2

s

.(4.12)
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A similar expression holds for ABFEE
fix (w) := ABFEE(ψ = 0,w).

We now answer the following question: under what prior assumptions will
ABFES

fix produce the same SNP rankings as the frequentist test statistic TES?
Wakefield (2009) names this kind of prior the “implicit p-value prior”, as it iden-
tifies the implicit prior assumptions being made when one ranks SNPs by their
p-value computed from TES.

Although for a given SNP ABFES
fix (ω) is a monotone function of TES, for a fixed

value of ω the two statistics will not generally rank SNPs in the same way because
ζ varies among SNPs. If, however, ω is assumed to vary among SNPs in a partic-
ular way, then the two statistics produce the same ranking. (A similar result holds
for ABFEE

fix .)

PROPOSITION 4.2 (Implicit p-value prior, fixed effects). In the ES model, if
the prior hyperparameter ω is allowed to vary among SNPs, with

ωp = Kζp,(4.13)

where p indexes SNPs and K is any positive constant, then ABFES
fix and TES will

produce the same ranking of SNPs.

PROOF. This follows directly from substituting (4.13) into (4.11). �

NOTE 4.3. Recall that ζp is the standard error of ˆ̄b for SNP p, so large ζp cor-
responds to less information about b̄ (which could occur, for example, due to the
SNP having small minor allele frequency or being typed in only a few studies). Re-
call also that large values of ωp correspond to a prior assumption that the effect
size b̄ at SNP p is likely to be large (in absolute value). Thus, the implicit p-value
makes the curious assumption that SNPs with less information have larger effects
[see also Guan and Stephens (2008)].

NOTE 4.4. When data on all SNPs are available on all subgroups, and the
subgroups also have similar allele frequencies at every SNP (as might happen if the
subgroups come from a single random mating population), then the sample geno-
type variance of SNP p in subgroup s can be well approximated by 2nsfp(1 − fp),
where fp is the population allele frequency of SNP p. (Note the slight abuse of
notation, since we previously indexed f by subgroup, whereas here it is indexed
by SNP.) Consequently, the implicit frequentist prior (4.13) can be written as

ωp = K

√
1

fp(1 − fp)

1∑
s ns

,(4.14)

which is effectively the same as the single subgroup case discussed by Wakefield
(2009).
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4.2.2. Maximum heterogeneity model. Now consider the other end of the spec-
trum: models with very high heterogeneity. Specifically, within the class of ES
models with some fixed prior expected marginal effect size (φ2 + ω2), the model
with ω = 0 has maximum heterogeneity. In this case, the average effect b̄ is iden-
tically 0, and the effects bs |φ are independent, ∼ N(0, φ2).

It can be shown from (A.13) and (A.27) in Appendix A of the supplementary
material [Wen and Stephens (2014)] that for both EE and ES, the exact BF under
this setting, BFmax H, is the product of the individual BFs,

BFmax H = ∏
s

BFsingle,s ,(4.15)

where BFsingle,s is the exact BF calculated using data only from subgroup s. This
relationship also holds for the ABF, that is,

ABFES
max H(φ) := ABFES(φ,ω = 0) = ∏

s

√
δ2
s

δ2
s + φ2 exp

(
T 2

s

2

φ2

δ2
s + φ2

)
.(4.16)

The frequentist test that corresponds to this “maximum heterogeneity” BF turns
out to be the likelihood ratio test of H0 :bs = 0 (for all s) vs the general uncon-
strained alternative, which can be written

LRmax H = ∏
s

LRs,(4.17)

where LRs is the likelihood ratio test statistic for H0 :bs = 0 vs H1 :bs uncon-
strained. For sufficiently large samples, LRs is well approximated by

lim
ns→∞ LRs ≈ exp

(
−T 2

s

2

)
,(4.18)

so

LRmax H ≈ exp
(
−

∑
s T 2

s

2

)
.(4.19)

Thus, the likelihood ratio test is approximately the same as a test based on
∑

s T 2
s ,

which (again assuming large sample sizes) is the sum of the squared Z values, and
p-values can be obtained by noting that under the global null hypothesis this sum
will be ∼ χ2

S . This is very similar to Fisher’s approach to combining test statistics
from multiple studies.

Under what prior assumptions will ABFES
max H give the same SNP ranking

as
∑

s T 2
s ? Under the ES model no single φ value will give this result. However,

we have the following:

PROPOSITION 4.3 (Implicit p-value prior, maximum heterogeneity). In the
ES model, if the prior hyperparameter φ is allowed to vary among subgroups, with

φ2
s = Kδ2

s ,(4.20)
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where K is a constant for all subgroups and all SNPs tested, then ABFES
max H yields

the same SNP ranking as
∑

s T 2
s .

PROOF. This follows directly from substituting (4.20) into (4.16). �

NOTE 4.5. Recalling that δs is the standard error for bs , the implicit p-value
prior (4.20) assumes bigger effects in subgroups with less information. There
seems to be no good justification, in general, for this prior assumption.

5. Discussion. Motivated by the need to allow for heterogeneity of effects
in genetic association studies, we developed and applied a flexible toolbox of
Bayesian methods for this problem. Our applications demonstrate how these tools
can (i) identify associations allowing for different amounts and types of hetero-
geneity, and (ii) assess the amount and type of heterogeneity. The tools are suffi-
ciently flexible to tackle a wide range of applications, from those involving limited
heterogeneity (e.g., a typical meta-analyses) to the more extreme heterogeneity
that might be encountered in gene–environment interaction studies. We presented
computational methods that are practical for large studies and highlighted connec-
tions between BFs and standard frequentist test statistics in this context (Proposi-
tions 4.2 and 4.3).

The models and priors considered here are closely connected to other models
employed in meta-analysis. In particular, they are similar to mixed effect meta-
analysis models in standard frequentist approaches for quantitative phenotypes,
where the subgroup-specific intercept terms μs in (2.1) are regarded as fixed ef-
fects terms and genetic effects βs (or bs ) are regarded as random effect terms. Our
models are also connected with, but differ in an important way from, models used
in gene–environment (G × E) interaction studies:

yi = μ + βe,si + βggi + β[g : e],si gi + ei, ei ∼ N
(
0, σ 2)

,(5.1)

where si denotes the subgroup membership of individual i, and β[g : e] denotes the
subgroup-genotype interaction terms. This linear model can be rewritten as

yi = (μ + βe,si ) + (βg + β[g : e],si )gi + ei, ei ∼ N
(
0, σ 2)

,(5.2)

to emphasize that each subgroup has its own intercept, μ + βe,si , and its own
genetic effect, βe + β[g : e],si . (If no marginal effect of subgroup is included, the
model makes the stronger assumption of equal intercepts for different subgroups,
which can be dangerous in practice and may lead to Simpson’s paradox [Bravata
and Olkin (2001)].) The key difference between this model (5.2) and ours (2.1)
is their assumptions on the error variances: our model allows for a different vari-
ance in each subgroup, whereas (5.1) assumes them to be equal. Allowing for
subgroup-specific variances improves robustness and can improve power [Flutre
et al. (2013)].
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One important issue that we have largely ignored is the question of how to
weigh evidence of heterogeneity in the data (e.g., large BFs for high heterogene-
ity models) against an a priori belief that, in general, strong heterogeneity might
be rare. In principle, this is straightforward: given a prior distribution on different
types of heterogeneity, it is trivial to use the BFs to compute posterior distribu-
tions. However, there remains an issue of choice of appropriate priors (which also
arises in a disguised form in frequentist approaches, for example, in selecting ap-
propriate p-value thresholds when testing for heterogeneity). Here we have often
used discrete uniform distributions for convenience. In general, one might want to
change this, and appropriate priors may be context-dependent. For example, in a
meta-analysis one might upweight models with limited heterogeneity (the CEFN
prior), whereas in an gene–environment interaction study one might allow more
heterogeneity.

Acknowledgment. We thank Yongtao Guan, Tanya Teslovich, Daniel
Gaffney, Michael Stein and Peter McCullagh for helpful discussions. We thank
the Global Lipids Consortium for access to their summary data.

SUPPLEMENTARY MATERIAL

Appendix (DOI: 10.1214/13-AOAS695SUPP; .pdf). Appendices referenced in
Sections 2, 2.3.1, 2.3.3, 4 and 4.1.2 are provided in the supplementary appendix
file.
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