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SPATIAL STRUCTURE IN LOW DIMENSIONS FOR
DIFFUSION LIMITED TWO-PARTICLE REACTIONS

By Maury Bramson1 and Joel L. Lebowitz2

University of Minnesota and Rutgers University

Consider the system of particles on �d where particles are of two types,
A and B, and execute simple random walks in continuous time. Particles
do not interact with their own type, but when a type A particle meets
a type B particle, both disappear. Initially, particles are assumed to be
distributed according to homogeneous Poisson random fields, with equal
intensities for the two types. This system serves as a model for the chemical
reaction A+B → inert. In Bramson and Lebowitz [7], the densities of the
two types of particles were shown to decay asymptotically like 1/td/4 for
d < 4 and 1/t for d ≥ 4, as t → ∞. This change in behavior from low to
high dimensions corresponds to a change in spatial structure. In d < 4,
particle types segregate, with only one type present locally. After suitable
rescaling, the process converges to a limit, with density given by a Gaussian
process. In d > 4, both particle types are, at large times, present locally in
concentrations not depending on the type, location or realization. In d = 4,
both particle types are present locally, but with varying concentrations.
Here, we analyze this behavior in d < 4; the behavior for d ≥ 4 will be
handled in a future work by the authors.
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1. Introduction. Consider a system of particles of two types on �d, A
and B, which execute simple random walks in continuous time at rate d.
That is, the motion of different particles is independent, and a particle at site
x will jump to a given one of its 2d nearest neighbors at rate 1/2. Particles are

Received May 1999; revised February 2000.
1Supported in part by NSF Grant DMS-96-26196.
2Supported in part by NSF Grant DMR-95-23266, DIMACS and supporting agencies, NSF

Contract STC-91-19999 and the New Jersey Commission on Science and Technology.
AMS 2000 subject classification. 60K35.
Key words and phrases. Diffusion limited reaction, annihilating random walks, asymptotic

densities, spatial structure.

121



122 M. BRAMSON AND J. L. LEBOWITZ

assumed not to interact with their own type; multiple A particles or multiple
B particles can occupy a given site. However, when a particle meets a particle
of the opposite type, both disappear. (When a particle simultaneously meets
more than one particle of the opposite type, it will cause only one of these
particles to disappear.)

We assume that particles are initially distributed according to independent
homogeneous Poisson random fields, with intensity λ for each type of particle.
That is, the probability of there being j1 type A particles and j2 type B
particles at a given site x is e−2λλj1+j2/j1!j2!. If there are initially both A and
B particles at a site x, they immediately cancel each other out as much as
possible. We denote by ξAt 	x� and ξBt 	x� the number ofA particles, respectively,
the number of B particles at site x, and by ξAt 	E� and ξBt 	E� the number
of such particles in a finite set E ⊂ �d. Also, set ξ#t 	E� = ξAt 	E� + ξBt 	E�,
for the total number of particles in E. We associate with each A particle
the value −1 and with each B particle the value 1, and denote by ξt	x� the
signed number of particles at x ∈ �d, that is, ξt	x� = ξBt 	x�−ξAt 	x�. Similarly,
ξt	E� = ξBt 	E� − ξAt 	E�. We denote by ξt� ξt ∈ 	�2

+��
d
, the random state of

the system at time t, where �+ designates the nonnegative integers; the first
coordinate at each site corresponds to the number of A particles there, and
the second coordinate to the number of B particles. We write ξ0− for the initial
state before A and B particles originally at the same site have annihilated
one another.

The above two-particle annihilating random walk can serve as a model for
the irreversible chemical reaction A + B → inert, where both particle types
are mobile. A and B can also represent matter and antimatter. There has
been substantial interest in this model in the physics literature over the last
two decades following papers by Ovchinnikov and Zeldovich [17], Toussaint
and Wilczek [19], and Kang and Redner [11]; see [7] for a more complete set
of references, and [14] and [15] for more recent work.

Let ρA	t� and ρB	t� denote the densities of A and B particles at the origin,
that is,

ρA	t�=E�#A particles at 0 at time t��
ρB	t�=E�#B particles at 0 at time t��

(1.1)

(In the paper, E will be used for both expectations and sets.) Since ξ0− is
translation invariant, its densities do not depend on the site x. The difference
ρB	t� − ρA	t� remains constant for all t, because particles annihilate in pairs.
Since ρA	0−� = ρB	0−� = λ, one has ρA	t� = ρB	t� for all t, which we will
denote by ρ	t�. In [7], it was shown that

cdλ
1/2/td/4 ≤ ρ	t� ≤ c′dλ

1/2/td/4 for d < 4�

c4	λ1/2 ∨ 1�/t ≤ ρ	t� ≤ c′4	λ1/2 ∨ 1�/t for d = 4�(1.2)

cd/t ≤ ρ	t� ≤ c′d/t for d > 4�
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for large t and appropriate positive constants cd and c
′
d; here, a∨b = max	a� b�.

(Bounds were also derived when the initial densities are unequal.) The asymp-
totic power laws in (1.2) were previously obtained, in [19] and [11], using
heuristic arguments.

The asymptotics of ρ	t� in (1.2) are tied to the spatial structure of ξt, which
also depends on d. The slow rate of decay for d < 4 corresponds to the presence
locally, at large times, of only one type of particle, typically. This behavior is a
consequence of the random fluctuations in the numbers of A and B particles
locally in the initial state, and the tendency for particles of the local minority
type to be annihilated before they can be replenished by the arrival of par-
ticles from outside the region. In particular, the random walks executed by
these particles are diffusive, which imposes limitations on the rate of mixing
of particles. For d > 4, A and B particles remain sufficiently mixed so that the
behavior is different, and mean field reasoning gives the correct asymptotics.
Namely, assuming that dρA	t�/dt is proportional to −ρA	t�ρB	t� = −	ρA	t��2,
then ρ	t� = ρA	t� will decay like a multiple of 1/t, which is the right answer.
In this latter setting, the limiting density does not depend on the initial den-
sities. The dimension d = 4 is a hybrid of the previous two cases, with both
mechanisms playing a role.

It is the purpose of this paper to analyze the spatial structure of ξt in
d < 4. The behavior of ξt in d ≥ 4 will be covered in [9]. Our main results are
Theorems 1 and 2. Theorem 1 gives the macroscopic limiting behavior of the
process. It says, in essence, that ξt, under diffusive scaling, converges to a limit
which is the convolution of white noise with the normal kernel. Regions where
this convolution is positive correspond to regions where only B particles are
present, with negative regions corresponding to the presence of A particles.

By white noise, we mean the stochastic process � whose domain is the set
of finite rectangular solids D ⊂ �d, with sides parallel to the coordinate axes,
such that any linear combination

∑n
j=1 aj�	Dj� is normally distributed with

mean 0, and, for any D1 and D2,

E��	D1��	D2�� = �D1 ∩D2��(1.3)

Loosely speaking, ��	x��	y�� = δ	x − y� for x�y ∈ �d, that is, �	x� is a
Gaussian field with a δ-function covariance, in physics terminology. [One can
alternatively define � as the linear functional on the Schwartz space of rapidly
decreasing functions f� �d → �, where �	f� is normally distributed with
mean 0, and E��	f1��	f2�� = ∫

�d f1	x�f2	x�dx�� These rules specify a gen-
eralized Gaussian random field on �d. We will assume that �	D� is, for each
realization, continuous in the coordinates of D; a version of the process exists
for which this holds. White noise is closely connected with Brownian sheet,
and the above definition is motivated by this relationship. (More detail will be
given in Section 8.)

We will writeNt	·� for the density of a normal random variable with mean 0
and covariance matrix tI, that is,

Nt	x� = 	2πt�−d/2e−�x�2/2t for x ∈ �d�(1.4)
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where �·� is the Euclidean norm. We writeNt	E� = ∫
ENt	x�dx for measurable

E ⊂ �d. Let � ∗Nt denote the convolution of � with Nt, that is,

	� ∗Nt�	D� =
∫
�d
�	D− x�Nt	x�dx�(1.5)

where D + y designates D translated by y. Since � ∗ Nt is the average of
translates of a generalized Gaussian random field, � ∗Nt is also Gaussian.
Because of the smoothness of Nt�� ∗Nt will have a density 	� ∗Nt�	x�; it is
Gaussian with variance 	4πt�−d/2 at each point. We will write 	� ∗Nt�−	D�
and 	� ∗Nt�+	D� for the integrals of the negative and positive parts of 	� ∗
Nt�	x� over D.

To state Theorem 1, we need to normalize ξt. The notation Tξ̂t (respectively,
Tξ̂At and Tξ̂Bt ) will denote ξt (respectively, ξ

A
t and ξBt ) after scaling time by T,

space by T1/2 in each direction, and the weight of individual particles by Td/4.
That is,

Tξ̂t	E� = ξTt	T1/2E�/Td/4�(1.6)

where E ⊂ �dT1/2 , which is �d scaled by T1/2 in each direction. The factor
Td/4 is mandated by the first line of (1.2). For E ⊂ �d, we set Tξ̂t	E� =
Tξ̂t	E ∩ �dT1/2�.

Theorem 1 gives the limiting macroscopic behavior of ξt. It states that
	Tξ̂At 	D�� Tξ̂Bt 	D�� converges weakly, on �2, to 	2λ�1/2		� ∗ Nt�−	D�,
	� ∗Nt�+	D��, where λ is the initial density for the A and B particles. Here
and elsewhere in the paper, unless stated otherwise, rectangular solids D will
be of the form

∏d
j=1	yj� xj�. They will be called “rectangles” for short.

Theorem 1. Let � and Nt be defined as above, with t > 0, and let D ⊂ �d

be any finite rectangle. Then, for d < 4,(
Tξ̂At 	D�� Tξ̂Bt 	D�) ⇒ (	2λ�1/2	� ∗Nt�−	D�� 	2λ�1/2	� ∗Nt�+	D�)(1.7)

as T → ∞.

A more general version of Theorem 1, Theorem 4, is demonstrated in
Section 8. There, it is shown that Tξ̂At 	D� and Tξ̂Bt 	D� are uniformly well
approximated by 	2λ�1/2	� ∗ Nt�−	D� and 	2λ�1/2	� ∗ Nt�+	D� over all t ∈
�1/M�M�,M> 1, and allD in a fixed cube. The rectanglesD in both theorems
can easily be generalized, although one needs the cardinality of the collection
of sets employed in Theorem 4 not to be too large, in order to avoid the piling
up of small probability events where either Tξ̂At 	E� or Tξ̂Bt 	E�, E ⊂ �d, is
badly behaved.

In the course of demonstrating Theorem 4, one obtains estimates that give
the asymptotic behavior of ρ	t�. It is shown at the end of Section 6 that

lim
t→∞

td/4ρ	t� = 	λ/π�1/2	4π�−d/4(1.8)
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when d < 4. This strengthens the first line of (1.2). These limits were given
in [19]. We also note it follows immediately from (1.7) that

Tξ̂t	D� ⇒ 	2λ�1/2	� ∗Nt�	D� as T → ∞�(1.9)

Conversely, (1.7) will follow from (1.9), if one also knows that the particle types
segregate.

In order to understand the spatial structure of ξt, one also needs to know
its behavior on the microscopic scale. By (1.8), the correct spatial scaling will
be t1/4 in each direction, and so we set

ξ̌t	E� = ξt	t1/4E��(1.10)

with E ⊂ �dT1/4 , and ξ̌At and ξ̌Bt being defined analogously. One can also guess
at the limiting spatial structure of ξ̌t. Particles will, at large times, only be
annihilated occasionally. This allows particles the time to mix locally, with-
out interaction. They should therefore be independently distributed locally,
as t → ∞. This produces a Poisson random field, after conditioning on the
intensity at x = 0, 	2λ�1/2	�∗N1�	0�, with the type of particle present depend-
ing on the sign of 	� ∗N1�	0�. The random variable 	� ∗N1�	0� is normally
distributed, with mean 0 and variance 	4π�−d/2.

With this behavior in mind, we denote by �c the Poisson random field of A
particles with intensity c− if c ≤ 0, and the Poisson random field of B particles
with intensity c+ if c > 0. We interpret �c as a vector, with the first coordinate
corresponding to A particles and the second coordinate to B particles. Also,
for F a probability distribution function on �, set

�F =
∫
�c dF	c��(1.11)

that is, �F is the convex combination of homogeneous Poisson random fields
with intensities weighted according to F.

In Theorem 2, ⇒ denotes weak convergence with respect to the Borel mea-
sures on �d having finite mass on all compact subsets. [The space of measures
is assumed to be equipped with the topology of vague convergence on �d, that
is, integration is against f ∈ C+

c 	�d�, where C+
c 	�d� is the set of nonnegative

continuous functions on �d with compact support.]

Theorem 2. For d < 4,

	ξ̌At � ξ̌Bt � ⇒ �F as t → ∞�(1.12)

where F is the distribution of a normal random variable with mean 0 and
variance 2λ	4π�−d/2.

In this paper, we will demonstrate Theorem 2 and Theorem 4, the more
general version of Theorem 1 mentioned earlier. Versions of these results were
summarized in [8]. An outline of the main steps leading to these results will
be given in the next section.
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Certain features of the asymptotic behavior of the model considered here
are shared by two simpler systems, coalescing random walk and annihilat-
ing random walk. Both cases consist of particles on �d, of a single type,
which execute independent simple random walks. In the first case, when
two particles meet, they coalesce into a single particle, whereas, in the sec-
ond case, they annihilate one another. The two models can be interpreted in
terms of the chemical reactions A + A → A and A + A → inert, respec-
tively. For both models, it is natural to assume that all sites are initially
occupied.

The asymptotic behavior of both models is known. For the coalescing ran-
dom walk, the density is asymptotically 1/

√
πt in d = 1� 	log t�/πt in d = 2,

and 1/γdt, for appropriate γd, in d ≥ 3 [6]. The asymptotic density of anni-
hilating random walk is, in each case, one half as great [2]. Scaling, so as
to compensate for the decrease in density, produces analogs of Theorem 2.
For d ≥ 2, the limiting measure is again Poisson [2], but, in d = 1, it is
not [1].

Recent work [12] considers a generalization of the above coalescing random
walk. There, coalescence is not automatic when two particles meet, and occurs
with a probability that depends on the number of particles present at a site.
Results are obtained for d ≥ 6.

2. Summaries of the proofs of Theorems 1 and 2. In this section,
we summarize the proofs of Theorems 1 and 2. We present the main steps,
providing motivation in each case. Proofs of the individual steps are given in
the remaining sections.

Rather than directly show Theorem 1, our approach will be to first show
Theorem 3, which is given below. This result is a more concrete analog of
Theorem 1, which compares ξt with ξ0 ∗ Nt along individual sample paths,
instead of showing weak convergence of Tξ̂t to 	2λ�1/2	�∗Nt�. The result also
shows that the distribution of particles for ξt, at large times, is essentially
deterministic if ξ0 is known. Error bounds for the corresponding estimates,
in (2.2) and (2.3), are given in terms of powers of T; one has Td/4−1/9�000 inside
of P	·�, and T−1/9�000 on the right side of the inequalities. (The exact values of
the small constants are not important, but show that convergence occurs at
least at a polynomial rate.)

Here and later on in the paper, �R will denote the set of all rectangles
contained inDR = ∏d

j=1	−R/2�R/2�, the semiclosed cube of lengthR centered
at the origin. �Recall that rectangles are always assumed to be of the form∏d
j=1	yj� xj�.� Since the particles in ξt reside on �d, we will implicitly interpret

such rectangles as subsets of �d, when there is no risk of ambiguity; �D� will
denote the number of sites in D ∩ �d. Since ξ0 is discrete, the convolution
ξ0 ∗Nt will be defined by summing over �d, that is,

	ξ0 ∗Nt�	x� = ∑
y∈�d

ξ0	x− y�Nt	y� for x ∈ �d�(2.1)



DIFFUSION LIMITED REACTIONS 127

This contrasts with the convolution in (1.5), where one integrates over �d.
Throughout the paper, the initial density λ of A and B particles will be con-
sidered to be fixed, with λ > 0. As always, f	x�+ = f	x� ∨ 0 and f	x�− =
−f	x� ∨ 0.

Theorem 3. For d < 4 and M> 1,

P

(
sup

t∈�T/M�MT�
sup

D∈�MT1/2

∣∣ξAt 	D� − ∑
x∈D

	ξ0 ∗Nt�	x�−
∣∣ ≥ Td/4−1/9�000

)
≤ T−1/9�000

(2.2)

and

P

(
sup

t∈�T/M�MT�
sup

D∈�MT1/2

∣∣ξBt 	D� − ∑
x∈D

	ξ0 ∗Nt�	x�+
∣∣ ≥ Td/4−1/9�000

)
≤ T−1/9�000

(2.3)

hold for sufficiently large T.

In Section 8, we will derive Theorem 4, and hence Theorem 1, from
Theorem 3. The basic procedure will be to show that ξ0, when scaled as
in (1.6), converges weakly to white noise �, and then to use Theorem 3 and the
continuity of ∗ to obtain (1.7).

In order to demonstrate Theorem 3, we first demonstrate the following
analog for ξt	D�, with t ∈ �T/M�T� and D ∈ �T1/2 . (Rescaling T will allow
us to extend �T/M�T� to �T/M�MT�, and �T1/2 to �MT1/2 , when convenient
later on.)

Proposition 2.1. For d < 4 and M> 1,

P

(
sup

t∈�T/M�T�
sup

D∈�T1/2

∣∣ξt	D� − 	ξ0 ∗Nt�	D�� ≥ Td/4−1/80
)

≤ exp�−T1/42�(2.4)

holds for sufficiently large T.

This bound is considerably weaker than those in (2.2) and (2.3), in that
it only measures the imbalance between the numbers of A and B particles
locally, rather than their absolute numbers. (The exponential bound on the
right side of the inequality is, of course, stronger.) Proposition 2.1 will be
shown in Section 5.

In order to derive (2.2) and (2.3), one also needs to know that, locally, the
number of particles of the “minority type” is negligible. For this, it will be suf-
ficient to show that the expected number of such particles is small at specific
times that are not too far apart. One will then be able to fill in the behavior
at intermediate times and apply Markov’s inequality to the expectation. For
these purposes, we will employ Proposition 2.2. Together with Proposition 2.1,
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it will be used to demonstrate Theorem 3, in Section 7. Throughout the paper,
we will employ the notation

ξmt 	E� = ξAt 	E� ∧ ξBt 	E�(2.5)

for the number of particles of the minority type in E, where E ⊂ �d. Here
and later on, we use C1�C2� � � � for positive constants whose exact values do
not concern us.

Proposition 2.2. Let d < 4�M > 1, and chooseRT so thatRT = δ1	T�T1/2,
where δ1	T� ≥ T−d/48 and δ1	T� → 0 as T → ∞. For sufficiently large T,
there exist K and t1 < t2 < · · · < tK, with tk − tk−1 ≤ δ1	T�T� �t1� tK� ⊃
�T/M�T�� �t1� tK−1� ⊂ �T/2M�T�, and C1 	depending on λ and M�, so that

E�ξmtk 	DRT
�� ≤ C1δ1	T�T−d/4	RT�d for k = 1� � � � �K�(2.6)

The cube DRT
contains approximately 	RT�d sites, and so, by (1.2), will con-

tain of order of magnitude T−d/4	RT�d particles. Inequality (2.6) implies that
ξmtk 	DRT

� is, on the average, much smaller than this, for RT chosen as above.
Proposition 2.2 will follow from machinery introduced in [7]. The basic idea

is that, if E�ξmt 	DRT
�� is large for too long a stretch of time, enough annihila-

tion will occur to contradict the bounds on ρ	t� in (1.2). The bound (2.6) will
also enable us to derive precise asymptotics on ρ	t�, for d < 4, in Section 6.
These are an improvement of the upper and lower bounds on ρ	t� in (1.2).

The proof of Proposition 2.1 employs two main results. To state these, we
need to introduce some additional notation. Let Kt	x� denote the probability
that a simple rate-d continuous time random walk in �d, starting at the origin,
is at x at time t. Denote by sηt� s > 0, the stochastic process in t that is
identical to ξt up until time s, and for which, starting at time s, the existing
particles continue to execute independent simple random walks as before, but
without annihilation. We let ηt denote the process of independent random
walks with initial state η0 = ξ0−, the initial configuration of ξt before A and
B particles at the same site have annihilated one another. We also set 0ηt = ηt.
The processes ξt and sηt� s ≥ 0, can all be constructed on the same probability
space, so that they are all adapted to the same family of increasing σ-algebras
�t� t ≥ 0. To do this, we specify an arbitrary ranking of all of the particles
initially in the system, with the rule that when more than two particles of
opposite types meet, the highest ranked A and B particles are the ones which
are annihilated. Then, �t is defined to be the σ-algebra generated by the
labeled random walks corresponding to ηr, for r ≤ t. Later on, we will also
employ the σ-algebras � ξ

t ⊂ �t, where � ξ
t is generated by ξr, for r ≤ t.

It is easy to see that for any finite set E ⊂ �d and s ≤ t,

E�ξt	E���s� = E�sηt	E���s� = 	ξs ∗Kt−s�	E��(2.7)

where ∗ is defined as in (2.1). [In (2.7), the outer E stands for expectation,
whereas the inner E is a subset of �d.] The following proposition says that,
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for large t� 	ξt1/4 ∗Kt−t1/4�	E� is a good approximation of ξt	E�. The reasons
for this are basically that (1) there are few enough particles locally at time
t1/4, and therefore little enough randomness, so that, up to an error which
is of smaller order than �E�/td/4� t1/4ηt	E� can be replaced by its conditional
expectation, and (2) the annihilation of pairs of A and B particles over �t1/4� t�
reduces this randomness still further, and so ξt	E� can also be replaced by the
same conditional expectation. Using (2.7), one can then substitute 	ξt1/4 ∗
Kt−t1/4�	E� for this conditional expectation. Since, for our applications, ε�E�will
not be much less than td/2 and ε will not be too small, the bound on the right
side of (2.8) will be quite small. This result is demonstrated in Section 3. Here
and later on, we use the abbreviation vt	ε� = ε ∧ t3/16.

Proposition 2.3. For d < 4 and sufficiently large t,

P
(�ξt	E� − 	ξt1/4 ∗Kt−t1/4�	E�� ≥ ε�E�t−d/4)

≤ 6 exp
{−		εvt	ε��E�t−9d/20� ∧ t1/8�}(2.8)

holds for all ε and E ⊂ �d, with �E� ≤ td.

The other estimate needed for Proposition 2.1 is a comparison of ξ0 ∗Nt with
ξt1/4 ∗Kt−t1/4 . These two quantities will typically be close since particles do not
wander far by time t1/4, and sinceKt−t1/4 can be approximated byNt, by using
an appropriate version of the local central limit theorem. The desired result,
Proposition 2.4, is demonstrated in Section 4.

Proposition 2.4. For any d, let t be sufficiently large and s ≤ t1/4. Then,
for all ε ≥ 0,

P
(∣∣	ξ0 ∗Nt�	0� − 	ξs ∗Kt−s�	0�

∣∣ ≥ εt−d/4
) ≤ 4 exp

{−	ε2 ∧ 1�t1/4}�(2.9)

Note that since ξ0 is translation invariant, the analog of (2.9) holds at all
x ∈ �d. Corresponding bounds therefore hold for finite E ⊂ �d, when factors
of �E� are inserted for both inequalities.

Propositions 2.3 and 2.4 are employed in Section 5 to show Proposition 2.1.
After combining the two results, we still need to show that the bounds hold
simultaneously over all t ∈ �T/M�T� and D ∈ �T1/2 . Since the probabilities
of the exceptional sets in (2.8) and (2.9) will be exponentially small, they
can be summed over a fine lattice of elements in �T/M�T� × �T1/2 , while
maintaining such bounds. One can then “fill in” the events corresponding to
the values between the lattice points, to produce the desired uniformity over
�T/M�T� ×�T1/2 , as in (2.4) of Proposition 2.1.

Retracing the steps taken so far in this section, we have just discussed
Propositions 2.3 and 2.4, which are the main steps in showing Proposition 2.1.
As we discussed earlier, Proposition 2.1, together with Proposition 2.2, is
employed to derive Theorem 3. By rescaling the process ξt in Theorem 3,
one then obtains Theorem 1.
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We still need to discuss Theorem 2. The additional work required to demon-
strate the theorem from the previous results is done in Section 9. The basic
reasoning is that, over intervals of time ending in t that are short relative to t,
relatively little annihilation occurs, because of the smooth decrease in the den-
sity in (1.8). For the space scale of interest to us for ξ̌t, namely t1/4, this is long
enough for the local particles (typically of only one type) to thoroughly mix.
Such a mixed state will, for a typical realization, be nearly Poisson for large t.
Its intensity near 0 will be given by td/4�	ξ0 ∗Nt�	0��. Laplace transforms are
employed to carry out the proof.

As mentioned earlier, the behavior of ξt, for d ≥ 4, will be handled in the
future paper [9]. The behavior will be different than that considered here, for
d < 4, since both types of particles will coexist locally. This leads to a different
rate of decay for ρ	t�, which is given in (1.2). There are certain similarities,
though, and the analogs of the results from Sections 3–5, for d < 4, will also
be stated for d ≥ 4 at the end of their respective sections. They will be applied
in [9].

3. Approximation of �t by earlier conditional expectations. In this
section, we demonstrate Proposition 2.3, which states that for finite sets E ⊂
�d in d < 4� ξt	E� is approximated by 	ξt1/4 ∗Kt−t1/4�	E� with high probability.
As outlined in Section 2, we do this by analyzing t1/4ηt, where, we recall,
sηr� r ∈ �0� t�, is the process that evolves like ξr up until time s, but where,
over 	s� t�, the annihilation of particles is quenched. The main goal of this
section will be to show the following analog of Proposition 2.3, with t1/4ηt
substituted for ξt.

Proposition 3.1. For d < 4 and sufficiently large t,

P	�t1/4ηt	E� − 	ξt1/4 ∗Kt−t1/4�	E�� ≥ ε�E�t−d/4�
≤ 3 exp�−		εvt	ε��E�t−9d/20� ∧ t1/8��

(3.1)

holds for all ε and E ⊂ �d, with �E� ≤ td.

(The exponent 1/4 in the subscript t1/4 is not crucial here; other choices would
require a modification of the term t9d/20.)

It is not difficult to deduce Proposition 2.3 from Proposition 3.1. The main
step is given by the following lemma.

Lemma 3.1. For all d and s ≤ t,

P	sηt	E� − ξt	E�≥0 �� ξ
t � ≥ 1/2�

P	sηt	E� − ξt	E�≤0 �� ξ
t � ≥ 1/2�

(3.2)

hold a.s. for all E ⊂ �d, with �E� < ∞.
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Proof. Both parts of (3.2) follow from the symmetric behavior of A and
B particles. Two particles of types A and B, which meet at some τ ∈ 	s� t�
under ξr, continue to evolve as independent simple random walks, YA	r� and
YB	r�, on �τ� t�, under sηt. The difference of indicator functions 1	YB	r� ∈
E� − 1	YA	r� ∈ E� is symmetric, and is independent of all other such pairs
of random walks, when conditioned on � ξ

t . The sum of all such differences
equals sηt	E� − ξt	E�, and will again be symmetric when conditioned on � ξ

t .
This implies (3.2). ✷

Using Lemma 3.1, Proposition 2.3 follows immediately from Proposition 3.1.
Setting s = t1/4, one sees that at least half of the time when the exceptional
event in (2.8) holds, the same is true for the event in (3.1). So, the upper bound
on the probability on the event in (3.1) implies that in (2.8).

We now turn our attention to demonstrating Proposition 3.1. Most of the
work required for the proposition is to show that 	�ξt1/4 �∗Kt−t1/4�	E� is typically
not too large. One then uses this bound in conjunction with a large deviation
estimate. The desired bound on this convolution is given by the following
result.

Proposition 3.2. Let d < 4. For given δ > 0, suppose that s is sufficiently
large, and that t ≥ s4. Then,

P		�ξs� ∗Kt−s�	x� ≥ 2s−	d/4−δ�� ≤ e−s
2/3

(3.3)

for all x.

We first demonstrate Proposition 3.2. This will require Lemmas 3.2–3.4,
which are given below. We will then show how Proposition 3.1 follows from
Proposition 3.2.

We will employ moment generating functions to show (3.3). Rather than
analyzing �ξs� ∗ Kt−s directly, we will look at �xξs� ∗ Kt−s, for x ∈ �d. The
process xξs denotes the analog of ξs, but where the initial state is restricted to
�s	x�; that is, for �E� < ∞� xξ0	E� = ξ0	E ∩�s	x��. The set �s	x� is defined
by

�s	x� = �y ∈ �d� �y− x�∞ ≤ s/3��(3.4)

where �·�∞ denotes the sup norm. We construct xξs on the same space as ξs,
by assigning the same random walk paths to corresponding particles as was
done before (2.7). Let �s denote the set of all x ∈ �d for which each coordinate
is a multiple of  s!, the integer part of s. For the first part of the argument,
we will restrict x to �s. There, we will use the independence of the processes
x1ξr�

x2ξr� � � � , for xj ∈ �s� j = 1�2� � � � � and r ∈ �0� t�. Then, when we analyze
�ξs� ∗Kt−s, we will also consider translates of �s.

Lemma 3.2 states that, for any x� ξs	x� and xξs	x� are close in expectation.
This is not surprising. The initial states ξ0 and xξ0 only differ at sites further
than s/3 from x. By time s, the probability will be small that this difference
will have worked its way to x.
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Lemma 3.2. For all d and sufficiently large s,

E��ξs	x� − xξs	x��� ≤ e−C2s(3.5)

for all x and appropriate C2 > 0.

Together with (1.2), (3.5) gives the following bound on E��xξs	x���. Lemma
3.2 will also be used in (3.19).

Corollary 3.1. For d < 4 and sufficiently large s,

E��xξs	x��� ≤ C3/s
d/4(3.6)

for all x and appropriate C3.

The corollary will be used in the proof of Lemma 3.3.

Proof of Lemma 3.2. We consider the “discrepancy” x�r between ξr and
xξr, at each time r. This set is defined as those A and B particles, from either
ξr or xξr, which still exist by time r for one process but not for the other.
[The initial discrepancy consists of particles of ξ0 lying outside �s	x�.] In
order for ξr	y� "= xξr	y�, x�r must contain a particle at y. One can check
that the particles in x�r execute independent random walks except when A
and B particles from the same process meet one another, and at least one of
them is in x�r−. If both are in x�r−, the particles annihilate one another, and
both disappear from x�r. If only one is in x�r−, then, upon annihilation, this
particle is replaced in the discrepancy by a particle of the opposite type (e.g.,
B instead of A) at the same site, which belongs to the opposite process. So,
x�r is dominated by a set of random walks, whose initial positions are given
by the initial positions of the A and B particles outside �s	x�.

The distance between x and �s	x�c is s/3. The initial positions of A and
B particles for ξr are given by Poisson random fields with intensity λ. It is
therefore not difficult to show, using moment generating functions, that, for
large s, the expected number of random walks at x at time s, which were
originally in �s	x�c, is bounded above by

λ
∑

z= s/3!+1
zd−1e−C4z ≤ λe−C4s/4

for appropriate C4 > 0 (see, e.g., the proof of Lemma 7.3). Since this dominates
E��ξs	x� − xξs	x���, (3.5) follows. ✷

In order to derive (3.3) of Proposition 3.2, we will need the following bound
on the moment generating function of �xξs	x��.

Lemma 3.3. Let d < 4, and fix δ > 0. Suppose that θ > 0 is bounded, s is
sufficiently large, and m ∈ �+ is chosen so that m! ≥ sd/4. Then,

E�eθ�xξs	x��� ≤ 1+C5	eθm − 1�/sd/4−δ(3.7)

for all x and appropriate C5.
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Proof. For given m ∈ �+ and θ > 0, it is easy to check that

E�eθ�xξs	x��� ≤ 1+	eθm−1�P	xξs	x� "= 0�+E�eθ�xξs	x�� −1# �xξs	x�� > m��(3.8)

By (3.6), the second term on the right is bounded above by

C4	eθm − 1�/sd/4�(3.9)

Denote by η#
s	x� the total number of particles at x for the process ηs. To handle

the third term, we note that it is at most

E�eθη#
s 	x� − 1#η#

s	x� > m��(3.10)

Since η#
s	x� is Poisson with mean 2λ, (3.10) is less than or equal to

e−2λ
∑
j>m

	eθj − 1�	2λ�j/j!�

For given δ > 0, bounded θ�m! ≥ sd/4 and large enough s, this is less than or
equal to

	2λ�m	eθm − 1�/m! ≤ 	eθm − 1�/sd/4−δ�(3.11)

This provides an upper bound on the third term. Together, (3.8)–(3.11) give
the bound in (3.7). ✷

Using Lemma 3.3, we derive Lemma 3.4. It is the analog of Proposition 3.2,
but with �yξs	y�� in place of �ξs	y��, and the sum being over y ∈ �s rather than
y ∈ �d. In the proof, we will use the local central limit bound,

lim sup
t→∞

�td/2 sup	Kt−s	x�� x ∈ �d� s ≤ t/2�� < ∞�(3.12)

as well as

lim sup
t→∞

{
sd sup

(∑
y∈�s

Kt−s	x− y�� x ∈ �d� s ≤ t1/2
)}

< ∞�(3.13)

which hold for all d. These bounds follow from (4.5) and (4.8), respectively,
together with simple bounds on the normal kernel Nt−s. In Section 4, we will
go into greater detail on such bounds.

Lemma 3.4. Let d < 4. For given δ > 0, suppose that s is sufficiently large,
and that t ≥ s2. Then,

P

(∑
y∈�s

�yξs	y��Kt−s	x− y� ≥ s−	5d/4−δ�
)

≤ exp�−td/2/s5d/4�(3.14)

for all x.
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Proof. Set θ = θy = td/2Kt−s	x − y�/m in (3.7), where m is the smallest
integer satisfying m! ≥ sd/4. By (3.12), mθy is bounded for large s and t ≥ 2s.
So, by Lemma 3.3, one has, for given δ′ > 0,

E�exp�td/2�yξs	y��Kt−s	x− y�/m��
≤ 1+C5	exp�td/2Kt−s	x− y�� − 1�/sd/4−δ′

≤ 1+C6t
d/2Kt−s	x− y�/sd/4−δ′

≤ exp�C6t
d/2Kt−s	x− y�/sd/4−δ′ �

(3.15)

for all x and y, and appropriate C6. One also has sδ
′ ≥ m for large s, and m

chosen as above. So, by (3.15),

E�exp�td/2�yξs	y��Kt−s	x− y�/sδ′ ��
≤ exp�C6t

d/2Kt−s	x− y�/sd/4−δ′ ��
(3.16)

Now, for yj ∈ �s� j = 1�2� � � � , the processes y1ξr�
y2ξr� � � � are independent,

as was mentioned below (3.4). Setting r = s, it therefore follows from (3.16)
that

E

[
exp

{
td/2

∑
y∈�s

�yξs	y��Kt−s	x− y�/sδ′
}]

≤ exp
{
	C6t

d/2/sd/4−δ
′ � ∑
y∈�s

Kt−s	x− y�
}
�

By (3.13), this is less than or equal to

exp�C7t
d/2/s5d/4−δ

′ �
for large s with t ≥ s2, and appropriate C7. So, by Chebyshev’s inequality,

P

(∑
y∈�s

�yξs	y��Kt−s	x− y� ≥ s−	5d/4−δ�
)

≤ exp�	C7s
δ′ − sδ−δ

′ �td/2/s5d/4��
(3.17)

If we set δ′ = δ/3, this is at most exp�−td/2/s5d/4� for large s, which
implies (3.14). ✷

Using Lemmas 3.2 and 3.4, we demonstrate Proposition 3.2.

Proof of Proposition 3.2. The bound (3.14) holds independently of x.
Consequently, it also holds if one instead sums over translates �s + z of �s,
with z ∈ �d. By summing over all such  s!d translates, one obtains, for given
δ > 0,

P

( ∑
y∈�d

�yξs	y��Kt−s	x− y� ≥ s−	d/4−δ�
)

≤ sd exp�−td/2/s5d/4�(3.18)
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for all x, and for large enough s with t ≥ s2. On the other hand, since∑
y∈�d Kt−s 	x−y� = 1, it follows from Lemma 3.2 and Chebyshev’s inequality

that for large s,

P

( ∑
y∈�d

	�ξs	y�� − �yξs	y���Kt−s	x− y� ≥ s−	d/4−δ�
)

≤ sd/4−δe−C2s(3.19)

for all x. Together, (3.18) and (3.19) imply that for large s and t ≥ s4,

P

( ∑
y∈�d

�ξs	y��Kt−s	x− y� ≥ 2s−	d/4−δ�
)

≤ e−s
2/3
�

This is equivalent to (3.3), and completes the proof of Proposition 3.2. ✷

We now proceed to prove Proposition 3.1. This will complete our proof
of Proposition 2.3. The argument consists of applying moment generating
functions to t1/4ηt conditioned on �t1/4 . Since the conditioned process t1/4ηr
evolves according to independent simple random walks over 	t1/4� t�, and since
t1/4ηt1/4 = ξt1/4 is known, the computations are fairly explicit. Proposition 3.2
supplies the main technical estimate needed to bound the right side of (3.23).

Proof of Proposition 3.1. We abbreviate the left side of (3.1) by setting

η̄ = t1/4ηt	E� − 	ξt1/4 ∗Kt−t1/4�	E��(3.20)

We also set %K	x� = Kt−t1/4	E− x�.
We proceed to estimate the moment generating function of η̄, conditioned on

�t1/4 . Since over �t1/4� t�� t1/4ηr evolves according to independent simple random
walks, one can, for given θ, write

E�eθη̄��t1/4�=
∏
x∈�d

[
%K	x�e−θ	1− %K	x�� + 	1− %K	x��eθ %K	x�

]
ξA
t1/4

	x�

×
[
%K	x�eθ	1− %K	x�� + 	1− %K	x��e−θ %K	x�

]
ξB
t1/4

	x��
(3.21)

For small θ, this is less than or equal to∏
x

�1+ θ2 %K	x�	1− %K	x����ξt1/4 	x��

≤ exp

{
θ2

∑
x

�ξt1/4	x�� %K	x�
}

= exp
{
θ2	�ξt1/4 � ∗Kt−t1/4�	E�}�

(3.22)

It follows from (3.21), (3.22) and Chebyshev’s inequality (applied to both θ > 0
and θ < 0) that, for γ > 0,

P	�η̄� ≥ γ ��t1/4� ≤ 2 exp�θ2	�ξt1/4 � ∗Kt−t1/4�	E� − γθ��(3.23)

Let G denote the set where

	�ξt1/4 � ∗Kt−t1/4�	E� < 2�E�t−	d−4δ�/16
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for given δ > 0. By Proposition 3.2, applied to each x ∈ E with s = t1/4,

P	Gc� ≤ �E�e−t1/6 ≤ e−t
1/8

(3.24)

for sufficiently large t and �E� ≤ td. (Of course, any power of t suffices.)
On the other hand, on G, the right side of (3.23) is at most

2 exp�	2θ2�E�t−	d−4δ�/16� − γθ��(3.25)

which provides an upper bound on P	�η̄� ≥ γ ��t1/4�, for small θ. For a given
ε > 0, let

γ = ε�E�t−d/4� θ = 1
4t

−δ/4		εt−3d/16� ∧ 1��(3.26)

Setting vt	ε� = ε ∧ t3d/16, one can write θ = 1
4t

−	3d+4δ�/16vt	ε�. Substitution of
γ and θ into (3.23) and (3.25), with δ < d/20, implies that on G,

P
(�η̄� ≥ ε�E�t−d/4 ��t1/4

)≤2 exp
{
− εvt	ε��E�
8t	7d+4δ�/16

}
≤2 exp

{−εvt	ε��E�t−9d/20}(3.27)

for large t. It follows from (3.24) and (3.27) that, for large t,

P
(�η̄� ≥ ε�E�t−d/4) ≤ 3 exp

{−		εvt	ε��E�t−9d/20� ∧ t1/8�}�
which implies (3.1). ✷

As mentioned at the end of Section 2, we will want to employ the higher
dimensional analogs of results, such as Proposition 2.3, in [9]. The modifica-
tions required for Proposition 2.3 are straightforward to make. The restriction
to d < 4 was needed for Corollary 3.1, which employed (1.2). If one instead
employs the corresponding bound for d ≥ 4, one obtains

E��xξs	x��� ≤ C3/s(3.28)

for large s and all x, in place of (3.6). The bound in (3.6) was used in (3.9);
replacing the term sd/4 by s there gives the corresponding bound for d ≥ 4.
This leads to the analog of Lemma 3.3, with s replacing sd/4 in both places, and
to the analog of Lemma 3.4, with sd+1 replacing s5d/4 in both places. This last
change requires us to replace the bound sd/4−δ with s1−δ in Proposition 3.2. In
the proof of Proposition 3.1, one replaces t	d−4δ�/16 with t	1−δ�/4 in the bound
defining G. This leads to the upper bound, for large t,

P	�η̄� ≥ ε�E�t−1��t1/4� ≤ 2 exp
{−εvt	ε��E�t−9/5�(3.29)

corresponding to (3.27), where now vt	ε� = ε∧t3/4, and to the analogous bounds
corresponding to (3.1). Application of Lemma 3.1, as before, then produces the
following analog of Proposition 2.3 for d ≥ 4.
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Proposition 3.3. For d ≥ 4 and sufficiently large t,

P	�ξt	E� − 	ξt1/4 ∗Kt−t1/4�	E�� ≥ ε�E�t−1�
≤ 6 exp

{−	εvt	ε��E�t−9/5� ∧ t1/8�}(3.30)

holds for all ε and E ⊂ �d, with �E� ≤ td.

4. Approximation of �s *Kt−s by �0 *Nt. In this section, we demonstrate
Proposition 2.4, which states that 	ξs∗Kt−s�	0� is approximated by 	ξ0∗Nt�	0�,
with high probability, when s ≤ t1/4. In order to demonstrate the proposition,
it is enough to verify the following two results.

Proposition 4.1. For any d, let t be sufficiently large and s ≤ t1/4. Then,
for all ε ∈ �0�1�,

P
(∣∣	ξs ∗Nt�	0� − 	ξs ∗Kt−s�	0�

∣∣ ≥ εt−d/4
) ≤ 2 exp

{−4ε2t1/2��(4.1)

Proposition 4.2. For any d, let t be sufficiently large and s ≤ t1/4. Then,
for all ε ∈ �0�1�,

P
(∣∣	ξ0 ∗Nt�	0� − 	ξs ∗Nt�	0�

∣∣ ≥ εt−d/4
) ≤ 2 exp

{−4ε2t1/4��(4.2)

For these propositions, we will need estimates onKt−s, which follow from a
standard local central limit theorem. Related bounds are also used in Sections 3
and 9. We employ the references [3] and [18] for these purposes.

Assume that d = 1. By [18], Theorem 16, page 207,

	1+ 	x/t1/2�3�	Nt	x� −Kt	x�� = o	t−1� as t → ∞(4.3)

holds uniformly in x ∈ �. [Because Kt is symmetric, its cumulant of order 3
will be 0, which gives the simplified form in (4.3).] One can also employ [3],
Theorem 22.1, page 231. (Both results are stated for discrete times, although
the derivation for continuous t is, of course, the same.)

Assume now that d is arbitrary. Since the evolution of Kt in different coor-
dinates is independent, one can apply (4.3) to conclude that

	1+ 	�x�/t1/2�3d�	Nt	x� −Kt	x�� = o	t−	d+1�/2��(4.4)

The next two bounds follow quickly from (4.4):

sup
x∈�d

�Nt	x� −Kt	x�� ≤ C8t
−	d+1�/2(4.5)

and ∑
x∈�d

�Nt	x� −Kt	x�� ≤ C8t
−1/2(4.6)

for appropriate C8 and large t. From these bounds, one also obtains that∑
x∈�d

	Nt	x� −Kt	x��2 ≤ C9t
−d/2−1(4.7)

for appropriate C9.
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Suppose that �d is partitioned into sets Ej� j = 1�2� � � � � such that each Ej

contains a cube of length M with M ≤ C10t
1/2, for a given C10. Again using

(4.4), one can generalize (4.6) so that, for xj ∈ Ej,∑
j

∣∣Nt	xj� −Kt	xj�
∣∣ ≤ C11M

−dt−1/2(4.8)

holds for some C11 independently of the choice of xj and the partition �Ej�.
Using this and simple estimates on

∑
j Nt	xj�, it is not difficult to derive (3.13),

which was employed in the proof of Lemma 3.4.
We will also need some basic estimates onNt. Set g	s� r� = Nt−s	x�, where

r = �x� and x ∈ �d. It is easy to check that, for appropriate C12,∣∣∣∣∂g∂s 	s� r�
∣∣∣∣ ≤ C12t

−	d/2+1�
(
1+ r2

t

)
e−r

2/4t(4.9)

for all s ≤ t/2 and x. So, for all x ∈ �d,∣∣Nt	x� −Nt−s	x�
∣∣ ≤ C12st

−	d/2+1�
(
1+ r2

t

)
e−r

2/4t�(4.10)

With a little work, it follows from this that∑
x∈�d

	Nt	x� −Nt−s	x��2 ≤ C13s
2t−	d/2+2�(4.11)

for appropriate C13.
One can also check that∣∣∣∣∂g∂r 	0� r�

∣∣∣∣ ≤ C14t
−	d/2+1�re−r

2/2t�(4.12)

For �x− x′� ≤ M ≤ t1/2, one can use this to show

�Nt	x� −Nt	x′�� ≤ C15t
−	d/2+1�	�x� +M�Me−�x�2/4t�(4.13)

for appropriate C15. With a little work, one can then show that, for appropriate
C16 and any y ∈ �d,∑

x∈�d
max
x′

{	Nt	x− y� −Nt	x′ − y��2� �x− x′� ≤ M
} ≤ C16t

−	d/2+1�M2�(4.14)

In order to show Proposition 4.1, we first show its analog, where ξs is
replaced by ξ0. In Proposition 4.3 and all following results in this section,
all dimensions d are allowed.

Proposition 4.3. Let t be sufficiently large and s ≤ t1/2. Then, for all ε ∈
�0�1�,

P
(∣∣	ξ0 ∗Nt�	0� − 	ξ0 ∗Kt−s�	0�

∣∣ ≥ εt−d/4
) ≤ exp�−4ε2t1/2��(4.15)
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Proof. To obtain (4.15), we compute an upper bound on the correspond-
ing moment generating function, and then apply Chebyshev’s inequality. First,
recall that ξ0	x�, at each site x, is the difference of two Poisson random vari-
ables, each with intensity λ. Since these random variables are independent at
different sites, one has that, for given θ,

E
[
exp�θ		ξ0 ∗Nt�	0� − 	ξ0 ∗Kt−s�	0���

]
= ∏

x∈�d
E
[
exp�θR	x�ξ0	x��

]
= exp

{
λ
∑
x∈�d

	exp�θR	x�� + exp�−θR	x�� − 2�
}
�

(4.16)

where R	x� = Nt	−x� −Kt−s	−x�.
Together, (4.5) and (4.10) imply that, for appropriate C17,

�R	x�� ≤ C17t
−	d+1�/2

for large t and all x, since s ≤ t1/2. So, for �θ� ≤ C18t
	d+1�/2 and appropriate

C18, (4.16) is at most

exp
{
2λθ2

∑
x

	R	x��2
}
�

By (4.7) and (4.11), this is less than or equal to

exp�C19λθ
2t−	d/2+1���(4.17)

for appropriate C19. Combining the inequalities from (4.16) through (4.17), it
follows that

E
[
exp�θ		ξ0 ∗Nt�	0� − 	ξ0 ∗Kt−s�	0���

] ≤ exp
{
C19λθ

2t−	d/2+1�}�
Applying Chebyshev’s inequality for both θ > 0 and θ < 0, one obtains

P
(∣∣	ξ0 ∗Nt�	0� − 	ξ0 ∗Kt−s�	0�

∣∣ ≥ εt−d/4
)

≤ 2 exp
{
C19λθ

2t−	d/2+1� − �θ�εt−d/4}�
Setting �θ� = 5εt	d+2�/4, one has, for large t, the upper bound exp�−4ε2t1/2�,
which implies (4.15). ✷

In order to obtain Proposition 4.1 from Proposition 4.3, we need to replace
ξ0 by ξs. The following lemma will enable us to do that.

Lemma 4.1. Let f	·� be any nonrandom function. For all s,

P

( ∑
x∈�d

f	x�	ηs	x� − ξs	x�� ≥ 0 t � t� ξ
s

)
≥ 1/2�(4.18)
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The statement in (4.18) is similar to that in (3.2) of Lemma 3.1. The rea-
soning that is required is analogous, with the point being that exchanging the
random walk motions of A and B particles in ηt, after annihilation occurs in
the corresponding process ξt, does not change the law of

∑
x f	x�	ηs	x�−ξs	x��,

conditioned on � ξ
s �

By first setting f	x� = Nt	−x� − Kt−s	−x� and then f	x� = Kt−s	−x� −
Nt	−x�, one obtains the following corrollary of Lemma 4.1.

Corollary 4.1. For all s ≤ t and ε,

P
(∣∣	ξs ∗Nt�	0� − 	ξs ∗Kt−s�	0�

∣∣ ≥ εt−d/4
)

≤ 2P
(∣∣	ηs ∗Nt�	0� − 	ηs ∗Kt−s�	0�

∣∣ ≥ εt−d/4
)
�

(4.19)

The distribution of ηs	x�� x ∈ �d, for each s, is given by the difference of
two Poisson random fields, each with intensity λ. So, the distribution of ηs	x�
is constant over s, and one may substitute η0 for ηs on the right side of (4.19).
This, in turn, may be replaced by ξ0, since the joint distributions of ξ0	x�
and η0	x�, over x ∈ �d, are the same. Consequently, one obtains the following
result.

Corollary 4.2. For all s ≤ t and ε,

P
(∣∣	ξs ∗Nt�	0� − 	ξs ∗Kt−s�	0�

∣∣ ≥ εt−d/4
)

≤ 2P	�	ξ0 ∗Nt�	0� − 	ξ0 ∗Kt−s�	0�� ≥ εt−d/4��
(4.20)

Proposition 4.1 is an immediate consequence of Proposition 4.3 and Corol-
lary 4.2.

We now turn our attention to showing Proposition 4.2. Our first step is to
replace ξ0 by η0 and ξs by ηs in (4.2). For this, we apply Lemma 4.1 again,
this time with f	x� = Nt	−x�. Since ξ0	x� = η0	x� for all x, and ξ0 ∈ � ξ

s , we
obtain the following result.

Corollary 4.3. For all s ≤ t and ε,

P
(∣∣	ξ0 ∗Nt�	0� − 	ξs ∗Nt�	0�

∣∣ ≥ εt−d/4
)

≤ 2P	�	η0 ∗Nt�	0� − 	ηs ∗Nt�	0�� ≥ εt−d/4��
(4.21)

On account of Corollary 4�3, in order to show Proposition 4�2, it suffices to
demonstrate the following variant.

Proposition 4.4. Let t be sufficiently large and s ≤ t1/4. Then, for all ε ∈
�0�1��

P
(∣∣	η0 ∗Nt�	0� − 	ηs ∗Nt�	0�

∣∣ ≥ εt−d/4
) ≤ exp�−4ε2t1/4��(4.22)
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In order to demonstrate (4.22), it is more convenient to instead focus on the
motion of the individual particles corresponding to ηs, which are undergoing
rate-d simple random walks on �d. We will show, in effect, that for s ≤ t1/4,
only a negligible number of particles will have moved far enough by time s to
alter Nt	·� by more than a negligible amount from its initial value. We will
employ the following notation. Label the positions at time s of the η#

0	x� =
ηA0 	x�+ηB0 	x� particles initially at x by Xs	x� j�� j = 1� � � � � η#

0	x�, where the
ordering is chosen independently of the type of particle; η#

0	x�� x ∈ �d, are
independent mean-2λ Poisson random variables. Set

	 = �	x� j�� 1 ≤ j ≤ η#
0	x���

and let sgn	x� j� = 1 whenever the corresponding particle is a B particle, and
sgn	x� j� = −1 whenever it is an A particle. Also, for 	x� j� ∈ 	 , set

Y	x� j� = sgn	x� j�	Nt	x� −Nt	Xs	x� j����
[Since s and t are thought of as being fixed here, they are suppressed in
Y	x� j�.] Using the above notation, we can rewrite (4.22) as

P

(∣∣∣∣ ∑
	x�j�∈	

Y	x� j�
∣∣∣∣ ≥ εt−d/4

)
≤ exp�−4ε2t1/4��(4.23)

We break the demonstration of (4.23) into two steps. For the first step,
Lemma 4.2, we set

Y	x� = W	Nt	x� −Nt	Xs	x����
where Xs	x� is a rate-d simple random walk on �d starting at x, andW is an
independent random variable taking values 1 and −1 with equal probability.
We introduce the quantities

ψ1	x�=max
x′

{	Nt	x� −Nt	x′��2� �x− x′� ≤ t1/4
}
�

ψ2	x�=Nt	0�
∑

�y�>t1/4
Ks	y�	Nt	x� +Nt	x− y���(4.24)

with ψ	x� = ψ1	x� + ψ2	x�.

Lemma 4.2. Let t be sufficiently large. Then, for all s� x and �θ� ≤ C20t
d/2,

E
[
eθY	x�] ≤ exp�C21θ

2ψ	x��(4.25)

for appropriate C21 	depending on C20�.

Proof. Note that Y	x� is symmetric, and that �Y	x�� ≤ t−d/2 for all s� t
and x. So, for �θ� ≤ C20t

d/2,

E
[
eθY	x�]=E

[ ∞∑
k=0

	θY	x��2k/	2k�!
]
≤ 1+C21θ

2E�	Y	x��2�

≤ exp�C21θ
2E�	Y	x��2���

(4.26)

for appropriate C21.
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Let G	x� denote the event on which �Xs	x� − x� ≤ t1/4. Then, on G	x�,

	Y	x��2 ≤ ψ1	x��(4.27)

where ψ1	x� is given in (4.24). Also, one has that

E�	Y	x��2#Gc	x�� ≤ ∑
�y�>t1/4

Ks	y�	Nt	x� −Nt	x− y��2 ≤ ψ2	x��(4.28)

Together, (4.26)–(4.28) imply that

E
[
eθY	x�] ≤ exp�C21θ

2ψ	x���

which is (4.25). ✷

Conditioned on 	 , the random variables Y	x� j�� 	x� j� ∈ 	 , are indepen-
dent, and, for each x and j, are distributed like Y	x�. Letting Z	x�� x ∈ �d,
denote independent mean-2λ Poisson random variables, Lemma 4.2 therefore
implies the following result.

Corollary 4.4. Let t be sufficiently large. Then, for all s and �θ� ≤ C20t
d/2,

E

[
exp

{
θ

∑
	x� j�∈	

Y	x� j�
}]

≤ E

[
exp

{
C21θ

2 ∑
x∈�d

ψ	x�Z	x�
}]

(4.29)

holds a.s.

We now demonstrate (4.23). We do this by bounding the right side of (4.29)
and applying Chebyshev’s inequality.

Proof of (4.23). We first note that, by (4.14) and (4.24),∑
x∈�d

ψ1	x� ≤ C16t
−	d+1�/2�(4.30)

Also, using s ≤ t1/4, it follows from a standard large deviation estimate on Ks

that ∑
x

ψ2	x� = 2Nt	0�
∑

�y�>t1/4
Ks	y� ≤ e−C22t

1/4
(4.31)

for large t and appropriate C22. So, by (4.30) and (4.31),∑
x

ψ	x� ≤ 2C16t
−	d+1�/2(4.32)

for large t.
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Since Z	x� are independent mean-2λ Poisson random variables,

E

[
exp

{
C21θ

2 ∑
x∈�d

ψ	x�Z	x�
}]

= exp
{
2λ

∑
x

	eC21θ
2ψ	x� − 1�

}
�(4.33)

For θ2 ≤ C23/ supx ψ	x�, this is at most exp�C24λθ
2∑

x ψ	x�� for appropriate
C24 (depending on C23), which, by (4.32), is less than or equal to

exp�C25λθ
2t−	d+1�/2�(4.34)

for large t and appropriate C25. So, by Corollary 4.4 and (4.33)–(4.34),

E

[
exp

{
θ

∑
	x� j�∈	

Y	x� j�
}]

≤ exp�C25λθ
2t−	d+1�/2��

SettingC23 = 50C16� θ = 5εt	d+1�/4 and applying Chebyshev’s inequality implies
that

P

( ∑
	x� j�∈	

Y	x� j� ≥ εt−d/4
)

≤ exp�−5ε2	t1/4 − 5C25λ���

This gives (4.23) for large t. ✷

5. Approximation of �t by �0 *Nt. In this section, we demonstrate Propo-
sition 2.1, which gives a uniform bound on �ξt	D�−	ξ0 ∗ Nt�	D�� over rectan-
gles D ∈ �T1/2 , for t ∈ �T/M�T� and M> 1, where T is large. Our main tools
for this are Propositions 2.3 and 2.4, which bound �ξt	D� − 	ξt1/4 ∗Kt−t1/4�	D��
and �	ξ0 ∗ Nt�	0� − 	ξt1/4 ∗ Kt−t1/4�	0��, respectively. It is easy to extend the
latter estimate from 0 to D. After combining these bounds, we will sum the
exceptional probabilities over D ∈ �T1/2 and t ∈ 
T, where 
T is an appropri-
ate lattice in �T/M− 1�T�� It is then not difficult to extend the bounds to all
t ∈ �T/M�T�.

We first note that by Proposition 2.4, for large t,

P
(∣∣	ξ0 ∗Nt�	E� − 	ξt1/4 ∗Kt−t1/4�	E�∣∣ ≥ ε�E�t−d/4)

≤ 4�E� exp{−	ε2 ∧ 1�t1/4}(5.1)

for �E� < ∞ and ε ≥ 0. Together with Proposition 2.3, this implies the following
result. Recall that vt	ε� = ε ∧ t3d/16.

Lemma 5.1. For d < 4 and sufficiently large t,

P
(�ξt	E� − 	ξ0 ∗Nt�	E�� ≥ 2ε�E�t−d/4)

≤ 4�E� exp{−	ε2 ∧ 1�t1/4}+ 6 exp
{−		εvt	ε��E�t−9d/20� ∧ t1/8�}(5.2)

for all ε and E ⊂ �d, with �E� ≤ td.

In order to derive Proposition 2.1, we rephrase (5.2) so that the bound on
the right side does not depend on E. For E and t in the range of interest to
us, the inequality simplifies to that given in (5.3) with a little work.
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Proposition 5.1. For d < 4�M > 1 and sufficiently large T,

P
(∣∣ξt	E� − 	ξ0 ∗Nt�	E�∣∣ ≥ ε1T

d/4� ≤ 8 exp�−C26		ε1�2 ∧ 1�T1/20}�(5.3)

for appropriate C26 > 0 	depending on M�, all t ∈ �T/M�T�� ε1 and E ⊂ �d,
with �E� ≤ MTd/2.

Proof. Setting ε1 = 2ε�E�	tT�−d/4, the left side of (5.2) can be written as

P	�ξt	E� − 	ξ0 ∗Nt�	E�� ≥ ε1T
d/4��

This is the left side of (5.3). The first term on the right side of (5.2) is at
most 4�E� exp�−C26		ε1�2∧1�T1/4� for t ≥ T/M� �E� ≤ MTd/2 and appropriate
C26 > 0� For large T and ε1 ≥ T−1/12, this is at most exp�−C26		ε1�2∧1�T1/12�,
which is dominated by the right side of (5.3), with the factor 2 instead of 8;
the factor 2 there ensures that the inequality is trivial for ε1 < T−1/12. One
can also check that

εvt	ε��E�t−9d/20 ≥ 1
4M

ε1vt	ε1�Td/20�

Using this, it is easy to see that the second term on the right side of (5.2) is
dominated by the right side of (5.3), with the factor 6, for large T. ✷

Let 
T denote the set of all t ∈ �T/M− 1�T� that are integer multiples of

bT
def �= exp�−T1/41�. By setting ε1 = 1

3T
−1/80 and summing over the excep-

tional probabilities obtained from (5.3), one obtains the following uniform
bound over times t ∈ 
T and rectangles D ∈ �T1/2 .

Proposition 5.2. For d < 4,

P

(
sup
t∈ST

sup
D∈�T1/2

�ξt	D� − 	ξ0 ∗Nt�	D�� ≥ 1
3T

d/4−1/80
)

≤ bT(5.4)

for sufficiently large T.

In order to deduce Proposition 2.1 from Proposition 5.2, we need to extend
(5.4) to all t ∈ �T/M�T�. For this, it is enough to show that �ξt	D� − ξt′ 	D��
and �	ξ0∗Nt�	D�−	ξ0∗Nt′ �	D�� will both, with high probability, remain small
simultaneously over all �t− t′� < bT, for each given t ∈ 
T and D ∈ �T1/2 . Such
bounds are provided by Lemmas 5.2 and 5.3.

Lemma 5.2. For all d� t and D ∈ �T1/2 ,

P

(
sup

t′∈�t� t+bT�
�ξt	D� − ξt′ 	D�� ≥ 2

)
≤ 	bT�3/2(5.5)

for sufficiently large T.
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Since Lemma 5.3 will also be used in Section 7, it is stated somewhat
more generally than needed here. We set bδT = exp�−Tδ�, and define 
 δ

T

correspondingly.

Lemma 5.3. For all d�M > 1� δ > 0� t ∈ �T/M�T� and D ∈ �T1/2 ,

P

(
sup

t′∈�t�t+bδT�
�	ξ0∗Nt�	D�−	ξ0∗Nt′ �	D��≥ 1

3T
d/4−1/80

)
≤exp

{−eTδ/4}(5.6)

for sufficiently large T.

Summing up the exceptional probabilities in (5.5) and (5.6), for δ = 1/41� t ∈

T and D ∈ �T1/2 , and combining the resulting bound with (5.4) implies that,
for each d < 4 and M,

P

(
sup

t∈�T/M�T�
sup

D∈�T1/2

�ξt	D� − 	ξ0 ∗Nt�	D�� ≥ Td/4−1/80
)

≤ exp
{−T1/42}

for sufficiently large T. This implies Proposition 2.1, as desired.
The conclusion in Lemma 5.2, that the probability of ξt′ 	D� increasing or

decreasing by more than 1 over a small time interval is very small, is not
surprising. There are several steps that require a bit of estimation.

Proof of Lemma 5.2. The A and B particles in D, for the state ξt, form
a subset of the particles in D, for the state ηt. So, in order for at least two
of these particles in D to leave D during �t� t + bT�, under the process ξt′
(excluding annihilations), the same must be true under ηt′ . The particles in
ηt′ execute rate-d random walks. Since ηt	D� is Poisson with mean 2λ�D�,

E�	ηt	D��2� = 4λ2�D�2 + 2λ�D� ≤ 4	λ2 + λ�Td def �= β�(5.7)

It is not difficult to see, using (5.7), that the probability of at least two jumps
occuring over �t� t + bT�, for those ηt	D� particles starting in D, is at most
β	dbT�2. So, this is an upper bound on the probability of two particles of ξt
leaving D by time t+ bT.

We also need an upper bound on the probability of at least two particles of
ξt, in Dc, entering D by time t + bT. If one restricts Dc to those sites within
distance 2 (in the sum norm) of D, one obtains the same bound as above.
On the other hand, the probability of a random walk moving k steps over
this time period decays like 	dbT�k/k!. So, the expected number of particles
starting from distance at least 3, which enter D by time t+ bT, is at most

2λTd/2
∞∑
k=3

kd−1	dbT�k/k! & β	bT�2(5.8)

for large T. Applying Markov’s inequality to this expectation and adding the
resulting probability to the other two exceptional probabilities, we see that,
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for large T, the probability that

P

(
sup

t′∈�t� t+bT�
�ξt	D� − ξt′ 	D�� ≥ 2

)
≤ 3β	bT�2�

For large T, this is less than 	bT�3/2. This implies (5.5). ✷

To demonstrate Lemma 5.3, we use moment generating functions and the
independence of ξ0	x� at different x. Here, we abbreviate, and set Iδt�T =
�t� t+ bδT�.

Proof of Lemma 5.3. In order to demonstrate (5.6), it suffices to show
that for given γ > 0 and large enough T,

P

(
sup
t′∈Iδt�T

�	ξ0 ∗Nt�	0� − 	ξ0 ∗Nt′ �	0�� ≥ γT−	d/4+1/80�
)

≤ exp
{−eTδ/2}�(5.9)

since ξ0 is translation invariant, and we can sum over x ∈ D. We will use the
inequality

sup
t′∈Iδt�T

�	ξ0∗Nt�	0�−	ξ0∗Nt′ �	0��≤
∑
x∈�d

�ξ0	−x�� sup
t′∈Iδt�T

�Nt	x�−Nt′ 	x��(5.10)

and the fact that �ξ0	−x��� x ∈ �d, are dominated by independent Poisson
random variables with mean 2λ. It follows that, for θ > 0,

E

[
exp

{
θ sup
t′∈Iδt�T

�	ξ0 ∗Nt�	0� − 	ξ0 ∗Nt′ �	0��
}]

≤ exp
{
2λ

∑
x

(
exp

{
θ sup
t′∈Iδt�T

�Nt	x� −Nt′ 	x��
}
− 1

)}
�

(5.11)

By (4.10), for large T� t ∈ �T/M�T� and x ∈ �d,

sup
t′∈Iδt�T

�Nt	x� −Nt′ 	x�� ≤ C27b
δ
TT

−	d/2+1�
(
1+ �x�2

T

)
e−�x�2/4T(5.12)

for appropriate C27. Summation of both sides of (5.12) implies that∑
x

sup
t′∈Iδt�T

�Nt	x� −Nt′ 	x�� ≤ bδT�(5.13)

The right side of (5.12) is at most bδT. So, for θ = 1/bδT, the right side of (5.11)
is at most

exp
{
4λ	bδT�−1

∑
x

sup
t′∈Iδt�T

�Nt	x� −Nt′ 	x��
}
�
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which, by (5.13), is at most e4λ. By Chebyshev’s inequality, one obtains that
for given γ > 0 and large T,

P

(
sup
t′∈Iδt�T

�	ξ0 ∗Nt�	0� − 	ξ0 ∗Nt′ �	0�� ≥ γT−	d/4+1/80�
)

≤ exp
{
4λ− γ	bδT�−1T−	d/4+1/80�}�

which, for large enough T, is at most exp�−eTδ/2�. This implies (5.9), and
hence (5.6). ✷

We recall that the analog of Proposition 2.3, for d ≥ 4, was given at the end
of Section 3, after some minor changes in the argument, as Proposition 3.3.
The other main result that has been employed in Section 5, Proposition 2.4,
does not depend on d. By replacing Proposition 2.3 by Proposition 3.3, but
otherwise reasoning the same as through Proposition 5.2, one obtains the
analog of (5.4), with the bound 1

3T
d/4−1/80 replaced by 1

3T
d/2−81/80. Since nei-

ther Lemma 5.2 nor Lemma 5.3 depends on d, one thus obtains the following
analog of Proposition 2.1, for d ≥ 4.

Proposition 5.3. For d ≥ 4 and M> 0,

P

(
sup

t∈�T/M�T�
sup

D∈�T1/2

�ξt	D�− 	ξ0 ∗Nt�	D�� ≥ Td/2−81/80
)

≤ exp�−T1/42�(5.14)

for sufficiently large T.

Proposition 5.3 will be employed in [9]. Note that (2.4) and (5.14) are the
same, if one formally sets d = 4 in both cases. (The arguments leading to
Proposition 2.1, in fact, all hold for d = 4 as well.)

6. Upper bounds on E[�m
t (.)]. In this section, we demonstrate

Proposition 2.2, which gives an upper bound on the expected number of parti-
cles of the minority type in cubes DRT

, where the length RT is chosen appro-
priately. We will use this bound in Section 7, together with Proposition 2.1,
to obtain the desired estimates for ξAt and ξBt , which are given in Theorem 3.
We also use Proposition 2.2 to compute the limiting density ρ	t� as t → ∞,
for d < 4, in (1.8), which is an improvement of the upper and lower bounds
given in (1.2).

In order to show Proposition 2.2, we rely heavily on a slight modification of
Lemma 4.6 from [7]. For this, we set

RT = δ1	T�T1/2 and rT = T7/24�(6.1)

for appropriate δ1	t� to be specified shortly. The above exponent 7/24 is itself
not crucial, but needs to be slightly larger than 1/4. The required analog of
Lemma 4.6 is given by Lemma 6.1 below. In contrast to our usual convention,
we drop the assumption in the lemma that ξ0 be the difference of two Poisson
random fields.
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Lemma 6.1. Assume d < 4, and that ξ0 is translation invariant with
E�ξm0 	DRT

�� ≥ L1, where L1 ≥ C28	RT/rT�d for appropriate C28. Assume that
δ1	T� ≥ T−d/48. Then, for appropriate C29 > 0 �not depending on δ1	·�� and
large enough T,

E�ξ#0	DRT
�� −E�ξ#

R2
T
	DRT

�� ≥ C29L1�(6.2)

(We abbreviate 	RT�d by Rd
T and 	rT�d by rdT, here and later on.)

Lemma 6.1 says that if E�ξm0 	DRT
��, the mean number of particles of the

minority type in DRT
, is not too small, then, on the average, the total number

of particles lost in DRT
, over the time interval �0�R2

T�, must also be of this
order of magnitude. The lemma, for d < 4, is identical to Lemma 4.6 of [7], if
RT and rT are replaced by

R′
T = δ1T

1/2 and r′T = δ2T
1/4�(6.3)

where δ1 and δ2 are constants. The purpose of choosing rT as in (6.1), with
rT ' r′T, is to permit smaller values of L1 when Lemma 6.1 (rather than
Lemma 4.6) is applied. The condition δ1	T� ≥ T−d/48 is used at the end of the
following sketch, as well as in the proof of Proposition 2.2.

Sketch of the proof of Lemma 6.1. The proofs of the lemma and of
Lemma 6.4 in [7] are almost the same. We begin here at the point where
they diverge, referring the reader to [7] for the earlier part of the argument.

Denote the left side of (6.2) by uT. The proofs of the two lemmas are identical
up through (4.30) and (4.31) of [7], which state that

C30uT/L1 ≥


R2
T/r

2
T� d = 1,

R2
T/	r2T log rT�� d = 2,

R2
T/r

3
T� d = 3,

(6.4)

for appropriate C30 and large T. Substitution for RT and rT, as in (6.1), gives
the bounds

C30uT/L1 ≥
 	δ1	T��2T5/12� d = 1,

	δ1	T��2T5/12 logT� d = 2,
	δ1	T��2T1/8� d = 3.

(6.5)

Since δ1	T� ≥ T−d/48 is assumed, this implies that uT ≥ 	C30�−1L1, which,
setting C29 = 	C30�−1, gives (6.2). ✷

We now show Proposition 2.2. In addition to the lower bound δ1	T� ≥
T−d/48, where R	T� = δ1	T�T1/2, we also assume here that δ1	T� → 0 as
T → ∞. The reason for this is to be able to show, as in (2.6) of Proposition 2.2,
that 	T−d/4Rd

T�−1ξmtk 	DRT
� is negligible in the limit, for appropriate tk. As we

will see in Section 8, this will not be true if δ1	T� is instead bounded away
from 0. The major ingredients for the proof of Proposition 2.2 are Lemma 6.1
and (1.2). The main point of the argument is that the decrease in the expected
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number of particles given by (6.2) restricts the frequency with which (6.6) can
occur.

Proof of Proposition 2.2. Assume that

E�ξmt 	DRT
�� > C1δ1	T�T−d/4Rd

T(6.6)

for large T and some t, where C1 ≥ 1 is fixed and will be chosen later. Set-
ting L1 = C1δ1	T�T−d/4Rd

T, it is not difficult to see that the assumptions of
Lemma 6.1 are satisfied, if time t is replaced by 0: Clearly, ξt is translation
invariant. Also, since δ1	T� ≥ T−d/48,

L1 = C1δ1	T�T−d/4Rd
T ≥ 	RT/rT�d�

Therefore, by (6.2),

E�ξ#t 	DRT
�� −E�ξ#

t+R2
T
	DRT

�� ≥ C1C29δ1	T�T−d/4Rd
T(6.7)

for appropriate C29.
Let t′l = T/2M + lR2

T, for l = 0�1�2� � � � � One can select the values tk
appearing in (2.6), so that they form a subset of these t′l. We argue inductively,
setting t0 = T/2M, and assuming that tk−1 has already been chosen. Let nk
denote the number of t′l satisfying

t′l − tk−1 ∈ �R2
T� δ1	T�T−R2

T��(6.8)

where (6.6) holds, with t = t′l. Also, set t
∗ = tk−1 + δ1	T�T. Since E�ξ#t 	DRT

��
is decreasing in t, it follows from (6.7) that

E�ξ#T/2M	DRT
��≥E�ξ#tk−1	DRT

�� −E�ξ#t∗ 	DRT
��

≥C1C29nkδ1	T�T−d/4Rd
T�

(6.9)

On the other hand, it follows from (1.2) that

E�ξ#T/2M	DRT
�� = 2�DRT

�ρ	T/2M� ≤ C31T
−d/4Rd

T�(6.10)

where C31 depends on λ and M. So, comparing (6.9) and (6.10), one obtains
that

nk ≤ C31	C1C29δ1	T��−1�(6.11)

The number of t′l satisfying (6.8) is at least

δ1	T�T/R2
T − 3 = 	δ1	T��−1 − 3�

For C1
def �= 	2C31/C29� ∨ 1 and δ1	T� < 1/6, this is strictly larger than nk. So,

for this choice of C1 and large T,

E�ξmt′? 	DRT
�� ≤ C1δ1	T�T−d/4Rd

T

holds for at least one t′l satisfying (6.8). Setting tk equal to this t
′
l produces (2.6),

as desired.
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Since δ1	T� → 0 as T → ∞, it is easy to check that t1 ≤ T/M for large T.
Also, since t′l − t′l−1 = R2

T, one has tK−1 ≤ T and tK > T for some K ≤ Td/24.
So, for this choice ofK� �t1� tK� ⊃ �T/M�T� and �t1� tK−1� ⊂ �T/2M�T�, which
completes the proof of the proposition. ✷

In the remainder of the section, we analyze the asymptotic density ρ	t�,
for d < 4. Recall that the initial states of A and B are given by Poisson
random fields with intensity λ. We already know, as in (1.2), that λ−1/2td/4ρ	t�
is bounded above and below; here, we show convergence and identify the limit.
The basic procedure is as follows: The density ρ	t� is given by E�ξAt 	D��/�D� =
E�ξBt 	D��/�D�. Using Proposition 2.2, the latter quantities can be approxi-
mated by E��ξt	D���/2�D�, at appropriate t, when D is comparatively small.
By applying Lemma 5.1 and some elementary tail estimates to ξt	D� and
	ξ0∗Nt�	D�, one can show thatE��ξt	D��� is approximated byE��	ξ0∗Nt�	D���.
Consequently, in order to compute the asymptotics of ρ	t�, it suffices to do
the same for E��	ξ0 ∗Nt�	D���/�D�. This can be done using the central limit
theorem.

We begin with several elementary estimates of ξt and ξ0 ∗Nt.

Lemma 6.2. For all E ⊂ �d, with �E� < ∞, and all t ≥ 1,

E�	ξt	E��2� ≤ 	λ2 + λ��E�2(6.12)

and

E�		ξ0 ∗Nt�	E��2� ≤ C32λt
−d/2�E�2(6.13)

for appropriate C32. Suppose that Et ⊂ Dε	t�, where ε	t� = o	t1/2�. Then,

lim
t→∞

σ2		ξ0 ∗Nt�	Et��/	t−d/2�Et�2� = 2λ	4π�−d/2�(6.14)

Proof. The random variable �ξt	E�� is dominated by η#
t 	E�, which is

Poisson with mean 2λ�E�. This implies (6.12). Since

	ξ0 ∗Nt�	E� = ∑
x∈�d

ξ0	x�Nt	E− x�

is the sum of independent mean-0 random variables with variances
2λ	Nt	E− x��2,

σ2		ξ0 ∗Nt�	E�� = 2λ
∑
x

	Nt	E− x��2�(6.15)

The right side is at most 2λ�E�2∑x	Nt	x��2. One can check that, for t ≥ 1,
this is at most C32λt

−d/2�E�2 for appropriate C32, which gives (6.13), since
	ξ0 ∗Nt�	E� has mean 0. With a bit of estimation, one can also show that the
right side of (6.15), with E = Et, is asymptotically equal to

2λ�Et�2
∫
�d

	Nt	x��2 dx ∼ 2λ	4πt�−d/2�Et�2

for large t, which implies (6.14). ✷
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The following result allows us to compare the expectations of ξt	E� and
	ξ0 ∗Nt�	E�, for appropriate �E�. Its proof employs Lemma 5.1, (6.12)
and (6.13).

Lemma 6.3. For d < 4�E ⊂ �d with �E� ∈ �t19d/40� td�� and large t,

E��ξt	E� − 	ξ0 ∗Nt�	E��� ≤ t−	d/4+1/200��E��(6.16)

Proof. Let H1 denote the set where �ξt	E�� ≥ t�E� and H2 the set where
�	ξ0 ∗Nt�	E�� ≥ t�E�. Also, let Z = �ξt	E�− 	ξ0 ∗Nt�	E��. Then, one can check
that

E�Z#H1 ∪H2� ≤ 2E��ξt	E��#H1� + 2E��	ξ0 ∗Nt�	E��#H2��(6.17)

By (6.12) and the definition of H1,

E��ξt	E��#H1� ≤ 	λ2 + λ�t−1�E��(6.18)

Similarly, by (6.13) and the definition of H2,

E��	ξ0 ∗Nt�	E��#H2� ≤ C32λt
−	d/2+1��E��(6.19)

So, by (6.17)–(6.19),

E�Z#H1 ∪H2� ≤ 2	C32 + 1�	λ2 + λ�t−1�E��(6.20)

Assume that �E� ∈ �t19d/40� td�. Substitution of ε = t−1/200/6 in Lemma 5.1
implies that

P	Z ≥ 1
3t

−	d/4+1/200��E�� ≤ 7 exp�−td/80�(6.21)

for large t. LetH3 denote the random set in (6.21). Then, since �Z� ≤ 2t�E� on
Hc

1 ∩Hc
2,

E�Z#Hc
1 ∩Hc

2 ∩H3� ≤ 14t exp�−td/80��E��(6.22)

Also,

E�Z#Hc
3� ≤ 1

3t
−	d/4+1/200��E��(6.23)

Together, (6.20), (6.22) and (6.23) imply that

E�Z� ≤ t−	d/4+1/200��E��
which is the desired inequality. ✷

By using (6.14) and the central limit theorem, we obtain the following lim-
iting behavior for E��	ξ0 ∗Nt�	Et��� and small �Et�.

Lemma 6.4. Suppose that Et ⊂ �d, with φ "= Et ⊂ Dε	t� and ε	t� = o	t1/2�.
Then, for all d,

lim
t→∞

	t−d/4�Et��−1E��	ξ0 ∗Nt�	Et��� = 	4λ/π�1/2	4π�−d/4�(6.24)
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Proof. Recall that

	ξ0 ∗Nt�	Et� = ∑
x∈�d

ξ0	x�Nt	Et − x��

where the summands are independent mean-0 random variables. By (6.14),
for Et ⊂ Dε	t� with ε	t� = o	t1/2�,

lim
t→∞

σ2		ξ0 ∗Nt�	Et�/	t−d/4�Et��� = 2λ	4π�−d/2�(6.25)

Since the third moment of a rate-λ Poisson random variable is λ	λ2 + 3λ+ 1�,
and ξ0	x� is the difference of two such random variables,

E��ξ0	x�Nt	Et − x��3� ≤ 40	λ3 + λ�	Nt	Et − x��3�
Using this, one can check that for large t,∑

x

E�	�ξ0	x�Nt	Et − x��/	t−d/4�Et���3� ≤ 40	λ3 + λ�t−d/4�(6.26)

which → 0 as t → ∞.
By the bounds, in (6.25) and (6.26), on the variances and third moments of

	t−d/4�Et��−1ξ0	x�Nt	Et−x�, and by the Liapunov central limit theorem (see,
e.g., [10], page 200), it follows that

	t−d/4�Et��−1	ξ0 ∗Nt�	Et� ⇒ 	2λ�1/2	4π�−d/4Z0�1�(6.27)

where Z0�1 is a normal random variable with mean 0 and variance 1, and ⇒
denotes weak convergence. We also know from (6.13) [or (6.14)], that the sec-
ond moments of 	t−d/4�Et��−1	ξ0 ∗ Nt�	Et� are bounded in t. It follows from
this and (6.27), that

lim
t→∞

	t−d/4�Et��−1E��	ξ0 ∗Nt�	Et��� = 	λ/π�1/2	4π�−d/4
∫
�
�x�e−x2/2 dx

= 	4λ/π�1/2	4π�−d/4�
which implies (6.24). ✷

We note in passing that the assumption ε = o	t1/2� in Lemma 6.4 was only
used for the limit on the variance in (6.14). For Et ⊂ Dt1/2 , it is not difficult to
see, using (6.15), that a lower bound on the second moment of 	ξ0∗Nt�	E� cor-
responding to (6.13), but with the inequality reversed, still holds. Using this,
and reasoning as in Lemma 6.4, one can check that 	t−d/4�Et��−1	ξ0 ∗Nt�	Et�
is bounded away from 0 in distribution (and not just in mean). In particu-
lar, the error bounds given in Theorem 3 are of smaller order of magnitude
than the terms ξAt 	D� and ξBt 	D� there, for D of the same order as DT1/2 and
t ∈ �T/M�MT�. This is what one would expect, because of (1.2).

Lemmas 6.3 and 6.4 imply the following limiting behavior for E��ξt	Et���,
when �Et� is small.
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Corollary 6.1. Suppose d < 4, and that Et ⊂ �d ∩ Dε	t�, with �Et� ≥
t19d/40 and ε	t� = o	t1/2�. Then,

lim
t→∞

	t−d/4�Et��−1E��ξt	Et��� = 	4λ/π�1/2	4π�−d/4�(6.28)

Using Corollary 6.1 and Proposition 2.2, we now compute the limiting
density ρ	t� for d < 4, which was given in (1.8).

Proposition 6.1. Assume that the initial distributions of A and B parti-
cles for the process ξt are given by independent Poisson random fields with
intensity λ. Then, for d < 4,

lim
t→∞

td/4ρ	t� = 	λ/π�1/2	4π�−d/4�(6.29)

Proof. Since ρ	t� is decreasing in t, it suffices to show (6.29) along a
subsequence of times u1 < u2 < · · · with limj→∞ uj = ∞ and uj − uj−1 =
o	uj�. For all t and nonempty finite E ⊂ �d, one has

ρ	t� = E�ξAt 	E� + ξBt 	E��/2�E� = E��ξt	E���/2�E� +E�ξmt 	E��/�E��(6.30)

Our approach will be to use Proposition 2.2 to select t = uj, so that the second
term in (6.30) can be dropped in the limit, after scaling by t−d/4. The limit
in (6.29) will then follow from (6.28).

For given t, we set T = t and RT = T23/48 in Proposition 2.2. By
Proposition 2.2, one can then choose s ∈ 	t− t47/48� t� such that, for large t,

sd/4E�ξms 	Ds23/24��/�Ds23/24 � ≤ 2C1s
−1/48(6.31)

[since ξms 	Ds23/24� ≤ ξms 	Dt23/24�]. Employing such s and (6.31), it is easy to
construct u1 < u2 < · · · � with limj→∞ uj = ∞ and uj − uj−1 = o	uj�, so that

lim
j→∞

u
d/4
j E�ξmuj	Euj

��/�Euj
� = 0�(6.32)

where Et
def �= Dt23/24 . Together with (6.30), (6.32) implies that

lim
j→∞

u
d/4
j ρ	uj� = lim

j→∞
u
d/4
j E��ξuj	Euj

���/2�Euj
��(6.33)

Along with (6.28), (6.33) implies that

lim
j→∞

u
d/4
j ρ	uj� = 	λ/π�1/2	4π�−d/4�

The limit (6.29) follows from this and the comment at the beginning of the
proof. ✷
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7. Approximation of �A
t and �B

t . In this section, we demonstrate
Theorem 3, which, in d < 4, enables us to approximate ξAt 	D� and ξBt 	D�
by

∑
x∈D	ξ0 ∗Nt�	x�− and

∑
x∈D	ξ0 ∗Nt�	x�+, respectively. The bounds given

in (2.2) and (2.3) of the theorem hold simultaneously over all times
t ∈ �T/M�MT� and rectangles D ∈ �MT1/2 , where M is fixed, off of an event
which is of small probability when T is large. The main tools used in deriving
Theorem 3 are Propositions 2.1 and 2.2. The statement in Proposition 2.1 is
analogous to those in Theorem 3, except that here one approximates ξt	D�
by 	ξ0 ∗Nt�	D�. In order to derive the estimates in Theorem 3 from Proposi-
tion 2.1, one needs to show that, locally, the two particle types segregate, with
the number of the minority type typically being negligible. Proposition 2.2 is
employed for this.

One can break the reasoning required for this argument into two main
parts. In Proposition 7.1, we will approximate 	ξ0 ∗ Nt�	D�± by

∑
x∈D	ξ0 ∗

Nt�	x�± for small rectangles D. The reasoning here is straightforward, and is
based on an estimate that shows 	ξ0 ∗Nt�	x� does not fluctuate much locally.

We also need to approximate ξAt 	D� and ξBt 	D� by 	ξ0 ∗Nt�	D�− and 	ξ0 ∗
Nt�	D�+, again for small D. This involves bounding ξmt 	D�. Here, one needs
to be more careful, since Proposition 2.2 only holds for certain times tk, and
bounds are given only on the expectation of ξmtk 	D�. The probability estimates
obtained by applying Markov’s inequality to this expectation at each tk are
much weaker than the exceptional probabilities in Proposition 2.1, and one
needs to work to keep these estimates small when summing over different
events. One also needs to control the migration of particles over each inter-
val �tk� tk+1�. These difficulties are taken care of in the work leading up to
Proposition 7.2.

Together, the reasoning from the last two paragraphs shows that ξAt 	D� and
ξBt 	D� can be approximated by

∑
x∈D	ξ0 ∗Nt�	x�− and

∑
x∈D	ξ0 ∗Nt�	x�+, for

small D. Taking unions of such rectangles D, one obtains the corresponding
estimates for all D ∈ �MT1/2 , as desired. As mentioned above, one needs to
keep the exceptional probabilities which crop up under control.

Lemma 7.1 is the main technical estimate needed for Proposition 7.1. It is
employed there and elsewhere in the section, with t′ = t# it is employed in
Section 9 with t′ "= t, but with x′ = x. The argument is a straightforward
application of moment generating functions.

Lemma 7.1. Let �t − t′� ≤ tα and �x − x′� ≤ tα/2, where α ∈ �1/2�1�. Then,
for appropriate C33 > 0,

P	�	ξ0 ∗Nt�	x� − 	ξ0 ∗Nt′ �	x′�� ≥ εt−d/4� ≤ 2 exp�−C33ε
2t1−α�(7.1)

for large enough t and all ε ∈ �0�1�.

Proof. Fix t� t′� x and x′, and set

R	y� = Nt	x− y� −Nt′ 	x′ − y��
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One has for given θ,

E�exp θ�	ξ0 ∗Nt�	x� − 	ξ0 ∗Nt′ �	x′���

= exp
{
λ
∑
y∈�d

(
eθR	y� + e−θR	y� − 2

)}
�

(7.2)

Since �t − t′� ≤ tα and �x − x′� ≤ tα/2, with α ≤ 1, it follows from (4.10) and
(4.13) that

�R	y�� ≤ C34t
	α−d−1�/2�(7.3)

and from (4.11) and (4.14) that∑
y∈�d

	R	y��2 ≤ C35t
α−d/2−1�(7.4)

for appropriate C34 and C35. By (7.3) and (7.4), (7.2) is, for �θ� ≤ C36t
	d+1−α�/2

and given C36, at most

exp
{
C37λθ

2∑
y

	R	y��2
}

≤ exp
{
C35C37λθ

2tα−d/2−1
}

(7.5)

for appropriate C37. Since α ≥ 1/2 and ε ≤ 1� θ = ±	2λC35C37�−1εtd/4+1−α sat-
isfy the above bounds on �θ�. Chebyshev’s inequality, applied to (7.2) and (7.5)
for both values of θ, implies that

P	�	ξ0 ∗Nt�	x� − 	ξ0 ∗Nt′ �	x′�� ≥ εt−d/4� ≤ 2 exp�−	4C35C37λ�−1ε2t1−α��
This implies (7.1), with C33 = 	4C35C37λ�−1. ✷

We would like to replace the bound in (7.1), with t′ = t, by one which
simultaneously holds over t ∈ �T/M�T� and x ∈ DT1/2 , if ε is chosen not too
small. Such an estimate follows directly from Lemma 7.1 and Lemma 5.3. (In
some applications, t will remain fixed, and only x will be allowed to vary.)

Lemma 7.2. Let α ∈ �1/2�1� and β = 	1− α�/8. Then, for all M> 1,

P

(
sup

t∈�T/M�T�
sup

x∈DT1/2

sup
�x′−x�≤Tα/2

�	ξ0 ∗Nt�	x� − 	ξ0 ∗Nt�	x′�� ≥ T−d/4−β
)

≤ exp�−Tβ�
(7.6)

for sufficiently large T.

Proof. Set ε = MT−β, where α ∈ �1/2�1� and β ∈ 	0� 	1− α�/8�. One can
show that the bound in (7.6), with 1

2 exp�−Tβ� instead of exp�−Tβ�, holds for
t ∈ 


β
T � x ∈ DT1/2 and �x′ − x� ≤ Tα/2, by summing over the probabilities in

(7.1). To extend the bound to all �T/M�T� as in (7.6), one applies Lemma 5.3
with D = �x�. ✷
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In Section 8, we will apply Lemma 7.2 in a somewhat different setting,
where 	ξ0 ∗Nt�	x� = ∑

y∈�d ξ0	y�Nt	x−y� has been extended to x ∈ �d. This
slight generalization causes no changes in the statement of Lemma 7.2 or its
proof.

Let � r
R denote those rectangles contained in the cube DR, for which the

lengths of all sides are at most r. Using Lemma 7.2, we are able to compare
	ξ0 ∗Nt�	D�+ with

∑
x∈D	ξ0 ∗Nt�	x�+ over such rectangles. Proposition 7.1 is

the first main ingredient for demonstrating Theorem 7.3.

Proposition 7.1. Let α ∈ �1/2�1� and β = 	1− α�/8. Then, for all M> 1,

P

(
sup

t∈�T/M�T�
sup

D∈�Tα/2

T1/2

∣∣∣∣	ξ0 ∗Nt�	D�− − ∑
x∈D

	ξ0 ∗Nt�	x�−
∣∣∣∣ ≥ �D�T−d/4−β

)

≤ exp�−Tβ�
(7.7)

and

P

(
sup

t∈�T/M�T�
sup

D∈�Tα/2

T1/2

∣∣∣∣	ξ0 ∗Nt�	D�+ − ∑
x∈D

	ξ0 ∗Nt�	x�+
∣∣∣∣ ≥ �D�T−d/4−β

)

≤ exp�−Tβ�
(7.8)

for sufficiently large T.

Proof. We consider just (7.8), since the argument for (7.7) is the same.
Clearly, 	ξ0 ∗Nt�	D�+ ≤ ∑

x∈D	ξ0 ∗Nt�	x�+ always holds. For the other direc-
tion, we may assume that 	ξ0 ∗ Nt�	y� ≥ 0 for some y ∈ D. Then, on the
nonexceptional set G in Lemma 7.2,

	ξ0 ∗Nt�	x� > −T−d/4−β for x ∈ D�
for α ∈ �1/2�1� and β = 	1− α�/8. It follows from this that, on G,

	ξ0 ∗Nt�	D�+ ≥ ∑
x∈D

	ξ0 ∗Nt�	x� = ∑
x∈D

�	ξ0 ∗Nt�	x�+ − 	ξ0 ∗Nt�	x�−�

≥ ∑
x∈D

	ξ0 ∗Nt�	x�+ − �D�T−d/4−β�

This implies (7.8). ✷

The second main ingredient for demonstrating Theorem 3 is to show that,
for suitable small D�ξAt 	D� and ξBt 	D� can be approximated by 	ξ0 ∗Nt�	D�−
and 	ξ0 ∗Nt�	D�+. On account of Proposition 2.1, it will be enough to show
that ξAt 	D� and ξBt 	D� can be approximated by ξt	D�− and ξt	D�+. It will
suffice to show that ξmt 	D� is typically negligible. For this, we cover DT1/2 with
disjoint cubes Di� i = 1� � � � � I, each of length Tα/2, so that ∪iDi ⊂ D6T1/2 and
I ≤ 	6T	1−α�/2�d. We will employ the following result.
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Proposition 7.2. Let d < 4� α ∈ �1−2/1�000�1�� β = 	1−α�/16, and choose
Di as above. Then, for all M> 1,

P

(
sup

t∈�T/M�T�

I∑
i=1

ξmt 	Di� ≥ Td/4−β
)

≤ T−β(7.9)

for large enough T.

The number of particles of minimum type, ξmt 	E�, is increasing with the
set E ⊂ �d. Also,

ξmt 	E� = ξAt 	E� − ξt	E�− = ξBt 	E� − ξt	E�+(7.10)

always holds. The following corollary is therefore an immediate consequence
of (7.9).

Corollary 7.1. Let α ∈ �1− 2/1�000�1�� β = 	1− α�/16, and choose Di as
above. Then, for all M> 1,

P

(
sup

t∈�T/M�T�

I∑
i=1

sup
E⊂Di

(
ξAt 	E� − ξt	E�−) ≥ Td/4−β

)
≤ T−β(7.11)

and

P

(
sup

t∈�T/M�T�

I∑
i=1

sup
E⊂Di

(
ξBt 	E� − ξt	E�+) ≥ Td/4−β

)
≤ T−β(7.12)

for large enough T.

Corollary 7.1, together with Proposition 2.1 and Proposition 7.1, provides a
quick proof of Theorem 3. We therefore first show Theorem 3 and afterwards
return to the argument for Proposition 7.2.

Proof of Theorem 3. Wewill demonstrate the inequality for ξBt ; the argu-
ment for ξAt is the same. By rescaling T, it suffices to show this over t ∈
�T/M�T� and D ∈ �T1/2 (after replacing the term 1/9,000 in the exponents
with any larger power).

Let G1 denote the nonexceptional set in (7.12) and G2 the nonexceptional
set in (2.4) of Proposition 2.1. Also, let α = 1− 2/1�000 and β = 	1− α�/16 =
1/8�000. For D ∈ �T1/2 , we set Ei = D∩Di. The sets Ei are always rectangles.
So, by (2.4),

I∑
i=1

�ξt	Ei�+ − 	ξ0 ∗Nt�	Ei�+� < ITd/4−1/80 ≤ Td/4−β(7.13)

holds on G2, for large T and t ∈ �T/M�T�. One can, of course, write ξBt 	D� as∑I
i=1 ξ

B
t 	Ei�. It therefore follows from (7.13) that, on G1 ∩G2,∣∣∣∣ξBt 	D� −

I∑
i=1

	ξ0 ∗Nt�	Ei�+
∣∣∣∣ < 2Td/4−β�(7.14)

for large T.



158 M. BRAMSON AND J. L. LEBOWITZ

Let G3 denote the nonexceptional set in (7.8) of Proposition 7.1. Setting
D = Ei there, for each i, and summing over i implies that∣∣∣∣ I∑

i=1
	ξ0 ∗Nt�	Ei�+ − ∑

x∈D
	ξ0 ∗Nt�	x�+

∣∣∣∣ < 6dTd/4−2β

on G3. It follows from this and (7.14) that, on G1 ∩G2 ∩G3,∣∣∣∣ξBt 	D� − ∑
x∈D

	ξ0 ∗Nt�	x�+
∣∣∣∣ < 3Td/4−β(7.15)

for large T. By (7.12), (2.4) and (7.8),

P		G1 ∩G2 ∩G3�c� ≤ 3T−β(7.16)

for large T. The bounds (7.15) and (7.16) imply (2.3), which is the desired
result. ✷

In Section 9, we will employ the following result. It is an immediate con-
sequence of Theorem 3 and Lemma 7.2. For D ∈ �Tδ� δ < 1/2, it gives the
behavior of ξAT	D� and ξBT	D� in terms of 	ξ0 ∗ NT�	0�±. [�D� and δ will be
chosen large enough so that the term �D�T−	d+ε�/4 in h	T�D� is dominant.]

Corollary 7.2. Let d < 4� δ < 1/2 and ε = 1/2 − δ. Set h	T�D� =
Td/4−1/10�000 + �D�T−	d+ε�/4. Then, for sufficiently large T,

P	�ξAT	D� − �D�	ξ0 ∗NT�	0�−� ≥ h	T�D� for some D ∈ �Tδ�
≤ T−1/10�000(7.17)

and

P	�ξBT	D� − �D�	ξ0 ∗NT�	0�+� ≥ h	T�D� for some D ∈ �Tδ�
≤ T−1/10�000�

(7.18)

In Section 8, we will reformulate the approximations for ξAt and ξBt in (2.2)
and (2.3) of Theorem 3 in terms of the convolutions 	� ∗Nt�− and 	� ∗Nt�+,
where � is white noise. This will lead to Theorem 4, which is a generalization
of Theorem 1. To employ Theorem 3, we need to restate it in its scaled format.
Recall (1.6), where Tξ̂t	x� is defined over x ∈ �dT1/2 . The convolution Tξ̂0 ∗Nt,
employed below, is also taken over �dT1/2 and is defined in the obvious manner.
Since NTt	T1/2x� = T−d/2Nt	x� always holds, it is easy to check that

	Tξ̂0 ∗Nt�	x� = Td/4	ξ0 ∗NTt�	T1/2x��(7.19)

One can therefore rewrite Theorem 3 as follows. (We assume here thatD ⊂ �d,
and explicitly write D ∩ �dT1/2 in the summation to avoid any ambiguity.)
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Theorem 3′. For d < 4, and given M> 1,

P

(
sup

t∈�1/M�M�
sup
D∈�M

∣∣∣∣Tξ̂At 	D�−T−d/2 ∑
x∈D∩�d

T1/2

	Tξ̂0∗Nt�	x�−
∣∣∣∣≥T−1/9�000

)

≤T−1/9�000

(7.20)

and

P

(
sup

t∈�1/M�M�
sup
D∈�M

∣∣∣∣Tξ̂Bt 	D�−T−d/2 ∑
x∈D∩�d

T1/2

	Tξ̂0∗Nt�	x�+
∣∣∣∣≥T−1/9�000

)

≤T−1/9�000

(7.21)

hold for sufficiently large T.

We point out that, here and in Theorem 3, it is possible to replace the
summation in the formulas by the corresponding integrals. We avoid doing
this, since ξ0 (and Tξ̂0) are discrete, which makes the definition of 	ξ0 ∗Nt�	x�
for nonlattice x less natural.

The remainder of the section is devoted to demonstrating Proposition 7.2.
The main step for this is Proposition 7.3 below. We will first show how Propo-
sition 7.2 follows from Proposition 7.3, and will then prove Proposition 7.3.
We introduce the following notation. The set %Di� i = 1� � � � � I, will denote all
points (in �d) within distance 1

2T
α/2 of Di in the max norm. That is, %Di is the

rectangle centered at the middle of Di, and having length 2Tα/2. The times
tk, in Proposition 7.3 and later on, will be those given in Proposition 2.2 for
RT =  T3α/2−1!. (Recall that  x! denotes the integral part of x.)

Proposition 7.3. Let d < 4� α ∈ �1 − 2/1�000�1�� β = 	1 − α�/16, and
choose %Di and tk as above. Then, for all M> 1 and all k = 1� � � � �K− 1,

P

( I∑
i=1

ξmtk 	 %Di� ≥ Td/4−β
)

≤ T−20β(7.22)

for large enough T.

In order to show Proposition 7.2 from Proposition 7.3, we will show that
the probability is small that any particle moves from outside %Di, at time tk, to
inside Di, over times �tk� tk+Tγ�, for any i. (The constant γ will be chosen so
that γ < α and ∪K−1

k=1 �tk� tk +Tγ� ⊃ �T/M�T�.) For this estimate, we let Wi�k

denote the number of particles (of either type) which violate this condition,
for given i and k.

Lemma 7.3. For γ ∈ 	0� α� and each k,

P

( I∑
i=1

Wi�k "= 0
)

≤ exp�−C38T
	α−γ�∧	α/2��(7.23)
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for sufficiently large T and appropriate C38 > 0.

Proof. Let Xt be a continuous time rate-d simple random walk in d
dimensions, with X0 = 0. Using moment generating functions and the reflec-
tion principle, it is not difficult to show that

P

(
sup
t≤u

�Xt� ≥ �x�
)

≤ 4d exp
{
−C39�x�

( �x�
u

∧ 1
)}

(7.24)

for each u and appropriate C39. Moreover, at time tk, each type of particle is
dominated by a Poisson random field with intensity λ. Therefore, for given i
and k,

P	Wi�k "= 0� ≤ E�Wi�k� ≤ 2λ
∑

�x�≥Tα/2

4d exp
{
−C39

�x�
2

( �x�
2Tγ

∧ 1
)}
�

For given α and γ, with γ < α, this is less than or equal to

exp
{−C40T

α/2	Tα/2−γ ∧ 1�} = exp
{−C40T

	α−γ�∧	α/2�}
for large T and appropriate C40. Since I ≤ 	6T	1−α�/2�d, this gives (7.23), for
C38 < C40, after summing over i. ✷

We now demonstrate Proposition 7.2, assuming Proposition 7.3.

Proof of Proposition 7.2. Let γ def �= 	9/8�α− 1/8 = 1− 18β. Since α < 1,
one has γ < α. Lemma 7.3 implies that, for a given k� k = 1� � � � �K − 1, no

particles move from outside %Di to inside Di, over �k
def �= �tk� tk + Tγ�, with

overwhelming probability. Under this event,

I∑
i=1

ξmt 	Di� ≤
I∑
i=1

ξmtk 	 %Di� for t ∈ �tk� tk +Tγ��

One can check that 	α−γ�∧	α/2� = 2β. So, by Proposition 7.3 and Lemma 7.3,

P

(
sup
t∈�k

I∑
i=1

ξmt 	Di� ≥ Td/4−β
)

≤ T−20β + exp�−C38T
2β�(7.25)

for large enough T and appropriate C38 > 0�
We wish to extend the range of t in (7.25) to �T/M�T�, in order to obtain

(7.9). We first note �k has length Tγ. By assumption, RT =  T3α/2−1!, and so,
for tk chosen as in Proposition 2.2,

tk − tk−1 ≤ T	3α−1�/2 for all k�

For γ chosen as above, γ > 	3α−1�/2, and so tk− tk−1 & Tγ for large T. Also,
�T/M�T� ⊂ �t1� tK�, where K is as in Proposition 2.2.

It follows from these observations, that an appropriate collection �k1
��k2

� � � �

of at most 2T1−γ = 2T18β of these intervals covers �T/M�T�. Applying these
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�ki
in (7.25) and summing the probabilities implies that

P

(
sup

t∈�T/M�T�

I∑
i=1

ξmt 	Di� ≥ Td/4−β
)

≤ 4T−2β

for large enough T. This gives (7.9). ✷

We now demonstrate Proposition 7.3. The proposition would be a simple
application of Proposition 2.2 and Chebyshev’s inequality if one replaced the
upper bound T−20β in (7.22) by a multiple of T−7β. The bound T−7β is too
coarse, however, to apply in the proof of Proposition 7.2, since it needs to be
applied over 2T18β events.

One can get around this problem by covering each of the cubes %Di with dis-
joint cubes Di�j� j = 1� � � � � J� each of length  Tα′/2!, where α′ = 3α−2. We do
this with ∪jDi�j contained in the cube having the same center as %Di but with
length 6Tα/2, so that J ≤ 	7T	α−α′�/2�d = 	7T1−α�d, and we center each Di�j

so that it is a translate (in �d) of D Tα′/2!. We will apply Proposition 2.2 to each
of these cubes Di�j, which gives smaller bounds on the exceptional probabili-
ties than if we applied it to %Di directly. We will then show that the fluctuation
of ξmtk 	Di�j� over j = 1� � � � � J� for fixed i, is small enough so that one retains
the improved bounds in (7.22) as well, when one replaces

∑
i� j ξ

m
tk
	Di�j� by∑

i ξ
m
tk
	 %Di�.

Before presenting the proof of Proposition 7.3, we first give two prelimi-
nary lemmas. The first lemma says that the fluctuation in ξt	Di�j�, between
different Di�j with the same i, will typically be small.

Lemma 7.4. Let d < 4� α ∈ �1−2/1�000�1�� β = 	1−α�/16 and choose Di�j

as above. Then, for all M> 1,

P

(
max
j

ξt	Di�j� −min
j
ξt	Di�j� ≥ 3Td	2α′−1�/4−2β

)
≤ 2 exp�−T2β�(7.26)

for sufficiently large T� t ∈ �T/M�T� and all i.

Proof. Let G1 denote the nonexceptional set in (7.6), and fix i. Since
�Di�j� =  Tα′/2!d for all j,

max
j

	ξ0 ∗Nt�	Di�j� −min
j

	ξ0 ∗Nt�	Di�j� < Td	2α′−1�/4−2β(7.27)

on G1 for each t ∈ �T/M�T�. Let G2 denote the nonexceptional set in (2.4).
Then, for each j,

�ξt	Di�j� − 	ξ0 ∗Nt�	Di�j�� < Td/4−1/80(7.28)

holds on G2. Since α ≥ 1− 2/1�000, one can check that the bound in (7.27) is
larger than that in (7.28). So, (7.27) and (7.28) imply that

max
j

ξt	Di�j� −min
j
ξt	Di�j� < 3Td	2α′−1�/4−2β(7.29)
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on G1 ∩G2. By (7.6) and (2.4),

P		G1 ∩G2�c� ≤ exp�−T2β� + exp�−T1/42� ≤ 2 exp�−T2β�(7.30)

for large T. The bound in (7.26) follows from (7.29) and (7.30). ✷

LetHi denote the set of realizations where, for a given t� ξt	Di�j� ≥ 0 holds
for all j or ξt	Di�j� ≤ 0 holds for all j. The next lemma says that, on Hc

i , the
quantities ξmt 	 %Di� and ∑

j ξ
m
t 	Di�j� will typically be close.

Lemma 7.5. Let d < 4� α ∈ �1− 2/1�000�1�� β = 	1− α�/16, and choose %Di

and Di�j as above. Then, for all M> 1,

P

(
ξmt 	 %Di� −

J∑
j=1

ξmt 	Di�j� ≥ 3 · 7dTd	2α−1�/4−2β#Hc
i

)
≤ 2 exp�−T2β�(7.31)

for sufficiently large T� t ∈ �T/M�T�� and all i.

Proof. On Hc
i�maxj ξt	Di�j� > 0 and minj ξt	Di�j� < 0. So, on Hc

i ,

max
j

�ξt	Di�j�� < max
j

ξt	Di�j� −min
j
ξt	Di�j��

It therefore follows from Lemma 7.4, that

P
(
max
j

�ξt	Di�j�� ≥ 3Td	2α′−1�/4−2β#Hc
i

)
≤ 2 exp�−T2β��(7.32)

That is, the numbers of A and B particles are almost the same over eachDi�j.
One always has that

ξmt 	 %Di�≤ ξmt
(⋃

j

Di�j

)
=
(∑

j

ξAt 	Di�j�
)

∧
(∑

j

ξBt 	Di�j�
)

≤∑
j

	ξAt 	Di�j� ∨ ξBt 	Di�j�� = ∑
j

	ξmt 	Di�j� + �ξt	Di�j����
(7.33)

since %Di ⊂ ∪jDi�j and the sets Di�j� j = 1� � � � � J are disjoint. Off of Hi and
the exceptional set in (7.32), this is

<
∑
j

ξmt 	Di�j� + 3JTd	2α′−1�/4−2β <
∑
j

ξmt 	Di�j� + 3 · 7dTd	2α−1�/4−2β�(7.34)

Together with (7.32), (7.33) and (7.34) imply (7.31). ✷

We now prove Proposition 7.3, and hence complete the proof of Theorem 3.
The argument combines Proposition 2.2 with Lemma 7.5.

Proof of Proposition 7.3. Fix M, and let tk� k = 1� � � � �K− 1, be chosen
as in Proposition 2.2. We apply (2.6) to eachDi�j� i = 1� � � � � I and j = 1� � � � � J,
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choosing RT =  Tα′/2!, and using the translation invariance of ξt. Since
δ1	T� ≤ T	α′−1�/2 = T−24β, one has

E

[∑
i� j

ξmtk 	Di�j�
]
≤ C1IJT

d	2α′−1�/4−24β ≤ C142
dTd/4−24β�(7.35)

for large T and appropriate C1. By Markov’s inequality, this implies

P

(∑
i� j

ξmtk 	Di�j� ≥ C142
dTd/4−2β

)
≤ T−22β�(7.36)

We wish to replace
∑

i� j ξ
m
tk
	Di�j� with ∑

i ξ
m
tk
	 %Di�, in (7.34). On the set Hi

defined above Lemma 7.5, for a given tk,

ξmtk 	 %Di� ≤ ∑
j

ξmtk 	Di�j�(7.37)

clearly holds, since the minimum type over each Di�j� j = 1� � � � � J, is the
same. On Hc

i , we can employ Lemma 7.5 (with the value of M being twice
the value chosen here). Summing the exceptional probabilities in (7.31) over
i = 1� � � � � I, and combining this with (7.37), gives

P

(∑
i

ξmtk 	 %Di� −∑
i� j

ξmtk 	Di�j� ≥ 3 · 42dTd/4−2β
)

≤ 2 · 6dTd	1−α�/2 exp�−T2β�
(7.38)

for large T and k = 1� � � � �K− 1. Together with (7.36), (7.38) implies that

P

(∑
i

ξmtk 	 %Di� ≥ Td/4−β
)

≤ T−20β�

which is (7.22). ✷

8. Convergence of T �̂t to (2�)1/2(� *Nt). Theorem 1 states that Tξ̂t con-
verges to 	2λ�1/2	� ∗ Nt� as T → ∞, where � is the mean-0 generalized
Gaussian random field with covariance given by (1.3). In the mathematical
physics and other literature, � is referred to as white noise. In this section,
we first discuss white noise and its connection with Brownian sheet. We then
demonstrate Theorem 4, which is a generalization of Theorem 1.

Brownian sheet is the higher dimensional analog of Brownian motion.
Brownian sheet W	x�, with x = 	x1� � � � � xd� ∈ �0�∞�d, is the real-valued
Gaussian process with mean 0 and covariances

E�W	x�W	y�� =
d∏
j=1

	xj ∧ yj��(8.1)

A version of this process exists where almost all realizations are continuous
in x; we will, from now on, automatically choose this version. Various more
refined sample path properties of Brownian sheet have been investigated in
[16] and the references given there.
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One can extend the domain of W from �0�∞�d to �d. One can do this by
employing 2d independent copies W1� � � � �W2d, of W, each defined on �0�∞�d,
where each Wn is identified with a different one of the 2d orthants. Writing
xpos = 	�x1�� � � � � �xd��, where x = 	x1� � � � � xd�, one can extend W	x� to x ∈ �d

by settingW	x� = Wn	xpos�, whereWn is the copy identified with the orthant
containing x. As before, almost all realizations ofW	x� will be continuous in x.

Let D ⊂ �d be a finite rectangle. Denote by x and y the vertices where
all of the coordinates are maximized, respectively, minimized, and, for z any
vertex of D, let ν	z� denote the number of coordinates z shares with y. We set

�	D� = ∑
z

	−1�ν	z�W	z��(8.2)

When y = 0, one has �	D� = W	x�. The operator � defines a mean-0 gener-
alized Gaussian random field, with covariance satisfying

E��	D1��	D2�� = �D1 ∩D2�(8.3)

for pairs of rectangles D1 and D2. This is the same expression as (1.3). Thus,
(8.2) gives a representation for white noise in terms of Brownian sheet. One
may check (8.3) by decomposing D1 and D2 into unions of rectangles in the
different orthants, and then writing these as differences of rectangles, with
each rectangle having the origin as a vertex. One then applies the formula
(8.1) to each such pair. The white noise � given by (8.2) is almost surely
continuous in D as its vertices are varied; we shall henceforth assume this
continuity for �.

We note that forW defined here,W	x� = 0 for any x ∈ �d with at least one
coordinate equal to 0. Thus, W	x� is “centered” at 0. One can recenter W	x�
at any given point y by setting

Wy	x� = W	x� −
d∑
j=1

gj	x��

where each gj	x�� j = 1� � � � � d, is an appropriate random function which is
constant in its jth coordinate. [First set g1	x� = W	x� for each x sharing its
first coordinate with y, then set g2	x� = W	x� − g1	x� for each x sharing
its second coordinate with y, etc.] Replacing W by Wy does not change the
corresponding operator �. [For instance, subtracting gj	x� fromW	x� does not
change �	D� in (8.2), since the effect, on the right side, on pairs of vertices
differing only in the jth coordinate, cancels out due to the factor ν	z�.]

There exists a unique process V, with domain �d and centered at 0, which
corresponds to ξ0 as W does to �. That is,

ξ0	D� = ∑
z

	−1�ν	z�V	z�(8.4)

for all rectangles D having vertices z ∈ �d. When x and y are chosen as above
(8.2), with y = 0, one has ξ0	D� = V	x�. As in the definition for Tξ̂ in (1.6),
we set

TV̂	z� = V	T1/2z�/Td/4�(8.5)
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for z ∈ �dT1/2 . It then follows that

Tξ̂0	D� = ∑
z

	−1�ν	z� TV̂	z�(8.6)

for all D having vertices z ∈ �dT1/2 .
We want to be able to compare TV̂ withW, when T → ∞. For this, we need

to define V at nonlattice points, which we do by interpolating. The most nat-
ural way is to use the following scheme. For d = 1, the interpolation between
y and y+1 will be linear. For d = 2 and x ∈ y+	0�1�2, with y = 	y1� y2� ∈ �2

and x = 	x1� x2�, set
V	x� = V	y� + [

V	y+ 	1�0�� −V	y�]	x1 − y1�
+ �V	y+ 	0�1�� −V	y��	x2 − y2�
+ [

V	y+ 	1�1�� −V	y+ 	1�0�� −V	y+ 	0�1�� +V	y�]
× 	x1 − y1�	x2 − y2��

This interpolation is linear along the sides of y+ �0�1�2, and has a correction
term that is proportional to the area of the rectangle given by the opposing
vertices y and x. The interpolation for d > 2 is defined analogously, with the
new volume term, for each added dimension, corresponding to the right side
of (8.4).

We will also find it useful to extend ξ0	y� to all of �d. We do this by setting
eξ0	x� = ξ0	y� for x ∈ y− �0�1�d and y ∈ �d. One then has, by (8.4),

eξ0	x� = ∂dV	x�
∂x1 · · · ∂xd

for x with noninteger coordinates. Since eξ0	y� will serve the role of a density,
the “extension” T

e ξ̂0 to �d needs to be scaled differently than Tξ̂0 to be useful.
For x ∈ �d, we set

T
e ξ̂0	x� = Td/4

eξ0	T1/2x�#(8.7)

at x ∈ �dT1/2 , one has T
e ξ̂0	x� = Td/2 Tξ̂0	x�. This scaling gives

T
e ξ̂0	x� = ∂d TV̂	x�

∂x1 · · · ∂xd
(8.8)

for x with coordinates not in �T1/2 .
SinceW is defined on �d, convolution with respect toNt will be interpreted

as an integral over �d, that is,

	W ∗Nt�	x� =
∫
�d
W	x− y�Nt	y�dy for x ∈ �d�(8.9)

Since the growth of �W	x�� can be controlled as �x� → ∞, the integral is almost
surely well defined and finite. (One can employ estimates similar to those in
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the proofs of Lemmas 8.2 and 8.3.) We define TV̂ ∗Nt in the same way. We
will also employ the convolutions W ∗N′

t and
TV̂ ∗N′

t, where

N′
t	x� def �= ∂dNt	x�

∂x1 · · · ∂xd
= 	−1�d x1 · · ·xd

td
Nt	x��(8.10)

Using (8.8)–(8.10) and integrating by parts in each direction, one can check
that

	TV̂ ∗N′
t�	x� = 	Te ξ̂0 ∗Nt�	x� for x ∈ �d�(8.11)

It follows from (8.2) that

	� ∗Nt�	D� = ∑
z

	−1�ν	z�	W ∗Nt�	z��(8.12)

where z are the vertices of the rectangle D. Using (8.1), one can check that
� ∗Nt scales according to

	� ∗Nt�	D� = M−d/4	� ∗NMt�	M1/2D��(8.13)

for M> 0. We write 	� ∗Nt�	x� for the density of 	� ∗Nt�	D�. Then,
	� ∗Nt�	x� = 	W ∗N′

t�	x�#(8.14)

(8.14) can be thought of as a formal d-fold integration by parts. It follows from
(8.14) that 	� ∗Nt�	x� is continuous in 	t� x� for almost all realizations. One
can check that since W is a family of Gaussian random variables, so is � ∗N.
A simple computation shows that, for any 	t1� x1� and 	t2� x2�,

E�	� ∗Nt1
�	x1�	� ∗Nt2

�	x2�� =
∫
�d
Nt1

	x1 − y�Nt2
	x2 − y�dy�(8.15)

For t1 = t2 = t, this equals 	4πt�−d/2 exp�−�x1 − x2�2/4t�. In particular,
σ2	� ∗Nt�	x� = 	4πt�−d/2.

The main result in this section is Theorem 4, which is a stronger version
of Theorem 1. The main tools for demonstrating the theorem are Theorem 3′

of Section 7 and Proposition 8.1. Let %DM = �−M/2�M/2�d, for M > 0. (We
will use this notation throughout the remainder of the section.) Proposition
8.1 states that 	Te ξ̂0 ∗ Nt�	x�, with 	t� x� ∈ 	0�1� × %D1, converges weakly to
	2λ�1/2	� ∗ Nt�	x� as T → ∞. Convergence is with respect to the uniform
topology on compact sets of C		0�1� × %D1�, the space of continuous functions
on 	0�1� × %D1.

Proposition 8.1. For all d,

	Te ξ̂0 ∗N·�	·� ⇒ 	2λ�1/2	� ∗N·�	·� as T → ∞�(8.16)

on 	0�1� × %D1.

Since the demonstration of Proposition 8.1 requires several steps, it will be
postponed until the latter part of the section. The proposition has two useful
corollaries. The first will be employed in Section 9.
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Corollary 8.1. For all d,

Td/4	ξ0 ∗NT�	0� ⇒ 	2λ�1/2	4π�−d/4Z0�1 as T → ∞�(8.17)

where Z0�1 has the standard normal distribution.

Proof. By the observations immediately above and below (8.15),
	� ∗N1�	0� is normally distributed with mean 0 and variance 	4π�−d/2. Also,
using (8.7), one can check that

	Te ξ̂0 ∗N1�	0� = Td/4	eξ0 ∗NT�	0��(8.18)

So, (8.17) will follow from (8.16) and (8.18) once we show that

Td/4�	ξ0 ∗NT�	0� − 	eξ0 ∗NT�	0�� → 0 as T → ∞�(8.19)

(These two convolutions are not identical, since ξ0 ∗ NT is a sum over �d,
whereas eξ0 ∗NT is an integral over �d.) Since eξ0	x� = ξ0	y� for x ∈ y−�0�1�d
and y ∈ �d, 	eξ0 ∗ NT�	0� is the average of 	ξ0 ∗ NT�	z� over z ∈ �0�1�d.
By Lemma 7.2, with α = 1/2, all of these values are, off of a set of probability
exp�−T1/16�, within T−d/4−1/16 of 	ξ0 ∗NT�	0�, and hence so is 	eξ0 ∗NT�	0�.
This implies (8.19). ✷

The space C		0�1�×D1� admits a complete, separable metric. Consequently,
weak convergence in (8.16) implies the corresponding convergence in probabil-
ity, if, for eachT�ξ0 and� are coupled appropriately (see, e.g., [5], Theorem 3.3).
That is,

	Te ξ̂0 ∗Nt�	x� − 	2λ�1/2	� ∗Nt�	x� → 0 in probability as T → ∞�

uniformly in 	t� x� on compact sets. Integration of 	Te ξ̂0 ∗N�	x� and 	�∗N�	x�
over rectanglesD ⊂ D1, in the d space variables, immediately produces the fol-
lowing result. By 	Te ξ̂ ∗ Nt�±	D� and 	� ∗ Nt�±	D�, we mean the functions
	Te ξ̂ ∗Nt�	x�±, respectively, 	� ∗Nt�	x�±, integrated over x ∈ D.

Corollary 8.2. Fix d, M > 1 and ε > 0. For each T, there exist copies of
ξ0 and �, so that

lim
T→∞

P

(
sup

t∈�1/M�1�
sup
D∈�1

∣∣	Te ξ̂0∗Nt�−	D�−	2λ�1/2	�∗Nt�−	D�∣∣>ε)=0(8.20)

and

lim
T→∞

P

(
sup

t∈�1/M�1�
sup
D∈�1

∣∣	Te ξ̂0∗Nt�+	D�−	2λ�1/2	�∗Nt�+	D�∣∣>ε)=0�(8.21)

Theorem 3′, in Section 7, states that, for large T in d < 4, Tξ̂At 	D� and
Tξ̂Bt 	D� are, over t ∈ �1/M�M� and D ∈ �M, uniformly approximated by∑

x∈D∩�d
T1/2

	Tξ̂0 ∗Nt�	x�−, respectively,
∑

x∈D∩�d
T1/2

	Tξ̂0 ∗Nt�	x�+. Putting this
together with Corollary 8.2 produces the following uniform approximations on
ξAt 	D� and ξBt 	D�.
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Theorem 4. Let d < 4, and fix M > 1 and ε > 0. For each T, there exist
copies of ξ0 and �, so that

lim
T→∞

P

(
sup

t∈�1/M�M�
sup
D∈�M

∣∣Tξ̂At 	D� − 	2λ�1/2	� ∗Nt�−	D�∣∣ > ε

)
= 0(8.22)

and

lim
T→∞

P

(
sup

t∈�1/M�M�
sup
D∈�M

∣∣Tξ̂Bt 	D� − 	2λ�1/2	� ∗Nt�+	D�∣∣ > ε

)
= 0�(8.23)

By fixing t and D, one obtains Theorem 1 as a special case of Theorem 4.
One can also phrase Theorem 4 in terms of weak convergence, if one wishes.
In (8.22) and (8.23), it suffices to consider those D with a vertex at the origin;
the four quantities in (8.22), (8.23) can each be written as a function of the
opposite vertex. The limits can then be formulated in terms of weak conver-
gence, with respect to the uniform topology on compact sets, of continuous
functions from 	0�∞� × �d to �2.

We now demonstrate Theorem 4. The main estimates that are needed are
supplied by Theorem 3′ and Corollary 8.2. One also needs to do some tedious
but straightforward comparisons to coordinate these estimates.

Proof of Theorem 4. Since the arguments are the same for both parts,
we will just show (8.23). Note that

Tξ̂t	D� = M−d/4 T/Mξ̂Mt	M1/2D� for M> 1�(8.24)

Using (8.13) and (8.24), it is enough to show (8.23) for t ∈ �1/M�1� andD ∈ �1.
We claim, it suffices to show this for D′ ∈ �1, with D′ having vertices in �dT1/2 ;
we denote the set by �1�T1/2 . To see this, note that for any D ∈ �1, there is a
D′ ∈ �1�T1/2 , with D′ ∩ �dT1/2 = D ∩ �dT1/2 , so that the volume of the symmetric
difference D+D′ is at most 2d/T1/2. Since 	� ∗Nt�	x� is continuous in 	t� x�
(for almost all realizations), it is bounded on �1/M�1� ×D1, and so the same
is true for 	� ∗ Nt�+	D+D′�/�D+D′�, for �D+D� > 0. Replacing D by D′, in
(8.23), thus changes the second term by a random multiple of T−1/2, and leaves
the first term unchanged.

The display (8.23), with D ∈ �1�T1/2 replacing D ∈ �1, will follow immedi-
ately from Theorem 3′ and Corollary 8.2, once we have shown that

sup
t∈�1/M�1�

sup
D∈�1�T1/2

∣∣∣∣T−d/2 ∑
y∈D∩�d

T1/2

	Tξ̂0 ∗Nt�	y�+

−
∫
D
	Te ξ̂0 ∗Nt�	x�+ dx

∣∣∣∣ → 0

(8.25)

in probability as T → ∞. The reasoning here is similar to that for (8.19),
in the proof of Corollary 8.1. The convolutions on the left and on the right
are somewhat different, since T

e ξ̂0 on the left is defined on �dT1/2 (and so ∗ is
defined as a sum), whereas Tξ̂0 on the right has been extended to �d (and
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so ∗ is defined an an integral). Since eξ0	x� = ξ0	y� for x ∈ y − �0�1�d and
y ∈ �d, one can check that 	Te ξ̂0 ∗Nt�	x� is the average of 	Tξ̂0 ∗Nt�	z� over
z ∈ x+�0�T−1/2�d. By (7.19) and Lemma 7.2, with α = 1/2, all of these values
are, off of a set of probability exp�−T1/16� (not depending on t or x), within
T−1/16 of 	Tξ̂0 ∗ Nt�	y�, and hence so is 	Te ξ̂0 ∗ Nt�	x�. Integration over D
produces an error that is at most T−1/16. This implies (8.25). ✷

We now set out to show Proposition 8.1. The basic idea is as follows. By
the invariance principle in Proposition 8.2, TV̂	·� ⇒ 	2λ�1/2W	·� as T → ∞.
Convolution by N′ will be a continuous map if one truncates the tail of N′,
and the error involved in this truncation can be made as small as desired. By
employing a standard weak convergence result, one can therefore show that

	TV̂ ∗N′
·�	·� ⇒ 	2λ�1/2	W ∗N′

·�	·�(8.26)

on 	0�1� × %D1. On account of (8.11) and (8.14), this is equivalent to (8.16).
In Proposition 8.2, the domains of TV̂ and W are each �d. Convergence is

with respect to the uniform topology on compact sets of C	�d�.

Proposition 8.2. For all d,
TV̂	·� ⇒ 	2λ�1/2W	·� as T → ∞�(8.27)

The proof of Proposition 8.2, for general d, is similar to the proof for d = 1,
which is a special case of the standard invariance principle. Rather than go
into the proof in detail, we will briefly discuss related results in [13]. We will
also summarize the key steps for d = 1, in [4], and will indicate how they
extend to general d.

For d = 1, Proposition 8.2 is just a special case of the invariance princi-
ple, since ξ0	x�� x ∈ �, are i.i.d. with mean 0 and variance 2λ. For d = 2, the
analog of (8.27), on �0�1�2, is shown in Theorem 3 of [13] for i.i.d. random vari-
ables with finite variance. By intersecting %DM� M > 0, with each of the four
quadrants and treating each of them separately, the problem in Proposition
8.2 for d = 2 reduces to this setting. The extension of the invariance principle
to d ≥ 3 is briefly discussed in [13]. Theorem 3 in [13] is an application of an
earlier result in the paper on the convergence of Banach-valued random vari-
ables to the corresponding Banach-valued Brownian motion. In the proof of
the theorem, the dimension of the parameter space is effectively lowered from
2 to 1 by treating the evolution of the process along one of the directions as
the state of a corresponding process, whose state space consists of continuous
functions on �0�1� with the uniform topology. The extension, from d to d+ 1,
involves a similar induction argument. It is sketched in [13].

If one wishes, one can instead show Proposition 8.2 directly, using reason-
ing corresponding to that given in [4] for the one-dimensional case. The two
main steps are as follows. One first shows convergence of the joint distribu-
tions. This part proceeds as in d = 1, with the extension of the dimension not
affecting the argument. One then needs to show tightness of the sequence of
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probability measures. For this, one can apply the analog of Theorem 8.3 of [4].
The main condition in Theorem 8.3 is that, for fixed ε > 0, the probability of
an oscillation, of size at least ε, occurring over any interval of length δ, con-
verges to 0 as δ → 0. The analog of this condition in our setting, where such
intervals are replaced by cubes of length δ, is not difficult to show. Since ξ0	x�
is the difference of two independent mean-λ Poisson distributions at each x, it
is symmetric. So, using the reflection principle (as in Lemma 8.3 below), one
can show that the probability of a large fluctuation occurring in a cube is only
a fixed multiple of the probability of TV̂ attaining a large value at one of the
vertices. One can show this is small by employing second moments together
with Chebyshev’s inequality (as in Lemma 8.2).

We will break the work in showing (8.26), and hence Proposition 8.1, into
the following two steps. Lemma 8.1 is the analog of (8.26), with the integral
associated with ∗ restricted to the domain %DM. Convergence is with respect
to the uniform topology on compact sets for C		0�1� ×D1�.

Lemma 8.1. For all d and M,∫
%DM

TV̂	y�N′
·	· − y�dy ⇒ 	2λ�1/2

∫
%DM

W	y�N′
·	· − y�dy as T → ∞�(8.28)

The other step says that the contribution to the integral associated with ∗
is insignificant off of the set %DM.

Lemma 8.2. For all d and ε > 0,

P

(
sup
t∈�0�1�

sup
x∈%D1

∫
%Dc
M

�TV̂	y�N′
t	x− y��dy ≥ ε

)
→ 0(8.29)

uniformly in T as M → ∞. Similarly,

P

(
sup
t∈�0�1�

sup
x∈%D1

∫
%Dc
M

�W	y�N′
t	x− y��dy ≥ ε

)
→ 0(8.30)

as M → ∞.

The proof of Proposition 8.1 is immediate from Lemmas 8.1 and 8.2. Together,
(8.28)–(8.30) imply that∫

�d

TV̂	y�N′
·	· − y�dy ⇒ 	2λ�1/2

∫
�d
W	y�N′

·	· − y�dy�(8.31)

where ⇒ denotes weak convergence with respect to the uniform topology on
compact subsets of C		0�1�× %D1�. This is (8.26), which is equivalent to (8.16).

Proof of Lemma 8.1. For fixed M > 0, let G denote the linear map from
the space of continuous functions on %DM to the space of continuous functions
on 	0�1� × %D1, which is given by

	G	g��	t� x� =
∫
%DM

g	y�N′
t	x− y�dy�
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Denote by GL the map G where the domain of G	g� is restricted to �1/L�1� ×
%D1. We write ,·,%DM

and ,·,�1/L�1�×%D1
for the uniform metrics on the spaces of

continuous functions on %DM and �1/L�1� × %D1, respectively. Since

,GL	g�,�1/L�1�×%D1
≤ C	L�,g,%DM

for all g and appropriate C	L�, the map GL is continuous. Hence, so is G.
We know from Proposition 8.2 that TV̂	·� ⇒ 	2λ�1/2W	·� as T → ∞. Since

G is continuous, it follows from a standard result on weak convergence that

	G	TV̂��	·� ·� ⇒ 	2λ�1/2	G	W��	·� ·� as T → ∞�(8.32)

(See, e.g., Theorem 5.1 of [4].) The limit (8.32) is equivalent to (8.28). ✷

In order to demonstrate Lemma 8.2, we first need the following bounds on
sup�y�≤j �TV̂	y��� j ∈ �+, and sup�y�≤r �W	y��� r ∈ �+. Both bounds are repeated
applications of the reflection principle, and employ Chebyshev’s inequality
with the second moments of TV̂ and W. Here, 1 = 	1� � � � �1� ∈ �d and �·�∞
denotes the max norm on �d.

Lemma 8.3. For all d� ε > 0 and j ∈ �+,

P

(
sup

�y�∞≤j
�TV̂	y�� ≥ ε

)
≤ 2 · 4dP	TV̂	1j� ≥ ε��(8.33)

Similarly, for all r > 0,

P

(
sup

�y�∞≤r
�W	y�� ≥ ε

)
≤ 2 · 4dP	W	1r� ≥ ε��(8.34)

Proof. Since the proofs are similar, we demonstrate just (8.34). We first
note that it is enough to show

P

(
sup
y∈Hr

W	y� ≥ ε

)
≤ 2dP	W	1r� ≥ ε��(8.35)

where Hr is the set of y with �y�∞ ≤ r and having nonnegative coordinates.
(The different orthants contribute an additional factor 2d, and the absolute
value contributes the factor 2.)

In order to show (8.35), we repeatedly apply the reflection principle. Let
H1

r denote the subset of points y ∈ Hr�y = 	y1� � � � � yd�, with y1 = r. We will
show that

P

(
sup
y∈Hr

W	y� ≥ ε

)
≤ 2P

(
sup
y∈H1

r

W	y� ≥ ε

)
�(8.36)

To obtain (8.36), set

Y1 = inf�y1� W	y� = ε for some y ∈ Hr� ∧ r�(8.37)

Also, letY = 	Y1� � � � �Yd� denote the smallest point inHr at which this occurs
(ordering y1 first, then y2� � � � � down through yd). One has W	Y� = ε unless
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Y1 = r. Set Y′ = 	r�Y2� � � � �Yd�. When the first coordinate is varied, with the
other coordinates remaining fixed, the increments of W	y� are independent,
and so it follows by symmetry that

P	W	Y′� ≥ W	Y�� ≥ 1/2�(8.38)

This implies (8.36).
Proceeding inductively, one can continue in the same manner as above.

Starting onHi−1
r , the d−i+1-dimensional face, where the first i−1 coordinates

are all fixed and equal r, one can reflect, in the ith direction, to obtain

P

(
sup
y∈Hi−1

r

W	y� ≥ ε

)
≤ 2P

(
sup
y∈Hi

r

W	y� ≥ ε

)
�(8.39)

Continuing until i = d, where Hd
r = �1r�, one obtains (8.35) after putting the

inequalities together.
We point out that we are implicitly employing the strong Markov property

here. To justify its application for i = 1, for example, let W1	y1�� y1 ∈ �0� r�,
denote the process whose value at y1 is the map W1 from �0� r�d−1 to �, with

W1	y2� � � � � yd� = W	y1� � � � � yd��
that is, W1	y1� is given by the “slice” of W taken where the first coordinate
is y1. Assign the uniform topology on C	�0� r�d−1� to these states. Then, one
can check that W1	y1� is Feller continuous, and is hence strong Markov. The
justification for the other steps is analogous. ✷

Employing Lemma 8.3, we now show Lemma 8.2. This will complete the
proof of Proposition 8.1.

Proof of Lemma 8.2. Since the proofs of (8.29) and (8.30) are similar, we
will do just (8.30). We first note thatW	1j� is normally distributed with second
moment jd. So, by Chebyshev’s inequality,

P	W	1j� ≥ ej� ≤ jd/e2j�(8.40)

Set Ej = �y: �y�∞ ∈ 	j− 1� j��. It follows from (8.34) and (8.40) that

P

(
sup
y∈Ej

�W	y�� ≥ ej
)

≤ 2	4j�d/e2j�(8.41)

For x ∈ %D1� y ∈ Ej and j ≥ 4, one has �x − y�∞ ≥ j/2. It is therefore easy
to check that, for large enough j,

sup
t∈�0�1�

sup
x∈%D1
y∈Ej

�N′
t	x− y�� < e−j

2/9�(8.42)

Together with (8.41), (8.42) implies that

P

(
sup
t∈�0�1�

sup
x∈%D1

∫
Ej

�W	y�N′
t	x− y��dy ≥ 	2j�dej−j2/9

)
≤ 2	4j�d/e2j(8.43)
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for large enough j. Since ∪∞
j= M!/2Ej ⊃ %Dc

M, it follows from (8.43) that

P

(
sup
t∈�0�1�

sup
x∈%D1

∫
%Dc
M

�W	y�N′
t	x− y��dy ≥ e−M

2/40
)

≤ 2−M�

for large enough M. This clearly implies (8.30). ✷

9. Local behavior of �t. In this section, we are interested in the local
(or microscopic) behavior of ξt for large t, after space has been appropriately
scaled. On account of (1.8) [or (1.2)], the scaling given in (1.10), by ξ̌t	E� =
ξt	t1/4E�, is the right scaling. The goal here is to demonstrate Theorem 2,
which states that ξ̌t converges to a mixture of Poisson random fields.

We will divide the work needed for Theorem 2 into two main steps. In
Proposition 9.1, we break the evolution of ξr� r ∈ �0� t�, into the time intervals
�0� s� and �s� t�, where t = s + sα and α > 0. (Later on, we will choose α to
be slightly less than 1.) We examine there the behavior of sη̃r, which will be
a slight variant of the process sηr defined in Section 2, where the annihila-
tion between particles is suppressed starting at time s. The interval �s� t� has
been chosen so that it is (1) long enough so that particles will mix locally to
form Poisson random fields, but (2) short enough so that the density changes
insignificantly. In Proposition 9.2, we restore the annihilation between parti-
cles over �s� t�. On account of (2), ξt and sη̃t, will typically be the same locally.
It will follow from Proposition 9.2, that the Laplace functionals of ξt converge
to the desired limits, which implies Theorem 2.

In order to show Propositions 9.1 and 9.2, we employ the following two
lemmas. For Lemma 9.1, we partition �d by cubes D1�D2� � � � � each having
length  sβ!, where β ∈ 	0� α/2�. We then have �Di� =  sβ!d for each i; the
exact choice of the translates does not matter. (Later on, β will be slightly less
than 1/2, with β = α− 1/2.) The following bound limits the local fluctuations
ofKsα	x� as x varies. [Recall thatKt	x� is the random walk kernel introduced
in Section 2.]

Lemma 9.1. Fix d. For α > 0� β ∈ 	0� α/2� and large s,

∞∑
i=1

max
y�y′∈Di

�Ksα	x− y� −Ksα	x− y′�� ≤ C41s
−α/2−	d−1�β(9.1)

holds for all x and appropriate C41.

Proof. It follows without difficulty from (4.13), that for large s,

∞∑
i=1

max
y�y′∈Di

�Nsα	x− y� −Nsα	x− y′�� ≤ C42s
−α/2−	d−1�β(9.2)
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holds for all x and appropriate C42. It also follows immediately from (4.8) that
∞∑
i=1

max
y∈Di

�Nsα	x− y� −Ksα	x− y�� ≤ C11s
−α/2−dβ(9.3)

for all x. Together, (9.2) and (9.3) imply (9.1). ✷

We will employ Lemma 9.1 in Proposition 9.1 in the form of the following
corollary. We need the following terminology. Set

mi	x� = min
y∈Di

Ksα	x− y�� Mi	x� = max
y∈Di

Ksα	x− y��(9.4)

where Di� i = 1�2� � � � � are given above. Also, let I denote the smallest set of
indices of these cubes so that D2sγ ⊂ ∪i∈IDi, where γ ∈ 	α/2�1� is fixed. (Later
on, γ will be slightly less than 1/2.)

Corollary 9.1. Fix d. For α > 0� β ∈ 	α/4� α/2�� γ ∈ 	α/2�1� and large s,

	1−C43s
−α/2+β�s−dβ ≤ ∑

i∈I
mi	x� ≤

∞∑
i=1

Mi	x� ≤ 	1+C43s
−α/2+β�s−dβ(9.5)

holds for all x ∈ Dsγ and appropriate C43.

Proof. We consider the lower bound. Let Ai	x� denote the average of
Ksα	x− y� over y ∈ Di. By (9.1),

∞∑
i=1

	Ai	x� −mi	x�� ≤ C41s
−α/2−	d−1�β(9.6)

holds for large s. On the other hand, since �Di� ≤ sdβ for all i,
∞∑
i=1

Ai	x� ≥ s−dβ
∑
y∈�d

Ksα	y� = s−dβ�(9.7)

Also, using a simple large deviations estimate, one can check that∑
i/∈I
Ai	x� ≤ 2s−dβ

∑
y/∈Dsγ

Ksα	y� ≤ exp�−C44s
2γ−α�

for large s� x ∈ Dsγ and appropriate C44. Since γ > α/2, this last term goes to 0
quickly as s → ∞. Together, the above three estimates imply the lower bound
in (9.5). Only (9.6) and (9.7) are needed for the upper bound, which follows in
the same manner with the inequalities reversed. (The upper bound holds for
all x.) ✷

The process sη̃r alluded to earlier is the same as sηr, except that at time s,
one kills all of the particles outside ∪i∈IDi, whereDi and I are specified before
Corollary 9.1. Over 	s� t�, the process evolves without interaction between par-
ticles. The following lemma says that this modification will typically not affect
the configuration of particles in Dsγ at time t, which contains the regions we
are interested in.
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Lemma 9.2. Fix d. For α > 0 and γ ∈ 	α/2�1�,
P	sη̃At 	x� "= sη

A
t 	x� for some x ∈ Dsγ� ≤ exp�−C45s

2γ−α�(9.8)

and

P	sη̃Bt 	x� "= sη
B
t 	x� for some x ∈ Dsγ� ≤ exp�−C45s

2γ−α�(9.9)

for large s and appropriate C45.

Proof. SinceD2sγ ⊂ ∪i∈IDi, it suffices, for each case, to calculate an upper
bound on the expected number of particles in Dc

2sγ at time s, which are in
Dsγ at time t, for the process ηr. One can then apply Markov’s inequality.
The configurations of A and B particles at time s are dominated by Poisson
random fields with intensity λ. So, the argument reduces to elementary large
deviation estimates on the probability of a particle moving distance greater
than sγ over the time interval �s� s + sα�. The estimates required here are
similar to those in Lemma 7.3. ✷

Proposition 9.1 provides information on the behavior near 0 of sη̃t. (The
replacement of sηt by sη̃t simplifies the reasoning somewhat.) The main tools
in the proof of Proposition 9.1 are Corollaries 7.2 and 9.1. Corollary 7.2 allows
us to approximate ξAs 	Di� and ξBs 	Di� by  sβ!d	ξ0 ∗ Ns�	0�− and  sβ!d×
	ξ0 ∗Ns�	0�+ for all i ∈ I, since both β and γ will be slightly less than 1/2.
On account of Corollary 9.1, if one ignores annihilations over 	s� t�, the proba-
bilities of such particles being at a given site x ∈ Dsγ at time t do not depend
much on their exact locations withinDi at time s. Together with some approx-
imation, this behavior will imply (9.10) and (9.11) as t → ∞.

Proposition 9.1. Assume that d < 4, and set α = 1− 10−5 and γ = 1/2−
10−6. Then, for f ∈ C+

c 	�d�,

E

[
exp

{
− ∑

x∈�d
f	x/t1/4�sη̃At 	x�

} ∣∣∣∣�0

]

− exp
{
td/4	ξ0 ∗Nt�	0�−

∫
�d

	e−f	x� − 1�dx
}

(9.10)

→ 0 in probability as t → ∞
and

E

[
exp

{
− ∑

x∈�d
f	x/t1/4�sη̃Bt 	x�

} ∣∣∣∣�0

]

− exp
{
td/4	ξ0 ∗Nt�	0�+

∫
�d

	e−f	x� − 1�dx
}

(9.11)

→ 0 in probability as t → ∞�
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Proof. We will demonstrate just (9.11), since the argument for (9.10) is
the same. Set β = 1/2−10−5, and letD1�D2� � � � denote the cubes of length  sβ!
and I the set of indices that were introduced above. Then, DI def �= ∪i∈I Di ⊂
D3sγ . Also, set ε = 10−6, and let Hs denote the set of realizations where

�ξBs 	Di� −  sβ!d	ξ0 ∗Ns�	0�+� < sdβ−	d+ε/2�/4(9.12)

for all i ∈ I. Since γ < 1/2, it follows from Corollary 7.2 that

P	Hs� → 1 as s → ∞�(9.13)

Using (9.13), we first obtain upper bounds for the left side of (9.11). Since
the particles of sη̃r execute independent random walks over 	s� t�, and sη̃s = ξs
on DI,

E

[
exp

{
− ∑

x∈�d
f	x/t1/4�sη̃Bt 	x�

} ∣∣∣�0

]

= ∏
y∈DI

[ ∑
x∈�d

exp�−f	x/t1/4��Ksα	x− y�
]ξBs 	y�

(9.14)

= ∏
y∈DI

[
1+ ∑

x∈�d
	exp�−f	x/t1/4�� − 1�Ksα	x− y�

]ξBs 	y�
�

Define mi	x� as in (9.4) and set Zs = � sβ!d	ξ0 ∗Ns�	0� − sdβ−	d+ε/2�/4�+. On
Hs, Zs is a lower bound of ξBs 	Di�, for all i ∈ I. Grouping all B particles for
each Di together, one can therefore check that, on Hs, (9.14) is less than or
equal to ∏

i∈I

[
1+ ∑

x∈�d
	exp�−f	x/t1/4�� − 1�mi	x�

]Zs

≤ ∏
i∈I

exp
{
Zs

∑
x∈�d

	exp�−f	x/t1/4�� − 1�mi	x�
}

(9.15)

= exp
{
Zs

∑
x∈�d

[
	exp�−f	x/t1/4�� − 1�∑

i∈I
mi	x�

]}
�

By applying the lower bound for
∑

i∈I mi	x� in Corollary 9.1, with x ∈ Dsγ ,
one obtains the upper bound

exp
{
	1−C43s

−α/2+β�s−dβZs

∑
x∈�d

	exp�−f	x/t1/4�� − 1�
}

for large t. [Since f	·� has compact support, the values of mi	x� for x "∈ Dsγ

do not matter.] Substituting in for Zs, one can check that this is at most

exp
{
	1−C46s

−α/2+β��	ξ0 ∗Ns�	0� − s−	d+ε/2�/4�+

× ∑
x∈�d

	exp�−f	x/t1/4�� − 1�
}
�

(9.16)

for appropriate C46.
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Since f is continuous and has compact support,

t−d/4
∑
x∈�d

	exp�−f	x/t1/4�� − 1� →
∫
�d

	e−f	x� − 1�dx as t → ∞�(9.17)

One has β < α/2 and ε > 0, and so one can use this to write (9.16) as

exp
{
�c1� std/4	ξ0 ∗Ns�	0� + c2� s�+

∫
�d

	e−f	x� − 1�dx
}
�(9.18)

where c1� s → 1 and c2� s → 0 as s → ∞. Since f	x� ≥ 0 for all x, (9.18) is
asymptotically equivalent to the expression obtained by dropping the terms
c1� s and c2� s. So, combining (9.13)–(9.18), one sees that[

E

[
exp

{
−∑

x

f	x/t1/4�sη̃Bt 	x�
} ∣∣∣�s

]

− exp
{
td/4	ξ0 ∗Ns�	0�+

∫
�d

	e−f	x� − 1�dx
}]+

(9.19)

→ 0 in probability as t → ∞�

Taking the conditional expectation of the left side of (9.19) with respect to �0
produces the same expression as in (9.19), but with �0 replacing �s. Moreover,
it follows from Lemma 7.1 that

P	�	ξ0 ∗Nt�	0�+ − 	ξ0 ∗Ns�	0�+� ≥ t−	d+1−α�/4� ≤ 2 exp�−C33t
	1−α�/2�(9.20)

for large t; note that α < 1. Together, (9.19)–(9.20) imply that[
E

[
exp

{
−∑

x

f	x/t1/4�sη̃Bt 	x�
} ∣∣∣�0

]

− exp�td/4	ξ0 ∗Nt�	0�+
∫
�d

	e−f	x� − 1�dx�
]+

(9.21)

→ 0 in probability as t → ∞�

This is the desired upper bound for the left side of (9.11).
We still need to show the analog of (9.21), but with �·�− replacing �·�+ on

the left side of (9.21). The argument for this direction is essentially the same
as before. We define Mi	x� as in (9.4), and set Z′

s = � sβ!d	ξ0 ∗ Ns�	0� +
sdβ−	d+ε/2�/4�+. Reasoning as in (9.14) through the first line of (9.15), one
obtains that, on Hs,

E

[
exp

{
− ∑

x∈�d
f	x/t1/4�sη̃Bt 	x�

} ∣∣∣�s

]

≥ ∏
i∈I

[
1+ ∑

x∈�d
	exp�−f	x/t1/4�� − 1�Mi	x�

]Z′
s

�

(9.22)
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Note that the process sη̃t rather than sηt is needed for (9.22), because the
above product is restricted to i ∈ I. Since f has compact support, one can
check, using a standard version of the local central limit theorem, that∑

x∈�d
	exp�−f	x/t1/4�� − 1�Mi	x� ≤ C47s

d	1−2α�/4

for large t and appropriate C47. The right side of (9.22) is therefore at least

exp
{
	1+C47s

d	1−2α�/4�Z′
s

∑
x∈�d

[	exp�−f	x/t1/4�� − 1�∑
i∈I
Mi	x�]}�

which is the analog of the last line in (9.15). Since α > 1/2, the termC47s
d	1−2α�/4

is negligible.
From here on, the arguments leading to (9.21) can be copied, with the upper

bound for
∑∞

i=1M
i	x� in Corollary 9.1, and Lemma 7.1 being applied. In place

of (9.21), one obtains[
E

[
exp

{
− ∑

x∈�d
f	x/t1/4�sη̃Bt 	x�

} ∣∣∣�0

]

− exp�td/4	ξ0 ∗Nt�	0�+
∫
�d

	e−f	x� − 1�dx�
]−

(9.23)

→ 0 in probability as t → ∞�

Together, (9.21) and (9.23) imply (9.11).
In Proposition 9.2, we replace sη̃t, in (9.10) and (9.11), with ξt; we also

examine the joint behavior of ξAt and ξBt . In addition to Proposition 9.1, we
employ Lemma 9.2, which allows us to compare sη̃t with sηt. On account of
(1.8), the decrease in the density ρ	t� is smooth, and so comparison of sηt with
ξt is also not difficult; the reasoning for this follows [2]. Together, these results
will imply (9.25).

Proposition 9.2. Assume that d < 4. Then, for f = 	f1� f2�, with fi ∈
C+
c 	�d�,

E

[
exp

{
− ∑

x∈�d
	f1	x/t1/4�ξAt 	x� + f2	x/t1/4�ξBt 	x��

} ∣∣∣�0

]

− exp
{
td/4

[
	ξ0 ∗Nt�	0�−

∫
�d

	e−f1	x� − 1�dx(9.25)

+ 	ξ0 ∗Nt�	0�+
∫
�d

	e−f2	x� − 1�dx
]}

→ 0

in probability as t → ∞�

Proof. We first compare sη̃t and ξt. Recall that t = s+sα; as in Proposition
9.1, we set α = 1− 10−5. It therefore follows from (1.8) that

td/4	ρ	s� − ρ	t�� ≤ C48t
−10−5

(9.26)
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for large t and appropriate C48. Consequently, for given M> 0,

E�sηBt 	DMt1/4�� −E�ξBt 	DMt1/4�� ≤ 2C48M
dt−10

−5
�(9.27)

The particles of ξt form a subset of those of sηt. Therefore, by (9.27) and
Markov’s inequality,

P	sηBt 	x� "= ξBt 	x� for some x ∈ DMt1/4� → 0 as t → ∞�(9.28)

The analogous limit holds for A particles as well. It follows from this and
Lemma 9.2 that

P	sη̃At 	x� "= ξAt 	x� for some x ∈ DMt1/4� → 0 as t → ∞�

P	sη̃Bt 	x� "= ξBt 	x� for some x ∈ DMt1/4� → 0 as t → ∞�
(9.29)

We now derive (9.25) from (9.10) and (9.11). Let Gt denote the event where
	ξ0 ∗Nt�	0� ≥ 0. It follows from (9.10) and (9.11) that, for fi ∈ C+

c 	�d�,
1Gt

∑
x∈�d

f1	x/t1/4�sη̃At 	x� → 0 in probability as t → ∞�

1Gc
t

∑
x∈�d

f2	x/t1/4�sη̃Bt 	x� → 0 in probability as t → ∞�
(9.30)

where 1G denotes the indicator function of the event G. Consequently, by
(9.29),

1Gt

∑
x∈�d

f1	x/t1/4�ξAt 	x� → 0 in probability as t → ∞�

1Gc
t

∑
x∈�d

f2	x/t1/4�ξBt 	x� → 0 in probability as t → ∞�
(9.31)

So, in order to demonstrate (9.25), it suffices to show the analogous limit,

E

[
exp

{
−1Gc

t

∑
x∈�d

f1	x/t1/4�ξAt 	x� − 1Gt

∑
x∈�d

f2	x/t1/4�ξBt 	x�
} ∣∣∣�0

]

− exp
{
td/4

[
	ξ0 ∗Nt�	0�−

∫
�d

	e−f1	x� − 1�dx(9.32)

+ 	ξ0 ∗Nt�	0�+
∫
�d

	e−f2	x� − 1�dx
]}

→ 0

in probability as t → ∞�

On Gt, the left side of (9.32) reduces to the left side of (9.11), if f2 is replaced
by f and ξBt 	x� by sη̃

B
t 	x�; similarly, on Gc

t , the left side of (9.32) reduces to
the left side of (9.10). So, (9.32) follows from (9.10), (9.11) and (9.29). This
demonstrates the proposition. ✷

We now demonstrate Theorem 2. We know from Corollary 8.1 that

td/4	ξ0 ∗Nt�	0� ⇒ bdZ0�1 as t → ∞�(9.33)
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where Z0�1 has a standard normal distribution, and bd = 	2λ�1/2	4π�−d/4.
Taking expectations in (9.25), and substituting in (9.33) implies that

E

[
exp

{
− ∑

x∈�d

(
f1	x/t1/4�ξAt 	x� + f2	x/t1/4�ξBt 	x�

)}]

→ E

[
exp

{
bd

(
Z−

0�1

∫
�d

	e−f1	x� − 1�dx+Z+
0�1

∫
�d

	e−f2	x� − 1�dx
)}](9.34)

as t → ∞, for fi ∈ C+
c 	�d�. One can rescale ξt as in (1.10), setting ξ̌t	E� =

ξt	t1/4E�. One can also rewrite the left side of (9.34), viewing ξ̌At and ξ̌Bt as
random measures on �d. Doing this, one can rephrase (9.34) as

E

[
exp

{
−
∫
�d
f1	x�ξ̌At 	dx� −

∫
�d
f2	x�ξ̌Bt 	dx�

}]

→ E

[
exp

{
bd

(
Z−

0�1

∫
�d

	e−f1	x� − 1�dx+Z+
0�1

∫
�d

	e−f2	x� − 1�dx
)}](9.35)

as t → ∞. The right side of (9.35) is the Laplace functional of a convex combi-
nation of Poisson random fields with two types of particles, where the intensi-
ties are given by bdZ

−
0�1 and bdZ

+
0�1. Letting F denote the distribution function

of bdZ0�1, we can write this random field as �F, as in (1.11). It follows from
(9.35) that the pair 	ξ̌At � ξ̌Bt � converges weakly to �F, on the Borel measures
on �d with finite mass on compact subsets. That is,

	ξ̌At � ξ̌Bt � ⇒ �F as t → ∞�(9.36)

The limit in (9.36) is the same as that in (1.12). This completes the proof of
Theorem 2. ✷
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