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In this paper, we are interested in a new type of mean-field, non-
Markovian stochastic control problems with partial observations. More pre-
cisely, we assume that the coefficients of the controlled dynamics depend
not only on the paths of the state, but also on the conditional law of the state,
given the observation to date. Our problem is strongly motivated by the recent
study of the mean field games and the related McKean–Vlasov stochastic con-
trol problem, but with added aspects of path-dependence and partial obser-
vation. We shall first investigate the well-posedness of the state-observation
dynamics, with combined reference probability measure arguments in non-
linear filtering theory and the Schauder fixed-point theorem. We then study
the stochastic control problem with a partially observable system in which
the conditional law appears nonlinearly in both the coefficients of the sys-
tem and cost function. As a consequence, the control problem is intrinsically
“time-inconsistent”, and we prove that the Pontryagin stochastic maximum
principle holds in this case and characterize the adjoint equations, which turn
out to be a new form of mean-field type BSDEs.

1. Introduction. In this paper, we are interested in the following mean-field-
type stochastic control problem, on a given filtered probability space (�,F,P;F=
{Ft }t≥0): ⎧⎪⎪⎨⎪⎪⎩

dXt = E
{
b

(
t, ϕ·∧t ,E[Xt |Gt ], u)}|ϕ=X,u=ut dt

+E
{
σ

(
t, ϕ·∧t ,E[Xt |Gt ], u)}|ϕ=X,u=ut dBt ,

X0 = x,

(1.1)
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where B is an F-Brownian motion, b and σ are measurable functions satisfying
reasonable conditions, ϕ·∧t and X·∧t denote the continuous function and process,

respectively, “stopped” at t ; G
�= {Gt }t≥0 is a given filtration that could involve

the information of X itself, and u = {ut : t ≥ 0} is the “control process”, assumed
to be adapted to a filtration H = {Ht }t≥0, where Ht ⊆ FX

t ∨ Gt , t ≥ 0. We note
that if Gt = {∅,�}, for all t ≥ 0 [i.e., the conditional expectation in (1.1) becomes
expectation], Ht = FX

t , and coefficients are “Markovian” (i.e., ϕ·∧t = ϕt ), then the
problem becomes a stochastic control problem with McKean–Vlasov dynamics
and/or a Mean-field game (see, e.g., [5, 7, 9] in its “forward” form, and [2–4] in
its “backward” form). On the other hand, when G is a given filtration, this is the
so-called conditional mean-field SDE (CMFSDE for short) studied in [8]. We note
that in that case the conditioning is essentially “open-looped”.

The problem that this paper is particularly focusing on is when Gt = FY
t , t ≥ 0,

where Y is an “observation process” of the dynamics of X, that is, the case when
the pair (X,Y ) forms a “close-looped” or “coupled” CMFSDE. More precisely,
we shall consider the following partially observed controlled dynamics (assuming
b = 0 for notational simplicity):{

dXt = E
{
σ

(
t, ϕ·∧t ,E

[
Xt |FY

t

]
, u

)}|ϕ=X,u=ut dB1
t ;

dYt = h(t,Xt) dt + σ̂ dB2
t ; X0 = x,Y0 = 0.

(1.2)

Here, X is the “signal” process that can only be observed through Y , (B1,B2)

is a standard Brownian motion and σ̂ is a constant. We should note that in SDEs
(1.2) the conditioning filtration FY now depends on X itself, therefore, it is much
more convoluted than the CMFSDE we have seen in the literature. Furthermore,
the path-dependent nature of the coefficients makes the SDE essentially non-
Markovian. Such form of CMFSDEs, to the best of our knowledge, has not been
explored fully in the literature.

Our study of the CMFSDE (1.2) is strongly motivated by the following varia-
tion of the mean-field game in a finance context, which would result in a type of
stochastic control problem involving a controlled dynamics of such a form. Con-
sider a firm whose fundamental value, under the risk neutral measure P0 with zero
interest, evolves as the following SDE with “stochastic volatility” σ = σ(t,ω),
(t,ω) ∈ [0,∞) × �:

(1.3) Xt = x +
∫ t

0
σ(s, ·) dB1

s , t ≥ 0,

where B1 is the intrinsic noise from inside the firm. We assume that such funda-
mental value process cannot be observed directly, but can be observed through a
stochastic dynamics (e.g., its stock value) via an SDE:

(1.4) Yt =
∫ t

0
h(s,Xs) ds + B2

t , t ≥ 0,
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where B2 is the noise from the market, which we assume is independent of B1

(this is by no means necessary, we can certainly consider the filtering problem
with correlated noises).

Now let us assume that the volatility σ in (1.3) is affected by the actions of a
large number of investors, and all can only make decisions based on the informa-
tion from the process Y . Therefore, similar to [7] (or [13]) we begin by considering
N individual investors, and assume that ith investor’s private state dynamics is of
the form:

(1.5) dUi
t = σ i(t,Ui·∧t , ν̄

N
t , αi

t

)
dB

1,i
t , t ≥ 0,1 ≤ i ≤ N,

where B1,i ’s are independent Brownian motions, and ν̄N
t denotes the empirical

conditional distribution of U = (U1, . . . ,UN), given the (common) observation

Y = {Yt : t ≥ 0}, that is, ν̄N
t

�= 1
N

∑N
j=1 δ

E[Uj
t |FY

t ], where δx denotes the Dirac mea-

sure at x. More precisely, the notation in (1.5) means (see, e.g., [7])

σ i(t,Ui·∧t , ν̄
N
t , αi

t

) �=
∫
R

σ̃ i(t,Ui·∧t , y, αi
t

)
ν̄N
t (dy)

= 1

N

N∑
j=1

∫
R

σ̃ i(t,Ui·∧t , y, αi
t

)
δ
E[Uj

t |FY
t ](dy)(1.6)

= 1

N

N∑
j=1

σ̃ i(t,Ui·∧t ,E
[
U

j
t |FY

t

]
, αi

t

)
.

Here, σ̃ i ’s are the functions defined on appropriate (Euclidean) spaces.
We now assume that each investor chooses an individual strategy to minimize

the cost; the cost functional of the ith agent is of the form:

(1.7) J i(αi) �= E

{
	i(Ui

T

) +
∫ T

0
Li(t,Ui·∧t , ν̄

N
t , αi

t

)
dt

}
, 1 ≤ i ≤ N.

Following the argument of Lasry and Lions [15] (see also [5–8, 13]), if we assume
that the game is symmetric, that is, σ̃ i = σ̃ ,Li and 	i = 	 are independent of i,
and that the number of investors N converges to +∞, then under suitable technical
conditions, one could find (approximate) Nash equilibriums through a limiting
dynamics, and assign a representative investor the unified strategy α, determined
by a conditional McKean–Vlasov-type SDE:

(1.8) dXt = σ(t,X·∧t ,μt , αt ) dB1
t , t ≥ 0,

where μ is the conditional distribution of Xt given FY
t , and

σ(t,X·∧t ,μt , ut )
�=

∫
σ(t,X·∧t , y, ut )μt (dy)

= E
{
σ

(
t, ϕ·∧t ,E

[
Xt |FY

t

]
, u

)}| ϕ=X,
u=ut

.
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Furthermore, the value function becomes, with similar notation,

(1.9) V (x) = inf
α

J (α)
�= E

{
	(XT ) +

∫ T

0
L(t,X·∧t ,μt , αt ) dt

}
.

We note that (1.8) and (1.9), together with (1.4), form a stochastic control problem
involving CMFSDE dynamics and partial observations, as we are proposing.

The main objective of this paper is two-fold: We shall first study the exact mean-
ing as well as the well-posedness of the dynamics, and then investigate the stochas-
tic maximum principle for the corresponding stochastic control problem. For the
wellposedness of (1.2), we shall use a scheme that combines the idea of [9] and
the techniques of nonlinear filtering, and prove the existence and uniqueness of the
solution to SDE (1.8) via Schauder’s fixed-point theorem on P2(�), the space of
probability measures with finite second moment, endowed with the 2-Wasserstein
metric. We note that the important elements in this argument include the so-called
reference probability space that is often seen in the nonlinear filtering theory and
the Kallianpur–Striebel formula (cf., e.g., [1, 21]), which enable us to define the
solution mapping.

Our next task is to prove Pontryagin’s maximum principle for our stochastic
control problem. The main idea is similar to earlier works of the first two authors
[4, 16], with some significant modifications. In particular, since in the present case
the control problem can only be carried out in a weak form, due to the lack of
strong solution of CMFSDE, the existence of the common reference probability
space is essential. Consequently, extra efforts are needed to overcome the com-
plexity caused by the change of probability measures, which, together with the
path-dependent nature of the underlying dynamic system, makes even the first or-
der adjoint equation more complicated than the traditional ones. To the best of our
knowledge, the resulting mean-field backward SDE is new.

The paper is organized as follows. In Section 2, we provide all the necessary
preparations, including some known facts of nonlinear filtering. In Sections 3
and 4, we prove the well-posedness of the partially observable dynamics. In Sec-
tion 5, we introduce the stochastic control problem, and in Section 6 we study the
variational equations and give some important estimates. Finally, in Section 7 we
prove the Pontryagin maximum principle.

2. Preliminaries. Throughout this paper, we consider the canonical space

(�,F), where �
�= C0([0,∞);R2d) = {ω ∈ C([0,∞);R2d) : ω0 = 0}, and F be

its topological σ -field. Let F = {Ft }t≥0 be the natural filtration on �, that is, for

each t ≥ 0, Ft is the topological σ -field of the space �t
�= {ω(· ∧ t) : ω ∈ �}.

For simplicity, throughout this paper we assume d = 1, and that all the processes
are 1-dimensional, although the higher dimensional cases can be argued similarly
without substantial difficulties. Furthermore, we let P(�) denote the space of all
probability measures on (�,F), and for each P ∈ P(�), we assume that F is
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P-augmented so that the filtered probability space (�,F,P;F) satisfies the usual
hypotheses.

Next, for given T > 0 we denote CT = C([0, T ]) endowed by the supremum
norm ‖ · ‖CT

, and let B(CT ) be its topological σ -field. Consider now the space
of all probability measures on (CT ,B(CT )), denoted by P(CT ), and for p ≥ 1
we let Pp(CT ) ⊆ P(CT ) be those that have finite pth moment. We recall that
the p-Wasserstein metric on Pp(CT ) is defined as a mapping Wp : Pp(CT ) ×
Pp(CT ) �→R+ such that, for all μ,ν ∈ Pp(CT ),

Wp(μ,ν)
�= inf

{(∫
C2

T

‖x − y‖p
CT

π(dx, dy)

) 1
p :

(2.1)

π ∈ Pp

(
C2

T

)
with marginals μ and ν

}
.

In this paper, we shall use the 2-Wasserstein metric W2, and abbreviate
(P2(CT ),W2) by P2(CT ). Since CT is a separable Banach space, it is known
that P2(CT ) is a separable and complete metric space. Furthermore, it is known
that (cf., e.g., [19]), for μn,μ ∈ P2(CT )

lim
n→∞W2(μn,μ) = 0

⇐⇒ μn
w→μ in P2(CT ) and, as N → +∞,(2.2)

sup
n

∫
�

‖ϕ‖2
CT

I
{‖ϕ‖CT

≥ N
}
μn(dϕ) → 0.

Next, for any P ∈ P(�), p,q ≥ 1, any sub-filtration G ⊆ F, and any Banach
space X, we denote Lp(P;X) to be all X-valued Lp-random variables under P.
In particular, we denote by Lp(P;R) to be all real valued Lp-random variables
under P. Further, we denote by L

p
G(P;Lq([0, T ])) the Lp-space of all G-adapted

processes η, such that

(2.3) ‖η‖p,q,P
�=

{
EP

[∫ T

0
|ηt |q dt

]p/q}1/p

< ∞.

If p = q , we simply write L
p
G(P; [0, T ]) �= L

p
G(P;Lp([0, T ])). Finally, we define

L∞−
G (P; [0, T ]) �= ⋂

p>1 L
p
G(P; [0, T ]) and L ∞−

G (P;CT )
�= ⋂

p>1 L
p
G(P;CT ),

where L
p
G(P;CT ) is the space of all continuous, F-adapted, processes ξ = {ξt }

such that ‖ξ‖CT
∈ Lp(P;R). We will often drop “P” from the subscript/superscript

when the context is clear.
We now give a more precise description of the SDEs (1.2), in terms of the stan-

dard McKean–Vlasov SDE. Again we consider only the case b = 0, and we assume
further that σ̂ = 1 in (1.2) for simplicity.

We begin by introducing some notation. Let X be the state process and Y

the observation process, defined on (�,F,P), for some P ∈ P(�). We denote
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the “filtered” state process by U
X|Y
t = EP[Xt |FY

t ], t ≥ 0. Since (as we show in
Lemma 3.1 below) the process UX|Y is continuous, we denote its law under P on
CT by μX|Y = P ◦ [UX|Y ]−1 ∈ P(CT ). Next, let Pt(ϕ) = ϕ(t), ϕ ∈ CT , t ≥ 0, be
the projection mapping, and define μ

X|Y
t = μX|Y ◦ Pt

−1. Then, for any ϕ ∈ CT ,
and u ∈ R, we can write

E
[
σ

(
t, ϕ·∧t ,E

[
Xt |FY

t

]
, u

)] =
∫

σ(t, ϕ·∧t , y, u)μ
X|Y
t (dy)

�= σ
(
t, ϕ·∧t ,μ

X|Y
t , u

)
.

We should note that since the dynamics X is nonobservable, the decision of the
controller can only be made based on the information observed from the process Y .
Therefore, it is reasonable to assume that the control process u is FY = {FY

t }t≥0
adapted (or progressively measurable). We should remark that, for a given such
control, it is by no means clear that the state-observation SDEs will have a strong
solution on a prescribed probability space, as we shall see from our well-posedness
result in the next sections. We therefore consider a “weak formulation” which we
now describe. Consider the pairs (P, u), where P ∈ P(�), u ∈ L2

F(P; [0, T ]), such
that the following SDEs are well defined:

Xt = x +
∫ t

0
EP

[
σ

(
s, ϕ·∧s,E

P
[
Xs |FY

s

]
, z

)]∣∣∣
ϕ=X,z=us

dB1
s(2.4)

= x +
∫ t

0

∫
R

σ(s,X·∧s, y, us)μs(dy) dB1
s

= x +
∫ t

0
σ(s,X·∧s,μs, us) dB1

s ,

Yt =
∫ t

0
h(s,Xs) ds + B2

t , t ≥ 0,(2.5)

where (B1,B2) is a standard 2-dimensional Brownian motion under P, and μt(·) �=
P ◦ EP[Xt |FY

t ]−1(·) is the distribution, under P, of the conditional expectation of
Xt , given FY

t . We note that we do not require that the solution to (2.4) and (2.5)
(or probability P for given u) be unique(!). Now let U be a convex subset of Rk .
For simplicity, assume k = 1.

DEFINITION 2.1. A pair (P, u) ∈ P(�) × L2
F(P; [0, T ]) is called an “admis-

sible control” if:

(i) ut ∈ U , for all t ∈ [0, T ], and B = (B1,B2) is a (F,P)-Brownian motion;
(ii) there exist processes (X,Y ) ∈ L2

F(P; [0, T ]) satisfying SDEs (2.4) and
(2.5); and

(iii) u ∈ L∞−
FY (P; [0, T ]).

We shall denote the set of all admissible controls by Uad. For simplicity, we
often write u ∈ Uad, and denote the associated probability measure(s) P by Pu, for
u ∈ Uad.
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REMARK 2.1. As we shall see later, under our standing assumptions to every
control u ∈ Uad there is only one probability measure Pu associated. We should
note, however, that unlike the traditional filtering problem, the main difficulty of
SDE (2.4)–(2.5) lies in the mutual dependence between the solution pair Xu and Y ,
via the law of conditional expectation μu

t = Pu◦EPu[Xu
t |FY

t ]−1 in the coefficients.
Moreover, the requirement that u is FY -adapted adds an additional seemingly “cir-
cular” nature to the problem. Thus, the well-posedness of the problem is far from
obvious, and will be the main subject of Section 3.

We note that under the weak formulation the state-observation processes
(Xu,Y ) are often defined on different probability spaces. To facilitate our dis-
cussion we shall designate a common space on which all the controlled dynamics
can be evaluated. In light of the nonlinear filtering theory, we make the following
assumption.

ASSUMPTION 2.1. There exists a probability measure Q0 on (�,F), such
that under Q0, (B1, Y ) is a 2-dimensional Brownian motion, where Y is the obser-
vation process.

We note that the probability measure Q0 is commonly known as the “reference
probability measure” in nonlinear filtering theory. The existence of such measure
can be argued once the existence of the weak solution of (2.4)–(2.5) is known.

Indeed, suppose that u ∈ Uad and Pu ∈ P(�) is the associated probability such
that the SDEs (2.4) and (2.5) have a solution (Xu,Y ) on (�,F,Pu). Consider the
following SDE:

(2.6) L̄t = 1 −
∫ t

0
h

(
s,Xu

s

)
L̄s dB2

s = 1 +
∫ t

0
L̄s dZu

s ,

where Zu
t = − ∫ t

0 h(s,Xu
s ) dB2

s . We denote its solution by L̄u. Then, under appro-
priate conditions on h, both Zu and L̄u are Pu-martingales, and L̄u is the stochastic
exponential

(2.7) L̄u
t = exp

{
−

∫ t

0
h

(
s,Xu

s

)
dB2

s − 1

2

∫ t

0

∣∣h(
s,Xu

s

)∣∣2 ds

}
.

Thus, the Girsanov theorem suggests that dQ0 = L̄u
T dPu defines a new probabil-

ity measure Q0 under which (B1, Y ) is a Brownian motion, hence a “reference
measure”.

The essence of Assumption 2.1 is, therefore, to assign a prior distribution on
the observation process Y before the well-posedness of the control system is es-
tablished. In fact, with such an assumption one can begin by assuming that (B1, Y )

is the canonical process [i.e., (B1
t , Yt )(ω) = ω(t), ω ∈ �] and Q0 the Wiener mea-

sure on (�,F), and then proceed to prove the existence of the weak solution of
the system (2.4) and (2.5). This scheme will be carried out in details in Section 3.
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Continuing with our control problem, for any u ∈ Uad, we define the cost func-
tional by

J (t, x;u)
�= EQ0

{∫ T

t
f

(
s,Xu·∧s,μ

u
s , us

)
ds + 	

(
Xu

T ,μu
T

)}

= EQ0
{∫ T

t
EPu[

f
(
s, ϕ·∧s,E

Pu[
Xu

s |FY
s

]
, u

)]∣∣∣
ϕ=Xu,u=us

ds(2.8)

+EPu[
	

(
x,EPu[

Xu
T |FY

T

])]|x=Xu
T

}
,

and we denote the value function as

(2.9) V (t, x)
�= inf

u∈Uad
J (t, x;u).

We shall make use of the following standing assumptions on the coefficients.

ASSUMPTION 2.2. (i) The mappings (t, ϕ, x, y, z) �→ σ(t, ϕ·∧t , y, z), h(t, x),
f (t, ϕ·∧t , y, z), and 	(x,y) are bounded and continuous, for (t, ϕ, x, y, z) ∈
[0, T ] ×CT ×R×R× U .

(ii) The partial derivatives ∂yσ , ∂zσ , ∂yf , ∂zf , ∂xh, ∂x	, ∂y	 are bounded and
continuous, for (ϕ, x, y, z) ∈CT ×R×R× U , uniformly in t ∈ [0, T ].

(iii) The mappings ϕ �→ σ(t, ϕ·∧t , y, z), f (t, ϕ·∧t , y, z), as functionals from CT

to R, are Fréchet differentiable. Furthermore, there exists a family of measures
{�(t, ·)}|t∈[0,T ], satisfying 0 ≤ ∫ T

0 �(t, ds) ≤ C, for all t ∈ [0, T ], such that both
derivatives, denoted by Dϕσ = Dϕσ(t, ϕ·∧t , y, z) and Dϕf = Dϕf (t, ϕ·∧t , y, z),
respectively, satisfy

(2.10)
∣∣Dϕσ(t, ϕ·∧t , y, z)(ψ)

∣∣ + ∣∣Dϕf (t, ϕ·∧t , y, z)(ψ)
∣∣ ≤

∫ T

0

∣∣ψ(s)
∣∣�(t, ds),

ψ ∈ CT , uniformly in (t, ϕ, y, z).
(iv) The mapping y �→ y∂yσ (t, ϕ·∧t , y, z) is uniformly bounded, uniformly in

(t, ϕ, z).
(v) The mapping x �→ x∂xh(t, x) is bounded, uniformly in (t, x) ∈ [0, T ] ×R.
(vi) The mappings x �→ xh(t, x), x2∂xh(t, x) are bounded, uniformly in (t, x) ∈

[0, T ] ×R.

We note that some of the assumptions above are merely technical and can be
improved, but we prefer not to dwell on such technicalities and focus on the main
ideas instead.

REMARK 2.2. Note that if (t, ϕ, y, z) �→ φ(t, ϕ·∧t , y, z) is a function defined
on [0, T ] × CT × R × R satisfying Assumption 2.2(i), (ii), then for any μ ∈
P2(CT ), we can define a function on the space [0, T ] × � ×CT × P2(CT ) × U :

(2.11) φ̄(t,ω,ϕ·∧t ,μt , z)
�=

∫
R

φ(t, ϕ·∧t , y, z)μt(dy),
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where μt = μ ◦ P −1
t and Pt(ϕ)

�= ϕ(t), (t, ϕ) ∈ [0, T ] ×CT . Then φ̄ must satisfy
the following Lipschitz condition:∣∣φ̄(

t, ϕ1·∧t ,μ
1
t , z

1) − φ̄
(
t, ϕ2·∧t ,μ

2
t , z

2)∣∣
(2.12)

≤ K
{∥∥ϕ1 − ϕ2∥∥

Ct
+ W2

(
μ1,μ2) + ∣∣z1 − z2∣∣},

where ‖ · ‖Ct
is the sup-norm on C([0, t]) and W2(·, ·) is the 2-Wasserstein metric.

REMARK 2.3. The Fréchet derivatives Dϕσ and Dϕf by definition belong to

C∗
T

�= M [0, T ], the space of all finite signed Borel measures on [0, T ], endowed
with the total variation norm | · |TV (with a slight abuse of notation, we still denote
it by | · |). Thus, the Assumption 2.2(iii) amounts to saying that, as measures, for
any (t, ϕ, y, z),

(2.13)
∣∣Dϕσ(t, ϕ·∧t , y, z)(ds)

∣∣ + ∣∣Dϕf (t, ϕ·∧t , y, z)(ds)
∣∣ ≤ �(t, ds).

This inequality will be crucial in our discussion in Section 7.

To end this section, we recall some basic facts in nonlinear filtering theory,
adapted to our situation. We begin by considering the inverse Girsanov kernel of
L̄u defined by (2.7):

(2.14) Lu
t

�= [
L̄u

t

]−1 = exp
{∫ t

0
h

(
s,Xu

s

)
dYs − 1

2

∫ t

0

∣∣h(
s,Xu

s

)∣∣2 ds

}
,

t ∈ [0, T ]. Then Lu is a Q0-martingale, dPu = Lu
T dQ0, and Lu satisfies the fol-

lowing SDE on (�,F,Q0):

(2.15) Lt = 1 +
∫ t

0
h(s,Xs)Ls dYs, t ∈ [0, T ].

Let us now denote L = Lu for simplicity. An important ingredient that we are
going to use frequently is the SDEs known as the Kushner–Stratonovic or Fujisaki–
Kallianpur–Kunita (FKK) equation for the “normalized conditional probability”.
Let us denote

(2.16) St
�= EQ0[

LtXt |FY
t

]
, S0

t

�= EQ0[
Lt |FY

t

]
, t ≥ 0.

Since under Q0 the process (B1, Y ) is a Brownian motion, the σ -field FY
t,T and

FY
t ∨FB1

t are independent, where FY
t,T

�= σ {Yr − Yt : t ≤ r ≤ T }. It is standard to
show that [in light of (2.15)] S and S0 satisfy the following SDEs:

(2.17) S0
t = 1 +

∫ t

0
EQ0[

h(s,Xs)Ls |FY
s

]
dYs, t ≥ 0,

and

(2.18) St = x +
∫ t

0
EQ0[

LsXsh(s,Xs)|FY
s

]
dYs, t ≥ 0.
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Furthermore, let Ut
�= EPu[Xt |FY

t ], t ≥ 0. Then, by the Bayes formula (also
known as the Kallianpur–Striebel formula, see, e.g., [1]) we have

(2.19) Ut = EQ0[LtXt |FY
t ]

EQ0[Lt |FY
t ] = St

S0
t

, t ≥ 0,Q0-a.s.

A simple application of Itô’s formula and some direct computation then lead to the
following FKK equation:

dUt = {
EPu[

Xth(t,Xt)|FY
t

] −EPu[
Xt |FY

t

]
EPu[

h(t,Xt)|FY
t

]}
dYt

+ {
EPu[

Xt |FY
t

]{
EPu[

h(t,Xt)|FY
t

]}2(2.20)

−EPu[
Xth(t,Xt)|FY

t

]
EPu[

h(t,Xt)|FY
t

]}
dt.

In fact, one can easily show that

(2.21) St = Ut exp
{∫ t

0
EPu[

h(s,Xs)|FY
s

]
dYs − 1

2

∫ t

0
EPu[

h(s,Xs)|FY
s

]2
ds

}
.

3. Well-posedness of the state-observation dynamics. In this and next sec-
tions, we investigate the well-posedness of the controlled state-observation system
(2.4) and (2.5). More precisely, we shall argue that the admissible control set Uad,
defined by Definition 2.1, is not empty. We first note that, for a fixed P ∈ P(�)

and u ∈ L∞−
FY (P, [0, T ]), if we define

(3.1) φu(t,ω,ϕ·∧t ,μt )
�=

∫
R

φ
(
t, ϕ·∧t , y, ut (ω)

)
μt(dy),

where φ = b,σ , then we can write the control-observation system (2.4) and (2.5)
as a slightly more generic form (denoting bu = b and σu = σ for simplicity):

(3.2)

⎧⎪⎪⎨⎪⎪⎩
Xt = x +

∫ t

0
b

(
s, ·,X·∧s,μ

X|Y
s

)
ds +

∫ t

0
σ

(
s, ·,X·∧s,μ

X|Y
s

)
dB1

s ;
Yt =

∫ t

0
h(s,Xs) ds + B2

t , t ≥ 0,

where B = (B1,B2) is a P-Brownian motion, and μ
X|Y
t = P◦[EP[Xt |FY

t ]]−1. Our
task is to prove the well-posedness of SDE (3.2) in a weak sense [i.e., including the
existence of the probability measure P(!)]. In light of Remark 2.2, we shall assume
that the coefficients b and σ in (3.2) satisfy the following assumptions that are
slightly weaker than Assumption 2.2, but sufficient for our purpose in this section.

ASSUMPTION 3.1. The coefficients b,σ : [0, T ]×CT ×P2(CT ) �→R enjoy
the following properties:

(i) For fixed (ϕ,μ) ∈ CT × P2(CT ), the mapping (t,ω) �→ (b, σ )(t,ω,ϕ,μ)

is an F-progressively measurable process.
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(ii) For fixed t ∈ [0, T ], and Q0-a.e. ω ∈ �, there exists K > 0, independent of
(t,ω), such that for all (ϕ1,μ1), (ϕ2,μ2) ∈ CT × P2(CT ), it holds∣∣φ(

t,ω,ϕ1·∧t ,μ
1
t

) − φ
(
t,ω,ϕ2·∧t ,μ

2
t

)∣∣
(3.3)

≤ K
(

sup
t∈[0,T ]

∣∣ϕ1
t − ϕ2

t

∣∣ + W2
(
μ1,μ2))

,

for φ = b,σ , respectively.

In the rest of the section, we shall still assume b = 0, as it does not add ex-
tra difficulties. Now assume that (X,Y ) satisfies (3.2) under P, and let us denote

U
X|Y
t

�= EP[Xt |FY
t ], t ≥ 0. (We note that UX|Y should be understood as the “op-

tional projection” of X onto FY !) We first check that UX|Y is indeed a continuous
process.

LEMMA 3.1. Assume that Assumption 2.2 holds. Then UX|Y admits a contin-
uous version.

PROOF. First, note that P ∼Q0, and X has continuous paths, P-a.s. By Bayes

formula (2.19), we can write U
X|Y
t = EQ0 [LtXt |FY

t ]
EQ0 [Lt |FY

t ] = St

S0
t

, where S0 and S satisfy

(2.17) and (2.18), respectively, and L satisfies (2.15). Clearly, the representations
(2.17) and (2.18) indicate that both S0 and S have continuous paths, thus UX|Y
must have a continuous version. �

We now define μX|Y (·) = P ◦ [UX|Y ]−1(·), and μ
X|Y
t (·) = P ◦ [UX|Y

t ]−1(·), for
any t ≥ 0. Lemma 3.1 then implies that μX|Y ∈ P2(CT ), justifying the definition
of SDE (3.2). In what follows when the context is clear, we shall omit “X|Y ” from
the superscript.

We note that the special circular nature of SDE (3.2) between its solution and
its law of the conditional expectation (whence the underlying probability) makes it
necessary to specify the meaning of a solution. We have the following definition.

DEFINITION 3.1 (Weak Solution). An eight-tuple (�,F,P,F,X,Y,B1,B2)

is called a solution to the filtering equation (3.2) if:
(i) (�,F) is the canonical space, P ∈ P(�), and F is the canonical filtration;
(ii) (B1,B2) is a 2-dimensional F-Brownian motion under P;
(iii) (X,Y ) is an F-adapted continuous process such that (3.2) holds for all

t ∈ [0, T ], P-almost surely.

To prove the well-posedness, we shall use a generalized version of the Schauder
fixed-point theorem (see Cauty [10], or a recent generalization in [11]). To this end,
we consider the following subset of P2(CT ):

(3.4) E
�=

{
μ ∈ P2(CT )

∣∣∣ sup
t∈[0,T ]

∫
R

|y|4μt(dy) < ∞
}
.
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In the above μt = μ ◦ Pt
−1 ∈ P2(R), and Pt(ϕ) = ϕ(t), ϕ ∈ �, is the projection

mapping. Clearly, E is a convex subset of P2(CT ).
We now construct a mapping T : E �→ E , whose fixed point, if exists, would

give a solution to the SDE (3.2). We shall begin with the reference probability
space (�,F,Q0), thanks to Assumption 2.1, then (B1, Y ) is a Q0-Brownian mo-
tion. We may assume without loss of generality that (B1, Y ) is the canonical pro-
cess, and Q0 is the Wiener measure.

For any μ ∈ E , we consider the SDE on the space (�,F,Q0):

(3.5) Xt = x +
∫ t

0
σ(s, ·,X·∧s,μs) dB1

s , t ≥ 0.

Note that as the distribution μ is given, (3.5) is an “open-loop” SDE with “func-
tional Lipschitz” coefficient, thanks to Assumption 3.1. Thus, there exists a unique
(strong) solution to (3.5), which we denote by X = Xμ.

Now, using Xμ we define the process Lμ = {Lμ
t }t≥0 as in (2.14) on probabil-

ity space (�,F,Q0), and then we define the probability dPμ �= L
μ
T dQ0. By the

Kallianpur–Striebel formula (2.19) we can define a process

(3.6) U
μ
t

�= EPμ[
X

μ
t |FY

t

] = EQ0[Lμ
t X

μ
t |FY

t ]
EQ0[Lμ

t |FY
t ] = S

μ
t

S
μ,0
t

, t ≥ 0,

where S
μ
t

�= EQ0[Lμ
t X

μ
t |FY

T ], S
μ,0
t

�= EQ0[Lμ
t |FY

T ], t ≥ 0, and then we denote

(3.7) T (μ)
�= νμ = Pμ ◦ [

Uμ]−1 ∈ P(CT ).

Our task is to show that the solution mapping T : μ �→ νμ satisfies the desired
assumptions for Schauder’s fixed-point theorem.

THEOREM 3.1. The solution mapping T : E → P2(CT ) enjoys the following
properties:

(1) T (E ) ⊆ E .
(2) T (E ) is compact under 2-Wasserstein metric.
(3) T : (E ,W1(·, ·)) → (P2(CT ),W2(·, ·)) is continuous, that is, whenever

μ,μn ∈ E , n ≥ 1, is such that W1(μ
n,μ) → 0, we have that W2(T (μn),T (μ))

→ 0.

We remark that an immediate consequence of (3) is that T : E → P2(CT ) is
continuous under both the 1- and the 2-Wasserstein metrics. Moreover, the com-
pactness of T (E ) under the 2-Wasserstein metric stated in (2) implies that in the
1-Wasserstein metric.

PROOF. (1) Given μ ∈ E , we need only show that

(3.8) sup
t∈[0,T ]

∫
R

|y|4νμ
t (dy) < ∞.
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To see this, we note that for t ∈ [0, T ], by Jensen’s inequality,∫
R

|y|4νμ
t (dy) =

∫
R

|y|4Pμ ◦ [
Uμ]−1

(dy) = EPμ[∣∣EPμ[
X

μ
t |FY

t

]∣∣4] ≤ EPμ[∣∣Xμ
t

∣∣4]
.

Since under Q0, B1 is also a Brownian motion, it is standard to argue that, as Xμ

is the solution to the SDE (3.5), it holds that

(3.9) sup
0≤t≤T

EQ0[∣∣Xμ
t

∣∣2n] ≤ C
(
1 + |x|2n)

for all n ∈ N.

Furthermore, noting that the process Lμ is an L2-martingale under Q0, we have

sup
0≤t≤T

∫
Rd

|y|4νμ
t (dy) ≤ sup

0≤t≤T

EPμ[∣∣Xμ
t

∣∣4] = sup
0≤t≤T

EQ0[
L

μ
T

∣∣Xμ
t

∣∣4]
≤ (

EQ0[∣∣Lμ
T

∣∣2]) 1
2 sup

0≤t≤T

EQ0[∣∣Xμ
t

∣∣8] 1
2 < ∞,

thanks to (3.9). In other words, νμ = T (μ) ∈ E , proving (1).
(2) We shall prove that for any sequence {μn

t } ⊆ E , there exists a subsequence,
denoted by {μn

t } itself, such that limn→∞ T (μn) = ν in 2-Wasserstein metric, for
some ν ∈ T (E ).

In light of the equivalence relation (2.2), we shall first argue that the family
{T (μn)}n≥1 is tight. To this end, recall that

(3.10) Un
t = EPn[

Xn
t |FY

t

] = Sn
t

S
n,0
t

,

where Sn
t

�= EQ0[Ln
t X

n
t |FY

t ], S
n,0
t

�= EQ0[Ln
t |FY

t ], t ≥ 0, and dPn �= Ln
T dQ0. It

then follows from the FKK equation (2.20) that

dUn
t = {

EPn[
Xn

t h
(
t,Xn

t

)|FY
t

] −EPn[
Xn

t |FY
t

]
EPn[

h
(
t,Xn

t

)|FY
t

]}
dYt

+ {
EPn[

Xn
t |FY

t

](
EPn[

h
(
t,Xn

t

)|FY
t

])2(3.11)

−EPn[
Xn

t h
(
t,Xn

t

)|FY
t

]
EPn[

h
(
t,Xn

t

)|FY
t

]}
dt.

Now denote B
2,n
t

�= Yt −∫ t
0 h(s,Xn·∧s) ds. Then (B1,B2,n) is a 2-dimensional stan-

dard Pn-Brownian motion. Since h is bounded, so is EPn[h(t,Xn·∧t )|FY
t ]. We thus

have the following estimate:

EPn[∣∣Un
t − Un

s

∣∣4] ≤ CEPn
[(∫ t

s
EPn[∣∣Xn

s

∣∣2|FY
s

]
ds

)2]
≤ CEPn

[
sup

0≤s≤T

∣∣EPn[∣∣Xn
s

∣∣2|FY
s

]∣∣2]
|t − s|2

(3.12)
≤ CEPn

[
sup

0≤s≤T

∣∣∣EPn
[

sup
0≤r≤T

∣∣Xn
r

∣∣2|FY
s

]∣∣∣2]
|t − s|2

≤ CEPn
[

sup
0≤s≤T

∣∣Xn
s

∣∣4]
|t − s|2 ≤ C|t − s|2.
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Thus, as Un
0 = x, n ≥ 1, the sequence of continuous processes {Un} is rela-

tively compact (cf., e.g., Ethier–Kurtz [12]). Therefore, the sequence of their laws

{T (μn)
�= Pn ◦ [Un]−1, n ≥ 1} ⊆ P(CT ) is tight. Consequently, we can find a

subsequence, we may assume itself, that converges weakly to a limit ν ∈ P2(CT ).
Furthermore, for each n ≥ 1, we apply the Jensen, Burkholder–Davis-Gundy, and

Hölder inequalities to get, with νn �= T (μn),∫
CT

‖ϕ‖4
CT

νn(dϕ) = EPn[∥∥Un
∥∥4
CT

] = EPn
[

sup
0≤t≤T

∣∣EPn[
Xn

t |Fn
t

]∣∣4]
≤ EPn

[
sup

0≤t≤T

EPn
[

sup
0≤r≤T

∣∣Xn
r

∣∣|Fn
t

]4]
(3.13)

≤ C
[
EPn

[
sup

0≤r≤T

∣∣Xn
r

∣∣6]]2/3 = C
[
EQ0

[
Ln

T sup
0≤r≤T

∣∣Xn
r

∣∣6]]2/3

≤ C
[
EQ0

[(
Ln

T

)4]]1/6
[
EQ0

[
sup

0≤r≤T

∣∣Xn
r

∣∣8]]1/2
< +∞.

But noting that h is bounded, one deduces from (3.9) that

(3.14) sup
n≥1

∫
CT

‖ϕ‖4
CT

νn(dϕ) < ∞,

and thus,

sup
n≥1

∫
CT

‖ϕ‖2
CT

I
{|ϕ||CT

≥ N
}
νn(dϕ) → 0 as N → +∞.

This, together with the fact that νn = T (μn)
w→ν, implies that W2(ν

n, ν) → 0,
and ν ∈ E , as n → ∞, where W2(·, ·) is the 2-Wasserstein metric on P2(CT ).
This proves (2).

(3) We now check that the mapping T : (E ,W1(·, ·)) → (P2(CT ),W2(·, ·)) is
continuous. To this end, for each μ ∈ E , we consider the following SDE on the
probability space (�,F,Q0):⎧⎪⎪⎨⎪⎪⎩

dXt = σ(t,X·∧t ,μt ) dB1
t , X0 = x;

dB2
t = dYt − h(t,Xt) dt, B2

0 = 0;
dLt = h(t,Xt)Lt dYt , L0 = 1.

(3.15)

Now let {μn} ⊆ E be any sequence such that μn → μ, as n → ∞, in the
1-Wasserstein metric, and denote by (Xn,Bn,2,Ln) the corresponding solutions
to (3.15). Define

σn(t,ω·∧t )
�= σ

(
t,ω·∧t ,μ

n
t

)
, (t,ω) ∈ [0, T ] × �.
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Then by Assumption 3.1(ii), the σn’s are functional Lipschitz deterministic func-
tions, with Lipschitz constant independent of n. This and standard SDE arguments
lead to that, as n → ∞,

(3.16) EQ0{
sup

0≤t≤T

∣∣Xn
t − Xt

∣∣p + sup
0≤t≤T

∣∣Ln
t − Lt

∣∣p}
→ 0, in Lp(

Q0)
,p ≥ 1.

We deduce that Un
t = EPn[Xn

t |FY
t ] = Sn

t /S
n,0
t converges in probability under Q0

to EQ0 [LtXt |FY
t ]

EQ0 [Lt |FY
t ] = EP[Xt |FY

t ], where dP
�= LT dQ0.

Now for any ψ ∈ Cb(R), letting n → ∞ we have〈
ψ,T

(
μn)

t

〉 = EPn[
ψ

(
EPn[

Xn
t |FY

t

])] = EQ0[
Ln

T ψ
(
EPn[

Xn
t |FY

t

])]
−→ EQ0[

LT ψ
(
EP[

Xt |FY
t

])] = EP[
ψ

(
EP[

Xt |FY
t

])]
(3.17)

= 〈
ψ,P ◦ [

EP[
Xt |FY

t

]]−1 〉
as n → ∞.

This implies that νt = P ◦ [EP[Xt |FY
t ]]−1 = T (μ)t , for all t ∈ [0, T ]. With the

same argument, one shows that, for any 0 ≤ t1 < t2 < · · · < tk < ∞,

T
(
μn)

t1,...,tk

�= P ◦ (
EP[

Xn
t1
|FY

t1

]
, . . . ,EP[

Xn
tk
|FY

tk

])−1 d−→ νt1,...,tk ,

as n → ∞.

That is, the finite dimensional distributions of T (μn) converge to those of ν, and
as {T (μn)}n≥1 is tight by part (2), we conclude that T (μn)

w→ν in P(CT ). This,
together with (3.13), further shows that W2(T (μn),T (μ)) → 0, as n → ∞, prov-
ing the continuity of T , whence (3). The proof is now complete. �

As a consequence of Theorem 3.1, we have the following existence result for
SDE (3.2).

PROPOSITION 3.1. Let Assumption 3.1 hold. Then SDE (3.2) has at least one
solution in the sense of Definition 3.1.

PROOF. The proof follows from Theorem 3.1 and a generalization of the
Schauder fixed-point theorem by Cauty (see [10], or a recent generalization [11]).
To do this, we must check: (i) E is a convex subset of a Hausdorff topological
linear space, (ii) T is continuous and T (E ) ⊆ E and (iii) T (E ) ⊂ K , for some
compact K in P2(CT ).

To imbed E into a Hausdorff topological linear space, we borrow the argument
of Li-Min [17]. Let M1(CT ) be the space of all bounded signed Borel measures
ν(·) on CT such that | ∫

CT
‖ϕ‖CT

ν(dϕ)| < +∞, endowed with the norm

‖ν‖1 := sup
{∣∣∣∣∫

CT

hdν

∣∣∣∣ : h ∈ Lip1(CT ),
∣∣h(0)

∣∣ ≤ 1
}
.5

5Lip1(CT ) denotes the set of all real-valued Lipschitz functions over CT with Lipschitz constant 1.
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Clearly, (M1(CT ),‖ · ‖1) is a normed (hence Hausdorff topological) linear space.
Since P2(CT ) ⊂ P1(CT ) ⊂ M1(CT ), and by the Kantorovich–Rubinstein for-
mula,

W1
(
ν1, ν2) = sup

{∣∣∣∣∫
CT

hd
(
ν1 − ν2)∣∣∣∣ : h ∈ Lip1(CT ),

∣∣h(0)
∣∣ ≤ 1

}
= ∥∥ν1 − ν2∥∥

1,

for all ν1, ν2 ∈ P1(CT ), the topology generated by the norm ‖ · ‖1 on P2(CT )

coincides with the one generated by the 1-Wasserstein metric on P2(CT ). Thus,
E ⊂ P2(CT ) is a convex subset of M1(CT ), proving (i). Further, note that T :
E → P2(CT ) is continuous under the 1-Wasserstein metric, hence also under the
‖ · ‖1-norm, verifying (ii). Finally, since T (E ) ⊂ E , and E is compact under the
2-Wasserstein metric, hence also under the ‖ · ‖1-norm, proving (iii). We can now
apply Cauty’s theorem to conclude the existence of a fixed point ν ∈ E ⊂ P2(CT )

such that T (ν) = ν.
We note that the existence of the fixed point μ amounts to saying that SDE

(3.15) has a solution on the probability space (�,F,Q0), with μ = μX|Y =
P ◦ [U ]−1, and Ut = EP[Xt |FY

t ], t ≥ 0, where dP = LT dQ0 by construction.
But this in turn defines a solution of (3.2) on the probability space (�,F,P),
thanks to the Girsanov transformation. However, since under P, (B1,B2) con-
structed in (3.15) is a Brownian motion, (�,F,P,X,Y,B1,B2) defines a (weak)
solution of SDE (3.2). �

4. Uniqueness. In this section, we investigate the uniqueness of the solution
to SDE (3.2). We note that the general uniqueness for the weak solution for this
problem is quite difficult, we will content ourselves with a version that is relatively
more amendable.

To begin with, and let Q0 be the reference probability measure under which
(B1, Y ) is a Brownian motion. For each u ∈ L∞−

FY (Q0, [0, T ]), consider the SDE
on (�,F,Q0):⎧⎪⎪⎨⎪⎪⎩

dXu
t = σ

(
t,Xu·∧t ,μ

Xu|Y
t , ut

)
dB1

t , Xu
0 = x;

dB2
t = dYt − h

(
t,Xu

t

)
dt, B2

0 = 0;
dLu

t = h
(
t,Xu

t

)
Lu

t dYt , L0 = 1, t ≥ 0,

(4.1)

where μ
Xu|Y
t := Pu ◦ [EPu[Xu

t |FY
t ]]−1, and dPu := Lu

T dQ0. We shall argue that,
under Assumption 2.2, the solution of the SDE (4.1) is pathwisely unique.

REMARK 4.1. It is clear that if u ∈ L∞−
FY (Q0, [0, T ]), and (Xu,B2,Lu) is

a solution to (4.1) under Q0, then u ∈ L∞−
FY (Pu, [0, T ]) [since dPu

dQ0 ∈ Lp(�) for

all p > 1, thanks to Assumption 2.2], and the process (Xu,Y,B1,B2) is a so-
lution to (2.4) and (2.5) on the probability space (�,F,Pu,F) in the sense of
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Definition 3.1, where F := FB1,Y . Conversely, if (�,F,Pu,F,B1,B2,X,Y ) is
a weak solution of (2.4)–(2.5), then following the argument of Section 2, we
see that dQ0 = [Lu

T ]−1 dPu defines a reference measure, where Lu is defined by
(2.6) or (2.7), and (X,B2, [Lu]−1) will be a solution of (4.1) with respect to the
Q0-Brownian motion (B1, Y ). In what follows, we shall call the solution to (4.1)
the Q0-dynamics of the system (2.4) and (2.5).

Bearing Remark 4.1 in mind, let us first try to establish a result in the spirit
of the Yamada–Watanabe theorem: the pathwise uniqueness of (4.1) implies the
uniqueness in law for the original SDEs (2.4) and (2.5). To do this, we begin by
noting that, given the “regular” nature of the canonical space �, a process u ∈
L∞−
FY (Pu, [0, T ]) amounts to saying that (cf., e.g., [18, 20]) there exists a progres-

sively measurable functional u : [0, T ]×CT �→ U such that ut(ω) = u(t, Y·∧t (ω)),
dtdPu-a.s., such that u has all the finite moments under Pu (hence also true under
Q0 ∼ Pu!). We have the following proposition.

PROPOSITION 4.1. Assume that Assumption 2.2 is in force, and that the path-
wise uniqueness holds for SDE (4.1). Let u : [0, T ] × � �→ U be a given pro-
gressively measurable functional, and (�,F,Pi ,F,B1,i ,B2,i ,Xi, Y i), i = 1,2,
be two (weak) solutions of (2.4)–(2.5) corresponding to the controls ui = u(·, Y i),
i = 1,2, respectively. Then it holds that

P1 ◦ [(
B1,1,B2,1,X1, Y 1)]−1 = P2 ◦ [(

B1,2,B2,2,X2, Y 2)]−1
.

PROOF. Following the argument of Section 2.2, we define dQ0,i =
[Li

T ]−1 dPi , where Li = [L̄i]−1 and L̄i is the unique solution of the SDE (2.6)
with respect to (Xi,B1,i , Y i), i = 1,2. Then, as the Q0,i-dynamics, (Xi,B2,i ,Li)

satisfies (4.1), i = 1,2, Q0,i-a.s. In particular, we recall (3.6) that

U
Xi |Y i

t = EPi [
Xi

t |FY i

t

] = EQ0,i [Li
tX

i
t |FY i

t ]
EQ0,i [Li

t |FY i

t ] , Q0,i-a.s., t ∈ [0, T ].

Thus, there exist two progressively measurable functionals 	i : [0, T ]×� �→R

such that U
Xi |Y i

t = 	i(t, Y i·∧t ), dtdQ0,i -a.s., i = 1,2. We now consider an inter-
mediate SDE on (�,F,Q0,2):⎧⎨⎩dX̂2

t = σ
(
t, X̂2·∧t ,	

1(
t, Y 2·∧t

)
,u

(
t, Y 2·∧t

))
dB

1,2
t , X̂2

0 = x;
dL̂2

t = h
(
t, X̂2

t

)
L̂2

t dY 2
t , L̂2

0 = 1, t ∈ [0, T ].(4.2)

Clearly, comparing with (4.1) for Q0,1-dynamics (X1,B2,1,L1), this SDE has the
same coefficient σ̂ (t,ω,ϕ·∧t ) := σ(t, ϕ·∧t ,	

1(t,ω2·∧t ),u(t,ω2·∧t )), and h(t, x)�,
which is jointly measurable, uniformly Lipschitz in ϕ with linear growth (in �),
uniformly in (t,ω,ϕ, �), thanks to Assumption 2.2, except that it is driven by
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the Q0,2-Brownian motion (B1,2, Y 2). Thus, by the classical SDE theory (cf.,
e.g., [14]) we know that there exists a (unique) measurable functional � : CT ×
CT → CT × CT such that (X1,L1) = �(B1,1, Y 1),Q0,1-a.s., and (X̂2, L̂2) =
�(B1,2, Y 2),Q0,2-a.s. Since Q0,1 ◦ (B1,1, Y 1)−1 = Q0,2 ◦ (B1,2, Y 2)−1 =Q0, the
Wiener measure on (�,F), we deduce that

(4.3) Q0,1 ◦ (
B1,1, Y 1,X1,L1)−1 = Q0,2 ◦ (

B1,2, Y 2, X̂2, L̂2)−1
.

We now claim that (X̂2,B2,2, L̂2) coincides with the Q0,2-dynamics of (2.4)–(2.5).
Indeed, it suffices to argue that in SDE (4.2),

(4.4) 	1(
t, Y 2·∧t

) = EP̂2[
X̂2

t |FY 2

t

] = U
X̂2|Y 2

t , Q0,2-a.s.,

where dP̂2 := L̂2 dQ0,2. To see this, we note that, for all t ∈ [0, T ] and any
bounded Borel measurable function f : CT → R, it follows from (4.3) and the
definition of U

X|Y
t that

EP̂2[
f

(
Y 2·∧t

)
	1(

t, Y 2·∧t

)] = EQ0,2[
L̂2

t f
(
Y 2·∧t

)
	1(

t, Y 2·∧t

)]
= EQ0,1[

L1
t f

(
Y 1·∧t

)
	1(

t, Y 1·∧t

)]
= EP1[

f
(
Y 1·∧t

)
U

X1|Y 1

t

]
= EP1[

f
(
Y 1·∧t

)
X1

t

] = EQ0,1[
L1

t f
(
Y 1·∧t

)
X1

t

]
= EQ0,2[

L̂2
t f

(
Y 2·∧t

)
X̂2

t

]
= EP̂2[

f
(
Y 2·∧t

)
X̂2

t

] = EP̂2[
f

(
Y 2·∧t

)
U

X̂2|Y 2

t

]
,

proving (4.4), whence the claim.
Now, by pathwise uniqueness of SDE (4.1), we conclude that (X2,L2) =

(X̂2, L̂2), Q0,2-a.s. Thus, (4.3) implies that Q0,1 ◦ [(B1,1, Y 1,X1,L1)]−1 =
Q0,2 ◦[(B1,2, Y 2,X2,L2)]−1, and consequently, Q0,1 ◦[(B1,1,B2,1,X1, Y 1)]−1 =
Q0,2 ◦ [(B1,2,B2,2,X2, Y 2)]−1. This proves the uniqueness in law for the system
(2.4)–(2.5). �

We now turn our attention to the main result of this section: the pathwise unique-
ness of (4.1). We shall establish some fundamental estimates which will be useful
in our future discussions. Since all controlled dynamics are constructed via the ref-
erence probability space (�,F,Q0), we shall consider only their Q0-dynamics,
namely the solution to (4.1). Recall the space Lp(Q0;L2([0, T ])), p > 1, and the
norm ‖ · ‖p,2,Q0 defined by (2.3). We have the following important result.

PROPOSITION 4.2. Assume that Assumption 2.2 is in force. Let u, v ∈ Uad be
given. Then, for any p > 2, there exists a constant Cp > 0, such that the following
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estimates hold:

EQ0[
sup

0≤s≤T

(∣∣Xu
s − Xv

s

∣∣2 + ∣∣Lu
s − Lv

s

∣∣2 + ∣∣Xu
s Lu

s − Xv
s L

v
s

∣∣2)]
(4.5)

≤ C‖u − v‖2
2,2,Q0;

EQ0[
sup

0≤s≤T

∣∣Xu
s − Xv

s

∣∣p]
≤ Cp‖u − v‖p

p,2,Q0 .(4.6)

PROOF. We split the proof into several steps. Throughout this proof, we let
C > 0 be a generic constant, depending only on the bounds and Lipschitz constants
of the coefficients and the time duration T > 0, and it is allowed to vary from line
to line.

Step 1 (Estimate for X). First, let us denote, for any u ∈ Uad,

(4.7) σu(
t, ϕ·∧t ,μ

u
t

) �=
∫
R

σ(t, ϕ·∧t , y, ut )μ
u
t (dy), (t, ϕ) ∈ [0, T ] ×CT ,

and μu
t

�= μXu|Y ◦ P −1
t = Pu ◦ (EPu[Xu

t |FY
t ])−1, t ≥ 0. Then, we have∣∣σu(

t,Xu·∧t ,μ
u
t

) − σv(
t,Xv·∧t ,μ

v
t

)∣∣
=

∣∣∣∣∫
R

σ
(
t,Xu·∧t , y, ut

)
μu

t (dy) −
∫
R

σ
(
t,Xv·∧t , y, vt

)
μv

t (dy)

∣∣∣∣
(4.8)

≤ C

{
|ut − vt | + sup

0≤s≤t

∣∣Xu
s − Xv

s

∣∣
+

∣∣∣∣∫
R

σ
(
t,Xv·∧t , y, vt

)[
μu

t (dy) − μv
t (dy)

]∣∣∣∣}.

Next, let us denote Su
t = EQ0[Lu

t X
u
t |FY

t ] and S
u,0
t = EQ0[Lu

t |FY
t ], and define Sv

t ,
S

v,0
t in a similar way. By (2.19) and the fact that dPu = Lu

T dQ0, we see∣∣∣∣∫
R

σ
(
t,Xv·∧t , y, vt

)[
μu(dy) − μv(dy)

]∣∣∣∣
= ∣∣Eu[

σ
(
t, ϕ·∧t ,E

u[
Xu

t |FY
t

]
, u

)] −Ev[
σ

(
t, ϕ·∧t ,E

v[
Xv

t |FY
t

]
, u

)]| ϕ=Xv,
u=vt

∣∣
=

∣∣∣∣EQ0
{
Lu

t σ

(
t, ϕ·∧t ,

EQ0[Lu
t X

u
t |FY

t ]
EQ0[Lu

t |FY
t ] , u

)
(4.9)

− Lv
t σ

(
t, ϕ·∧t ,

EQ0[Lv
t X

v
t |FY

t ]
EQ0[Lv

t |FY
t ] , u

)}∣∣∣ ϕ=Xv,
u=vt

∣∣∣∣
≤ I1 + I2,
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where (noting the definition of Su, Su,0 and the fact that they are both FY -adapted)

I1 =
∣∣∣∣EQ0

{
Lu

t σ

(
t, ϕ·∧t ,

Su
t

S
u,0
t

, u

)
− Lv

t σ

(
t, ϕ·∧t ,

Su
t

S
v,0
t

, u

)}∣∣∣
ϕ=Xv,u=vt

∣∣∣∣
=

∣∣∣∣EQ0
{
S

u,0
t σ

(
t, ϕ·∧t ,

Su
t

S
u,0
t

, u

)
− S

v,0
t σ

(
t, ϕ·∧t ,

Su
t

S
v,0
t

, u

)}∣∣∣
ϕ=Xv,u=vt

∣∣∣∣;
and

I2 =
∣∣∣∣EQ0

{
Lv

t

[
σ

(
t, ϕ·∧t ,

Su
t

S
v,0
t

, u

)
− σ

(
t, ϕ·∧t ,

Sv
t

S
v,0
t

, u

)]}∣∣∣
ϕ=Xv,u=vt

∣∣∣∣
=

∣∣∣∣EQ0
{
S

v,0
t

[
σ

(
t, ϕ·∧t ,

Su
t

S
v,0
t

, u

)
− σ

(
t, ϕ·∧t ,

Sv
t

S
v,0
t

, u

)]}∣∣∣
ϕ=Xv,u=vt

∣∣∣∣.
Clearly, we have

(4.10) I2 ≤ CEQ0
{
S

v,0
t

|Su
t − Sv

t |
S

v,0
t

}
≤ CEQ0[∣∣Lu

t X
u
t − Lv

t X
v
t

∣∣].
To estimate I1, we write σ̂ (t,ω,ϕ·∧t , y, z) = yσ(t, ϕ·∧t ,

Su
t (ω)

y
, z). Since

∂yσ̂ (t,ω,ϕ·∧t , y, z)
(4.11)

= σ

(
t, ϕ·∧t ,

Su
t (ω)

y
, z

)
− Su

t (ω)

y
∂yσ

(
t, ϕ·∧t ,

Su
t (ω)

y
, z

)
,

we see that y �→ ∂yσ̂ (t, ϕ·∧t , y, z) is uniformly bounded thanks to Assump-
tion 2.2(iv). Thus, we have

(4.12) I1 ≤ C‖∂yσ̂‖∞EQ0 ∣∣Su,0
t − S

v,0
t

∣∣ ≤ CEQ0 ∣∣Lu
t − Lv

t

∣∣.
From (4.1), we have Xu

t −Xv
t = ∫ t

0 [σu(s,Xu·∧s,μ
u
s )−σv(s,Xv·∧s,μ

v
s )]dB1

s . Com-
bining (4.8)–(4.12), we see that

EQ0[
sup

0≤s≤t

∣∣Xu
s − Xv

s

∣∣p]
≤ CEQ0

{[∫ t

0

[
sup

r∈[0,s]
∣∣Xu

r − Xv
r

∣∣2 + |us − vs |2(4.13)

+ (
EQ0 ∣∣Lu

s − Lv
s

∣∣)2 + (
EQ0 ∣∣Lu

s X
u
s − Lv

s X
v
s

∣∣)2
]
ds

]p/2}
.

Applying the Gronwall inequality, we obtain that

EQ0[
sup

0≤s≤t

∣∣Xu
s − Xv

s

∣∣p]
≤ CEQ0

{[∫ t

0

[|us − vs |2 +EQ0[∣∣Lu
s − Lv

s

∣∣2]
(4.14)

+EQ0[∣∣Lu
s X

u
s − Lv

s X
v
s

∣∣2]]
ds

]p/2}
.
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Step 2 (Estimate for L). We first note that, for t ∈ [0, T ],∣∣Lu
t h

(
t,Xu

t

) − Lv
t h

(
t,Xv

t

)∣∣
=

∣∣∣∣Lu
t h

(
t,

Lu
t X

u
t

Lu
t

)
− Lv

t h

(
t,

Lv
t X

v
t

Lv
t

)∣∣∣∣
≤

∣∣∣∣Lu
t h

(
t,

Lu
t X

u
t

Lu
t

)
− Lu

t h

(
t,

Lv
t X

v
t

Lu
t

)∣∣∣∣(4.15)

+
∣∣∣∣Lu

t h

(
t,

Lv
t X

v
t

Lu
t

)
− Lv

t h

(
t,

Lv
t X

v
t

Lv
t

)∣∣∣∣
≤ C

∣∣Lu
t X

u
t − Lv

t X
v
t

∣∣ +
∣∣∣∣Lu

t h

(
t,

Lv
t X

v
t

Lu
t

)
− Lv

t h

(
t,

Lv
t X

v
t

Lv
t

)∣∣∣∣.
To estimate the second term above, we still define ĥ(t,ω, x)

�= xh(t,
Lv

t (ω)Xv
t (ω)

x
).

Then, similar to (4.11), one shows that x �→ ∂xĥ(t,ω, x) is uniformly bounded,
thanks to Assumption 2.2(v). Consequently, we have

(4.16)
∣∣∣∣Lu

t h

(
t,

Lv
t X

v
t

Lu
t

)
− Lv

t h

(
t,

Lv
t X

v
t

Lv
t

)∣∣∣∣ ≤ ‖∂xĥ‖∞
∣∣Lu

t − Lv
t

∣∣.
Now, combining (4.15) and (4.16) we obtain

(4.17)
∣∣Lu

t h
(
t,Xu

t

) − Lv
t h

(
t,Xv

t

)∣∣ ≤ C
(∣∣Lu

t − Lv
t

∣∣ + ∣∣Lu
t X

u
t − Lv

t X
v
t

∣∣).
Therefore, noting that Lu

t = 1 + ∫ t
0 h(s,Xu

s )Lu
s dYs , we deduce from (4.17) and

Gronwall’s inequality that

EQ0[
sup

0≤s≤t

∣∣Lu
s − Lv

s

∣∣2]
(4.18)

≤ CEQ0
[∫ t

0

∣∣Lu
s X

u
s − Lv

s X
v
s

∣∣2 ds

]
, Q0-a.s., 0 ≤ t ≤ T .

Step 3 (Estimate for LtXt ). It is clear from (4.14) and (4.18) that it suffices to
find the estimate of Lu

t X
u
t − Lv

t X
v
t in terms of u − v. To see this, we note that

Lu
t X

u
t = x +

∫ t

0
Lu

s X
u
s h

(
s,Xu

s

)
dYs

(4.19)

+
∫ t

0
Lu

sE
Pu[

σ
(
s, ϕ·∧s,E

Pu[
Xu

s |FY
s

]
, v

)]∣∣∣ ϕ=Xu,
v=us

dB1
s .

Now define h̃(t, x)
�= xh(t, x). Then it is easily seen that as h satisfies Assump-

tion 2.2(vi), h̃ satisfies Assumption 2.2(v). Thus, similar to (4.17) we have∣∣Lu
s X

u
s h

(
s,Xu

s

) − Lv
s X

v
s h

(
s,Xv

s

)∣∣ = ∣∣Lu
s h̃

(
s,Xu

s

) − Lv
s h̃

(
s,Xv

s

)∣∣
(4.20)

≤ C
(∣∣Lu

s − Lv
s

∣∣ + ∣∣Lu
s X

u
s − Lv

s X
u
s

∣∣).
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On the other hand, for any u ∈ Uad, recalling (4.7) for the notation σu and μu, we
have

�
u,v
t

�= ∣∣Lu
sE

Pu[
σ

(
s, ϕ·∧s,E

Pu[
Xu

s |FY
s

]
, z

)]| ϕ=Xu;
z=us

− Lv
sE

Pv [
σ

(
s, ϕ·∧s,E

Pv [
Xv

s |FY
s

]
, z

)]| ϕ=Xv

z=vs

∣∣
= ∣∣Lu

t σ
u(

t,Xu·∧t ,μ
u
t

) − Lv
t σ

v(
t,Xv·∧t ,μ

v
t

)∣∣.
Then, following a similar argument as in Step 1, we have

�
u,v
t ≤ CLv

t

(
EQ0[∣∣Lu

t − Lv
t

∣∣] +EQ0[∣∣Xu
t Lu

t − Xv
t L

v
t

∣∣])
+ C

(∣∣Lu
t − Lv

t

∣∣ + ∣∣Lu
t X

u
t − Lv

t X
v
t

∣∣) + CLv
t |ut − vt |.

Squaring both sides above and then taking the expectations, we deduce that

EQ0[∣∣�u,v
t

∣∣2] ≤ C
(
EQ0[∣∣Lu

s − Lv
s

∣∣2] +EQ0[∣∣Xu
t Lu

t − Xv
t L

v
t

∣∣2])
(4.21)

+ CEQ0[(
Lv

t

)2|ut − vt |2]
.

Now, combining (4.19)–(4.21), for p > 2 we can find Cp > 0 such that

EQ0[
sup

0≤s≤t

∣∣Lu
s X

u
s − Lv

s X
v
s

∣∣2]
≤ CEQ0

[∫ t

0

∣∣Lu
s X

u
s h

(
s,Xu

s

) − Lv
s X

v
s h

(
s,Xv

s

)∣∣2 ds

]
+ CEQ0

∫ t

0

∣∣�u,v
s

∣∣2 ds(4.22)

≤ Cp

{
EQ0

[(∫ t

0
|us − vs |2 ds

)p/2]}2/p

+ CEQ0
∫ t

0

∣∣Lu
s − Lv

s

∣∣2 ds

+ CEQ0
∫ t

0

∣∣Lu
s X

u
s − Lv

s X
v
s

∣∣2 ds.

Hence, applying Gronwall’s inequality we obtain

EQ0[
sup

0≤s≤t

∣∣Lu
s X

u
s − Lv

s X
v
s

∣∣2]
(4.23)

≤ Cp‖u − v‖2
p,2,Q0 + CEQ0

∫ t

0

∣∣Lu
s − Lv

s

∣∣2 ds.

Combining (4.23) with (4.18) and applying the Gronwall inequality again, we
conclude that

(4.24) EQ0{
sup

0≤s≤t

∣∣Lu
s − Lv

s

∣∣2}
≤ Cp‖u − v‖2

p,2,Q0 .
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This, together with (4.14) and (4.23), implies (4.5). (4.6) then follows easily
from (4.5) and (4.13), proving the proposition. �

A direct consequence of Proposition 4.2 is the following uniqueness result.

COROLLARY 4.1. Assume that Assumption 2.2 holds. Then the solution to
SDE (4.1) is pathwisely unique.

PROOF. Setting u = v in Proposition 4.2, we obtain the result. �

5. A stochastic control problem with partial observation. We are now
ready to study the stochastic control problem with partial observation. We first
note that in theory for each (Pu, u) ∈ Uad our state-observation dynamics (Xu,Y u)

lives on probability space (�,F,Pu), which varies with control u. We shall con-
sider their Q0-dynamics so that our analysis can be carried out on a common
probability space, thanks to Assumption 2.1. Therefore, in what follows, for each
(Pu, u) ∈ Uad we consider only the Q0-dynamics (Xu,Y,Lu), which satisfies the
following SDE:⎧⎪⎪⎨⎪⎪⎩

dXu
t = σu(

t,Xu·∧t ,μ
u
t

)
dB1

t , Xu
0 = x;

dB
2,u
t = dYt − h

(
t,Xu

t

)
dt, B

2,u
0 = 0;

dLu
t = h

(
t,Xu

t

)
Lu

t dYt , Lu
0 = 1, t ≥ 0,

(5.1)

where (B1, Y ) is a Q0-Brownian motion, dPu = Lu
T dQ0, and μ

Xu|Y
t = Pu ◦

[EPu[Xt |FY
t ]]−1. For simplicity, we denote Eu[·] �= EPu[·] and E0[·] �= EQ0[·].

REMARK 5.1. A convenient and practical way to identify admissible control
is to simply consider the space L∞−

FY (Q0; [0, T ]) (cf. Definition 2.1), which is in-
dependently well defined, thanks to Assumption 2.1. It is easy to check that, under
Assumption 2.2, u ∈ L∞−

FY (Q0; [0, T ]) if and only if u ∈ L∞−
FY (Pu; [0, T ]). There-

fore, in what follows by u ∈ Uad we mean that u ∈ L∞−
FY (Q0; [0, T ]).

We recall that for u ∈ Uad and μ ∈ P2(CT ), the coefficient σu in (5.1) is de-
fined by (4.7). Thus, we can write the cost functional as

(5.2) J (u)
�= E0

{
	

(
Xu

T ,μu
T

) +
∫ T

0
f u(

s,Xu
s ,μu

s

)
ds

}
.

An admissible control u∗ ∈ Uad is said to be optimal if

(5.3) J
(
u∗) = inf

u∈Uad
J (u).

We remark that the cost functional J (·) involves the law of the conditional ex-
pectation of the solution in a nonlinear way. Therefore, such a control problem
is intrinsically “time-inconsistent”, and thus, the dynamic programming approach
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in general does not apply. For this reason, we shall consider only the necessary
condition of the optimal solution, that is, Pontryagin’s maximum principle.

To this end, we let u∗ ∈ Uad be an optimal control, and consider the convex
variations of u∗:

(5.4) u
θ,v
t := u∗

t + θ
(
vt − u∗

t

)
, t ∈ [0, T ],0 < θ < 1, v ∈ Uad.

Here, we assume that u∗, v ∈ L∞−
FY (Q0; [0, T ]). Since U is convex, u

θ,v
t ∈ U , for

all t ∈ [0, T ], v ∈ Uad, and θ ∈ (0,1). We denote (Xθ,v, Y,Lθ,v) to be the corre-
sponding Q0-dynamics that satisfies (5.1), with control uθ,v . Applying Proposi-
tion 4.2 [(4.5) and (4.6)] and noting that Y is a Brownian motion under Q0, we
get, for p > 2,

lim
θ→0

E0
[

sup
0≤t≤T

∣∣Xθ,v
t − Xu∗

t

∣∣2]
≤ Cp lim

θ→0

∥∥uθ,v − u∗∥∥2
p,2,Q0 = 0;(5.5)

lim
θ→0

E0
[

sup
0≤t≤T

∣∣Lθ,v
t − Lu∗

t

∣∣2]
= 0.(5.6)

In the rest of the section, we shall derive, heuristically, the “variational equa-
tions” which play a fundamental role in the study of maximum principle. The
complete proof will be given in the next section. For notational simplicity, we shall
denote u = u∗, the optimal control, from now on, bearing in mind that all discus-
sions will be carried out for the Q0-dynamics, therefore, on the same probability
space.

Now for u1, u2 ∈ Uad, let (X1,L1) and (X2,L2) denote the corresponding so-

lutions of (5.1). We define δX = δX1,2 = δXu1,u2 �= Xu1 − Xu2
and δL = δL1,2 =

δLu1,u2 �= Lu1 − Lu2
, and will often drop the superscript “1,2” if the context is

clear. Then δX and δL satisfy the equations⎧⎪⎪⎨⎪⎪⎩
δXt =

∫ t

0

[
σu1(

s,X1·∧s,μ
1
s

) − σu2(
s,X2·∧s,μ

2
s

)]
dB1

s ;
δLt =

∫ t

0

[
L1

s h
(
s,X1

s

) − L2
s h

(
s,X2

s

)]
dYs.

(5.7)

As before, let Ui
t

�= Eui [Xi
t |FY

t ] and μi
t = Pui ◦ [Ui

t ]−1, t ≥ 0, i = 1,2. We can
easily check that

σu1(
t,X1·∧t ,μ

1
t

) − σu2(
t,X2·∧t ,μ

2
t

)
= E0{

L1
t σ

(
t, ϕ1·∧t ,U

1
t , z1) − L2

t σ
(
t, ϕ2·∧t ,U

2
t , z2)}| ϕ1=X1,ϕ2=X2;

z1=u1
t ,z2=u2

t

= E0
{
δL

1,2
t σ

(
t, ϕ1·∧t ,U

1
t , z1)

(5.8)

+ L2
t

[∫ 1

0
Dϕσ

(
t, ϕ2·∧t + λ

(
ϕ1·∧t − ϕ2·∧t

)
,U1

t , z1)(
ϕ1·∧t − ϕ2·∧t

)
dλ
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+
∫ 1

0
∂yσ

(
t, ϕ2·∧t ,U

2
t + λ

(
U1

t − U2
t

)
, z1)

dλ · (
U1

t − U2
t

)
+

∫ 1

0
∂zσ

(
t, ϕ2·∧t ,U

2
t , z2 + λ

(
z1 − z2))

dλ · (
z1 − z2)]}∣∣∣ ϕ1=X1,ϕ2=X2;

z1=u1
t ,z2=u2

t

.

Now let u1 = uθ,v and u2 = u∗ = u, and denote

δθX
�= δθX

u,v = Xθ,v − Xu

θ
, δθL

�= δθL
u,v = Lθ,v − Lu

θ
,

δθU
�= δθU

u,v = Uθ,v − Uu

θ
.

Combining (5.7) and (5.8), we have

δθXt =
∫ t

0

{
E0{

δθLs · σ (
s, ϕ1·∧s,U

θ,v
s , z1)}| ϕ1=Xθ,v,

z1=u
θ,v
s

+ [Dσ ]θ,u,v
s (δθX·∧s)

(5.9)
+E0{

Bθ,u,v(
s, ϕ2·∧s, z

1)
δθUs

}| ϕ2=Xu;
z1=u

θ,v
s

+ Cθ,u,v
σ (s)(vs − us)

}
dB1

s ,

where

[Dσ ]θ,u,v
t (ψ)

= E0
{
Lu

t

∫ 1

0
Dϕσ

(
t, ϕ2·∧t + λ

(
ϕ1·∧t − ϕ2·∧t

)
,U

θ,v
t , z1)

(ψ)dλ

}∣∣∣ ϕ1=Xθ,v,ϕ2=Xu,

z1=u
θ,v
t

,

(5.10)

Bθ,u,v(
t, ϕ2·∧t , z

1) = Lu
t

∫ 1

0
∂yσ

(
t, ϕ2·∧t ,U

u
t + λ

(
U

θ,v
t − Uu

t

)
, z1)

dλ,

Cθ,u,v
σ (t) = E0

{
Lu

t

∫ 1

0
∂zσ

(
t, ϕ2·∧t ,U

u
t , z2 + λ

(
z1 − z2))

dλ

}∣∣∣
ϕ2=Xu;z1=u

θ,v
t ,

z2=ut

.

Here, the integral involving the Fréchet derivative Dϕσ is in the sense of Bochner.

Noting that U
θ,v
t = E0[Lθ,v

t X
θ,v
t |FY

t ]
E0[Lθ,v

t |FY
t ] and Uu

t = E0[Lu
t Xu

t |FY
t ]

E0[Lu
t |FY

t ] , we can easily check that

δθUt = E0[Lu
t |FY

t ]E0[Lθ,v
t X

θ,v
t |FY

t ] −E0[Lθ,v
t |FY

t ]E0[Lu
t X

u
t |FY

t ]
θE0[Lθ,v

t |FY
t ]E0[Lu

t |FY
t ]

= E0[Lu
t |FY

t ]E0[δθLtX
θ,v
t + Lu

t δθXt |FY
t ] −E0[δθLt |FY

t ]E0[Lu
t X

u
t |FY

t ]
E0[Lθ,v

t |FY
t ]E0[Lu

t |FY
t ]

(5.11)

= E0[δθLtX
θ,v
t + Lu

t δθXt |FY
t ]

E0[Lθ,v
t |FY

t ]

− E0[δθLt |FY
t ]

E0[Lθ,v
t |FY

t ]U
u
t .
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Now, sending θ → 0, and assuming that

(5.12) Kt = K
u,v
t

�= lim
θ→0

δθX
u,v
t ; Rt = R

u,v
t

�= lim
θ→0

δθL
u,v
t

both exist in L2(Q0), then from (5.7)–(5.11) we have, at least formally,

Kt =
∫ t

0

{
E0[

Rsσ
(
s, ϕ·∧s,U

u
s , z

)]|ϕ=Xu,z=us + [Dσ ]u,v
s (K·∧s)

+E0
[
Bu,v(s, ϕ·∧s, z)

(
E0[RsX

u
s + Lu

s Ks |FY
s ]

E0[Lu
s |FY

s ](5.13)

− E0[Rs |FY
s ]

E0[Lu
s |FY

s ]U
u
s

)]∣∣∣ ϕ=Xu;
z=us

+ Cu,v
σ (s)(vs − us)

}
dB1

s ,

where

[Dσ ]u,v
t (ψ)

�= E0{
Lu

t Dϕσ
(
t, ϕ·∧t ,U

u
t , z

)
(ψ)

}|ϕ=Xu;z=ut
,

Bu,v(t, ϕ·∧t , z)
�= Lu

t ∂yσ
(
t, ϕ·∧t ,U

u
t , z

)
,(5.14)

Cu,v
σ (t)

�= E0{
Lu

t ∂zσ
(
t, ϕ·∧t ,U

u
t , z

)}|ϕ=Xu;z=ut
.

Observing also that Uu
t is FY

t -measurable, we have

E0
[
Bu,v(s, ϕ·∧s, z)

(
E0[RsX

u
s + Lu

s Ks |FY
s ]

E0[Lu
s |FY

s ] − E0[Rs |FY
s ]

E0[Lu
s |FY

s ]U
u
s

)]∣∣∣ ϕ=Xu;
z=us

= Eu[
∂yσ

(
s, ϕ·∧s,U

u
s , z

)
Eu{(

Lu
s

)−1
Rs

[
Xu

s − Uu
s

] + Ks |FY
s

}]| ϕ=Xu;
z=us

= Eu[(
Lu

s

)−1
∂yσ

(
s, ϕ·∧s,U

u
s , z

){
Rs

[
Xu

s − Uu
s

] + Lu
s Ks

}]| ϕ=Xu;
z=us

(5.15)

= E0[
∂yσ

(
s, ϕ·∧s,U

u
s , z

)(
RsX

u
s + Lu

s Ks

)
− Uu

s ∂yσ
(
s, ϕ·∧s,U

u
s , z

)
Rs

]| ϕ=Xu;
z=us

.

Consequently, if we define

(5.16) �(t,ϕ·∧t , x, y, z)
�= σ(t, ϕ·∧t , y, z) + ∂yσ (t, ϕ·∧t , y, z)(x − y),

then we can rewrite (5.13) as

Kt =
∫ t

0

{
E0[

�
(
s, ϕ·∧s,X

u
s ,Uu

s , z
)
Rs + ∂yσ

(
s, ϕ·∧s,U

u
s , z

)
Lu

s Ks

]| ϕ=Xu;
z=us

(5.17)
+ [Dσ ]u,v

s (K·∧s) + Cu,v
σ (s)(vs − us)

}
dB1

s .

Similarly, we can formally write down the SDE for R:

(5.18) Rt =
∫ t

0

[
Rsh

(
s,Xu

s

) + Lu
s ∂xh

(
s,Xu

s

)
Ks

]
dYs, t ≥ 0.
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The following theorem is regarding the well-posedness of the SDEs (5.17)
and (5.18).

THEOREM 5.1. Assume that Assumption 2.2 is in force, and let u, v ∈
L∞−
FY (Q0; [0, T ]) be given. Then there is a unique solution (K,R) ∈ L ∞−

F (Q0;
C2

T ) to SDEs (5.17) and (5.18).

PROOF. Let u, v ∈ L∞−
FY (Q0; [0, T ]) be given. We define F 1

t (K,R) and
F 2

t (K,R), t ∈ [0, T ], to be the right-hand side of (5.17) and (5.18), respectively.
We first observe that F 1

t (0,0) = ∫ t
0 Cu,v

σ (s)(vs − us) dB1
s , and F 2

t (0,0) ≡ 0,
t ∈ [0, T ]. Then, for any p > 2, it holds that

(5.19) Eu
[

sup
0≤s≤t

∣∣F 1
s (0,0)

∣∣p]
≤ CpE

u

[(∫ t

0
|vs − us |2 ds

)p/2]
, t ∈ [0, T ].

Now let (Ki,Ri) ∈ L ∞−
F (Q0;CT ), i = 1,2. We define K̃i �= F1(K

i,Ri), R̃i �=
F1(K

i,Ri), i = 1,2 and K̄
�= K1 − K2, R̄

�= R1 − R2, K̂
�= K̃1 − K̃2, and R̂

�=
R̃1 − R̃2. Then, noting that σ , ∂yσ , y∂yσ , and ∂zσ are all bounded, thanks to
Assumption 2.2, we see that∣∣�(t,ϕ·∧t , x, y, z)

∣∣ ≤ C
(
1 + |x|), (t, x, y, z) ∈ [0, T ] ×R3, ϕ ∈CT ,

where, and in what follows, C > 0 is some generic constant which is allowed to
vary from line to line. It then follows that∣∣E0[

�
(
t, ϕ·∧t ,X

u
t ,Uu

t , z
)
R̄s + ∂yσ

(
t, ϕ·∧t ,U

u
t , z

)
Lu

t K̄t

]∣∣
(5.20)

≤ CE0[(
1 + ∣∣Xu

t

∣∣)|R̄t | +
∣∣Lu

t K̄t

∣∣] ≤ C
[
E0[|K̄t |2 + |R̄t |2]]1/2

.

Since Dϕσ is also bounded, we have |[Dσ ]u,v
t (ψ)| ≤ C sup0≤s≤t |ψ(s)|, for ψ ∈

CT . Then from the definition of K̂ and (5.20) we have, for any p ≥ 2 and t ∈
[0, T ],

E0
[

sup
0≤s≤t

|K̂s |2p
]
≤ Cp

∫ t

0

(
E0[|R̄s |2 + |K̄s |2])p

ds

(5.21)

+ Cp

∫ t

0
E0

[
sup

0≤r≤s

|K̄r |2p
]
ds.

On the other hand, the boundedness of h and ∂xh implies that, recalling the defini-
tion of R̂, for p ≥ 2 and t ∈ [0, T ],(

E0
[
sup
s≤t

|R̂s |p
])2 ≤ Cp

∫ t

0
E0[|R̄s |p]2

ds + Cp

∫ t

0
E0[∣∣Lu

s K̄s

∣∣p]2
ds

(5.22)

≤ Cp

∫ t

0

(
E0[|R̄s |p])2

ds + Cp

∫ t

0
E0[|K̄s |2p]

ds.
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Combining (5.21) and (5.22) we have, for t ∈ [0, T ],
E0

[
sup

0≤s≤t

|K̂s |2p
]
+

(
E0

[
sup

0≤s≤t

|R̂s |p
])2

≤ Cp

∫ t

0
(E0

[
sup

0≤r≤s

|K̄r |2p
]
+

(
E0

[
sup

0≤r≤s

|R̄r |p
]2)

ds.

This, together with (5.19), enables us to apply standard SDE arguments to deduce
that there is a unique solution (K,R) ∈ L ∞−

F (P;CT ) of (5.17) and (5.18), such
that for all p ≥ 2, it holds that

(5.23) E0[‖K‖2p
CT

] +E0[‖R‖2p
CT

] ≤ Cp‖vs − us‖2
p,2,Q0 .

We leave it to the interested reader, and this completes the proof. �

6. Variational equations. In this section, we validate the heuristic arguments
in the previous section and derive the variational equation of the optimal trajectory
rigorously. Recall the processes δθX = δθX

u,v , δθL = δθL
u,v , and (K,R) defined

in the previous section. Denote

(6.1) ηθ
t

�= δθXt − Kt, η̃θ
t

�= δθLt − Rt, t ∈ [0, T ].
Our main purpose of this section is to prove the following result.

PROPOSITION 6.1. Let (Pu, u) = (Pu∗
, u∗) ∈ Uad be an optimal control,

(Xu,Lu) be the corresponding solution of (5.1) and let Uu
t = Eu[Xu

t |FY
t ], t ≥ 0.

For any v ∈ Uad, let (K,R) = (Ku,v,Ru,v) be the solution of the linear equations
(5.17) and (5.18). Then, for all p > 1, it holds that

lim
θ→0

E0[∥∥ηθ
∥∥p
CT

] = lim
θ→0

E0
[

sup
s∈[0,T ]

∣∣∣∣Xθ,v
s − Xu

s

θ
− Ks

∣∣∣∣p]
= 0;(6.2)

lim
θ→0

E0[∥∥η̃θ
∥∥p
CT

] = lim
θ→0

E0
[

sup
s∈[0,T ]

∣∣∣∣Lθ,v
s − Lu

s

θ
− Rs

∣∣∣∣p]
= 0.(6.3)

The proof of Proposition 6.1 is quite lengthy, and we shall split it into two parts.

PROOF OF (6.3). This part is relatively easy. We note that with a direct cal-
culation using the equations (5.7) and (5.18) it is readily seen that η̃θ satisfies the
following SDE:

η̃θ
t =

∫ t

0
η̃θ

r h
(
r,Xθ,v

r

)
dYr

(6.4)

+
∫ t

0
Lu

r

∫ 1

0
∂xh

(
r,Xu

r + λθ
(
ηθ

r + Kr

))
ηθ

r dλdYr + I
1,θ
t + I

2,θ
t ,
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where

I
1,θ
t =

∫ t

0
Rr

(
h

(
r,Xθ,v

r

) − h
(
r,Xu

r

))
dYr;

I
2,θ
t =

∫ t

0
Lu

r

∫ 1

0
∂xh

(
r,Xu

r + λθ
(
ηθ

r + Kr

))
Kr dλdYr

−
∫ t

0
Lu

r ∂xh
(
r,Xu

r

)
Kr dYr .

We claim that, for all p > 1,

lim
θ→0

Eu
[

sup
t∈[0,T ]

∣∣I 1,θ
t

∣∣p]
= 0,

(6.5)
lim
θ→0

Eu
[

sup
t∈[0,T ]

∣∣I 2,θ
t

∣∣p]
= 0.

Indeed, note that dYt = dB2
t − h(t,Xu

t ) dt , and B2 is a Pu-Brownian motion.
Proposition 4.2, together with the bounded and continuity of h and ∂xh, leads
to that, for all p ≥ 2,

Eu
{

sup
t∈[0,T ]

∣∣I 1,θ
t

∣∣p}
= E0

{
Lu

T sup
t∈[0,T ]

∣∣∣∣∫ t

0
Rs

[
h

(
s,Xθ,v

s

) − h
(
s,Xu

s

)]
dYs

∣∣∣∣p}

≤ 2Eu

{
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Rs

[
h

(
s,Xθ,v

s

) − h
(
s,Xu

s

)]
dB2

s

∣∣∣∣p}

+ 2E0
{
Lu

T sup
t∈[0,T ]

∣∣∣∣∫ t

0
Rs

[
h

(
s,Xθ,v

s

) − h
(
s,Xu

s

)]
h

(
s,Xu

s

)
ds

∣∣∣∣p}

≤ CpE
0
{
Lu

T

∫ T

0
Rp

s

(∣∣Xθ,v
s − Xu

s

∣∣p ∧ 1
)
ds

}

≤ Cp

{
E0[(

Lu
T

)3]} 1
3
{
E0

[
sup

s∈[0,T ]
|Rs |3p

]} 1
3
{
E0

[
sup

s∈[0,T ]
(∣∣Xθ,v

s − Xu
s

∣∣2 ∧ 1
)]} 1

3

≤ Cp

∥∥u − uθ,v
∥∥ 2

3
p,2,Q0 ≤ C|θ | 2

3 ,

where we used the following estimate for any function f ∈ L∞(R) bounded by
C0 ≥ 1: ∣∣f (x) − f

(
x′)∣∣3p ≤ (

2C0
(∣∣f (x) − f

(
x′)∣∣ ∧ 1

))3p

(6.6)
≤ (2C0)

3p(∣∣f (x) − f
(
x′)∣∣2 ∧ 1

)
, ∀p ≥ 2.
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Similarly, we have

Eu
{

sup
t∈[0,T ]

∣∣I 2,θ
t

∣∣p}
= E0

{
Lu

T sup
t∈[0,T ]

∣∣∣∣ ∫ t

0
Lu

r Kr

[∫ 1

0

[
∂xh

(
r,Xu

r + λθ
(
ηθ

r + Kr

))
− ∂xh

(
r,Xu

r

)]
dλ

]
dYr

∣∣∣∣p}

≤ CpE
0
{
Lu

T

∫ T

0

∣∣Lu
r

∣∣p|Kr |p
[∫ 1

0

∣∣∂xh
(
r,Xu

r + λθ
(
ηθ

r + Kr

))
− ∂xh

(
r,Xu

r

)∣∣dλ

]p

dr

}

≤ CpE
0
{∫ T

0

[∫ 1

0

[∣∣∂xh
(
r,Xu

r + λθ
(
ηθ

r + Kr

))
− ∂xh

(
r,Xu

r

)∣∣2 ∧ 1
]
dλ

]
dr

}1/3
.

Here, in the above the second inequality follows from (6.6) applied to ∂xh, the
Hölder inequality, and the fact that Lu,K ∈ L ∞−

F (Q0;CT ) (see Theorem 5.1),
and the last inequality follows from the Lp-estimate (5.23). Now, from (4.5), (5.17)
and (5.18) we see that

E0
{

sup
t∈[0,T ]

(∣∣ηθ
t

∣∣2 + |Kt |2)}
≤ C, θ ∈ (0,1).

Hence, since θ [‖ηθ‖CT
+‖K‖CT

] → 0, in probability Q0, as θ → 0, the continuity
of ∂xh and the bounded convergence theorem then imply (6.5), proving the claim.
Recalling (6.4), we see that (6.3) follows from (6.5), provided (6.2) holds, which
we now substantiate. �

PROOF OF (6.2). This part is more involved. We first rewrite (5.9) as follows:

δθXt =
∫ t

0

{
E0{(

η̃θ
s + Rs

)
σ

(
s, ϕ·∧s,U

θ,v
s , z

)}| ϕ=Xθ,v,

z=u
θ,v
s

+ [Dσ ]θ,u,v
s

(
ηθ·∧s + K·∧s

) +E0{
Bθ,u,v(s, ϕ·∧s, z)δθUs

}| ϕ=Xu;
z=u

θ,v
s

(6.7)

+ Cθ,u,v
σ (s)(vs − us)

}
dB1

s .

Here, [Dσ ]θ,u,v , Bθ,u,v and Cθ,u,v are defined by (5.10). Furthermore, in light
of (5.11), we can also write

δθUt = E0[(η̃θ
t + Rt)X

θ,v
t + Lu

t (η
θ
t + Kt)|FY

t ]
E0[Lθ,v

t |FY
t ] − E0[(η̃θ

t + Rt)|FY
t ]

E0[Lθ,v
t |FY

t ] Uu
t .
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Plugging this into (6.7), we have

δθXt =
∫ t

0

{
E0{

η̃θ
s σ

(
s, ϕ·∧s,U

θ,v
s , z

)}| ϕ=Xθ,v,

z=u
θ,v
s

+ [Dσ ]θ,u,v
s

(
ηθ·∧s

)

+E0
{
Bθ,u,v(s, ϕ·∧s, z)

[
E0[η̃θ

s X
θ,v
s + Lu

s η
θ
s |FY

s ]
E0[Lθ,v

s |FY
s ]

− E0[η̃θ
s |FY

s ]
E0[Lθ,v

s |FY
s ]U

u
s

]}∣∣∣ ϕ=Xu;
z=u

θ,v
s

}
dB1

s

+
∫ t

0

{
E0{

Rsσ
(
s, ϕ·∧s,U

θ
s , z

)}| ϕ=Xθ,v,

z=u
θ,v
s

+ [Dσ ]θ,u,v
s (K·∧s)

+E0
{
Bθ,u,v(s, ϕ·∧s, z)

[
E0[RsX

θ,v
s + Lu

s Ks |FY
s ]

E0[Lθ,v
s |FY

s ]

− E0[Rs |FY
t ]

E0[Lθ,v
s |FY

s ]U
u
s

]}∣∣∣ ϕ=Xθ,v ;
z=u

θ,v
s

+ Cθ,u,v
σ (s)(vs − us)

}
dB1

s .

Now, recalling (5.17) [or more conveniently, (5.13)] we have

ηθ
t = δθXt − Kt

=
∫ t

0

{
E0{

η̃θ
s σ

(
s, ϕ·∧s,U

θ,v
s , z

)}| ϕ=Xθ,v,

z=u
θ,v
s

+ [Dσ ]θ,u,v
s

(
ηθ·∧s

)

+E0
{
Bθ,u,v(s, ϕ·∧s, z)

[
E0[η̃θ

s X
θ,v
s + Lu

s η
θ
s |FY

s ]
E0[Lθ,v

s |FY
s ](6.8)

− E0[η̃θ
s |FY

s ]
E0[Lθ,v

s |FY
s ]U

u
s

]}∣∣∣ ϕ=Xu;
z=u

θ,v
s

}
dB1

s

+ I
3,θ,1
t + I

3,θ,2
t + I

3,θ,3
t + I

3,θ,4
t ,

where, for t ∈ [0, T ],
I

3,θ,1
t

�=
∫ t

0
E0{

Rs

[
σ

(
s, ϕ1·∧s,U

θ,v
s , z1) − σ

(
s, ϕ2·∧s,U

u
s , z2)]}∣∣∣

ϕ1=Xθ,v,z1=u
θ,v
s

ϕ2=Xu,z2=us

dB1
s ;

I
3,θ,2
t

�=
∫ t

0
E0{[Dσ ]θ,u,v

s (K·∧s) − [Dσ ]u,v
s (K·∧s)

}
dB1

s ;

I
3,θ,3
t

�=
∫ t

0

{
E0

{
Bθ,u,v(s, ϕ·∧s, z)

(
E0[RsX

θ,v
s + Lu

s Ks |FY
s ]

E0[Lθ,v
s |FY

s ]

− E0[Rs |FY
t ]

E0[Lθ,v
s |FY

s ]U
u
s

)}∣∣∣ ϕ=Xu;
z=u

θ,v
s

(6.9)



3232 R. BUCKDAHN, J. LI AND J. MA

−E0
{
Bu,v(s, ϕ·∧s, z)

(
E0[RsX

u
s + Lu

s Ks |FY
s ]

E0[Lu
s |FY

s ]

− E0[Rs |FY
s ]

E0[Lu
s |FY

s ]U
u
s

)}∣∣∣ ϕ=Xu;
z=us

}
dB1

s ;

I
3,θ,4
t

�=
∫ t

0
E0[

Cθ,u,v
σ (s)(vs − us) − Cu,v

σ (s)(vs − us)
]
dB1

s . �

We have the following lemma.

LEMMA 6.1. Suppose that Assumption 2.2 holds. Then, for all p > 1,

(6.10) lim
θ→0

E0
{

sup
0≤t≤T

|I 3,θ,i
t |p

}
= 0, i = 1, . . . ,4.

PROOF. We first recall that Uθ,v
s

�= Eθ,v[Xθ,v
s |FY

s ] and Uu
s

�= Eu[Xu
s |FY

s ]. Us-
ing the Kallianpur–Strieble formula, we have

E0
∫ T

0

∣∣Uθ,v
s − Uu

s

∣∣p ds

≤ Cp

{
E0

∫ T

0

∣∣∣∣E0[Lθ,v
s Xθ,v

s |FY
s ]

E0[Lθ,v
s |FY

s ] − E0[Lu
s X

u
s |FY

s ]
E0[Lθ,v

s |FY
s ]

∣∣∣∣p ds

(6.11)

+E0
∫ T

0

∣∣∣∣E0[Lu
s X

u
s |FY

s ]
E0[Lθ,v

s |FY
s ] − E0[Lu

s X
u
s |FY

s ]
E0[Lu

s |FY
s ]

∣∣∣∣p ds

}
�= Cp

{
J 1

θ + J 2
θ

}
.

We now estimate J 1
θ and J 2

θ , respectively. First, note that, for any p > 1, we can
find a constant Cp > 0 such that for any θ ∈ (0,1) and u ∈ Uad,

E0[(
Lθ,v

s

)p] +E0[(
Lθ,v

s

)−p] +E0[(
Lu

s

)p] ≤ Cp.

Thus, applying the Hölder and Jensen inequalities as well as Proposition 4.2, we
have, for any p > 1, and θ ∈ (0,1),

E0
∫ T

0

∣∣∣∣E0[Lθ,v
s Xθ,v

s |FY
s ] −E0[Lu

s X
u
s |FY

s ]
E0[Lθ,v

s |FY
s ]

∣∣∣∣p ds

≤
∫ T

0
E0

{ |Lθ,v
s Xθ,v

s − Lu
s X

u
s |p

E0[Lθ,v
s |FY

s ]p
}

ds

≤
∫ T

0

{{
E0∣∣Lθ,v

s Xθ,v
s − Lu

s X
u
s

∣∣2}1/2
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×
{
E0

[ |Lθ,v
s Xθ,v

s − Lu
s X

u
s |2p−2

E0[Lθ,v
s |FY

s ]2p

]}1/2}
ds(6.12)

≤
∫ t

0

{
E0∣∣Lθ,v

s Xθ,v
s − Lu

s X
u
s

∣∣2}1/2

× {
E0[∣∣Lθ,v

s Xθ,v
s − Lu

s X
u
s

∣∣2p−2]
E0[[

Lθ,v
s

]−2p|FY
s

]}1/2
ds

≤ Cpθ‖u − v‖2,2,Q0 .

Similarly, one can also argue that, for any p > 1, the following estimates hold:

E0
∫ T

0

∣∣∣∣ 1

E0[Lθ,v
s |FY

s ] − 1

E0[Lu
s |FY

s ]
∣∣∣∣p ds

(6.13)
≤ Cpθ‖u − v‖2,2,Q0, θ ∈ (0,1).

Clearly, (6.12) and (6.13) imply that J 1
θ + J 2

θ ≤ Cpθ‖u − v‖2,2,Q0 , for some con-
stant Cp > 0, depending only on p, the Lipschitz constant of the coefficients,
and T . Therefore, we have

(6.14) E0
∫ T

0

∣∣Uθ,v
s − Uu

s

∣∣p ds ≤ Cpθ‖u − v‖2,2,Q0 → 0, as θ → 0.

We can now prove (6.10) for i = 1, . . . ,4. First, by the Burkholder–Davis–
Gundy inequality, we have

E0
[

sup
0≤t≤T

∣∣I 3,θ,1
t

∣∣2]
≤ C

∫ T

0
E0∣∣E0{

Rs

[
σ

(
s, ϕ1·∧s,U

θ,v
s , z1)

− σ
(
s, ϕ2·∧s,U

u
s , z2)]}|

ϕ1=Xθ,v,z1=u
θ,v
s

ϕ2=Xu,z2=us

∣∣2 ds.

Since σ is bounded and Lipschitz continuous in (ϕ, y, z), it follows from Propo-
sition 4.2 and (6.14) that limθ→0 E

0[sup0≤t≤T |I 3,θ,1
t |2] = 0. By the similar argu-

ments using the continuity of Dϕσ and that of ∂zσ , respectively, it is not hard to
show that, for all p > 1,

lim
θ→0

E0
[

sup
0≤t≤T

∣∣I 3,θ,2
t

∣∣p]
= 0; lim

θ→0
E0

[
sup

0≤t≤T

∣∣I 3,θ,4
t

∣∣p]
= 0.

It remains to prove the convergence of I 3,θ,3. To this end, we note that, for any
p > 1,

(6.15) E0
[

sup
s∈[0,T ]

(|Rs |p + |Ks |p)]
≤ Cp,

and by (6.14) we have, for p > 1,

lim
θ→0

E0
∫ T

0

∣∣E0{∣∣Bθ,u,v(s, ϕ·∧s, z) − Bu,v(
s, ϕ·∧s, z

1)∣∣2}|
ϕ=Xu,z=u

θ,v
s

z1=us

∣∣p ds

(6.16)
= 0.
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This, together with (6.13), (6.14), an estimate similar to (6.12), and Proposi-
tion 4.2, yields that limθ→0 E

0[sup0≤t≤T |I 3,θ,3
t |2] = 0, proving the lemma. �

We now continue the proof of (6.2). First, we rewrite (6.8) as

ηθ
t =

∫ t

0

{
E0{

η̃θ
s σ

(
s, ϕ·∧s,U

θ,v
s , z

)}| ϕ=Xθ,v,

z=u
θ,v
s

+ [Dσ ]θ,u,v
s

(
ηθ·∧s

)
+E0

{
Bθ,u,v(s, ϕ·∧s, z)

[
E0[η̃θ

s X
θ,v
s + Lu

s η
θ
s |FY

s ]
E0[Lu

s |FY
s ](6.17)

− E0[η̃θ
s |FY

s ]
E0[Lu

s |FY
s ]U

u
s

]}∣∣∣ ϕ=Xu;
z=u

θ,v
s

}
dB1

s + I
3,θ,0
t +

4∑
i=1

I
3,θ,i
t ,

where

I
3,θ,0
t

�=
∫ t

0
E0

{
Bθ,u,v(s, ϕ·∧s, z)

[
E0[η̃θ

s X
θ,v
s + Lu

s η
θ
s |FY

s ]
E0[Lθ,v

s |FY
s ]

− E0[η̃θ
s |FY

s ]
E0[Lθ,v

s |FY
s ]U

u
s

]∣∣∣ ϕ=Xu;
z=u

θ,v
s

− Bθ,u,v(s, ϕ·∧s, z)

[
E0[η̃θ

s X
θ,v
s + Lu

s η
θ
s |FY

s ]
E0[Lu

s |FY
s ]

− E0[η̃θ
s |FY

s ]
E0[Lu

s |FY
s ]U

u
s

]∣∣∣ ϕ=Xu;
z=u

θ,v
s

}
dB1

s .

With the same argument as before one shows that limθ→0 E
0[sup0≤t≤T |I 3,θ,0

t |2] =
0. On the other hand, similar to (5.15) one can argue that

E0
[
Bθ,u,v(s, ϕ·∧s, z)

(
E0[η̃θ

s X
θ,v
s + Lu

s η
θ
s |FY

s ]
E0[Lu

s |FY
s ] − E0[η̃θ

s |FY
s ]

E0[Lu
s |FY

s ]U
u
s

)]∣∣∣ ϕ=Xu;
z=u

θ,v
s

= E0
[∫ 1

0
∂yσ

(
s, ϕ·∧s,U

u
s + λ

(
Uθ,v

s − Uu
s

)
, z

)
dλ

× (
η̃θ

s X
θ,v
s + Lu

s η
θ
s − Uu

s η̃θ
s

)]∣∣∣ ϕ=Xu;
z=u

θ,v
s

.

Consequently, we have

ηθ
t =

∫ t

0

{
E0{

α1,θ
s

(
ϕ1·∧s, ϕ

2·∧s, z
)
η̃θ

s

}| ϕ1=Xθ,v,ϕ2=Xu,

z=u
θ,v
s

+E0{
α2,θ

s

(
ϕ2·∧s, z

)
η̃θ

s

}| ϕ2=Xu,

z=u
θ,v
s

}
dB1

s

+
∫ t

0

{
E0{

βθ
s

(
ϕ2·∧s, z

)
ηθ

s

}| ϕ2=Xu

z=u
θ,v
s

+ [Dσ ]θ,u,v
s

(
ηθ·∧s

)}
dB1

s + I
3,θ
t ,
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where I
3,θ
t = ∑4

i=0 I
3,θ,i
t , and

α1,θ
s

(
ϕ1·∧s, ϕ

2·∧s, z
) �=

∫ 1

0
Dϕσ

(
s, ϕ2·∧s + λ

(
ϕ1·∧s − ϕ2·∧s

)
,Uθ,v

s , z
)(

ϕ1·∧s − ϕ2·∧s

)
dλ;

α2,θ
s

(
ϕ2·∧s, z

) �= σ
(
s, ϕ2·∧s,U

θ,v
s , z

)
+

∫ 1

0
∂yσ

(
s, ϕ2·∧s,U

u
s + λ

(
Uθ,v

s − Uu
s

)
, z

)
dλ

(
Uθ,v

s − Uu
s

);
βθ

s

(
ϕ2·∧s, z

) �= Lu
s

∫ 1

0
∂yσ

(
s, ϕ2·∧s,U

u
s + λ

(
Uθ,v

s − Uu
s

)
, z

)
dλ.

Notice that∣∣α1,θ
s

(
ϕ1·∧s, ϕ

2·∧s, z
)∣∣ + ∣∣α2,θ

s

(
ϕ2·∧s, z

)∣∣ ≤ C
(
1 + ∣∣ϕ1·∧s

∣∣ + ∣∣ϕ2·∧s

∣∣ + ∣∣Uθ,v
s

∣∣ + ∣∣Uu
s

∣∣),∣∣βθ
s (ϕ·∧s, z)

∣∣ ≤ CLu
s .

Now by the Burkholder and Cauchy–Schwarz inequalities we have, for all p ≥ 2,
t ∈ [0, T ],
E0

[
sup

s∈[0,t]
∣∣ηθ

s

∣∣2p
]

≤ Cp

{
E0[∥∥I 3,θ

∥∥2p
CT

] +E0
{[∫ t

0

(
E0[∣∣ηθ

s

∣∣2 + ∣∣η̃θ
s

∣∣2] + sup
r∈[0,s]

∣∣ηθ
s

∣∣2)
ds

]p}}
,

and from Gronwall’s inequality one has

E0
[

sup
s∈[0,t]

∣∣ηθ
s

∣∣2p
]

(6.18)

≤ Cp

{
E0[∥∥I 3,θ

∥∥2p
CT

] +
∫ t

0

(
E0[∣∣η̃θ

s

∣∣p])2
ds

}
, t ∈ [0, T ].

On the other hand, setting I θ
t

�= I
1,θ
t + I

2,θ
t , t ∈ [0, T ], we have from (6.4) that, for

p ≥ 2, t ∈ [0, T ],
E0

[
sup

s∈[0,t]
∣∣η̃θ

s

∣∣p]
≤ Cp

{
E0[∥∥I θ

∥∥p
CT

] +
∫ t

0
E0[∣∣η̃θ

s

∣∣p]
ds +

∫ t

0

(
E0[∣∣ηθ

s

∣∣2p])1/2
ds

}
.

Then Gronwall’s inequality leads to that(
E0

[
sup

s∈[0,t]
∣∣η̃θ

s

∣∣p])2

(6.19)

≤ Cp

{(
E0∥∥I θ

∥∥p
CT

)2 +
∫ t

0
E0[∣∣ηθ

s

∣∣2p]
ds

}
, t ∈ [0, T ].

Combining (6.18), (6.19), applying (6.5) and Lemma 6.1 as well as the Gronwall
inequality, we can easily deduce (6.2) by sending θ → 0. Consequently, (6.3) holds
as well.
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From Proposition 6.1, (5.11) and the above development we also obtain the
following corollary.

COROLLARY 6.1. We assume that Assumption 2.2 holds. Then, for all p > 1,

lim
θ→0

E0[‖δθU − V ‖p
CT

] = lim
θ→0

E0
[

sup
0≤s≤T

∣∣∣∣Uθ,v
s − Uu

s

θ
− V s

∣∣∣∣p]
= 0,

where

V t
�= E0[RtX

u
t + Lu

t Kt |FY
t ]

E0[Lu
t |FY

t ] − E0[Rt |FY
t ]

E0[Lu
t |FY

t ]U
u
t , t ∈ [0, T ].

7. Stochastic maximum principle. We are now ready to study the stochastic
maximum principle. The main task will be to determine the appropriate adjoint
equation, which we expect to be a backward stochastic differential equation of
mean-field type. We begin with a simple analysis. Suppose that u = u∗ is an opti-
mal control, and for any v ∈ Uad, we define uθ,v by (5.4). Then we have

0 ≤ J (uθ,v) − J (u)

θ

= 1

θ
E0

{
E0[

L
θ,v
T 	

(
x,U

θ,v
T

)]|x=Xθ
T

−E0[
Lu

T 	
(
x,Uu

T

)]|x=Xu
T

(7.1)

+
∫ T

0

[
E0[

Lθ,v
s f

(
s, ϕ·∧s,U

θ,v
s , z

)]| ϕ=Xθ,v,

z=u
θ,v
s

−E0[
Lu

s f
(
s, ϕ·∧s,U

u
s , z

)]| ϕ=Xu,
z=us

]
ds

}
.

Now, repeating the same analysis as that in Proposition 4.2, then sending θ → 0,
it follows from Propositions 4.2, 6.1 and the continuity of the functions 	 and f

that

0 ≤ E0[KT ξ ] +E0[RT �] +E0
{∫ T

0

{
E0[

Rsf
(
s, ϕ·∧s,U

u
s , z

)]|ϕ=Xu,z=us

+E0[
∂yf

(
s, ϕ·∧s,U

u
s , z

)(
Xu

s − Uu
s

)
Rs + Lu

s Ks

]|ϕ=Xu,z=us

(7.2)
+E0[

Lu
s Dϕf

(
s, ϕ·∧s,U

u
s , z

)
(ψ·∧s)

]|ϕ=Xu,z=us,ψ=K

+E0[
Lu

s ∂zf
(
s, ϕ·∧s,U

u
s , z

)]|ϕ=Xu,z=us (vs − us)
}
ds

}
,

where

ξ
�= E0[

Lu
T ∂x	

(
x,Uu

T

)]|x=Xu
T

+ Lu
T E

0[
∂y	

(
Xu

T , y
)]|y=Uu

T
,

(7.3)
�

�= E0[
	

(
Xu

T , y
)]|y=Uu

T
+ (

Xu
T − Uu

T

)
E0[

∂y	
(
Xu

T , y
)]|y=Uu

T
.
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We now consider the adjoint equations that take the following form of backward
SDEs on the reference space (�,F,Q0):{

dpt = −αt dt + d�t + qt dB1
t + q̃t dYt , pT = ξ,

dQt = −βt dt + d�t + Mt dB1
t + M̃t dYt , QT = �.

(7.4)

Here, the coefficients α,β as well as the two bounded variation processes � and
� are to be determined. Applying Itô’s formula and recalling the variational equa-
tions (5.17) and (5.18), we can easily derive (denote Uu

t = Eu[Xu
t |FY

t ], t ∈ [0, T ])
E0[ξKT ] +E0[�RT ]

=
∫ T

0

{−E0[Ksαs] −E0[Rsβs] +E0[
qsE

0[
Rsσ

(
s, ϕ·∧s,U

u
s , z

)]| ϕ=Xu,
z=us

]
+E0[

qsE
0[

∂yσ
(
s, ϕz·∧s,U

u
s , z

)[(
Xu

s − Uu
s

)
Rs + Lu

s Ks

]]| ϕ=Xu,
z=us

]
(7.5)

+E0[
qs[Dσ ]u,v

s (K·∧s) + qsC
u,v
σ (s)(vs − us) + M̃sRsh

(
s,Xu

s

)
+ M̃sKsL

u
s ∂xh

(
s,Xu

s

)]}
ds +E0

{∫ T

0
[Ksd�s + Rsd�s]

}
,

where [Dσ ]u,v and Cu,v are defined by (5.14).
By Fubini’s theorem, we see that

(7.6)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E0[
qsE

0[
Rsσ

(
s, ϕ· ∧ s,Uu

s , z
)]| ϕ=Xu,

z=us

]
= E0[

RsE
0[

qsσ (s,X·∧s, y, us)
]|y=Uu

s

];
E0[

qsE
0[

∂yσ
(
s, ϕz·∧s,U

u
s , z

)[(
Xu

s − Uu
s

)
Rs + Lu

s Ks

]]| ϕ=Xu,
z=us

]
= E0[

E0z
[
qs∂yσ (s,Xz·∧s, y, us)

]|y=Uu
s

[(
Xu

s − Uu
s

)
Rs + Lu

s Ks

]]
.

Furthermore, in light of definition of [Dσ ]u,v (5.14), if we denote, for fixed
(t, ϕ, z),

(7.7) μ0
σ (t, ϕ·∧t , z)(·) �= E0[

Lu
t Dϕσ

(
t, ϕ·∧t ,U

u
t , z

)]
(·) ∈ M [0, T ],

where M [0, T ] denotes all the Borel measures on [0, T ], then we can write

[Dσ ]u,v
t (K·∧t ) = E0[

Lu
t Dϕσ

(
t, ϕ·∧t ,U

u
t , z

)
(ψ)

]| ϕ=Xu,z=ut ,
ψ=K·∧t

(7.8)

=
∫ t

0
Krμ

0
σ

(
r,Xu·∧r , ur

)
(dr).

Let us now argue that a similar Fubini theorem argument holds for the random
measure μ0

σ (t,Xu·∧t , ut )(·). First, for a given process q ∈ L2
F(Q

0; [0, T ]), consider
the following finite variation (FV) process [in fact, under Assumption 2.2, inte-
grable variation (IV) process]:

(7.9) Aσ
t

�=
∫ T

0

∫ t∧s

0
qsμ

0
σ

(
s,Xu·∧s, us

)
(dr) ds, t ∈ [0, T ].
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It is easy to check, as a (randomized) signed measure on [0, T ], it holds Q0-almost
surely that dAσ

t = ∫ T
t qsμ

0
σ (s,Xu·∧s, us)(dt) ds. We note that being a “raw FV”

process, the process Aσ is not F-adapted. We now consider its dual predictable
projection:

(7.10) p

(∫ T

t
qsμ

0
σ

(
s,Xu·∧s, us

)
(dt) ds

) �= d
[pAσ

t

]
, t ∈ [0, T ].

We remark that d[pAt ] is a predicable random measure that can be formally un-
derstood as

d
[pAσ

t

] = E0[
dAσ

t |Ft−
]

= E0
[∫ T

t
qsμ

0
σ

(
s,Xu·∧s, us

)
(dt) ds

∣∣∣Ft−
]
, t ∈ [0, T ].

Using the definition of dual predicable projection and (7.8), we see that, for the
continuous process K ∈ L2

F(Q
0;CT ),∫ T

0
E0[

qs[Dσ ]u,v
s (K·∧s)

]
ds =

∫ T

0
E0

[
qs

∫ s

0
Krμ

0
σ

(
r,Xu·∧r , ur

)
(dr)

]
ds

= E0
[∫ T

0
Kr dAσ

r

]
= E0

[∫ T

0
Kr d

[pAσ
r

]]
(7.11)

= E0
[∫ T

0
Kp

r

(∫ T

r
qsμ

0
σ

(
s,Xu·∧s, us

)
(dr) ds

)]
.

Similarly, we denote A
f
t

�= ∫ T
0

∫ t∧s
0 μ0

f (s,Xu·∧s, us)(dr) ds, t ∈ [0, T ]; and de-

note its dual predicable projection by p(
∫ T
t μ0

f (s,Xu·∧s, us)(dt) ds) = d[pAf
t ],

t ∈ [0, T ].
We now plug (7.6) and (7.11) into (7.5) to get

E0[ξKT ] +E0[�RT ]
= E0

{∫ T

0

{
Ks

[−αs + Lu
sE

0[
qs∂yσ

(
s,Xu·∧s, y, us

)]|y=Uu
s

+ MsL
u
s ∂xh

(
s,Xu

s

)] + Rs

[−βs +E0[
qsσ (s,X·∧s, y, us)

]|y=Uu
s

+ M̃sh
(
s,Xu

s

)] + qsC
u,v
s (vs − us)

(7.12)

+ RsE
0[

qs∂yσ
(
s,Xu·∧s, y, us

)]|y=Uu
s

(
Xu

s − Uu
s

)}
ds +

∫ T

0
Ks d

[pAσ
s

]}
+E0

{∫ T

0
[Ksd�s + Rsd�s]

}
= E0

{∫ T

0

[−Ksα̂s − Rsβ̂s + qsC
u,v
σ (s)(vs − us)

]
ds + Ks d

[pAσ
s

]
+ [Ksd�s + Rsd�s]

}
,
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where

(7.13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α̂t

�= αt − Lu
t E

0[
qt∂yσ

(
t,Xu·∧t , y, ut

)]|y=Uu
t

− M̃tL
u
t ∂xh

(
t,Xu

t

);
β̂t

�= βt −E0[
qtσ (t,X·∧t , y, ut )

]|y=Uu
t

− M̃th
(
t,Xu

t

)
−E0[

qt∂yσ
(
t,Xu·∧t , y, ut

)]|y=Uu
t

(
Xu

t − Uu
t

)
.

Combining (7.2) and (7.12) and using the processes dAσ , dAf and their dual
predicable projections, we have

0 ≤ E0
{∫ T

0

[−Ksα̂s − Rsβ̂s + qsC
u,v
σ (s)(vs − us)

]
ds +

∫ T

0
Ks d

[pAσ
s

]}

+E0
{∫ T

0

[
Rs

[
E0[

f (s,X·∧s, y, us)
]|y=Uu

s

+E0[
∂yf

(
s,Xu·∧s, y, us

)]|y=Uu
s

(
Xu

s − Uu
s

)]
(7.14)

+ Lu
s KsE

0[
∂yf

(
s,Xu·∧s, y, us

)]|y=Uu
s

+ C
u,v
f (s)(vs − us)

]
ds

+
∫ T

0
Ks d

[pAf
s

]}
+E0

{∫ T

0
[Ksd�s + Rsd�s]

}
,

where C
u,v
f (s)

�= E0[Lu
s ∂zf (s, ϕ·∧s,U

u
s , z)]| ϕ=Xu,

z=us

. Now, if we set �t = 0, and

α̂t = Lu
t E

0[
∂yf

(
t,Xu·∧t , y, ut

)]|y=Uu
t
;

β̂t = E0[
f (t,X·∧t , y, ut )

]|y=Uu
t

(7.15)
+E0[

∂yf
(
t,Xu·∧t , y, ut

)]|y=Uu
t

(
Xu

t − Uu
t

);
d�t = −d

[pAσ
t

] − d
[pAf

t

]
,

then (7.14) becomes

(7.16) 0 ≤ E0
{∫ T

0

[
qsC

u,v
σ (s) + C

u,v
f (s)

]
(vs − us) ds

}
, v ∈ Uad.

From this, we should be able to derive the maximum principle, provided that the
adjoint equation (7.4) with coefficients α, β , and � determined by (7.13) and (7.15)
is well defined.

REMARK 7.1. (1) We remark that the process � in (7.15) should be consid-
ered as a mapping from the space L2

F([0, T ] × �) × L2
F(�;CT ) × L2

F([0, T ] ×
�;U) to MF([0, T ]), the space of all the random measures on [0, T ], such that:

(i) (t,ω) �→ μ(t,ω,A) is F-progressively measurable, for all A ∈ B([0, T ]);
(ii) μ(t,ω, ·) ∈ M ([0, T ]) is a finite Borel measure on [0, T ].
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(2) Assumption 2.2(iii) implies that the random measure Dσ [q,Xu,u](t, dt)

satisfies the following estimate: for any q ∈ L2
F([0, T ] × �) and u ∈ Uad,

E0
[∫ T

0

∣∣dpAσ
t

∣∣] = E0
{∫ T

0

∣∣∣∣p(∫ T

t
qsμ

0
σ

(
s,Xu·∧s, us

)
(dt) ds

)∣∣∣∣}

≤ E0
{∫ T

0

∫ s

0
|qs |

∣∣μ0
σ

(
s,Xu·∧s, us

)
(dt)

∣∣ds

}
(7.17)

≤ E0
{∫ T

0
|qs |

∫ s

0
�(s, dt) ds

}
≤ CE0

{∫ T

0
|qs |ds

}
≤ C‖q‖2,2,Q0 .

The same estimate holds for Df [Xu,u](t, dt) as well.
(3) Clearly, the processes Aσ and Af are originated from the Fréchet derivatives

of σ and f , respectively, with respect to the path ϕ·∧t . If σ and f are of Markovian
type, then they will be absolutely continuous with respect to the Lebesgue measure.

We shall now validate all the arguments presented above. To begin with, we
note that the choice of α, β , and � via by (7.13) and (7.15), together with the
terminal condition (ξ,�) by (7.3), amounts to saying that the processes (p, q, q̃)

and (Q,M,M̃) solve the BSDE

(7.18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dpt = −Lu
t

{
E0[

∂yf
(
t,Xu·∧t , y, ut

)]|y=Uu
t

+E0[
qt∂yσ

(
t,Xu·∧t , y, ut

)]|y=Uu
t

+ M̃t∂xh
(
t,Xu

t

)}
dt − dpAσ

t − dpA
f
t + qt dB1

t + q̃t dYt ,

dQt = −{
E0[

qtσ
(
t,Xu·∧t , y, ut

)]|y=Uu
t

− M̃th
(
t,Xu

t

)
+E0[

qt∂yσ
(
t,Xu·∧t , y, ut

)]|y=Uu
t

(
Xu

t − Uu
t

)
+E0[

f (t,X·∧t , y, ut )
]|y=Uu

t

+E0[
∂yf

(
t,Xu·∧t , y, ut

)]|y=Uu
t

(
Xu

t − Uu
t

)}
dt

+ Mt dB1
t + M̃t dYt ,

pT = ξ, QT = �.

Now if we denote η = (p,Q)T , W = (B1, Y )T , � = [ q q̃

M M̃

]
, then we can rewrite

(7.18) in a more abstract (vector) form:⎧⎪⎪⎨⎪⎪⎩
dηt = −{

At +E0[
Gt�tg(t, y)

]|y=Uu
t

+ Ht�tht

}
dt

− �(�)(t, dt) − �0(t, dt) + �t dWt,

ηT = ϒ,

(7.19)

where ϒ ∈ L2
FW

T

(�;Q0); A,G,H and h are bounded, vector or matrix-valued

FW -adapted processes with appropriate dimensions, g is an R2-valued progres-
sively measurable random field and U is an FY -adapted process. Moreover, the
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R2-valued finite variation processes �(�)(t, dt) and �0(t, dt) take the form

�(�)(t, dt) = p

(∫ T

t
�rμ

1
r (dt) dr

)
,

(7.20)

�0(t, dt) = p

(∫ T

t
μ2

r (dt) dr

)
,

where r �→ μi
r(·), i = 1,2, are M [0, T ]-valued measurable random processes sat-

isfying, as measures with respect to the total variation norm,

(7.21)
∣∣μ1

r (dt)
∣∣ + ∣∣μ2

r (dt)
∣∣ ≤ �(r, dt), r ∈ [0, T ],Q0 a.s.

We note that �(�)(dt) and �0(dt) are representing d[pAσ
t ] and [pAf

t ] in (7.18),
respectively, and can be substantiated by (7.9) and (7.10). Furthermore, by As-
sumption 2.2, they both satisfy (7.21). To the best of our knowledge, BSDE (7.19)
is beyond all the existing frameworks of BSDEs, and we shall give a brief proof
for its well-posedness.

THEOREM 1. Assume that the Assumption 2.2 is in force. Then the BSDE
(7.19) has a unique solution (η,�).

PROOF. The proof is more or less standard, we shall only point out a key
estimate. For any given �̃i ∈ L2

FW ([0, T ] × �;R4), obviously we have a unique
solution (ηi,�i) of (7.19), i = 1,2, respectively, that is,⎧⎪⎪⎨⎪⎪⎩

dηi
t = −{

At +E0[
Gt�̃

i
tg(t, y)

]|y=Uu
t

+ Ht�̃
i
tht

}
dt

− �
(
�̃i)(t, dt) − �0(t, dt) + �i

t dWt ,

ηi
T = ϒ.

We define ξ̂ = ξ1 − ξ2, ξ i = ηi,�i , i = 1,2, respectively. ̂̃� = �̃1 − �̃2. Noting
the linearity of BSDE (7.19), we see that η̂ satisfies

η̂t =
∫ T

t

{
E0[

Gs
̂̃�sg(s, y)

]|y=Uu
s

+ Hs
̂̃�shs

}
ds

(7.22)

+
∫ T

t
�(̂̃�)(s, ds) − MT

t ,

where MT
t

�= ∫ T
t �̂s dWs . Therefore,

∣∣η̂t + MT
t

∣∣2 ≤ 2
{∣∣∣∣ ∫ T

t

{
E0[

Gs
̂̃�sg(s, y)

]|y=Uu
s

+ Hs
̂̃�shs

}
ds

∣∣∣∣2
+

∣∣∣∣ ∫ T

t
�(̂̃�)(s, ds)

∣∣∣∣2}
.
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Taking expectation on both sides above and noting that E0[η̂tM
T
t ] = 0 and

E0
{∣∣∣∣ ∫ T

t

{
E0[

Gs
̂̃�sg(s, y)

]|y=Uu
s

+ Hs
̂̃�shs

}
ds

∣∣∣∣2}

≤ C(T − t)E0
[∫ T

t
|̂̃�s |2 ds

]
,

we have

E0[|η̂t |2] +E0
[∫ T

t
|�̂s |2 ds

]
(7.23)

≤ C(T − t)E0
[∫ T

t
|̂̃�s |2 ds

]
+E0

{∣∣∣∣ ∫ T

t
�(̂̃�)(s, ds)

∣∣∣∣2}
.

To estimate the term involving �(̂̃�), we note that [recall (7.20)] if a square-
integrable process V is increasing and continuous, then so is its dual predictable
projection pV . Thus, by the definition of pV we have

E0
[∣∣∣∣ ∫ T

t
d

[pVs

]∣∣∣∣2]
= 2E0

[∫ T

t

(p
Vs − pVt

)
d

[pVs

]]

= 2E0
[∫ T

t

(p
Vs − pVt

)
dVs

]
≤ 2E0[(p

VT − pVt

)
(VT − Vt)

]
≤ 2

(
E0

[∣∣∣∣ ∫ T

t
d

[pVs

]∣∣∣∣2])1/2(
E0

[∣∣∣∣ ∫ T

t
dVs

∣∣∣∣2])1/2
.

That is,

(7.24) E0
[∣∣∣∣ ∫ T

t
d

[pVs

]∣∣∣∣2]
≤ 4E0

[∣∣∣∣ ∫ T

t
dVs

∣∣∣∣2]
.

Applying this to Vt
�= ∫ T

0
∫ t∧r

0 |̂̃�r ||μ1
r (ds)|dr , t ∈ [0, T ], we have

E0
[∣∣∣∣ ∫ T

t
�(̂̃�)(s, ds)

∣∣∣∣2]
≤ E0

[∣∣∣∣ ∫ T

t

p

(∫ T

s
|̂̃�r |

∣∣μ1
r (ds)

∣∣dr

)∣∣∣∣2]

≤ 4E0
[∣∣∣∣ ∫ T

t

∫ T

s
|̂̃�r |

∣∣μ1
r (ds)

∣∣dr

∣∣∣∣2]

≤ 4E0
[∣∣∣∣ ∫ T

t

∫ T

s
|̂̃�r |�(r, ds) dr

∣∣∣∣2}

≤ CE0
[∣∣∣∣ ∫ T

t
|̂̃�r |dr

∣∣∣∣2}
≤ C(T − t)E0

[∫ T

0
|̂̃�s |2 ds

]
and, therefore, (7.23) becomes

(7.25) E0[|η̂t |2] +E0
[∫ T

t
|�̂s |2 ds

]
≤ C(T − t)E0

[∫ T

t
|̂̃�s |2 ds

]
.
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With this estimate, and following the standard argument one shows that BSDE
(7.18) is well-posed on [T − δ, T ] for some (uniform) δ > 0. Iterating the argu-
ment, one can then obtain the well-posedness on [0, T ]. We leave the details to the
interested reader. �

We are now ready to prove the main result of this paper. Let us define the
Hamiltonian: for (ϕ,μ) ∈ CT × P(CT ), and k : [0, T ] × � → R adapted pro-
cess, (t,ω, z) ∈ [0, T ] × � ×R,

(7.26) H (t,ω,ϕ·∧t ,μ, z;k)
�= kt (ω) · σ(t, ϕ·∧t ,μ, z) + f (t, ϕ·∧t ,μ, z).

We have the following theorem.

THEOREM 2 (Stochastic Maximum Principle). Assume that the Assumptions
2.2 and 3.1 hold. Assume further the mapping z �→ H (t, ϕ·∧t ,μ, z) is convex. Let
u = u∗ ∈ Uad be an optimal control and Xu the corresponding trajectory. Then,
for dt × dQ0-a.e. (t,ω) ∈ [0, T ] × � it holds that

(7.27) H
(
t,ω,Xu·∧t ,μ

u
t , ut ;qt

) = inf
v∈U

H
(
t,ω,Xu·∧t ,μ

u
t , v;qt

)
,

where (p, q, q̃) and (Q,M,M̃) are the unique solution of the BSDE (7.18).

PROOF. We first recall from (5.14) that

C
u,v
f (t) = E0[

Lu
t ∂zf

(
t, ϕ·∧t ,U

u
t , z

)]|ϕ=Xu,z=ut = ∂zf
(
t,Xu·∧t ,μ

u
t , ut

);
Cu,v

σ (t) = E0{
Lu

t ∂zσ
(
t, ϕ·∧t ,U

u
t , z

)]}|ϕ=Xu;z=ut
= ∂zσ

(
t,Xu·∧t ,μ

u
t , ut

)
.

Then (7.16) implies that

0 ≤ E0
[∫ T

0

[
qtC

u,v
σ (t) + C

u,v
f (t)

]
(vt − ut ) dt

]
(7.28)

= E0
[∫ T

0
∂zH

(
t,ω,Xu·∧t ,μ

u
t , ut ;qt

)
(vt − ut) dt

]
.

Therefore, for dt × dQ0-a.e. (t,ω) ∈ [0, T ] × �, and any v ∈ U , it holds that

(7.29) ∂zH
(
t,ω,Xu·∧t ,μ

u
t , ut ;qt

)
(v − ut) ≥ 0.

Now, for any v ∈ U , one has, dt × dQ0-a.e. on [0, T ] × �,

H
(
t,ω,Xu·∧t ,μ

u
t , v;qt

) − H
(
t,ω,Xu·∧t ,μ

u
t , ut ;qt

)
=

∫ 1

0
∂zH

(
t,ω,Xu·∧t ,μ

u
t , ut + λ(v − ut );qt

)
(v − ut) dλ

=
∫ 1

0

[
∂zH

(
t,ω,Xu·∧t ,μ

u
t , ut + λ(v − ut );qt

)
− ∂zH

(
t,ω,Xu·∧t ,μ

u
t , ut ;qt

)]
(v − ut ) dλ

+ ∂zH
(
t,ω,Xu·∧t ,μ

u
t , ut ;qt

)
(v − ut ) ≥ 0.
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Here the first integral on the right-hand side above is nonnegative due to the con-
vexity of H in variable z, and the last term is nonnegative because of (7.29). The
identity (7.27) now follows immediately. �

REMARK 7.2. In stochastic control literature, inequality (7.28) is sometimes
referred to as the stochastic maximum principle in integral form, which in many
applications is useful, as it does not require the convexity assumption on the Hamil-
tonian H .
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