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SHAPE OF TERRITORIES IN SOME COMPETING
GROWTH MODELS

BY JEAN-BAPTISTE GOUÉRÉ

Université d’Orléans

We study two competing growth models. Each of these models describes
the spread of a finite number of infections on a graph. Each infection evolves
like an (oriented or unoriented) first passage percolation process except that
once a vertex is infected by type i infection, it remains of type i forever. We
give results about the shape of the area ultimately infected by the different
infections.

1. Introduction and statement of the main results.

1.1. Introduction. We study two competing growth models. The first one is
the model introduced by Häggström and Pemantle [5]. The second one has been
introduced by Deijfen, Häggström and Bagley [1]. Each of these models describes
the spread of a finite number of infections on a graph. Each infection evolves like
an (oriented or unoriented) first passage percolation process except that once a
vertex is infected by type i infection, it remains of type i forever. More explicitly:
with each edge (x, y) is associated a positive passage time τ(x, y); if a vertex
x gets infected by type i infection at time t then vertex y gets infected by the
same infection at time t + τ(x, y) except if, at that time, vertex y has already been
infected.

Let us denote by St the infected territory at time t (without distinguishing be-
tween the different types). It is well known that, under some assumptions on the
passage times τ , there exists a norm N on R

d such that St/t converges almost
surely to the unit ball for norm N . One can therefore expect that, if type i infection
starts at xi and if the xi ’s are far apart from each other, then the territory infected
by type i infection at infinite time looks like the following Voronoï cell:

Vi = {z ∈ R
d :∀j �= i;N(z − xi) < N(z − xj )}.

In this paper, we prove an abstract theorem which is a weak form of such a re-
sult. We then apply the theorem to the two above-mentioned models. The proof
of the abstract result strongly relies on ideas that appeared in papers by Garet and
Marchand [4] and by Hoffman [6, 7]. In these papers, the authors were interested,
among other things, in knowing whether the different territories could all be infi-
nite with positive probability or not. We are not aware of any earlier result about

Received August 2006; revised December 2006.
AMS 2000 subject classifications. 60K35 (82B43).
Key words and phrases. First-passage percolation, competing growth model.

1273

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/105051607000000113
http://www.imstat.org
http://www.ams.org/msc/


1274 J.-B. GOUÉRÉ

the form of the infected territories for the models we study here. Nevertheless,
a strong form of such a result can be found in a paper by Pimentel [10] in a two-
dimensional setting. The model studied by Pimentel is based on a first passage
percolation process on the Delaunay graph of a Poisson point process. His method
is very different from ours.

The rest of this section is organized as follows. In the next subsection, we fix
some notation. In the following two subsections, we precisely describe the two
models and state our results. In the last subsection, we state the abstract result and
give the ideas of its proof.

1.2. Some notation. For all this paper, we fix an integer d ≥ 2. Let ‖ · ‖ de-
note the Euclidean norm on R

d . We denote by | · | the canonical Lebesgue mea-
sure on R

d and by m1 the canonical Lebesgue measure on R. We consider these
Euclidean spaces as equipped with their natural Borel σ -algebra. If C and D are
two measurable subsets of R

d and if |D| is positive, we denote by dens(C|D) the
lower relative density of C w.r.t. D defined by

dens(C|D) = lim inf
R→∞

|C ∩ D ∩ BR|
|D ∩ BR| ,

where BR denotes the Euclidean closed ball of R
d centered at the origin and with

radius R. We denote by dens(C|D) the upper relative density of C w.r.t. D defined
by

dens(C|D) = lim sup
R→∞

|C ∩ D ∩ BR|
|D ∩ BR| .

When D = R
d , these definitions reduce to the usual definitions of lower and upper

density that we denote by dens(C) and dens(C).

1.3. Model of Häggström and Pemantle. We begin by recalling the formalism
of classical first passage percolation. Let us consider the graph Z

d obtained by tak-
ing Z

d as vertex set and by putting an edge between two vertices if the Euclidean
distance between them is 1. Let us consider a family of nonnegative i.i.d. r.v. τ(e)

indexed by the set of edges E of the graph. We interpret τ(e) as the time needed to
travel along the edge e (the graph is unoriented). If a and b are two vertices of Z

d ,
we call path from a to b any finite sequence of vertices r = (a = x0, . . . , xk = b)

such that, for all i ∈ {0, . . . , k − 1}, the vertices xi and xi+1 are linked by an edge.
We denote by C(a, b) the set of such paths. The time needed to travel along a path
r = (x0, . . . , xk) is defined by

T̃ (r) =
k−1∑
i=0

τ(xi, xi+1).

We defined T̃ (a, b), the time needed to go from a to b, by

T̃ (a, b) = inf{T̃ (r) : r ∈ C(a, b)}.
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Let τ1, . . . , τ2d be 2d i.i.d. r.v. admitting the same law as the τ(e)’s. We make
the following assumptions:

E(min(τ1, . . . , τ2d)) < ∞(1)

and

P(τ1 = 0) < pc(d),(2)

where pc(d) denotes the critical probability for bond Bernoulli percolation on Z
d .

With these assumptions it is well known that (see, e.g., [8, 9]), for all x, y in Z
d ,

one has

E(T̃ (x, y)) < ∞(3)

and that there exists a norm N on R
d such that the following convergence holds:

T̃ (0, x)N(x)−1 converges to 1 in L1 as ‖x‖ goes to infinity.(4)

Fix x1, . . . , xk ∈ Z
d (k ≥ 2). In the competing model of Häggström and Peman-

tle, for each index i, the territory infected by type i infection is the random subset
of Z

d defined by

D̃i(x1, . . . , xk) = {
z ∈ Z

d :∀j ∈ {1, . . . , k} \ {i}, T̃ (xi, z) < T̃ (xj , z)
}
.

We wish to compare this set to the (deterministic) strict Voronoï cells defined for
each i by

Vi(x1, . . . , xk) = {
z ∈ R

d :∀j ∈ {1, . . . , k} \ {i},N(xi − z) < N(xj − z)
}
.

[We define Vi(x1, . . . , xk) in the same way when the xi ’s belongs to R
d and not

necessarily to Z
d .] For every x ∈ R

d , ψ(x) is defined by

ψ(x) ∈ Z
d and x ∈ ψ(x) + [−1/2,1/2[d .(5)

We prove the following result:

THEOREM 1.1. Let (x1, . . . , xk) be a family of distinct points in R
d (k ≥ 2).

Let I be the set of indices i ∈ {1, . . . , k} such that the following inequality holds:

dens(Vi(x1, . . . , xk)) > 0.

Let ε > 0. There exists M > 0 such that, for all real R ≥ M , the following asser-
tions hold:

1. For all indices i ∈ I , the lower relative density of{
z ∈ Z

d :P
(
z ∈ D̃i(ψ(Rx1), . . . ,ψ(Rxk))

) ≥ 1 − ε
} + [−1/2,1/2[d

with respect to

Vi(Rx1, . . . ,Rxk)

is greater than 1 − ε.
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2. The probability of the event{∀i ∈ I,dens
(
D̃i(ψ(Rx1), . . . ,ψ(Rxk)) + [−1/2,1/2[d |Vi(Rx1, . . . ,Rxk)

)
≥ 1 − ε

}
is greater than 1 − ε.

One says that coexistence occurs if each territory is infinite. One defines

Coex(x1, . . . , xk) = ⋂
i∈{1,...,k}

{D̃i(x1, . . . , xk) is infinite}.

As a consequence of Theorem 1.1, we can, for example, get the following coexis-
tence result:

COROLLARY 1.1. Let x1, . . . , xk be k distinct points of R
d (k ≥ 2). Assume

that N(xi) = 1 for all indices i. Assume that, for all distinct indices i, j , [xi, xj ]
contains a point z such that N(z) < 1. Let ε > 0. There exists M > 0 such that, for
all real R ≥ M , the probability of the event Coex(ψ(Rx1), . . . ,ψ(Rxn)) is greater
than 1 − ε.

The theorem and the corollary are proved in Section 3.

REMARK. This result relates the number of infections that can coexist to the
number of faces (possibly infinity) of the unit ball with respect to the norm N .

In the case where the dimension d equals 2, Corollary 1.1 has been proved,
among other things, by Hoffman in [7]. Previously to this paper by Hoffman, the
positivity of the probability of coexistence for two types of infections had been
established by Häggström and Pemantle [5]—in the case where the dimension d

equals 2 and the passage times τ are exponential—and then in the general case
independently by Garet and Marchand [4] and by Hoffman [6].

1.4. Model of Deijfen, Häggström and Bagley. We begin by recalling the de-
finition of the growth model introduced by Deijfen in [2]. Instead of using the
original construction of the process, we use the construction given later in [3] (our
presentation is different, but the construction is the same). Let ν be a probability
measure on ]0,∞[. Let χ be a Poisson point process on R

d ×R+×]0,+∞[ whose
intensity is the product of the Lebesgue measure on R

d ×R+ and of ν on ]0,+∞[.
Let us consider the complete directed graph G with vertex set R

d . We associate a
time τ with each edge as follows:

1. For all x ∈ R
d we let τ(x, x) = 0.

2. For each point (X, τ̃ ,R) ∈ χ (X, τ̃ and R, resp., belong to R
d , R+ and

]0,+∞[) and for each vertex y ∈ BR \ {X}, we let τ(X,y) = τ̃ .
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3. For all edges (x, y) to which we have not yet assigned any passage time, we let
τ(x, y) = +∞.

If a and b are two vertices of G, we call path from a to b any sequence of vertices
r = (a = x0, . . . , xk = b). We denote by C(a, b) the set of such paths. With each
path r = (x0, . . . , xk) we associate a time defined by

T̃ (r) =
k−1∑
i=0

τ(xi, xi+1).

If A and C are two subsets of R
d , we define T̃ (A,C), the time needed to cover C

starting from A, by

T̃ (A,C) = sup
c∈C

inf{T̃ (r) :a ∈ A, r ∈ C(a, c)}.

Notice that we do not have (in general) the equality in law of T̃ (A,C) and
T̃ (C,A). Let us define

St = {x ∈ R
d : T̃ (B, x) ≤ t},

where B denotes the unit Euclidean ball centered at the origin. [Notice that, by
abuse of notation, we write T̃ (B, x) instead of T̃ (B, {x}).] We make the following
assumption:

There exists a > 0 such that
∫

exp(ar)ν(dr) is finite.(6)

Under this assumption, the authors of [1] proved the a.s. convergence of St t
−1

toward a deterministic Euclidean ball (whose radius is finite and positive).
In [1], the authors also introduced and studied a related competing growth

model. In the particular case we are interested in (each infection evolves with the
same velocity), this model can be defined as follows. Fix x1, . . . , xk ∈ R

d (k ≥ 2).
Assume that the sets xi + B are disjoint. At time t ≥ 0, the territory infected by
type i infection is{
z ∈ R

d : T̃ (xi +B,z) ≤ t and ∀j ∈ {1, . . . , k} \ {i}, T̃ (xi +B,z) < T̃ (xj +B,z)
}
.

At time t = ∞, the territory infected by type i infection is

D̃i(x1, . . . , xn) = {
z ∈ R

d :∀j ∈ {1, . . . , k} \ {i}, T̃ (xi + B,z) < T̃ (xj + B,z)
}
.

In [3], the authors are interested in the case k = 2. They prove that the probabil-
ity of D̃1(x1, x2) and D̃2(x1, x2) being both unbounded is positive. They also give
such coexistence results when the initial territories are not assumed to be balls.

For each index i ∈ {1, . . . , k}, we wish to compare D̃i to the deterministic
Voronoï cell:

Vi(x1, . . . , xk) = {
z ∈ R

d :∀j ∈ {1, . . . , k} \ {i},‖z − xi‖ < ‖z − xj‖}
.

We prove in this paper the following result:
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THEOREM 1.2. Let (x1, . . . , xk) be a family of distinct points in R
d (k ≥ 2).

Assume that (6) holds. Let I denote the set of indices i ∈ {1, . . . , k} such that the
following inequality holds:

dens(Vi(x1, . . . , xk)) > 0.

Let ε > 0. There exists M > 0 such that, for all real R ≥ M , the following asser-
tions are satisfied:

1.

∀i ∈ I, dens
({

z ∈ R
d :P

(
z ∈ D̃i(Rx1, . . . ,Rxk)

) ≥ 1 − ε
}|

Vi(Rx1, . . . ,Rxk)
) ≥ 1 − ε.

2. The probability of the event{∀i ∈ I,dens
(
D̃i(Rx1, . . . ,Rxk)|Vi(Rx1, . . . ,Rxk)

) ≥ 1 − ε
}

is greater than 1 − ε.

One says that coexistence occurs if each territory is unbounded. One defines

Coex(x1, . . . , xk) = ⋂
i∈{1,...,k}

{D̃i(x1, . . . , xk) is unbounded}.

As a consequence of Theorem 1.2, we get the following coexistence result:

COROLLARY 1.2. Let x1, . . . , xk be k distinct points of the unit Euclidean
sphere in R

d (k ≥ 2). Let ε > 0. There exists M > 0 such that, for all real R ≥ M ,
the probability of the event Coex(Rx1, . . . ,Rxn) is greater than 1 − ε.

1.5. An abstract result and the ideas of the proof. The results of the previ-
ous subsections are applications of an abstract result that we now state and that
we prove in Section 2. Fix a norm N on R

d . Let us consider a probability space
(�,F ,P ) and a family of random variables defined on that space:

T = (T (x, y))x,y∈Rd .

If (x1, . . . , xk) is a family of points in R
d and if δ is a real we introduce, for

every index i, the random set

Dδ
i (x1, . . . , xk) = {

z ∈ R
d :∀j ∈ {1, . . . , k} \ {i}, T (xi, z) < T (xj , z) − δ

}
and the deterministic strict Voronoï cell of xi defined by

Vi(x1, . . . , xk) = {
z ∈ R

d :∀j ∈ {1, . . . , k} \ {i},N(z − xi) < N(z − xj )
}
.

THEOREM 1.3. Assume that the following assertions hold:
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1. The map from � × R
d × R

d to R defined by (ω, x, y) 
→ T (x, y)(ω) is mea-
surable.

2. For all z in R
d , the families of random variables (T (x, y))x,y and (T (x − z,

y − z))x,y have the same law.
3. For all x, y in R

d , one has T (x, y) ≥ 0.
4. The supremum


 := sup
x∈Rd : ‖x‖≤1

E(T (0, x))(7)

is finite.
5. For all x, y, z in R

d , one has T (x, z) ≤ T (x, y) + T (y, z).
6. T (0, x)N(x)−1 converges to 1 in L1 as the norm of x ∈ R

d goes to infinity.

Let (x1, . . . , xk) be a family of distinct points in R
d (k ≥ 2). Let δ be a real. Let I

be the set of indices i ∈ {1, . . . , k} such that the following inequality holds:

dens(Vi(x1, . . . , xk)) > 0.

Let ε > 0. There exists M > 0 such that, for all real R ≥ M and for all i ∈ I , the
following assertion holds:

dens
({

z ∈ R
d :P

(
z ∈ Dδ

i (Rx1, . . . ,Rxk)
) ≥ 1 − ε

}|Vi(Rx1, . . . ,Rxk)
) ≥ 1 − ε.

REMARK. The convergence assumption requires T to be symmetric enough,
but we do not require stronger symmetry conditions [such as, e.g., T (x, y) =
T (y, x) a.s. for all vectors x, y].

Ideas of the proof. The proof strongly relies on two ideas that appeared else-
where and that we now describe. In order to simplify, let us assume that there are
only two sources of infection (k = 2) and that one of the sources is the origin. Let
us denote the other one by x.

• The first idea appeared independently (and in two different forms) in papers by
Garet and Marchand [4] and by Hoffman [6]. For all integer n ≥ 0, let us consider
the sum

n−1∑
i=0

E
(
T (−x, ix) − T (0, ix)

)
.

For each integer i ∈ {0, . . . , n − 1}, T (−x, ix) − T (0, ix) is bounded above by
T (−x,0) (by the triangle inequality satisfied by T ). Therefore, if the norm of x is
large enough,

T (−x, ix) − T (0, ix) is roughly bounded above
(8)

by N(x) with high probability
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(by the convergence of T ). But for each integer i ∈ {0, . . . , n − 1},
E

(
T (−x, ix) − T (0, ix)

) = E
(
T

(
0, (i + 1)x

) − T (0, ix)
)

(by the stationarity of T ). Therefore the sum equals

E(T (0, nx)) − E(T (0,0)).

As a consequence:

The sum is equivalent to nN(x) as n goes to infinity(9)

(by the convergence of T ). Using (8) and (9) (among other things) one can
prove that, for most integers i ∈ {0, . . . , n − 1}, T (−x, ix) − T (0, ix) is of or-
der N(x) with high probability. Therefore, most of the points z of Nx are such that
T (−x, z) − T (0, z) is of order N(x) with high probability. [In particular, many
points in Nx then belong to D2(−x,0) with high probability.]

• The second idea appeared in another paper by Hoffman [7]. We exploit the
idea in a different way than Hoffman did but the key (simple but powerful) is the
same. Assume that y is a vector such that

N(y − x) < N(y).(10)

Notice that, for any z, T (y, z) − T (x, z) is bounded above by T (y, x) (by the
triangle inequality satisfied by T ). Therefore

T (y, z) − T (x, z) is roughly bounded above
(11)

by N(y − x) with high probability,

provided the norm of y−x is large enough (by the convergence and the stationarity
of T ). But, using the first idea one can prove that most of the points z of −Ny are
such that

T (y, z) − T (0, z) is of order N(y) with high probability(12)

(provided the norm of y is large enough). Writing

T (x, z) − T (0, z) = (
T (y, z) − T (0, z)

) − (
T (y, z) − T (x, z)

)
and using (10), (11) and (12) one sees that, for such a z, T (x, z) − T (0, z) is
positive with high probability. To sum up, we have that, under the assumption (10),
most of the points z of −Ny belong to D2(x,0) with high probability.

• The full proof is given in Section 2. In Section 2.1, we prove that there are
enough vectors y satisfying inequalities such as (10) for our purposes. In Sec-
tion 2.2, we prove results related to the first idea discussed above. In Section 2.3,
we prove results related to the second idea and conclude.
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2. Proof of the abstract result. We work under the assumptions of Theo-
rem 1.3. In this section we need the following definition. If (x1, . . . , xk) is a family
of points in R

d and if δ is a real we introduce, for every index i, the following
subset of R

d :

V δ
i (x1, . . . , xk) = {

z ∈ R
d :∀j ∈ {1, . . . , k} \ {i},N(z − xi) < N(z − xj ) − δ

}
.

2.1. Geometrical lemmas. If K is a subset of R
d , we denote by H(K) the set

H(K) = ⋃
λ≥1

λK.

LEMMA 2.1. Let x ∈ R
d \ {0} and let δ be a real. Then:

1. The set V δ
1 (0, x) is stable by homotheties with center x and ratio greater than 1.

2. The set V δ
1 (0, x) − x is included in the set V δ

1 (0, x).

PROOF. In order to simplify the notation, let us define V := V δ
1 (0, x). Let us

check the first item. Let z, z′ ∈ R
d . Assume that z belongs to V and to [x, z′]. We

then have N(z′) ≤ N(z′ − z) + N(z) and then N(z′) < N(z′ − z) + N(z − x) − δ

and finally N(z′) < N(z′ − x) − δ. Therefore z′ belongs to V . This concludes the
proof.

Let us check now the second item. Let z ∈ V . Let w denote the middle of [0, z].
By the same arguments as previously, one gets that w belongs to V . Therefore, by
the first item, z − x belongs to V . �

LEMMA 2.2. Let x ∈ R
d \ {0}. Then

dens(V1(0, x)) > 0.

Let ε > 0. There exists M1 > 0, a real δ > 0 and a compact set K included in the
unit Euclidean sphere such that, for all M2 ≥ M1, the following relations hold:

1. H(M2K) ⊂ V1(0, x);
2. −M2K ⊂ V δ

2 (0, x);
3. dens(H(M2K)|V1(0, x)) ≥ 1 − ε.

PROOF. Let x ∈ R
d \ {0}. In order to simplify the notations, let us write V

instead of V1(0, x). As V is open and contains 0, the first item of Lemma 2.1
enables us to conclude that the lower density of V is positive.

For all positive real R, we denote by AR the set of vectors u of the unit Euclid-
ean sphere such that x + Ru belongs to V . The sets AR are open subsets of the
unit sphere (since V is an open subset of R

d ). By the first item of Lemma 2.1, the
family (AR)R is nondecreasing w.r.t. inclusion. Let A denote the union of all AR ,
R > 0. Let µ be the uniform probability measure on the unit Euclidean sphere.
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Let ε > 0. Fix K , a compact subset of A such that:

µ(K)

µ(A)
≥ 1 − ε

[as V , whose Lebesgue measure is infinite, is included in

x + R+A = {x + ra : r ∈ R+, a ∈ A},
the real µ(A) is positive]. Fix a real M1 ≥ 1 such that the set AM1 contains the
set K . [We use the fact that (AR)R is a nondecreasing family of open sets whose
union contains the compact set K .] From the inclusion of x +M1K in V and from
the compactness of K , we deduce the existence of a real δ > 0, that we fix, such
that x + M1K is included in V δ

1 (0, x).
Let M2 ≥ M1. Write K̃ = M2K . Let λ ≥ 1. From the inclusion of x + M1K

in V δ
1 (0, x) and from the first item of Lemma 2.1, we deduce the inclusion of

x +λK̃ in V δ
1 (0, x). By the second item of Lemma 2.1, λK̃ is included in V δ

1 (0, x).
Therefore H(K̃) is included in V δ

1 (0, x) and then in V . The first requirement of
the lemma is satisfied. From the inclusion of x + K̃ in V δ

1 (0, x), we also deduce,
by symmetry, the inclusion of −K̃ in V δ

2 (0, x), that is, the second requirement of
the lemma. As K is included in A and then in the unit Euclidean sphere, the only
remaining thing to be proved is the third requirement of the lemma.

First, let us notice the following inclusions:

H(K̃) ⊂ V ⊂ x + R+A.

It is therefore sufficient to prove

dens
(
H(K̃)|x + R+A

) ≥ 1 − ε.

But, for all real R large enough,

|H(K̃) ∩ (x + R+A) ∩ BR|
|(x + R+A) ∩ BR| = |H(K̃)R−1 ∩ B1|

|(xR−1 + R+A) ∩ B1| = |H(K̃)R−1 ∩ B1|
|R+A ∩ (B1 − xR−1)|

and therefore converges, as R tends to infinity, toward

|[0,1].K|
|[0,1].A| = µ(K)

µ(A)
≥ 1 − ε

([0,1].K is the set {rk : r ∈ [0,1], k ∈ K} and [0,1].A is the set {ra : r ∈ [0,1],
a ∈ A}). This concludes the proof. �

LEMMA 2.3. Let (x1, . . . , xk) be a family of k distinct vectors of R
d (k ≥ 2).

Assume

dens(V1(x1, . . . , xk)) > 0.

Let ε > 0. Then there exists a real δ > 0 and a compact set K included in a Euclid-
ean sphere centered at the origin such that:
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1. The sets x1 − K and {x1, . . . , xk} are disjoint;
2. x1 + H(K) ⊂ V1(x1, . . . , xk);
3. x1 − K ⊂ ⋂

i �=1 V δ
2 (x1, xi);

4. dens(x1 + H(K)|V1(x1, . . . , xk)) ≥ 1 − ε.

PROOF. Successively apply Lemma 2.2 with x = x2 − x1, . . . , x = xk − x1.
Let us denote by M1(2), . . . ,M1(k), by δ(2), . . . , δ(k) and by K̃(2), . . . , K̃(k) the
positive real numbers and compact sets given by the lemma.

Let δ be the smallest of the δ(i)’s and let K̃ be the intersection of the K̃(i)’s.
Fix M1 a real greater than each of the M1(i)’s and such that x1 − M1K̃ contains
none of the xi ’s. Finally, let K = M1K̃ , K(2) = M1K̃(2), . . . ,K(k) = M1K̃(k).
Items 1, 2 and 3 of the lemma are satisfied. Let us check that the last one is also
satisfied.

Let i ∈ {2, . . . , k}. One has

dens
(
H(K(i))|V1(0, xi − x1)

) ≥ 1 − ε.

As dens(V1(0, xi − x1)) > 0, translating by x1 does not change the lower density.
Therefore,

dens
(
H(K(i)) + x1|V1(x1, xi)

) ≥ 1 − ε.

We thus have

dens
(
H(K(i))c + x1|V1(x1, xi)

) ≤ ε

and then

dens
(
H(K(i))c + x1|V1(x1, . . . , xk)

) ≤ ε
(
dens(V1(x1, . . . , xk)|V1(x1, xi))

)−1

≤ ε
(
dens(V1(x1, . . . , xk))

)−1
.

So,

dens
(
H(K)c + x1|V1(x1, . . . , xk)

) ≤ kε
(
dens(V1(x1, . . . , xk))

)−1
,

and then

dens
(
H(K) + x1|V1(x1, . . . , xk)

) ≥ 1 − kε
(
dens(V1(x1, . . . , xk))

)−1
.

This ends the proof. �

LEMMA 2.4. Let x1, . . . , xk be k vectors of R
d (k ≥ 2). Assume the existence

of a vector y such that, for all i ∈ {2, . . . , k}, [y, y + xi − x1] contains a vector z

satisfying N(z) < N(y). Then the following inequality holds:

dens(V1(x1, . . . , xk)) > 0.
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PROOF.
We first prove that the set

W = ⋂
i∈{2,...,k}

V2(x1, xi)(13)

is nonempty. Let y be as stated in the lemma. Let i ∈ {2, . . . , k}. Let zi be an
element of [y, y+xi −x1] such that N(zi) < N(y). Write zi = y+λi(xi −x1) with
λi ∈ [0,1]. As N(zi) �= N(y), λi can not equals 0. This enables us to consider the
function φ : R

d → R
d defined by φ(u) = λ−1

i (u − y) + x1. This function maps y

to x1, zi to xi and 0 to a point that we call wi . Therefore the point wi satisfies
N(xi − wi) < N(x1 − wi). By the first item of Lemma 2.1, this property is also
satisfied by all the points of the half-line

Li := {x1 + α(wi − x1), α ≥ 1} = {x1 − αy,α ≥ λ−1
i }.

Let now w be in the intersection of the Li ’s. This vector belongs to the set W

defined by (13).
We now conclude. Let i ∈ {2, . . . , k}. By symmetry, xi + x1 − W is in-

cluded in V1(x1, xi). By the second item of Lemma 2.1, 2x1 − W is also in-
cluded in V1(x1, xi). Therefore 2x1 − W is included in V1(x1, . . . , xk). It re-
mains to check that the lower density of 2x1 − W is positive. By the first item
of Lemma 2.1, W is stable by all homotheties with center x1 and ratio greater
than 1. As W is moreover open and nonempty, one gets that the lower den-
sity of W − x1 is positive. The same property therefore holds for 2x1 − W .

�

Let us state the following immediate consequence of the previous lemma:

LEMMA 2.5. Let x1, . . . , xk be k distinct points of R
d (k ≥ 2). Assume, for all

indices i, N(xi) = 1. Assume, for all distinct indices i, j , that [xi, xj ] contains a
point z such that N(z) < 1. Then, for all indices i, one has

dens(Vi(x1, . . . , xk)) > 0.

PROOF. One can apply Lemma 2.4 to (x1, . . . , xk) (take y = x1). This gives
the result for i = 1. The proof follows by several other applications of Lemma 2.4.

�

2.2. Competition between two infections on the line joining infection sources.
Let us recall that m1 denotes the canonical Lebesgue measure on R. Let us recall
that we work under the assumptions of Theorem 1.3.

LEMMA 2.6. Let ε > 0. There exists M > 0 such that, for all x in R
d and all

real λ satisfying

N(x) ≥ M and λ ≥ M,(14)
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one has

m1
({

α ∈ [0, λ] :E
(
T (−x,αx) − T (0, αx)

) ≥ (1 − ε)N(x)
}) ≥ (1 − ε)λ.

PROOF. Let ε > 0. Let M be a real such that the following assertions hold
(one uses the convergence of T for the first item):

1. For all x in R
d such that N(x) ≥ M , one has

(1 − ε)N(x) ≤ E(T (0, x)) ≤ (1 + ε)N(x);
2. M ≥ 1 and M ≥ 
ε−1 [
 is defined by (7)].

Let now x in R
d and λ a real. One assume that condition (14) holds. Let us consider

the real I defined by

I =
∫ λ

0
E(T (−x,αx)) dα −

∫ λ

0
E(T (0, αx)) dα.

(One can check that the integrals are finite with Lemma A.1.) Using the stationarity
of T , one gets

I =
∫ λ+1

1
E(T (0, αx)) dα −

∫ λ

0
E(T (0, αx)) dα

=
∫ λ+1

λ
E(T (0, αx)) dα −

∫ 1

0
E(T (0, αx)) dα.

As λ ≥ M ≥ 1 and N(x) ≥ M one has, for all α in the interval [λ,λ + 1], the
inequality N(αx) ≥ M and then the inequality E(T (0, αx)) ≥ (1 − ε)N(αx). One
therefore has ∫ λ+1

λ
E(T (0, αx)) dα ≥ (1 − ε)λN(x).

By Lemma A.1 one gets∫ 1

0
E(T (0, αx)) dα ≤ (‖x‖ + 1)
 ≤ (

cN(x) + 1
)

,(15)

where c is a fixed positive real such that the inequality ‖ · ‖ ≤ cN holds. As
1 ≤ M ≤ N(x), (cN(x) + 1)
 is bounded above by (1 + c)N(x)
. Moreover,
as 
 is bounded above by Mε and then by λε one gets∫ 1

0
E(T (0, αx)) dα ≤ (1 + c)N(x)λε.

Therefore, one has

I ≥ (
1 − (2 + c)ε

)
λN(x).(16)

Let

A = {
α ∈ [0, λ] :E

(
T (−x,αx) − T (0, αx)

) ≤ (
1 − √

ε
)
N(x)

}
.
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For all α in the interval [0, λ] one gets, using successively the triangle inequality
satisfied by T and the stationarity of T and then using N(x) ≥ M ,

E
(
T (−x,αx) − T (0, αx)

) ≤ E(T (−x,0)) ≤ E(T (0, x)) ≤ N(x)(1 + ε).

Using the definition of I , one then gets

I ≤ N(x)
(
m1(A)

(
1 − √

ε
) + (

λ − m1(A)
)
(1 + ε)

)
≤ N(x)

(−m1(A)
(
ε + √

ε
) + λ(1 + ε)

)
(17)

≤ N(x)
(−m1(A)

√
ε + λ(1 + ε)

)
.

From (16) and (17) one deduces(
1 − (2 + c)ε

)
λN(x) ≤ N(x)

(−m1(A)
√

ε + λ(1 + ε)
)
,

then

m1(A) ≤ (3 + c)λ
√

ε

and then

m1
({

α ∈ [0, λ] :E
(
T (−x,αx) − T (0, αx)

) ≥ (
1 − √

ε
)
N(x)

})
≥ (

1 − (3 + c)
√

ε
)
λ.

This concludes the proof. �

LEMMA 2.7. Let ε > 0. There exists M > 0 such that, for all x, y in R
d sat-

isfying

N(x) ≥ M and E
(
T (−x, y) − T (0, y)

) ≥ (1 − ε)N(x),(18)

one has

P
(
T (−x, y) − T (0, y) ≥ (

1 − 2
√

ε
)
N(x)

) ≥ 1 − 2
√

ε.

PROOF. Let ε > 0. Fix a real M > 0 such that, for all x in R
d whose norm

N(x) is greater or equal to M , the following assertions hold (one uses the conver-
gence of T ):

1. P(T (0, x) ≥ N(x)(1 + ε)) ≤ ε.
2. E|T (0, x)N(x)−1 − 1| ≤ ε.

Let x and y be two vectors in R
d such that condition (18) hold. Let us define an

event G by

G = {T (−x,0) ≤ N(x)(1 + ε)}.
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Using (18), the triangle inequality and the stationarity satisfied by T , one gets

E
((

T (−x, y) − T (0, y)
)
1G

)
= E

(
T (−x, y) − T (0, y)

) − E
((

T (−x, y) − T (0, y)
)
1Gc

)
≥ N(x)(1 − ε) − E(T (−x,0)1Gc)

≥ N(x)
(
(1 − ε) − E|T (0, x)N(x)−1 − 1| − P(Gc)

)
.

Using Properties 1 and 2 above and using the stationarity of T , one therefore gets

E
((

T (−x, y) − T (0, y)
)
1G

) ≥ N(x)(1 − 3ε).

The random variable

X = N(x)(1 + ε) − (
T (−x, y) − T (0, y)

)
1G

is therefore nonnegative (by definition of G and by the triangle inequality satisfied
by T ) and its expectancy is less or equal to 4εN(x). Therefore, one gets

P
(
X ≤ 2

√
εN(x)

) ≥ 1 − 2
√

ε,

and then

P
(
T (−x, y) − T (0, y) ≥ N(x)

(
1 − 2

√
ε
)) ≥ 1 − 2

√
ε

which concludes the proof. �

LEMMA 2.8. Let ε > 0. There exists M > 0 such that, for all x in R
d and all

real λ satisfying

N(x) ≥ M and λ ≥ M,(19)

one has

m1
({

α ∈ [0, λ] :P
(
T (−x,αx) − T (0, αx) ≥ (1 − ε)N(x)

) ≥ 1 − ε
}) ≥ (1 − ε)λ.

PROOF. This is a consequence of Lemmas 2.6 and 2.7. �

2.3. Proof of Theorem 1.3. Let us recall that we work under the assumptions
of Theorem 1.3. Theorem 1.3 is a straightforward consequence of the following
lemma:

LEMMA 2.9. Let (x1, . . . , xk) be a family of distinct vectors in R
d (k ≥ 2).

One assumes

dens(V1(x1, . . . , xk)) > 0.

Let ε > 0. Let δ be a real. Then there exists M > 0 such that, for all real R ≥ M ,
the following property holds:

dens
({

z ∈ R
d :P

(
z ∈ Dδ

1(Rx1, . . . ,Rxk)
) ≥ 1 − ε

}|V1(Rx1, . . . ,Rxk)
) ≥ 1 − ε.
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PROOF. Let us begin by defining M . Let us denote by α and K the positive
real and the compact set given by Lemma 2.3. One has in particular, for all x ∈ K

and for all i ∈ {2, . . . , k}, the inequality

N(x1 − x − xi) < N(x1 − x − x1) − α.

Using the compactness of K one deduces the existence of a real η > 0, that we fix,
such that, for all x ∈ K and all i ∈ {2, . . . , k}, the following inequality holds:

N(x1 − x − xi)(1 + η) < N(x1 − x − x1)(1 − η) − α.

One deduces the existence of a real R2 such that, for all real R ≥ R2, all x ∈ K

and all i ∈ {2, . . . , k}, the inequality

N(Rx1 − Rx − Rxi)(1 + η) < N(Rx1 − Rx − Rx1)(1 − η) − δ(20)

holds.
By Lemma 2.8 we get a real R0 such that, for all vector z in R

d and all real λ

satisfying

N(z) ≥ R0 and λ ≥ R0,

one has

m1
({

α ∈ [0, λ] :P
(
T (−z,αz) − T (0, αz) ≥ (1 − η)N(z)

) ≥ 1 − ε
})

(21)
≥ (1 − ε)λ.

Using the convergence of T one gets a real R1 such that, for all vector z in R
d

satisfying N(z) ≥ R1, the following inequality holds:

P
(
T (0, z) ≥ N(z)(1 + η)

) ≤ ε.(22)

Moreover, as the sets x1 −K and {x1, . . . , xk} are disjoint, there exists a real R3
such that, for all real R ≥ R3, all x ∈ K and all i ∈ {1, . . . , k}, the inequality

N(Rx1 − Rx − Rxi) ≥ max(R0,R1)(23)

holds.
At last, let define M by M = max(R0,R1,R2,R3).
We now check that M satisfies the desired property. Fix R ≥ M . Let x ∈ K ,

i ∈ {2, . . . , k} and λ ≥ M . Let us write, for all nonnegative real α,

T (Rxi,Rx1 + αRx) − T (Rx1,Rx1 + αRx) = A(α,x, i) + B(α,x, i),

where

A(α,x, i) = T (Rx1 − Rx,Rx1 + αRx) − T (Rx1,Rx1 + αRx)

and

B(α,x, i) = T (Rxi,Rx1 + αRx) − T (Rx1 − Rx,Rx1 + αRx).
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By (23), one can use (21) for z = Rx. The stationarity of T therefore enables us to
get

m1
{
α ∈ [0, λ] :P

(
A(α,x, i) ≥ (1 − η)N(Rx)

) ≥ 1 − ε
} ≥ (1 − ε)λ.

By (20) one gets

m1
{
α ∈ [0, λ] :P

(
A(α,x, i) > (1 + η)N(Rx1 − Rx − Rxi) + δ

) ≥ 1 − ε
}

≥ (1 − ε)λ.

By (22) for z = −Rx1 + Rx + Rxi [which can be used thanks to (23)], by station-
arity of T and by the triangle inequality satisfied by T , one gets, for all α ≥ 0,

P
(
B(α,x, i) ≥ −(1 + η)N(Rx1 − Rx − Rxi)

) ≥ 1 − ε.

From the latest two relations one deduces

m1
{
α ∈ [0, λ] :P

(
T (Rxi,Rx1 + αRx) − T (Rx1,Rx1 + αRx) > δ

) ≥ 1 − 2ε
}

≥ (1 − ε)λ.

As this is true for all i ∈ {2, . . . , k}, one gets

m1
{
α ∈ [0, λ] :P

(
Rx1 + αRx ∈ Dδ

1(Rx1, . . . ,Rxk)
) ≥ 1 − 2kε

} ≥ (1 − kε)λ.

Let us define the subset G of R
d by

G = {
z ∈ R

d :P
(
Rx1 + z ∈ Dδ

1(Rx1, . . . ,Rxk)
) ≥ 1 − 2kε

}
.

Set x̂ = x‖x‖−1 and let S denote the (common) norm of the vectors of K . We have
proved

m1{β ∈ [0,RSλ] :βx̂ ∈ G} ≥ (1 − kε)RSλ.

We therefore have (when ε ≤ k−1)∫ RSλ

0
βd−11G(βx̂) dβ ≥

∫ m1{β∈[0,RSλ] : βx̂∈G}
0

βd−1 dβ

≥
∫ (1−kε)RSλ

0
βd−1 dβ

= (1 − kε)d
∫ RSλ

0
βd−1 dβ.

As the previous result holds for all x in K , one gets (integrating over x in K , which
is included in a Euclidean sphere centered at the origin, in a natural way)

|BRSλ ∩ G ∩ R+K| ≥ (1 − kε)d |BRSλ ∩ R+K|.(24)

As (see Lemma 2.3)

dens
(
x1 + H(K)|V1(x1, . . . , xk)

) ≥ 1 − ε,(25)
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|R+K| is positive. Therefore dens(H(R.K)) is also positive. In particular
|H(R.K)| is positive and dens(G|H(R.K)) makes sense. As (24) holds for all
λ ≥ M , one deduces

dens(G|H(R.K)) ≥ (1 − kε)d,

that is,

dens
({

z ∈ R
d :P

(
z ∈ Dδ

1(Rx1, . . . ,Rxk)
) ≥ 1 − 2kε

} − Rx1|H(R.K)
)

≥ (1 − kε)d .

Therefore

dens
({

z ∈ R
d :P

(
z ∈ Dδ

1(Rx1, . . . ,Rxk)
) ≥ 1 − 2kε

}|Rx1 + H(R.K)
)

≥ (1 − kε)d .

By (25) we get

dens
(
Rx1 + H(R.K)|V1(Rx1, . . . ,Rxk)

) ≥ 1 − ε.

Notice that we also have the inclusion of Rx1 + H(R.K) in V1(Rx1, . . . ,Rxk)

(see Lemma 2.3). With new obvious notation, the two previous inequalities and
the previous inclusion can be written as follows:

dens(X|Y) ≥ (1 − kε)d, dens(Y |Z) ≥ 1 − ε and Y ⊂ Z.

Using the inclusion, one can write, for all real a large enough,

|X ∩ Z ∩ Ba|
|Z ∩ Ba| ≥ |X ∩ Y ∩ Ba|

|Y ∩ Ba| · |Y ∩ Z ∩ Ba|
|Z ∩ Ba| .

One deduces

dens
({

z ∈ R
d :P

(
z ∈ Dδ

1(Rx1, . . . ,Rxk)
) ≥ 1 − 2kε

}|V1(Rx1, . . . ,Rxk)
)

≥ (1 − kε)d(1 − ε).

This concludes the proof of the lemma. �

3. Proof of Theorem 1.1 and Corollary 1.1. We use notation and definitions
of Section 1.3. We begin by giving precise references and short proofs for (3) and
for the following very weak version of (4): for all x ∈ Z

d ,

T̃ (0, kx)k−1 converges to a finite constant in L1(26)

as the positive integer k goes to infinity.

SKETCH OF THE PROOF OF (3). The proof is sketched in [8], page 135. The
idea is the following. One can find 2d disjoint paths from 0 to e1 = (1,0, . . . ,0).
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Using (1) one can then deduce that E(T̃ (0, e1)) is finite. One can then conclude
by subadditivity and symmetry arguments. �

SKETCH OF THE PROOF OF (26). Let x ∈ Z
d . For all integers m,n we de-

fine Xm,n by

Xm,n = T̃ (mx,nx).

We get the desired result by applying Kingman’s theorem (we state it in the Ap-
pendix) to this family. [Notice that the third condition of Kingman’s theorem is
satisfied thanks to (3).] �

PROOF OF THEOREM 1.1. We will apply Theorem 1.3 to the family of ran-
dom variables T defined as follows. Let U be a random variable uniformly distrib-
uted on [−1/2,1/2[d . We assume that U is independent of the random times τ(e),
e ∈ E . For all x, y ∈ R

d , one defines T (x, y) by

T (x, y) = T̃ (x̃, ỹ),

where, for all vectors z ∈ R
d , z̃ denotes the unique element of the singleton

Z
d ∩ (z − U + [−1/2,1/2[d).

Let us notice that, if z belongs to Z
d , then z̃ = z. Let us check that T satisfies the

assumptions of Theorem 1.3.

1. The proof of the measurability is standard.
2. The idea of the proof of the stationarity is the following: the graph U + Z

d

is invariant under the action of the translations of R
d and T is a factor of the

graph. We now give a more detailed proof. Recall that E denotes the set of
edges of Z

d . Let z ∈ R
d . We define a map Sz from

� = [−1/2,1/2[d×R
E+

to itself by

Sz(u, (xe)) = (
u − z − ψ(u − z),

(
xe−ψ(u−z)

))
,

where ψ is defined by (5). The stationarity of T is a consequence of the follow-
ing two facts:

(a) For all z in R
d , (U, (τe)) and Sz(U, (τe)) have the same law.

(b) For all x, y, z ∈ R
d , one has T (x + z, y + z,U, τe) = T (x, y, Sz(U, τe)).

3. The nonnegativity is obvious.
4. The finiteness of 
 is a consequence of (3).
5. The triangle inequality is satisfied by T̃ and therefore by T .
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6. This is a consequence of (4). Nevertheless, as we have found no statement of
the well-known result (4), we will give a full proof. [In the relevant literature,
the authors usually give proofs of the a.s. convergence instead of the L1 conver-
gence stated in (4). This requires more arguments. By studying these proofs, it
is therefore easy to give a proof of (4).] We find it more convenient to directly
give a proof of the convergence of T required by Theorem 1.3. Notice that (4)
is a straightforward consequence of that convergence.

We first apply Lemma A.2. This lemma is just a gathering of arguments
which are standard in first passage percolation. Notice that the third condition
is satisfied thanks to (26) (and thanks to the relation z̃ = z for all z ∈ Z

d ).
Applying the lemma, we get the existence of a seminorm a such that

T (0, x)

‖x‖ − a

(
x

‖x‖
)

(27)

converges to 0 in L1 as ‖x‖ tends to +∞. Let x ∈ R
d be such that a(x) = 0.

We wish to prove x = 0. Let i ∈ {1, . . . , n}. Let us consider the symme-
try s : Rd → R

d define by s(x1, . . . , xd) = (x1, . . . , xi−1,−xi, xi+1, . . . , xd).
Notice that s̃(x) has the same law as s(x̃). Notice also that, for every
y ∈ Z

d , T̃ (0, y) has the same law as T̃ (0, s(y)). One deduces that T (0, s(x))

has the same law as T (0, x). Therefore [by (27)], a(x) = a(s(x)) = 0. As
a(0, . . . ,0,2xi,0, . . . ,0) ≤ a(x)+a(s(x)), one gets that a(0, . . . ,0,2xi,0, . . . ,

0) = 0 and then that xia(0, . . . ,0,1,0, . . . ,0) = 0. But by a result of Kesten
(Theorem 1.15 in [9]), (2) ensures a(0, . . . ,0,1,0, . . . ,0) �= 0. One can there-
fore conclude that, for each index i, we have xi = 0. We have proved that a is
a norm. By (27), one then sees the required convergence [and therefore (4)] is
satisfied with N := a.

We now define the value of the real δ that appears in the statement of Theo-
rem 1.3. Let ε > 0. As 
 is finite, by Lemma A.1 we get

sup
x∈[−1/2,1/2[d

E(T (0, x)) < ∞.

Therefore, we can fix a real δ such that, for all x in [−1/2,1/2[d , the following
holds:

P
(
T (0, x) ≥ δ/4

) ≤ ε.(28)

With such a definition for δ, we have, for all x, y ∈ R
d , the following inequality:

P
(|T (x, y) − T (ψ(x),ψ(y))| ≥ δ/2

) ≤ 2ε,(29)

where ψ(x) is defined by (5). Indeed, by the triangular inequality fulfilled by T

and by symmetry of T , one has

|T (x, y) − T (ψ(x),ψ(y))| ≤ T (ψ(x), x) + T (ψ(y), y).
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Inequality (29) follows by (28) and by stationarity of T .
We now prove the first item of Theorem 1.1. Let (x1, . . . , xk) be a family of

distinct points in R
d (k ≥ 2). Let ε > 0. Let M be the real given by Theorem 1.3.

Let R ≥ M and i ∈ I . We have

dens
({

y ∈ R
d :P

(
y ∈ Dδ

i (Rx1, . . . ,Rxk)
) ≥ 1 − ε

}|Vi(Rx1, . . . ,Rxk)
) ≥ 1 − ε

(Dδ
i and D are defined w.r.t. T ). But by (29) one has, for any y in R

d , the following
inequality:

P
(∀j ∈ {1, . . . , k} : |T (Rxj , y) − T (ψ(Rxj ),ψ(y))| ≤ δ/2

) ≥ 1 − 2kε.

Therefore, one gets that the set{
y ∈ R

d :P
(
y ∈ Dδ

i (Rx1, . . . ,Rxk)
) ≥ 1 − ε

}
is included in the set{

ỹ ∈ Z
d :P

(
ỹ ∈ Di(ψ(Rx1), . . . ,ψ(Rxk))

) ≥ 1 − (2k + 1)ε
}

(30)
+ [−1/2,1/2[d

(by using the fact that any y belongs to ψ(y) + [−1/2,1/2[d ). Therefore, the
set defined by (30) has a lower relative density w.r.t. Vi(Rx1, . . . ,Rxd) greater or
equal to 1 − ε. But, for all x, y ∈ Z

d , one has T̃ (x, y) = T (x, y). Therefore in (30)
one can replace Di by D̃i and the first item is proved.

We now prove the second item of Theorem 1.1. Let i ∈ I . By the first item, fix
M such that, for all real R ≥ M , the following inequality holds:

dens(Ai |Vi(Rx1, . . . ,Rxk)) ≥ 1 − ε,(31)

where

Ai = Ãi + [−1/2,1/2[d
and

Ãi = {
ỹ ∈ Z

d :P
(
ỹ ∈ D̃i(ψ(Rx1), . . . ,ψ(Rxk))

) ≥ 1 − ε
}
.

Fix R ≥ M . Let us define two random sets by

W̃i = {ỹ ∈ Z
d : ỹ /∈ D̃i(ψ(Rx1), . . . ,ψ(Rxk))}

and

Wi = W̃i + [−1/2,1/2[d .

By definition of Ai , for all integer n > 0 and all ỹ ∈ Z
d , one has

E|(ỹ + [−1/2,1/2[d) ∩ Wi ∩ Ai ∩ Bn|
= P(ỹ ∈ W̃i)|(ỹ + [−1/2,1/2[d) ∩ Ai ∩ Bn|
≤ ε|(ỹ + [−1/2,1/2[d) ∩ Ai ∩ Bn|.
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Therefore, for all integers n > 0, one has

E|Wi ∩ Ai ∩ Bn| ≤ ε|Ai ∩ Bn| ≤ ε|Bn|.
By Fatou’s lemma, one therefore gets

E
(
dens(Wi ∩ Ai)

) ≤ ε.

Therefore,

P
(
dens(Wi ∩ Ai) ≥ √

ε
) ≤ √

ε

and then the event

Gi = {
dens(Wi ∩ Ai) ≤ √

ε
}

satisfies P(Gi) ≥ 1 − √
ε. But when Gi occurs, one has

dens
(
Wi ∩ Ai |Vi(Rx1, . . . ,Rxk)

) ≤ √
ε dens(Vi(Rx1, . . . ,Rxk))

−1.

But by (31), one has

dens(Ac
i |Vi(Rx1, . . . ,Rxk)) ≤ ε.

Therefore when Gi occurs, one has [using Wi ⊂ (Wi ∩ Ai) ∪ Ac
i ]

dens(Wi |Vi(Rx1, . . . ,Rxk)) ≤ ε + √
ε dens(Vi(Rx1, . . . ,Rxk))

−1

and then

dens(Wc
i |Vi(Rx1, . . . ,Rxk)) ≥ 1 − ε − √

ε dens(Vi(Rx1, . . . ,Rxk))
−1.

As dens(Vi(Rx1, . . . ,Rxk)) = dens(R.Vi(x1, . . . , xk)) = dens(Vi(x1, . . . , xk)),
this concludes the proof. �

PROOF OF COROLLARY 1.1. This a consequence of Theorem 1.1 and
Lemma 2.5. �

4. Proof of Theorem 1.2. We use the notation and conventions of Section 1.4.
In particular, B denotes the unit Euclidean ball and χ denotes the underlying Pois-
son point process on R

d ×R+×]0,+∞[. We will apply Theorem 1.3 to the family
T defined as follows. For all x, y ∈ R

d , we let

T (x, y) = T̃ (x + B,y + B).

LEMMA 4.1. The following properties hold:

1. For all z ∈ R
d , the families (T (x + z, y + z))x,y and (T (x, y))x,y have the

same law.
2. For all x ∈ R

d \ {0}, the sequence (T (kx, (k + 1)x))k∈Z is stationary and er-
godic.
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3. For all x, y ∈ R
d , the random variables T (x, y) and T (y, x) have the same law.

4. For all x, y ∈ R
d such that ‖x‖ = ‖y‖, T (0, x) and T (0, y) have the same law.

PROOF. The properties stated in the lemma are consequences of related prop-
erties of the underlying point process χ . �

LEMMA 4.2. If A,C and D are measurable subsets of R
d , then

T̃ (A,D) ≤ T̃ (A,C) + T̃ (C,D).

PROOF. Assume that the right-hand side of the inequality stated in the lemma
is finite (otherwise the result is obvious). Let d ∈ D and ε > 0. Fix c ∈ C and
r2 ∈ C(c, d) be such that T̃ (r2) ≤ T̃ (C,D) + ε. Now, fix a ∈ A and r1 ∈ C(a, c)

such that T̃ (r1) ≤ T̃ (A,C) + ε. If we concatenate r1 and r2 we get an element
r ∈ C(a, d) such that T̃ (r) ≤ T̃ (C,D) + T̃ (A,C) + 2ε. The lemma follows. �

LEMMA 4.3. Let A and C be two measurable subsets of R
d . We assume that

the Lebesgue measure of A is positive and that C is bounded. Then E(T̃ (A,C)) is
finite.

PROOF. The proof is standard. One can proceed as follows. Fix r > 0 such that
the probability ν([2r,+∞[) is positive (this is possible because ν(]0,+∞[) = 1).
Notice the following property.

CLAIM. Let a be in R
d and D ⊂ R

d be measurable. If the Lebesgue measure
of D ∩ (a + Br) is positive then

E
(
T̃

(
D,D ∪ (a + Br)

))
is finite.

One can prove the claim as follows. Let U be the first t ≥ 0 such that χ pos-
sesses a point in D ∩ (a +Br)×[0, t]× [2r,+∞[. Let (X,U,R) be the point. The
law of U is an exponential law with parameter |D ∩ (a + Br)| · ν([2r,+∞[) > 0.
Therefore E(U) is finite. As X belongs to (a + Br) and as R is greater or equal
to 2r , the set (a + Br) is contained in the set X + BR . Therefore

T̃
(
D,D ∪ (a + Br)

) ≤ T̃
(
D,D ∪ (X + BR)

) ≤ U.

The claim follows.
As the Lebesgue measure of A is positive and as C is bounded, one can build a

finite sequence a1, . . . , an of vectors in R
d such that:

1. for each index i, the intersection of the set

Ai−1 := A ∪ (a1 + Br) ∪ · · · ∪ (ai−1 + Br)

and (ai + Br) has a positive Lebesgue measure;
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2. the set An := A ∪ (a1 + Br) ∪ · · · ∪ (an + Br) contains the set C.

As T̃ (A,C) is bounded above by T̃ (A,A1)+ T̃ (A1,A2)+· · ·+ T̃ (An−1,An), the
lemma follows from the claim. �

By Theorem 1.3, we will get results on T , that is, on the T̃ (x + B,y + B)’s.
But we are interested in the T̃ (x + B,y)’s. The following lemma will enable us to
turn properties on the former into properties on the latter.

LEMMA 4.4. Let ε > 0. There exists a real δ such that, for all x, y ∈ R
d , the

following holds:

P
(
T̃ (x + B,y) ≤ T̃ (x + B,y + B) ≤ T̃ (x + B,y) + δ

) ≥ 1 − ε.(32)

PROOF. We first explicit a realization of χ . Let φ be a Poisson point process
on R

d ×R+ whose intensity is the canonical Lebesgue measure. Let us fix a (mea-
surable) enumeration of the points of φ:

φ = {(Xn,Tn), n ∈ N}.
Let (Rn)n be an independent sequence of i.i.d. r.v. with common distribution ν.
Then {(Xn,Tn,Rn), n ∈ N} is a point process which has the same law as χ . Until
the end of this proof, we use this realization of χ in the definition of the vari-
ables T̃ .

Let x, y ∈ R
n. Let us introduce the following random subset of N:

A = {n ∈ N :‖Xn − y‖ ≤ Rn}.
Let L be the random set of finite sequences of natural integers defined as follows.
The sequence (n1, . . . , nk) belongs to L if the following conditions holds:

1. k ≥ 1.
2. n1, . . . , nk−1 and nk are pairwise distinct.
3. n1, . . . , nk−1 belong to Ac, nk belongs to A.
4. Xn1 ∈ x + B,Xn2 ∈ Xn1 + BRn1

, . . . ,Xnk
∈ Xnk−1 + BRnk−1

.

If m and n are nonnegative integers, we define variants of L in the following way
(in each case, we only point out the differences w.r.t. the definition of L):

1. Lm: we require in addition that nk equals m.
2. Ln: we require in addition that n does not belong to {n1, . . . , nk}.
3. Ln

m: we require in addition that nk equals m and that n does not belong to
{n1, . . . , nk}.

4. L̂m: we require in addition that nk equals m and we drop the requirement
nk ∈ A.
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We define S (and in a similar way Sm,Sn, Sn
m and Ŝm) by

S = inf{Tn1 + · · · + Tnk
: (n1, . . . , nk) ∈ L}.

Notice that, thanks to Lemma 4.3, T̃ (x + B,y) is a.s. finite. We assume in this
step that y does not belong to x + B . This ensures

T̃ (x + B,y) = S.

Let us define N as the smallest integer n such that Sn ≤ T̃ (x + B,y) + 1. We now
show that RN stochastically dominates ν. Let n be a natural integer. Notice that,
on the event {n ∈ A}, one has:

1. Sn = Ŝn.
2. For all natural integer k �= n: Sk = Sn

k .
3. S = inf{Sj , j ∈ N} = Ŝ where Ŝ is defined as the minimum of Ŝn and

inf{Sn
k , k �= n}.

As

{N = n} ∩ {T̃ (x + B,y) < ∞} ⊂ {n ∈ A},(33)

one therefore has

{N = n} ∩ F = F ∩ Gn ∩ Hn,

where

F = {T̃ (x + B,y) < ∞},
Gn = {n ∈ A} = {Rn ≥ ‖Xn − y‖}

and

Hn = {Ŝn ≤ Ŝ + 1} ∩ ⋂
k<n

{Sn
k > Ŝ + 1}.

Let us recall that P(F) = 1. Notice that Hn is independent of Rn. Let us condition
with respect to φ and denote by Q the resulting random probability. Using the
independence properties stated at the beginning of the proof, one gets, for all r ≥ 0,
the following a.s. inequalities [when Q(N = n) is not equal to 0]:

Q(RN ≥ r|N = n) = Q({Rn ≥ r} ∩ Gn ∩ Hn)

Q(Gn ∩ Hn)

= Q(Rn ≥ max(r,‖Xn − y‖))Q(Hn)

Q(Rn ≥ ‖Xn − y‖)Q(Hn)

≥ Q(Rn ≥ r).

Therefore, one has a.s.

Q(RN ≥ r) ≥ Q(R0 ≥ r)
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and then

P(RN ≥ r) ≥ P(R0 ≥ r),

as desired.
Fix � (independent of x and y) a finite subset of R

d such that:

1. B is included in � + B1/2;
2. � is included in B .

We claim that if z ∈ R
d and a ≥ 1 are such that z+Ba contains 0, then there exists

s ∈ � such that z+Ba contains s +B1/2. Indeed, in such a case, a−1z+B contains
0. Therefore a−1z belongs to B and there exists s ∈ � such that a−1z belongs to
s + B1/2. For such an s, one has s + B1/2 ⊂ a−1z + B ⊂ z + Ba .

We now prove that, with high probability, the territory infected around y at time
T̃ (x + B,y) + 1 is not too small. Fix r ∈]0,1] independent of x and y such that

ν([r,+∞[) ≥ 1 − ε.

We will show

P
(∃s ∈ � : T̃ (x + B,y + rs + Br/2) ≤ T̃ (x + B,y) + 1

) ≥ 1 − ε.(34)

Assume first that y belongs to x + B . Then 0 belongs to xr−1 − yr−1 + Br−1

and, by the property previously proved about � (with a = r−1), there exists s ∈ �

such that xr−1 − yr−1 + Br−1 contains s + B1/2. For such a s one has

y + rs + Br/2 ⊂ x + B

and then

T̃ (x + B,y + rs + Br/2) = 0.

Inequality (34) is therefore satisfied in this case.
Assume now that y does not belong to x +B . This is the assumption of the step

in which N was defined. Recall that N and T̃ (x +B,y) are a.s. finite. We work on
the associated almost sure event. By (33) one gets that 0 belongs to XN −y +BRN

.
On the event {RN ≥ r}, there exists (as above) s ∈ � such that y + rs + Br/2 is
included in XN + BRN

. For such an s, one has, on the event {RN ≥ r},
T̃ (x + B,y + rs + Br/2) ≤ T̃ (x + B,XN + BRN

) ≤ SN ≤ T̃ (x + B,y) + 1.

As

P(RN ≥ r) ≥ P(R0 ≥ r) ≥ 1 − ε,

(34) is proved.
We now conclude the proof. By Lemma 4.3 we can fix a real δ (independent of

x and y) such that

P
(
T̃ (Br/2,B2) ≤ δ

) ≥ 1 − ε.
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By stationarity, we then have, for all s ∈ �,

P
(
T̃ (y + rs + Br/2, y + rs + B2) ≤ δ

) ≥ 1 − ε

and then (as y + B is included in y + rs + B2)

P
(
T̃ (y + rs + Br/2, y + B) ≤ δ

) ≥ 1 − ε.

Therefore the probability of the event

F = ⋂
s∈�

{T̃ (y + rs + Br/2, y + B) ≤ δ}

is greater than or equal to 1 − card(�)ε. By (34) and the triangular inequality
(Lemma 4.2), we therefore have

P
(
T̃ (x + B,y + B) ≤ T̃ (x + B,y) + 1 + δ

) ≥ 1 − (
1 + card(�)

)
ε.

As the inequality T̃ (x +B,y) ≤ T̃ (x +B,y +B) is always fulfilled, the lemma is
proved. �

The following result is essentially in [2] and [1] but is not explicitly stated (in
these papers, the authors prove the almost sure convergence; this requires more
arguments). We therefore state the result and provide a short proof.

THEOREM 4.1. There exists a constant µ > 0 such that T (0, x)‖x‖−1 con-
verges to µ in L1.

SKETCH OF THE PROOF. Let x ∈ R
d \ {0}. For all integers m,n we de-

fine Xm,n by

Xm,n = T (mx,nx).

The first condition of Kingman’s theorem (we state it in the Appendix) is sat-
isfied thanks to Lemma 4.2. The second and forth ones are satisfied because of
Lemma 4.1. The third one is satisfied because of Lemma 4.3. We therefore have in
particular the convergence in L1 of T (0, kx)k−1 toward a finite constant.

We now apply Lemma A.2 in the Appendix. This lemma is just a gathering
of arguments which are standard in first passage percolation. Conditions 1 and 2
of the lemma are satisfied thanks to Lemma 4.1. The third condition is a conse-
quence of what we proved in the beginning of the proof. Condition 4 is a con-
sequence of Lemma 4.3 [if x belongs to B then x + B is a subset of B2 and
then T (0, x) ≤ T̃ (B,B2)]. Condition 5 is a consequence of Lemma 4.2. There-
fore, there exists a seminorm a such that

T (0, x)

‖x‖ − a

(
x

‖x‖
)
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converges to 0 in L1 as ‖x‖ tends to +∞. By Item 4 of Lemma 4.1, one gets that
a is constant on the unit Euclidean sphere. Let us denote by µ this constant. The
only remaining thing to be proved is the inequality µ > 0. This is Proposition 2.1
in [1]. �

PROOF OF THEOREM 1.2. Let us check that T fulfills the assumptions of
Theorem 1.3.

1. The proof of the measurability is standard.
2. The stationarity of T is a consequence of Lemma 4.1.
3. The nonnegativity of T is clear.
4. If x belongs to B , on has x +B ⊂ B2 and then T (0, x) ≤ T̃ (B,B2). Condition 4

is therefore a consequence of Lemma 4.3.
5. The triangular inequality is a consequence of Lemma 4.2.
6. The convergence condition hold with N = µ‖ · ‖ by Theorem 4.1.

Let (x1, . . . , xk) be a family of distinct vectors in R
d . Let ε > 0. Let δ be the

real given by Lemma 4.4. Let M be the real given by Theorem 1.3. Let i be in I

(I is defined in the statement of Theorem 1.2) and R ≥ M . We have

dens
({

y ∈ R
d :P

(
y ∈ Dδ

i (Rx1, . . . ,Rxk)
) ≥ 1 − ε

}|Vi(Rx1, . . . ,Rxk)
) ≥ 1 − ε,

(the D̃δ
i ’s are defined w.r.t. T ). But by (32), we have, for all y ∈ R

d , the following
inequality:

P(Fy) ≥ 1 − kε,

where

Fy = {∀j ∈ {1, . . . , k}, T̃ (Rxj + B,y) ≤ T̃ (Rxj + B,y + B)

≤ T̃ (Rxj + B,y) + δ
}
.

As, for all y,

Fy ∩ {y ∈ Dδ
i (Rx1, . . . ,Rxk)}

is included in

{y ∈ D̃i(Rx1, . . . ,Rxk)},
one has

dens
({

y ∈ R
d :P

(
y ∈ D̃i(Rx1, . . . ,Rxk)

) ≥ 1 − (k + 1)ε
}|Vi(Rx1, . . . ,Rxk)

)
≥ 1 − ε.

The first item of the theorem is proved.
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We now prove the second item of Theorem 1.2. Let i ∈ I . By the first item, fix
M such that, for all real R ≥ M , the following inequality holds:

dens(Ai |Vi(Rx1, . . . ,Rxk)) ≥ 1 − ε,

where

Ai = {
y ∈ R

d :P
(
y ∈ D̃i(Rx1, . . . ,Rxk)

) ≥ 1 − ε
}
.

Fix R ≥ M . Let us define

Wi = {y ∈ R
d :y /∈ D̃i(Rx1, . . . ,Rxk)}.

By definition of Ai , for all integer n > 0, one has

E|Wi ∩ Ai ∩ Bn| ≤ ε|Ai ∩ Bn| ≤ ε|Bn|.
We conclude as in the proof of the second item of Theorem 1.1. �

APPENDIX

We begin by a statement of Kingman’s theorem.

THEOREM A.1. Suppose (Xm,n,0 ≤ m < n) (m and n are integer) is a family
of random variables satisfying:

1. For all integers l,m,n such that 0 ≤ l < m < n, one has Xl,n ≤ Xl,m + Xm,n.
2. The distribution of (Xm+k,n+k,0 ≤ m < n) does not depend on the integer k.
3. E(X+

0,1) < ∞ and there exists a real c such that, for all natural integer n, one
has E(X0,n) ≥ −cn.

Then

lim
n→∞E(X0,n)n

−1 exists and equals γ = inf
n

E(X0,n)n
−1,

X := lim
n→∞X0,nn

−1 exists a.s. and in L1 and

E(X) = γ.

If, for all k ≥ 1, the stationary sequence (Xnk,(n+1)k, n ≥ 1) is ergodic, then X = γ

a.s.

Let us fix a norm N on R
d . Let T = (T (x, y))x,y∈Rd be a family of nonnegative

random variables. We let


 = sup
x∈Rd : ‖x‖≤1

E(T (0, x)).

The following result is very simple:

LEMMA A.1. Assume that the following conditions hold:
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1. For all z in R
d , the families of random variables (T (x, y))x,y and (T (x − z,

y − z))x,y have the same law.
2. For all x, y, z in R

d , one has T (x, z) ≤ T (x, y) + T (y, z).
3. For all x, y in R

d , one has T (x, y) ≥ 0.

Then, for all x, y in R
d , one has

E(T (x, y)) ≤ (‖y − x‖ + 1)
.

Moreover for all x, y, z in R
d , one has

E|T (x, y) − T (x, z)| ≤ 2(‖y − z‖ + 1)
.

PROOF. Let us prove the first item. The vector x −y can be written as the sum
of ‖x − y‖+ 1 or less vectors of the unit Euclidean ball. Using the stationarity and
the triangle inequality satisfied by T , one therefore gets:

E(T (x, y)) = E
(
T (0, y − x)

) ≤ (‖y − x‖ + 1)
.

The second item is a consequence of the first one because, by the triangle inequal-
ity and the nonnegativity of T , one has:

|T (x, y) − T (x, z)| ≤ max(T (y, z), T (z, y)) ≤ T (y, z) + T (y, z). �

Let C denotes the set of vectors x in R
d such that T (0, kx)k−1 converges in L1

to a finite constant when the integer k goes to infinity. The following result is
standard.

LEMMA A.2. Assume that the following conditions hold:

1. For all z in R
d , the families of random variables (T (x, y))x,y and (T (x − z,

y − z))x,y have the same law.
2. For all x, y in R

d , one has E(T (x, y)) = E(T (y, x)).
3. The set {

x‖x‖−1, x ∈ C \ {0}}
is dense in the unit Euclidean sphere S.

4. 
 is finite [
 is defined by (7)].
5. For all x, y, z in R

d , one has T (x, z) ≤ T (x, y) + T (y, z).
6. For all x, y in R

d , one has T (x, y) ≥ 0.

Then there exists a seminorm a on R
d such that

T (0, x)

‖x‖ − a

(
x

‖x‖
)

converges to 0 in L1 when ‖x‖ goes to infinity.
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PROOF. If x ∈ R
d belongs to C, one denote by a(x) the limit of T (0, kx)k−1.

Let x be in C. Let us prove the following convergence (in L1, with λ in R):

lim
λ→+∞T (0, λx)λ−1 = a(x).(35)

If λ is a real greater than 1, one has

T (0, λx)

λ
= T (0, �λ�x)

�λ�
�λ�
λ

+ T (0, λx) − T (0, �λ�x)

λ
,

where �λ� denotes the integer part of λ. By Lemma A.1, the second term converges
to 0. But as x belongs to C, the first term, and then the sum, converge to a(x).

As a consequence, C is stable by homothety with center 0 and positive ratio.
Therefore C is dense in R

d .
Let us now prove that a can be extended into a continuous map from R

d to R.
If x and y are two vectors of R

d one has, by Lemma A.1,

E|T (0, kx)k−1 − T (0, ky)k−1| ≤ 2(‖kx − ky‖ + 1)k−1
 ≤ 2(‖x − y‖ + k−1)


and then

lim sup
k→∞

E|T (0, kx)k−1 − T (0, ky)k−1| ≤ 2‖x − y‖
.(36)

One deduces that a is 2
-Lipschitz (with respect to the Euclidean norm on R
d ).

This enables us to extend a by continuity on R
d .

Let us now prove that C = R
d . Let x be in R

d . Let (xn)n be a sequence of C

which converges to x. For all integer n ≥ 0, applying (36) to x and xn, one gets

lim sup
k→∞

E|T (0, kx)k−1 − a(xn)| ≤ 2‖x − xn‖


and then

lim sup
k→∞

E|T (0, kx)k−1 − a(x)| ≤ 2‖x − xn‖
 + |a(xn) − a(x)|.

Taking limit with respect to n, one deduces the desired result.
Let us show that

T (0, x)

‖x‖ − a

(
x

‖x‖
)

converges to 0 in L1 when ‖x‖ goes to infinity. Let (xn)n be a sequence of vectors
whose sequence of norms converge to infinity. To conclude, it suffices to show that
one can extract a subsequence yn such that

T (0, yn)

‖yn‖ − a

(
yn

‖yn‖
)
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converges to 0 in L1. Fix (yn)n a subsequence of (xn)n such that yn/‖yn‖ con-
verges. Let us denote by y the limit. For all integer n ≥ 0 one has, by Lemma A.1,

E

∣∣∣∣T (0, yn)

‖yn‖ − T (0,‖yn‖y)

‖yn‖
∣∣∣∣ ≤ 2(‖yn − ‖yn‖y‖ + 1)


‖yn‖ .

This upper bound converges to 0. As

T (0,‖yn‖y)

‖yn‖
converges to a(y) and as a(yn‖yn‖−1) converges to a(y), the result follows.

To conclude, let us check that a is a seminorm. As all T (x, y) are nonnegative,
a is nonnegative. By (35) one gets the relation a(λx) = λa(x) for all real x and
all nonnegative real λ. By (35) and by the symmetry of T (Assumption 2 of the
lemma) and by stationarity one gets, for all x,

a(−x) = lim
λ→∞E(T (0,−λx)λ−1) = lim

λ→∞E(T (0, λx)λ−1) = a(x).

This enables us to conclude that a is homogeneous. By (35) and using the station-
arity and the triangle inequality satisfied by T one gets, for all x, y in R

d ,

a(x + y) = lim
λ→∞E

(
T

(
0, λ(x + y)

)
λ−1)

≤ lim
λ→∞E(T (0, λx)λ−1) + lim

λ→∞E(T (0, λy)λ−1)

= a(x) + a(y).

The lemma is proved. �
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