
The Annals of Applied Probability
1999, Vol. 9, No. 4, 1226–1259
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We consider a spatial stochastic version of the classical Lotka–Volterra
model with interspecific competition.

The classical model is described by a set of ordinary differential equa-
tions, one for each species. Mortality is density dependent, including both
intraspecific and interspecific competition. Fecundity may depend on the
type of species but is density independent. Depending on the relative
strengths of interspecific and intraspecific competition and on the fecun-
dities, the parameter space for the classical model is divided into regions
where either coexistence, competitive exclusion or founder control occur.

The spatial version is a continuous time Markov process in which in-
dividuals are located on the d-dimensional integer lattice. Their dynamics
are described by a set of local rules which have the same components as
the classical model.

Our main results for the spatial stochastic version can be summarized
as follows. Local competitive interactions between species result in (1) a
reduction of the parameter region where coexistence occurs in the classical
model, (2) a reduction of the parameter region where founder control occurs
in the classical model, and (3) spatial segregation of the two species in parts
of the parameter region where the classical model predicts coexistence.

1. Introduction. A fundamental problem faced by ecologists is that the
spatial and temporal scales at which measurements are practical, are typi-
cally smaller than those at which the most important phenomena occur. For
example in plant ecology, we can measure the growth, survivorship, fecundity
and seed dispersal of individual plants, and we can predict those quantities
using simple equations (see [25], [27]). But what is needed is a way to model
changes in distribution and abundance of plant species at spatial scales from
hectares to many square kilometers and at temporal scales from years to a
century or more.

Because we lack an ecological statistical mechanics, ecologists rely on com-
puter simulations of ensembles of individuals to predict the consequences of
their observations and on phenomenological “mean-field” models to gain gen-
eral insights (see [17]). These mean-field models are typically coupled systems
of ordinary differential equations, with state variables giving the mean abun-
dances of several interacting species. The mean-field models cannot generally
be derived from observable individual-level rules, except in the special case
where rapid movement and/or long-range interactions among individuals ef-
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fectively mixes them completely. A considerable body of evidence demonstrates
the importance of short-range interactions and dispersal, especially when or-
ganisms are sedentary (e.g., plants, marine invertebrates, [1], [26]).

In this paper we investigate a simple individual-level stochastic process
that corresponds, in the long-range limit, to a classical model of competition
between species, the Lotka–Volterra model, [34], [19]. This Lotka–Volterra
model describes the competitive interaction between two species for which
population growth is density dependent. We give a description of the model.
Denote by N1 and N2 the number of individuals of species 1 and 2, respec-
tively. Then

dN1

dt
= r1N1

(
1 − N1

K1
− a12

N2

K1

)
�

dN2

dt
= r2N2

(
1 − N2

K2
− a21

N1

K2

)
�

(1.1)

where ri is the intrinsic rate of growth of species i. The quantity Ki denotes
the carrying capacity of species i, that is, Ki is the equilibrium density of
species i in the absence of species j. Note that the dynamics of species i in
the absence of species j is given by the logistic equation which incorporates
inhibitory effects of species i on itself, the so-called intraspecific competition.
The effect of species j on species i, the so-called interspecific competition, is
described by aij. We assume a12� a21 ≥ 0.

It is easy to analyze the equilibria of (1.1) using phase plane analysis (i.e.,
zero isoclines). The following hold.

1. When interspecific competition is less important than intraspecific com-
petition (i.e., K1 > K2a12 and K2 > K1a21), then coexistence is possible,
that is, there exists a nontrivial stable equilibrium in which both species
are present.

2. A strong interspecific competitor out-competes a weak interspecific com-
petitor. That is, when K1 < K2a12 and K2 > K1a21, then species 2 takes
over and species 1 dies out. (Likewise, species 1 takes over and species
2 dies out when the inequalities are reversed.) This is called competitive
exclusion.

3. When interspecific competition is more important than intraspecific com-
petition (i.e., K1 < K2a12 and K2 < K1a21), the two species cannot coexist.
The outcome of the competition depends on the initial densities. This is
referred to as founder control.

Note that the coexistence outcome requires that the strengths of interspe-
cific competition (a12 and a21) be sufficiently small. Classical explanations for
the coexistence of species center on the idea that the a’s are reduced by so-
called niche-displacement, for example, differences in diet that reduce each
species’ tendency to deplete the other’s food supply (i.e., [20]). The coexistence
of plant species is particularly difficult to explain because plants must have
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similar diets; all green plants require light, water and a few mineral nutrients
(see [1], [33]).

The model described in (1.1) assumes global interactions, that is, mortality
depends on global densities and dispersal is infinite. This greatly facilitates the
analysis but leaves out the critical short-distance interactions and dispersal.
When individuals interact over short distances, demographic stochasticity may
play an important role in determining the outcome of competition on a local
scale.

To be able to study the effects of such short-range interactions on the out-
come of competition, we extend the nonspatial deterministic Lotka–Volterra
model (1.1) to an explicitly spatial stochastic model.

We model the spatial system as a continuous time Markov process on Zd,
the d-dimensional integer lattice. The state at time t is denoted by ηt with
ηt ∈ �1�2�Zd

. That is, ηt�x� = 1 if x is occupied by a particle of type 1, and
ηt�x� = 2 if x is occupied by a particle of type 2. We assume that at all times
every site on the lattice is occupied by exactly one particle, that is, there are
never any vacant sites. To describe the dynamics, we define

fi�x� =
∣∣�y	 ηt�y� = i	 y ∈ �x�

∣∣∣∣�x

∣∣ �

where �x = x+�y	 0 < �y�∞ ≤ R� and �·�∞ denotes the supnorm [i.e., �y�∞ =
maxi yi for y = �y1� y2� � � � � yd�]. The evolution of the process is described by
the following rules.

1. If ηt�x� = 1, it becomes a 2 at rate

λf2

λf2 + f1
�f1 + α12f2��

2. If ηt�x� = 2, it becomes a 1 at rate

f1

λf2 + f1
�f2 + α21f1��

The rates can be interpreted as follows. A particle of type i dies at rate
fi + αijfj and gets instantaneously replaced by an offspring of one of its
neighbors chosen from its neighborhood according to the relative fecundities
of the two species. We refer to this as the high-density limit. (The low-density
limit, in which the replacement is not instantaneous and which therefore has
vacant sites, will be analyzed elsewhere.)

The density-dependent mortality fi + αijfj has two components. The first
one, fi, describes the effect of intraspecific competition; the second one, αijfj,
describes the effect of interspecific competition. We assume here that both
species experience the same strength of intraspecific competition. It is easy
to incorporate different strengths of intraspecific competition, but our model
already has three parameters. Replacement after death is proportional to the
respective weighted densities of the two species which is measured by the pa-
rameter λ. We assume λ ≥ 1. If λ = 1, the two species contribute equally
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relative to their local frequencies. If λ > 1, then species 2 has a higher fecun-
dity than species 1; that is, it contributes a proportionally higher fraction to
the pool from which the offspring is chosen.

Although this stochastic process is simple, similar models already predict
the dynamics of plant communities in the field (i.e., [29], [30], [32]). The as-
sumption of large fecundity, ensuring complete occupancy of space, is appro-
priate for sites of moderate to high productivity, including most forests and
many grasslands. Also, as in our model, competitive interactions in perennial
vegetations primarily affect establishment and mortality, rather than adult
fecundity, [27].

The first step in understanding the behavior of the system is to study its
mean-field behavior. That is, we pretend that all sites are independent and
investigate how the densities evolve under translation invariant initial condi-
tions. We denote by ui the fraction of sites in state i. Since u1 + u2 = 1, one
ordinary differential equation suffices to describe the evolution.

du1

dt
= −u1

λu2

λu2 + u1
�u1 + α12u2� + u2

u1

λu2 + u1
�u2 + α21u1��

Using u1 + u2 = 1, this simplifies to

du1

dt
= u1�1 − u1�
λ�1 − u1� + u1

[
1 − λα12 − u1�1 + λ− α21 − λα12�

]
�(1.2)

Besides the two trivial equilibria 0 and 1, there is a nontrivial equilibrium at

u∗
1 = 1

1 + �λ− α21�/�1 − λα12�
which is contained in �0�1� for �α21� α12� ∈ �0� λ� × �0�1/λ� ∪ �λ�∞� × �1/λ�∞�.
It is easy to analyze the stability of the nontrivial equilibrium and we obtain
the following behavior.

1. If 0 ≤ α21 < λ and 0 ≤ α12 < 1/λ, the nontrivial equilibrium is stable and
coexistence is possible.

2. If α21 > λ and 0 ≤ α12 < 1/λ, species 1 outcompetes species 2. If α12 > 1/λ
and 0 ≤ α21 < λ, species 2 outcompetes species 1.

3. If α21 > λ and α12 > 1/λ, the nontrivial equilibrium is unstable and coexis-
tence is not possible. The outcome of the competitive interactions depends
on the initial densities, a situation referred to as founder control.

In this paper, we show that short-range interactions (finite R) alter the pre-
dictions of the mean-field model in three important ways. First, short-range
interactions reduce the size of the region of parameter space in which coexis-
tence is possible. This result amplifies the paradox of plant diversity by making
it even more difficult to explain the coexistence of species such as plants, with
necessarily similar resource requirements. Second, short-range interactions
cause plant species to segregate spatially. This result has been obtained pre-
viously with approximate methods and is supported by a large experimental
literature (see [26], [28]). The spatial segregation reduces the effective amount
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of competition simply by separating the species and may serve to increase a
plant community’s ability to recover following disturbance (see [26]). Third,
the founder control region is reduced in size. We in fact believe that the pos-
sibility of founder control is completely eliminated by interactions of finite
range.

2. Results. We begin with the symmetric case in which both species are
identical, that is, we set λ = 1 and α ≡ α12 = α21. To identify the effects of
space on the outcome of competition, we compare the results for the spatial
model to the predictions of the mean-field model (1.2). The equilibria for the
mean-field model in the symmetric case are 0� 1

2 and 1. The stability of the
nontrivial mean-field equilibrium u∗

1 = 1/2 follows from the analysis above. If
α ∈ �0�1�, the equilibrium u∗

1 = 1/2 is stable which implies that coexistence
is possible. If α > 1, the equilibrium u∗

1 = 1/2 is unstable which implies that
there is no coexistence; the outcome of the competition depends on the initial
densities. When α = 1, then du1/dt ≡ 0 regardless of the value of u1. This
suggests that any value of u1 ∈ �0�1� constitutes a possible equilibrium and
the behavior depends on the initial densities.

Before we state our results for the spatial system, we need a couple more
definitions (see [4]). We say that coexistence occurs if for ε > 0 and large enough
L, any given L×L square will possess both types of particles with probability
at least 1 − ε at all large enough times. We say that an initial distribution
or a stationary distribution is nontrivial if it concentrates on both types of
particles.

We are now ready to state our results. We begin with coexistence results.

Theorem 1. Assume λ = 1 and d = 1 or 2.

(a) When α = 0, then, except for the one-dimensional nearest neighbor case,
product measure with density 1/2 is the limiting distribution starting from any
nontrivial initial distribution.

(b) If α is sufficiently small (depending on R), then coexistence is possible
except for the one-dimensional nearest neighbor case.

Theorem 1 says that when α is small, then except for the one-dimensional
nearest neighbor case, the explicitly spatial model behaves qualitatively simi-
larly to the mean-field model: coexistence is possible in both cases. Theorem 1
can easily be extended to more than two dimensions using the same ideas. But
since the one- and two-dimensional cases are the biologically most relevant
ones and since the estimates in the proof get messy in higher dimensions, we
omit the proof for d ≥ 3.

The one-dimensional nearest neighbor case is a bit of an exception. To state
the theorem in this case, we need to define the so-called boundary process βt
which lives on 1/2 + Z with

βt�x� =
{

1� if ηt
(
x− 1

2

) �= ηt
(
x+ 1

2

)
�

0� otherwise�
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Theorem 2. Suppose d = 1 and � = �−1�1�.

(a) When α = 0, there is a one-parameter family of stationary distributions
�πθ	 0 ≤ θ ≤ 1� for which the boundary process βt has product measure with
density θ.

(b) When α > 0, then clustering occurs starting from any translation in-
variant initial state η0. That is, for any x�y ∈ Z, P�ηt�x� �= ηt�y�� → 0 as
t → ∞.

The proof of part (b) of Theorem 2 is identical to the proof of Theorem 5.1
in [7] and is omitted.

When λ = 1 and α = 1, then since f1 + f2 = 1, the system reduces to
the well-known voter model. The voter model was introduced independently
by Holley and Liggett [15] and Clifford and Sudbury [5]. Its behavior is well
understood. Starting from any translation invariant initial configuration in
d = 1 or 2, clustering occurs, that is, for any x�y ∈ Zd, d = 1 or 2,

P
(
ηt�x� �= ηt�y�) → 0 as t → ∞�

In d ≥ 3 coexistence is possible. Specifically, in d ≥ 3, there exists a one-
parameter family of ergodic measures �νθ	 θ ∈ �0�1�� which are the limits
of µθS�t� where µθ is product measure with density θ of 1’s and S�t� is the
corresponding semigroup of the process. (For more on the voter model see [18].)

The next theorem shows that as α → 1 (from below), clusters form and the
two types become spatially segregated, thus effectively reducing interspecific
competition.

Theorem 3. Assume λ = 1 and R is fixed.

(a) Assume d = 1 and α < 1. Fix ε > 0. If α → 1 and L → ∞ so that
�1 − α�L2+ε → 0, then

P
(
ηL2+ε�L� �= ηL2+ε�0�) → 0�

(b) Assume d = 2 and fix x0 with �x0� = L. Let α < 1. If α → 1 and L → ∞
so that �1 − α�LlogL → 0, then

P
(
ηLlogL�x0� �= ηLlogL�0�) → 0�

The spatial segregation stated in Theorem 3 is solely due to local interac-
tions and the low dimensionality and cannot be deduced from the mean-field
equation (1.2). However, if we fix α, the clusters will break up as we increase
R, the range of interaction. Specifically, we will discuss below that the non-
trivial stationary distribution will be close to product measure with density
1/2 for R sufficiently large. This is a by now well-known phenomenon in long-
range models or models with fast stirring with two possible states for which
the mean-field model has exactly one stable equilibrium (see, e.g., [7], [8], [9],
[22]). In this case it is typically not too hard to show that the stationary dis-
tribution of the spatial model is close to product measure with density close
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to the mean-field equilibrium provided the range of interaction is sufficiently
large.

Even though when α < 1, spatial segregation does occur in d ≤ 2, we do
not believe that these clusters continue to grow indefinitely as in the case
α = 1. Our belief is based on the behavior of the key ingredient in the proof of
Theorems 1 and 3, namely the existence of a double branching annihilating
dual process when α < 1. We will explain this in Section 4. We conjecture the
following.

Conjecture 1. Assume λ = 1 and α ≡ α12 = α21. Except for the one-
dimensional nearest neighbor case, coexistence is possible for any α < 1, re-
gardless of the spatial dimension.

We leave the symmetric case now and describe the behavior of the spatial
model when λ ≥ 1 with the rates given above. We demonstrated above that
in the nonspatial model coexistence is possible whenever �α21� α12� ∈ �0� λ� ×
�0�1/λ�. As mentioned above, in the long range limit the system behaves like
the mean-field model when α < 1. This can be extended to the entire mean-
field coexistence region. The proof is a straightforward extension of [22] and
will not be included here. The result is as follows.

(*) Assume λ ≥ 1. Fix �α21� α12� ∈ �0� λ� × �0�1/λ�. The spatial model has a
nontrivial stationary distribution in which the distribution of 1’s is close
to product measure with density

u∗
1 = 1

1 + �λ− α21�/�1 − λα12�

for R sufficiently large.

In essence, such long-range limits imply that once the scale of interactions is
sufficiently large compared to the amount of space each individual occupies,
then space does not matter and a mean-field description is adequate when
the mean-field equation has exactly one stable equilibrium. In some sense,
by taking long-range limits, one throws out any effects that are solely due
to local interactions since the long range allows individuals to interact on a
global scale.

In the following we will focus on effects that are solely due to local interac-
tions. An extension of Theorem 1 which follows readily from [24] shows that if
α12 = α21 = 0, then product measures with density 1/�1 + λ� of 1’s is an equi-
librium. When λ > 1, we do not have a complete convergence result as in the
case λ = 1 (Theorem 1), but we conjecture that except for the one-dimensional
nearest neighbor case, product measure with density 1/�1 + λ� is always the
limiting distribution when starting from a nontrivial initial distribution. This
would then imply that changing R, the range of interaction, has no influence
on the stationary distribution in the absence of interspecific competition.
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We will now turn to situations where local interactions change the nature
of the outcome of competitive interactions. The first such result shows that
the coexistence region is smaller in the spatial setting.

Theorem 4. We assume λ ≥ 1 and set N = �� �. If initially there are
infinitely many 2’s, then 2’s take over with probability 1 if

α12 >




N− 1 + α21

λ�N− 1� + 1
� for 0 ≤ α21 ≤ 1

λ
�

α21� for
1
λ

≤ α21 ≤ λ�

λ− 1 +N

λ
α21 −N+ 1� for α21 ≥ λ�

The boundary of the region described in Theorem 4, where 2’s competitively
exclude 1’s, is a polygon (in particular, it is a continuous function of α21). (A
picture is provided in Section 5 where we prove Theorem 4.) We compare this
region to the corresponding region in the mean-field model. There we showed
that 2’s outcompete 1’s when α12 > 1/λ and α21 < λ. Note that

N− 1 + α21

λ�N− 1� + 1
=




1
λ

[
1 − 1

λ�N− 1� + 1

]
� for α21 = 0�

1
λ
� for α21 = 1/λ�

That is, this boundary line is a straight line connecting the points �0� �1 −
1/�λ�N− 1� + 1��/λ� and �1/λ�1/λ�. Since �1 − 1/�λ�N− 1� + 1��/λ < 1/λ for
λ ≥ 1, it follows that the boundary line for 0 ≤ α21 ≤ 1/λ is entirely contained
in the mean-field coexistence region. This implies that the effect of space is a
reduction of the size of the coexistence region. Combining this with our results
for the long-range case (*), it follows that this effect is more pronounced for
smaller values of R.

Furthermore, since

λ− 1 +N

λ
α21 −N+ 1 = λ for α21 = λ

and

λ− 1 +N

λ
> 0 for λ ≥ 1�

the boundary line for α21 ≥ λ is entirely contained in the founder control region
of the mean field model. This implies that the effect of space is a reduction of
the size of the founder control region.

In the symmetric case λ = 1, if we exchange the roles of 1’s and 2’s in
Theorem 4, then we obtain a region where species 1 wins. The boundaries of
both regions are given by two lines, both go through �1�1�, one has slope 1/N,
the other has slope N. These two lines divide the parameter space into four
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regions. We designate the horizontal axis as the α21 axis and the vertical axis
as the α12 axis. This is shown in Figure 1. We summarize our findings for the
symmetric case in the following corollary.

Corollary 1. Assume the symmetric case λ = 1. Species 1 competitively
excludes species 2 if

α12 <



Nα21 −N+ 1� for α21 ∈

(
1 − 1

N
�1

]
�

1
N
α21 + 1 − 1

N
� for α21 > 1�

Species 2 competitively excludes species 1 if

α12 >




1
N
α21 + 1 − 1

N
� for α21 ∈ �0�1��

Nα21 −N+ 1� for α21 > 1�

Corollary 1 shows that species 1 wins in the convex region bounded above
by the two lines and species 2 wins in the convex region bounded below by the
two lines. If we compare this with the predictions from the mean-field model,
we see that both the coexistence region and the founder region is smaller.

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄

1

1

α21

α12

1’s win

2’s win

Fig. 1. Regions of competitive exclusion in the symmetric case �λ = 1�. The thick lines are the
phase boundaries from Theorem 4. The thin lines are the mean field phase boundaries.
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The reason for the reduction of the coexistence region is as follows. (Because
of symmetry, we only discuss the region in which species 1 wins.) Coexistence
is not possible since a low density of 2’s cannot be maintained. One 2 in a
local neighborhood increases the relative frequency of 2’s in the neighborhood
enough so that the 1’s experience a positive drift and drive the 2 out again.

The reason for the reduction of the founder control region is as follows.
(Because of symmetry, we only discuss the region in which species 1 wins.)
As soon as there is one 1 in the neighborhood, the relative frequency of 1’s in
the neighborhood rises above the threshold for invasion of 1’s. This is caused
by the discreteness of the neighborhood. No arbitrarily small densities can
be experienced locally, the densities always change by discrete amounts of
size 1/N.

Since the region where one species drives the other to extinction in mean
field is contained in the corresponding region in the spatial model, this region
is therefore expanded in the spatial setting.

In the asymmetric case, when λ > 1, we can also obtain bounds on the
competition parameters so that 1’s competitively exclude 2’s. This is contained
in the following theorem.

Theorem 5. We assume λ > 1 and set N = �� �. If initially there are
infinitely many 1’s, then 1’s take over with probability 1 if

α12 <


α

∗
12�α21�� for

1
λ
< α21 ≤ λ+ �N− 1��λ2 − 1��

α∗∗
12�α21�� for α21 ≥ λ+ �N− 1��λ2 − 1��

with

α∗
12�α21� = 1

λ

N+ λ− 1
λ�N− 1� + 1

α21 − 1
λ

�N− 1�2�λ2 − 1�
λ�N− 1� + 1

�

α∗∗
12�α21� = 1

λ�N− 1� + 1
α21 + N− 1

λ�N− 1� + 1
�

Note that α∗
12�α21� = α∗∗

12�α21� = λ for α21 = λ + �N − 1��λ2 − 1�. Two
consequences of this theorem are contained in the following corollaries.

Corollary 2. For each N > 2 there exist λ ∈ �1�∞� so that there are
choices for α21 and α12 for which the mean-field model predicts coexistence,
whereas in the explicitly spatial model the 1’s competitively exclude the 2’s.

Corollary 3. For each N > 2 there exist λ ∈ �1�∞� so that there are
choices for α21 and α12 for which the mean-field model predicts founder control,
whereas in the explicitly spatial model the 1’s competitively exclude the 2’s.

Our discussion for the case λ = 1 (Corollary 1) shows that the founder
control region is reduced in size. That is, the outcome of the competitive in-
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teraction does not depend on the initial densities as long as infinitely many
sites are occupied by the superior type. We conjecture the following.

Conjecture 2. Assume λ = 1. There is no founder control in the spatial
model. If α21 > α12 > 1 and initially there are infinitely many 1’s, then the 1’s
take over with probability 1. If α12 > α21 > 1 and initially there are infinitely
many 2’s, then the 2’s take over with probability 1.

Our conjecture is supported by the following modification of the model. It
is convenient to define the model on the rescaled lattice εZd. In addition to
the births and deaths, individuals are allowed to swap positions with their
neighbors. That is, for each x�y ∈ εZd with �x − y�1 = ε, we exchange the
values at x and y at rate ε−2/2. Results in [10] show that the density of 1’s in
the limit ε → 0 is given by the following reaction diffusion equation:

∂u1

∂t
= 1

2 u1 + u1�1 − u1�
[
1 − α12 − u1�2 − α12 − α21�

]
�

This pde admits travelling wave solutions and one can show that, if initially

u1�x�0� =
{

1� for x ≤ 0�

0� for x > 0�

then

lim
t→∞

u1�x� t� =
{

1� for α21 > α12�

0� for α21 < α12�

Since one of the conditions in [10] does not hold here (the configuration consist-
ing of all 1’s is a trap in our case), the argument in [10] needs to be slightly
modified. The results are the same, however. Given α12 and α21 then, for ε
small enough, the particle system follows the partial differential equation
closely.

The paper is organized as follows. Section 3 introduces the dual process for
the symmetric case when 0 ≤ α ≤ 1. This is the key ingredient of Theorems 1
and 3. Theorems 1 and 2 are proved in Section 4. Section 5 is devoted to the
proof of Theorem 3. Theorem 4 is proved in Section 6 and Theorem 5 is proved
in Section 7.

3. A dual process. In this section we restrict ourselves to the symmetric
case λ = 1 and α ≡ α12 = α21. That is, both species are identical. We will
demonstrate that when α ≤ 1, a dual process exists. This is the key ingredient
in the proofs of Theorems 1, 2 and 3.

Duality ([31], [15], [16]) is a powerful tool in the study of interacting par-
ticle systems since it allows one to investigate the infinite system by tracing
the ancestry of a finite number of particles without knowledge of the actual
configuration in the past. That is, starting at time t with a finite number of
sites, we go backwards in time and find the ancestral paths and hence the set
of sites at time 0 which determine the states of the sites at time t.
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It is important to note that if a dual process exists, then the history of the
process is independent of the state of the system in the past. In particular,
this allows one to find the state of a finite number of sites by knowing only
the initial configuration and the history of the sites. (A dual process does not
always exist or if it exists, it might be too complicated to be useful.)

The dual process for the symmetric case is an annihilating dual process.
This is a continuous time Markov process on the set

Y = {
A	 A ⊂ Zd�A finite

}
with transition kernels p�x�A�, A ∈ Y. That is, the dual process is a set-
valued process. Suppose at time t, the dual process consists of the set F for
F ∈ Y. We refer to the elements in F as dual particles. Then at rate c�x�,
x ∈ F, the dual particle at x is removed from the set F and with probability
p�x�A�, all dual particles in the set A are added to the set F − �x� and the
following rule, which explains the name “annihilating dual process,” is applied.
If a dual particle lands on a site already contained in the dual process (i.e.,
in the set F − �x�), the two dual particles annihilate each other. For a dual
process to exist, it is necessary that p�x�A� ≥ 0 and

∑
A∈Y p�x�A� ≤ 1.

The dual process for the symmetric case is given by a double branching
annihilating random walk. To demonstrate this, it will be convenient to denote
the possible states by 0 and 1 instead of 1 and 2. We denote this relabelled
process by ζ. The symmetric process with state space �0�1�Zd

has transition
rates

c�x� ζ� =
{
f0

(
1 − �1 − α�f0

)
� when ζ�x� = 1�

f1
(
1 − �1 − α�f1

)
� when ζ�x� = 0�

(3.1)

where f0 = n0/N with n0 = ��y ∈ �x	 ζ�y� = 0�� and N = ��x�. Recall
that �x = x + �z	 0 < �z�∞ ≤ R� denotes the set of neighbors of x. We set
f1 = n1/N with n1 = N− n0.

If the rates c�x� ζ� can be written in the following form (see Liggett [18],
page 158, who based his representation on [16]):

c�x� ζ� = c�x�
2

{
1 − �2ζ�x� − 1� ∑

A∈Y
p�x�A�H�ζ�A�

}
(3.2)

with

H�ζ�A� = ∏
y∈A

�2ζ�y� − 1�(3.3)

and c�x� ≥ 0, p�x�A� ≥ 0 for all A ∈ Y and
∑

A∈Y p�x�A� ≤ 1, then the pro-
cess has an annihilating dual with the interpretation given above. We denote
the dual process by ζ̂. In the following it will be convenient to consider the
two processes ζ and ζ̂ as set-valued processes; that is, x ∈ ζ (or ζ̂) if and only
if ζ�x� = 1 [or ζ̂�x� = 1]. We write ζAt for the process at time t if the initial
configuration is the set A [i.e., ζA0 �x� = 1 for all x ∈ A and ζA0 �x� = 0 for all
x /∈ A]. Similarly, ζ̂Bt denotes the dual process at time t when starting with
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the set B. The following duality equation relates the processes ζ and ζ̂:

P
(∣∣ζ̂Bt ∩A∣∣ is odd

) = P
(∣∣ζAt ∩B∣∣ is odd

)
�(3.4)

where � · � denotes the cardinality. The structure of the dual process ζ̂ is con-
tained in the following proposition.

Proposition 1. Suppose the rates are given by �3�1�. Then there exists an
annihilating dual process with

p1 ≡ p�x�y� = 2α
2N− �N+ 1��1 − α� � y ∈ �x�

p2 ≡ p
(
x� �x�y� z�) = 2�1 − α�

N
[
2N− �N+ 1��1 − α�] � y� z ∈ �x� y �= z�(3.5)

c ≡ c�x� = 2N− �N+ 1��1 − α�
2N

�

Before proving the proposition, we state its interpretation. The dual pro-
cess, denoted by ζ̂t� is a set-valued process which takes values in Y = �A ⊂
Zd	 A finite�. Suppose at time t, ζ̂t = F; that is, the dual particles are located
at the points of the set F. At rate c�F�, a particle in F is chosen at random.
Suppose the particle is located at x. Two things can happen; either the particle
jumps to a site chosen at random from the set �x, according to the transition
kernel p1 = p�x�y�, or the particle produces two offspring which are then
sent to two different sites chosen at random from the set �x, according to the
transition kernel p2 = p�x� �x�y� z��. In either case, if a particle jumps to a
site already contained in the dual process, annihilation occurs; that is, both
the particle jumping to the already occupied site and the particle located at the
landing site disappear. The random walk step occurs with probabilityNp1, the
double branching occurs with probability

(
N
2

)
p2. Note that Np1 + (

N
2

)
p2 = 1.

Proof of Proposition 1. We begin with the following calculation:

1
2N

∑
y�z�∈�x

y �=z

[
2ζ�y� − 1

][
2ζ�z� − 1

]

= 1
2N

[(
n0

2

)
+

(
n1

2

)
− n0n1

]

= 1
2N

[
1
2
n2

0 − 1
2
n0 + 1

2
�N− n0�2

− 1
2

�N− n0� − n0�N− n0�
]

(3.6)

= 1
2N

[
2n2

0 − 2Nn0 + 1
2
N2 − 1

2
N

]

= 1
2N

[
N�N− 1�

2
− 2n0�N− n0�

]
�
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We rewrite (3.2) using (3.3) and (3.5) to show that this results in the rates
given in (3.1):

Nc�x� ζ� = 2N− �N+ 1��1 − α�
4

×
{

1 − [
2ζ�x� − 1

] ∑
y∈�x

2α
2N− �N+ 1��1 − α�

[
2ζ�y� − 1

]

− [
2ζ�x� − 1

] ∑
y� z�∈�x

y �=z

2�1 − α�
N

(
2N− �N+ 1��1 − α�)

× [
2ζ�x� − 1

][
2ζ�y� − 1

][
2ζ�z� − 1

]}

Note that �2ζ�x� − 1�2 = 1 regardless of whether ζ�x� = 0 or 1 and that∑
y∈�x

�2ζ�y� − 1� = n1 − n0. Then using (3.6), we find

Nc�x� ζ� = 2N− �N+ 1��1 − α�
4

− [
2ζ�x� − 1

]α
2

�n1 − n0�

− 1 − α

2N

[
N�N− 1�

2
− 2n0�N− n0�

]
�

(3.7)

We consider the two cases ζ�x� = 0 and ζ�x� = 1 separately. When ζ�x� = 0,
then (3.7) becomes

Nc�x� ζ� = N

2
− �N+ 1��1 − α�

4
+ α

2
�2n1 −N�

− �N− 1��1 − α�
4

+ 1 − α

N
n1�N− n1�(3.8)

= n1 − 1 − α

N
n2

1 = N
(
f1 − �1 − α�f2

1

)
�

When ζ�x� = 1, then (3.7) becomes

Nc�x� ζ� = N

2
− �N+ 1��1 − α�

4
− α

2
�N− 2n0�

− 1 − α

2N

[
N�N− 1�

2
− 2n0�N− n0�

]
(3.9)

= n0 − 1 − α

N
n2

0 = N
(
f0 − �1 − α�f2

0

)
�

Comparing (3.8) and (3.9) with (3.1) proves the proposition. ✷

Having found the dual process we can now understand where the structure
comes from. To do this we turn to the graphical representation of the process.
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We rewrite the rates as

c�x� ζ� =
{
αf0 + �1 − α�f0f1� if ζ�x� = 1�

αf1 + �1 − α�f1f0� if ζ�x� = 0�
(3.10)

Note that Ncp1 = α and N2cp2 = 1 − α. To construct this process we use
the standard graphical representation [14]. For each x ∈ Zd and y ∈ x + � ,
let �Tx�y

n 	 n ≥ 1� be a Poisson process with rate α/�� �. For each x ∈ Zd and
y� z ∈ x + � (y and z are not necessarily different), let �Sx�y� zn 	 n ≥ 1� be a
Poisson process with rate 2�1−α�/�� �2. At times Tx�y

n we draw an arrow from
x to y to indicate that the particle at x imitates the type of the particle at y.
At times Sx�y� zn we draw two arrows, one from x to y labelled as the crowding
arrow, the other from x to z labelled as the imitating arrow. If the particle at x
and the particle where the crowding arrow landed are of the same type, then
the particle at x imitates the type of the particle where the imitating arrow
landed. An idea of Harris [14] then allows us to construct the process starting
from any initial configuration.

Comparing the rates in the dual process with the rates given in (3.10), the
connection should be clear. At rate α, the particle at x sends out an arrow to
one of the neighboring sites and imitates the “opinion” at that site. Note that
a change in state only occurs if the arrow lands on a site of opposite type.
This corresponds to the random walk steps in the dual process which occur at
rate α.

At rate 1 − α, the particle at x sends out two arrows into its neighborhood,
which may land on the same site. If the arrows land on opposite types, the
state of the particle at x changes. We changed the dynamics in the construction
somewhat and sent out the two arrows at twice the rate while specifying which
of the arrows checks whether the chosen site is occupied by the same type as
the parent particle and which of the arrows would be used to imitate the
opinion. This part corresponds to the double branching events. If we allow the
two dual particles produced in the double branching event to land on the same
site, then this occurs at rate 1−α. (When both dual particles land on the same
site, they annihilate each other which reduces to the original dual.)

Note that α describes the strength of interspecific competition. That is,
when α = 0, competition only occurs between particles of the same type. This
is reflected in the fact that a change of state only occurs if the crowding arrow
lands on a particle of the same type and there is no random walk component.
The random walk component corresponds to imitating either particles of the
same type or the other type indiscriminantly. As α increases, the random walk
component becomes dominant. When α = 1, no branching occurs. When α = 1,
intraspecific competition and interspecific competition are of equal strength,
that is, death occurs at a rate which is independent of the respective densities
of the two species. This case is the voter model we mentioned above.

The graphical representation thus allows for a different interpretation of
the dual process, namely a double branching coalescing structure where the
double arrows are labelled as defined above. To determine the state at x at time
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t, one first needs to find the double branching coalescing structure. Given the
configuration at time 0, one can then follow the paths on the double branching
coalescing structure forward into the future and determine the state of x at
time t. This interpretation can be generalized to more than two species. It
is not clear at this point whether this interpretation is useful in the context
of two-species competition. It has been successfully applied in finding the ge-
nealogy of samples in frequency-dependent selection [23], which has the same
dual structure. When dealing with more than two species, the double branch-
ing coalescing structure is the only available dual process since it does not
seem to be possible to generalize the annihilating dual process to more than
two species.

4. Proofs of Theorems 1 and 2. We assume throughout this section that
λ = 1 and α12 = α21 = α. We first consider the case α = 0 and give a complete
characterization of the limiting behavior. This will prove part (a) of Theorem 1.
Part (b) of Theorem 1 will then follow from a perturbation argument.

We showed in the previous section that a dual process exists in the symmet-
ric case when 0 ≤ α ≤ 1. To show this we introduced the relabelled process ζ
in which the states were labelled 0 and 1 instead of 1 and 2. The dual process
was denoted by ζ̂. We will use this relabelled process and duality to prove our
results when α = 0.

When α = 0, the dual process ζ̂t reduces to a double branching annihilating
process without the random walk component (p1 = 0). Each event in the
dual process thus adds two new particles to the set of dual particles resulting
in one of the following three outcomes: (1) Both dual particles survive, which
increases the number of dual particles by 2. (2) One dual particle survives and
the other is annihilated together with one of the dual particles already present
in the dual resulting in no change in the number of dual particles. (3) Both
dual particles are annihilated together with two dual particles already present
in the dual; this decreases the number of dual particles by 2. Note that this
last case can only occur when the number of particles in the dual particles
exceeds 2.

We denote by ζ̂Bt the dual process at time t when starting from the set
B (i.e., ζ̂B0 = B). It follows immediately from considerations in the previous
paragraph that �ζ̂Bt � is odd for all t > 0 if and only if �B� is odd. (� · � denotes
the cardinality of the set.) Furthermore, the dual process cannot die out. This
follows from the fact that (1) the even–odd parity is preserved, (2) once the
size of the dual process is 2, only two transitions are possible: either the size
remains 2 or it increases by 2, and (3) an isolated particle cannot die.

Using the properties of the dual process when α = 0 and the duality re-
lationship (3.4) from the previous section, it is easy to show the following
lemma.

Lemma 1. When α = 0, product measure with density 1/2 is an invariant
measure.
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Proof. If we denote by ζ
1/2
t the process starting from product measure

with density 1/2, then the duality relation (3.4) implies

P
(∣∣ζ̂Bt ∩ ζ1/2

0

∣∣ is odd
) = P

(∣∣ζ1/2
t ∩B∣∣ is odd

)
�(4.1)

The left-hand side of (4.1) is equal to
1
2P

(
ζ̂Bt �= �

)
�(4.2)

Since the dual process does not die out, it follows immediately that

P
(
0 ∈ ζ1/2

t

) = 1
2(4.3)

by setting B = �0� in (4.1) and (4.2). Of course, (4.3) does not imply that ζ1/2
∞

is nontrivial since ζ1/2
∞ could still be a mixture of the pointmass at the all 1

state and the all 0 state. To show that the limiting distribution is nontrivial,
we need to look at the two-point distribution. Setting B = �x�y� for x �= y in
(4.1) and using P�ζ̂�x�y�

t �= �� = 1, it follows that

P
(
ζ

1/2
t �x� = ζ

1/2
t �y�) = 1

2 �

In fact, more can be concluded (see, for instance, [13] or [2]). Since P��ζ1/2
t ∩B�

is odd� = 1
2 for all sets B ∈ Y, it follows that ζ1/2

∞ is product measure with
density 1/2. ✷

Lemma 1 shows that product measure with density 1/2 is a stationary dis-
tribution when α = 0. This, however, does not imply that starting from any
initial configuration, the limiting distribution is product measure with den-
sity 1/2. In fact, this is wrong in the one-dimensional nearest neighbor case.
The following argument provides a proof of Theorem 2(a). To see what happens
in this case, we look at the following configuration:

1111�00�1�0�11�00�1�000�11�0�1�000�

The dots indicate boundaries between 0’s and 1’s. These boundaries perform a
simple exclusion process in the one-dimensional nearest neighbor case when
α = 0. (See Chapter VIII in [18] for results on the simple exclusion process.)
It follows from Theorem VIII.1.47 in [18] that if the boundaries in the initial
measure of the process ζ are distributed according to a translation invariant
ergodic measure with density θ, then the limiting distribution of the bound-
aries is product measure with density θ and hence product measure with den-
sity 1/2 cannot be the limiting distribution for the process ζ. This argument
proves part (a) of Theorem 2.

We will show in the following that the one-dimensional nearest neighbor
case is the only exception. In all other cases, we will show that if α = 0 and
the initial configuration is nontrivial (i.e., contains both types of particles),
then product measure with density 1/2 is the limiting distribution.

We begin with the one-dimensional case when R ≥ 2 and α = 0. Parts of
the proof are identical to [2] and we will only present those arguments which
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are different. The proof uses a by now standard rescaling technique which is
surveyed in [6]. The basic idea is to show that if ε > 0, then both ζ and ζ̂
dominate oriented site percolation with parameter 1 − ε. To explain this, we
need to introduce oriented site percolation. Let � = ��m�n� ∈ Z2	 m+n even�
and for �m�n� ∈ � let ω�m�n� be identically distributed with P�ω�m�n� =
1� = 1 − ε and P�ω�m�n� = 0� = ε. The sites may be j-dependent; that is, for
any sequence �ma�na�, a = 1�2� � � � � h satisfying �ma1

−ma2
� > 2j whenever

both a1 �= a2 and na1
= na2

, then

P
(
ω�ma�na� = 0 for a = 1�2� � � � � h

) = εh�

We say that there is an open path from �x�0� to �y�n� if there is a sequence
of points x0 = x� x1� � � � � xn = y with �xk − xk−1� = 1 and ω�xk� k� = 1 for
1 ≤ k ≤ n. We define

W0
n = {

y	 there is an open path from �0�0� to �y�n�}
and think of W0

n as the set of wet sites at time n when the origin �0�0� is wet.
It is a well-known fact that if ε is close to 0, then percolation occurs; that is,
if �0�0� is wet at time 0, then there is a positive probability that there is an
infinite open path starting at �0�0�.

To compare our two processes ζ and ζ̂ with oriented site percolation, we tile
Z × �0�∞� into boxes; that is, for �m�n� ∈ � and L a positive integer, we set

1�m�n� = �mL�nT��
B = �−L�L� × �0�T��

B�m�n� = 1�m�n� +B

and

I =
[
−L

2
�
L

2

]
and I�m� = mL+ I�m ∈ Z�

We introduce the symbol � to denote a monochrome configuration; that is,
for A ⊂ Z, we set

ζt ∩A = �

if either ζt�x� = 1 for all x ∈ A or ζt�x� = 0 for all x ∈ A. We then define

χAn = {
m	 ζAnT ∩ Im �= � � �m�n� ∈ �

}
�

χ̂An = {
m	 ζ̂AnT ∩ Im �= � � �m�n� ∈ �

}
�

The comparison which shows that both ζ and ζ̂ dominate oriented site perco-
lation is contained in the following proposition.

Proposition 2. Let ε > 0. We can find L so that W0
n and χ0

n (W0
n and

χ̂0
n, respectively) can be defined on the same space with χ0

n ⊃ W0
n (χ̂0

n ⊃ W0
n,

respectively) for all n ≥ 0.
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If ε is small enough, percolation occurs which implies that both ζ and ζ̂
spread. The remaining steps are then identical to [2] and we will only provide
a brief outline of this part of the proof. The main ingredient is a result of [12],
which also holds for the processes ζ and ζ̂. Namely, if A is a finite set, then

P
(∣∣ζs+t ∩A∣∣ is odd

) = P
(∣∣ζs ∩ ζ̂At

∣∣ is odd
)
�(4.4)

It then follows from [2] that if P�ζ0 �= � � = 1 and A �= � is finite, then

P
(∣∣ζt ∩ ζ̂At

∣∣ is odd
) → 1

2 as t → ∞�(4.5)

The corresponding proof of (4.5) in [2] only uses the fact that their processes
dominate oriented site percolation, which implies that if each the forward
process starting at time 0 and the dual process starting at time 2t run for t
units of time, then the number of sites that are contained in both the forward
process and the dual process at time t (i.e., the set ζt ∩ ζ̂At ), goes to infinity as
t → ∞.

To prove Proposition 2 for the forward process, we show that 1’s can invade
clusters of 0’s. Since 0’s and 1’s are symmetric, this will then also imply that
0’s can invade clusters of 1’s. To demonstrate that 1’s can invade a cluster of
0’s, we start with the origin occupied by a 1, an arbitrary configuration to the
left of the origin and only 0’s to the right of the origin. We then look at the
rightmost 1 and show that it has a drift to the right. A similar argument will
be employed in the proof of Proposition 2 for the dual process. There we will
show that when starting with a finite number of dual particles, the rightmost
dual particle has a drift to the right.

We begin with the forward process. We assume that the origin is occupied
by a particle of type 1, there are no 1’s to the right of the origin and there is
an arbitrary but fixed configuration to the left of the origin. Denote by

−K = max
{
x < 0	 ζ�x� = 1

}
(4.6)

the gap between the 1 at the origin and the closest 1 to the left of the origin.
If K ≤ R, the 1 at the origin flips at rate less than or equal to �R−K+1�/2R.
Each 0 within distance x ≤ R to the right of the origin flips at rate greater
than or equal to �1/2R��1−1/2R�. The expected displacement for K ≤ R after
one unit of time is thus greater than or equal to

�−K�R−K+ 1
2R

+
R∑
x=1

x
1

2R

(
1 − 1

2R

)

= 1
2R

[
−K�R−K+ 1� + �2R− 1��R+ 1�

4

]
(4.7)

≥ 1
2R

[
−
(
R+ 1

2

)2

+ �2R− 1��R+ 1�
4

]
= �R+ 1��R− 2�

8R
> 0

for all K ≤ R provided R > 2. When R = 2, we can still use the first line
of (4.7) but calculate the result without further estimates. We find that the
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expected displacement after one unit of time is greater than or equal to

�−2� 1
4 + �1� 3

16 + �2� 3
16 = 1

16 > 0�

Since an isolated particle cannot die, it follows that the expected displacement
after one unit of time for K > R is positive as well. Combining the results for
K ≤ R and K > R implies that the rightmost 1 has a positive drift.

We will now prove the analogous result for the dual process. The argument
is similar. Given a configuration of dual particles with ζ̂0�0� = 1, ζ̂0�x� = 0
for x > 0 and an arbitrary but fixed configuration to the left of the origin
with gap K, we find the expected displacement when K ≤ R as follows. To
obtain a lower bound on the positive displacement, we observe that the dual
particle at 0 produces offspring that are placed at x and y (x �= y, x�y �= 0) at
rate cp2 = 1/�2R�2. If the rightmost offspring lands at x > 0, then the other
offspring can be chosen from R+x−1 sites and the displacement will be x. We
ignore any contributions to the positive displacement by dual particles to the
left of the dual particle at the origin. A lower bound on the expected positive
displacement after one unit of time is thus

R∑
x=1

x
1

�2R�2
�R+ x− 1�

= 1
�2R�2

[
�R− 1�R�R+ 1�

2
+ R�R+ 1��2R+ 1�

6

]
(4.8)

= R�R+ 1��5R− 2�
6�2R�2

�

To find the negative displacement, we observe that if the gap is of size K,
K ≤ R, then there is a dual particle at −K and there might be dual particles
to the left of −K. If the dual particle at −K places one offspring at 0 and the
other to the left of −K, then the displacement will be −K; if it places one at
0 and the other at −l for −K < −l < 0, then the displacement will be −l.
Similarly, a dual particle at −K − x, 1 ≤ x ≤ R − K can have the following
effects: (1) if it produces one offspring at 0 and the other to the left of −K−x,
the displacement is −K; (2) if it produces one offspring at 0 and the other at
−K, the displacement is at most −K − x and (3) if it produces one offspring
at 0 and the other at −l, −K < l < 0, the displacement is −l. Summarizing
this, we find the following lower bound on the expected negative displacement
after one unit of time greater than or equal to

1
�2R�2

[
�−K��R−K� + �−K��R−K− 1��R−K�

+ �R−K+ 1�
K−1∑
l=1

�−l� +
R−K∑
x=1

�−K− x�
]

(4.9)
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= 1
�2R�2

[
−K�R−K�2 − �R−K+ 1�K�K− 1�

2

− �R−K�R+K+ 1
2

]

≥ 1
�2R�2

[
−4R3

27
− �R+ 1�R�R− 1�

2
− R�R+ 1�

2

]
�

Combining (4.8) and (4.9) and using MATHEMATICA to simplify, we find
that the expected displacement after one unit of time is bounded below by[

positive displacement + negative displacement
]

≥ 1
�2R�2

[
−R

3
+ 5R3

27

]
= 1

�2R�2

R

3

[
5R2

9
− 1

]
> 0

if R ≥ 2.
It is now straightforward to show Proposition 2. The basic idea is similar

to estimates in [3] and [11]. We will show that for any ε > 0 we can choose
L so that if I is occupied by a (dual) particle, then with probability at least
1 − ε both I�1� and I�−1� will be occupied by a (dual) particle at time T. The
estimates are the same for the forward and the dual process. Note that 0’s and
1’s play a symmetric role in the forward process. We therefore call a particle
in the forward process either a 0 or a 1.

We denote by rt the rightmost particle in the interval �−L�L�. The following
lemma shows that if I is occupied at time 0, then with probability close to 1,
rt ∈ � 3

4L−R� 3
4L+R� at some time before time T. We can assume that none

of the sites to the right of I are occupied.

Lemma 2. Assume r0 ∈ I and ζ0 ∩ �L/2�∞� = �. If T = κL, then there
exist constants C�γ > 0 so that

P
(
rt <

3
4L for all t ≤ T

) ≤ Ce−γT

for L and κ sufficiently large.

Proof. This follows from a simple large deviations estimate for Poisson
processes. Observe that it follows from (4.7) that if r0 = 0, then Ert ≥ λt for
some λ > 0. If T = κL and both κ and L are sufficiently large, the estimate
follows. ✷

Lemma 2 shows that we can move the rightmost particle close to 3L/4.
The next lemma shows that with high probability we can then keep a particle
in �L/2�L� for the remainder of the time so that there will be a particle in
�L/2�L� at time T with high probability.

Lemma 3. Let T = κL as in Lemma 2. If r0 ∈ � 3
4L−R� 3

4L+R�, then there
are constants C�γ > 0 so that

P

([
L

2
�L

]
∩ ζt = � for some t ≤ T

)
≤ Ce−γT�
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Proof. To keep a particle in �L/2�L� for all times t ∈ �0�T�, we define a
tagged particle with position zt and use the following repositioning algorithm.
We require zt to satisfy the following three conditions:

(i) ζt�zt� = 1�
(ii) If zt > 3L/4, then ζt ∩ �3L/4� zt� = �.

(iii) If zt < 3L/4, then ζt ∩ �zt�3L/4� = �.

If one of the three conditions (i)–(iii) is violated, we tag another particle so
that the tagged particle is again the closest occupied site to 3L/4.

Observe that �zt −3L/4� has a negative drift if �zt −3L/4� > R. It therefore
follows from a simple large deviations estimate for Poisson processes that if
T = κL, there are constants C�γ > 0 so that

P
(∣∣zt − 3

4L
∣∣ ≥ 1

4L for some t ≤ T
) ≤ Ce−γT

for L sufficiently large and κ chosen as in Lemma 2. ✷

The estimates in Lemmas 2 and 3 are the same for the dual process ζ̂.
Combining Lemmas 2 and 3 then proves Proposition 2 for both the forward
and the dual process (see, e.g., [2]). This finishes the proof of Theorem 1(a)
for the one-dimensional nonnearest neighbor case. Theorem 1(b) for the one-
dimensional nonnearest neighbor case then follows from a simple perturbation
argument in the rescaling step. Since the estimates in the rescaling step only
involve finite space–time boxes, it is easy to show that for α sufficiently small,
Proposition 2 holds with ε replaced by 2ε.

When d ≥ 2, the argument becomes more involved. We only present the
proof for d = 2; the argument is similar when d > 2. The basic idea is the
same as in the one-dimensional case. We need to show that both the dual
process and the forward process “spread out” and then use the analogue of
(4.5) to prove that product measure with density 1/2 is the limiting measure.
To do this we use the two-dimensional analogue of the rescaling argument
employed in the one-dimensional case.

For both the forward and the dual process we define a tagged particle and
show that the first coordinate of the tagged particle in either process has a
positive drift. This will enable us to populate regions with the desired type of
particle as in the one-dimensional case. The definition of the tagged particle
is essentially the same in both processes. We denote the location of the tagged
particle at time t by rt = �rt�1� rt�2� and assume that at time t = 0, r0 = �0�0�,
ζ0�x� = 0 for all x = �x1� x2� with x1 > 0. The tagged particle in the forward
process has the following properties (this is similar to the definition in [2]):

1. ζt�rt� = 1.
2. ζt�rt�1 + x� rt�2 + y� = 0 for x = 1�2� � � � �R and −R ≤ y ≤ R.
3. ζt�rt�1� rt�2 + y� = 0 for −2�rt�2� < y ≤ −1 if rt�2 > 0 and for 1 ≤ y < 2�rt�2�

if rt�2 < 0.

If the rules are violated due to births or deaths of particles, we reposition the
tagged particle so that again the tagged particle is the rightmost particle. If
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there is more than one rightmost particle, we choose the one whose second
coordinate is closest to 0. If a particle to the right of rt appears within range
R, rt�1 increases; if the particle at rt gets killed, rt�1 might decrease, but not
by more than R since it must have been killed by a particle within range R.
We will show that rt�1 has a tendency to increase while at the same time the
second coordinate rt�2 stays close to 0. To define the tagged particle for the
dual particle we simply replace ζ by ζ̂.

For the forward process we carry out the following calculation for the ex-
pected displacement. We assume that the position of the closest particle within
range R to the left of rt is �rt�1 − L�y�, rt�2 − R ≤ y ≤ rt�2 + R. As in
the one-dimensional case, we need to find an upper bound on the rate at
which the particle at �rt�1� rt�2� gets killed. There are �2R + 1��R + L� sites
in �rt�1 − L + 1� rt�1 + R� × �rt�2 − R�rt�2 + R� which are all vacant except
for the particle at �rt�1� rt�2�. The maximum rate is achieved if all sites in
�rt�1 − R�rt�1 − L� × �rt�2 − R�rt�2 + R� are occupied. Hence this rate is
bounded by

�2R+ 1��R−L+ 1�
�2R+ 1�2 − 1

�2R+ 1��R+ 2� − 1
�2R+ 1�2 − 1

�

To estimate the rate at which particles to the right of �rt�1� rt�2� are born at
distance x from �rt�1� rt�2�, that is, in the strip �rt�1 + x� rt�2 + y� for some
y between −R and R, note that there are 2R + 1 sites in the strip and for
each site in the strip the rate is smallest if all sites in its neighborhood except
for the particle at �rt�1� rt�2� are vacant. For each site in the strip, the rate is
therefore at least

1
�2R+ 1�2 − 1

�2R+ 1�2 − 2
�2R+ 1�2 − 1

Putting things together, we find that the expected displacement after one unit
of time is at least

�−L��2R+ 1��R−L+ 1�
�2R+ 1�2 − 1

�2R+ 1��R+L� − 1
�2R+ 1�2 − 1

+
R∑
x=1

x�2R+ 1� 1
�2R+ 1�2 − 1

�2R+ 1�2 − 2
�2R+ 1�2 − 1

�

Using MATHEMATICA, it is easy to see that the expected displacement is
positive for 1 ≤ L ≤ R and R ≥ 1.

For the dual process we carry out the following estimates. For 1 ≤ x ≤ R, we
denote by “strip x” all sites with coordinates �rt�1+x� rt�2+y� and −R ≤ y ≤ R.
We assume that the rightmost dual particle is located at �rt�1� rt�2� and gives
birth to two offspring which are placed within the neighborhood of �rt�1� rt�2�.
We denote by Ax the event that at least one offspring of �rt�1� rt�2� lands in
the strip x (i.e., has coordinates �rt�1 +x� rt�2 +y� for some y between −R and



LOTKA-VOLTERRA COMPETITION MODEL 1249

R) and no offspring land to the right of the strip x. Then

P�Ax� =
(2R+1

2

) + (2R+1
1

)(�R+x��2R+1�−1
1

)
(4R�R+1�

2

) �

Using MATHEMATICA we find for the expected positive displacement,

R∑
x=1

xP�Ax� = �1 + 2R��5R2 − 2�
6�4R2 + 4R− 1� �(4.10)

Next we calculate the negative displacement in the case when there are
K dual particles at sites within distance R of rt which are not automatically
designated as vacant by the rules for the tagged particle. If k�2R+ 1� < K ≤
�k+1��2R+1�, k = 0�1� � � � �R, then the expected negative displacement after
one unit of time is less than or equal to

�k+ 1��2R+ 1��R− k+ 1�R�2R+ 1�(4R�R+1�
2

) �(4.11)

since there are at most �k+ 1��2R+ 1� dual particles within rt. One of their
offspring needs to land on the dual particle at rt, the other one to the left

(
term

R�2R+ 1�/(4R�R+1�
2

))
� The displacement to the left is then at most R− k+ 1.

Combining (4.10) and (4.11), MATHEMATICA finds that the expected dis-
placement [i.e., (4.10) and (4.11)] is positive for R ≥ 3.

The cases R = 1 and R = 2 can be dealt with as well. When R = 1, the
expected displacement is at least

�1��3��5�( 8
2

) − �1��3��1��2�( 8
2

) = 9( 8
2

) > 0�

When R = 2 the expected displacement is at least

�1��5��14�( 24
2

) + �2��5��19�( 24
2

)
− �1��10��1��10�( 24

2

) − �2��5��1��1�( 24
2

) = 150( 24
2

) > 0�

The above calculations show that we can move a tagged particle into target
regions as in the one-dimensional case. The remaining steps (including the
perturbation argument) are very similar to the one-dimensional case and we
omit the details.

5. Proof of Theorem 3. Theorem 3 shows that in d = 1 and d = 2
the two types of particles become increasingly more spatially segregated as α
approaches 1 from below, that is, as the strength of interspecific competition
increases relative to the strength of intraspecific competition. When α = 1,
the model reduces to the voter model; in this case it is known that clustering
occurs in d = 1 and 2, that is, clusters continue to grow indefinitely.
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Theorem 3 provides a lower bound on the cluster size in d ≤ 2 when α < 1.
To show Conjecture 1, we would either need to give a corresponding upper
bound on the cluster size or show that the dual process starting from two
different sites has a positive probability of survival.

The proof of Theorem 3 uses some ideas and estimates from [21]. The strat-
egy is to show that if α and L are chosen as in the assumptions of Theorem 3,
then with probability close to 1, the dual process starting at two sites distance
L apart, will die out (i.e., both dual particles will annihilate each other before
either dual particle branches. This will then imply that the two sites where
the dual process started from are occupied by the same type. Except for a
difference in time scale, the proofs are the same in d = 1 and d = 2.

We begin with introducing some notation. Instead of following the move-
ment of two dual particles, we look at the difference and estimate the amount
of time it takes for the difference process to hit 0. It is convenient to look at
the discrete time embedded random walk. We denote by N�t� the number of
steps the discrete time random walk takes by time t and denote by M�t� the
number of branching events in the dual process by time t. Then in d = 1,

P
(
ηL2+ε�0� �= ηL2+ε�L�)

≤ P
(
ηL2+ε�0� �= ηL2+ε�L��N�L2+ε� ≤ 4L2+ε�M�L2+ε� = 0

)
(5.1)

+P
(
N�L2+ε� > 4L2+ε) +P

(
M�L2+ε� > 0�N�L2+ε� ≤ 4L2+ε)�

Using a standard estimate for random walks, the first term on the right hand
side of (5.1) is bounded by the probability that two random walks, starting
distance L apart, have not met by time L2+ε. This is a standard estimate and
was used, for instance, in [21] in a similar context. We find the bound

≤ C
L√
L2+ε

≤ CL−ε/2�(5.2)

The second term on the right-hand side of (5.1) can be estimated using a
standard large deviations estimate for Poisson processes. Each dual particle
jumps at rate at most 1 [see (3.5)]. Hence the difference jumps at rate less
than or equal to 2. Therefore,

P
(
N�L2+ε� > 4L2+ε) ≤ C exp�−γL2+ε�(5.3)

for some γ > 0. To estimate the third term on the right-hand side of (5.1),
note that by (3.5) the probability that a random walk step occurs before a
branching event, is equal to

p1

p1 + p2
= 2α

2α+ 2�1 − α�/N = 1
1 + �1 − α�/Nα

�

where p1 and p2 were defined in (3.5). Hence the third term is

≤ 8L2+ε
(

1 − 1
1 + �1 − α�/Nα

)
= 8L2+ε�1 − α� 1

Nα+ 1 − α
�(5.4)

Combining (5.2)–(5.4) implies the first part of Theorem 3.
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It takes longer in d = 2 for two random walks to hit. We replace L2+ε in
(5.1) by LlogL. The estimate in (5.2) gets replaced by

≤ C
logL

logLlogL
= C

logL
�(5.5)

The estimate in (5.3) becomes

P
(
N�LlogL� > 4LlogL) ≤ C exp�−γLlogL�(5.6)

and (5.4) becomes

≤ 8LlogL�1 − α� 1
Nα+ 1 − α

�(5.7)

Combining (5.5)–(5.7) then proves the second part of Theorem 3. ✷

6. Proof of Theorem 4. The proof of Theorem 4 uses a coupling argu-
ment. To demonstrate that 2’s take over with probability 1 when starting with
infinitely many 2’s, we couple our process to a biased voter model in which the
2’s are the favored type and then show that the 2’s in our process dominate
the 2’s in the biased voter model. Since the 2’s take over with probability 1 in
a biased voter model in which the 2’s are favored, this will prove Theorem 4.
We define

h1�x� = λx

λx+ �1 − x�
(
1 − x+ α12x

)
for x ∈ �0�1��(6.1)

h2�x� = x

λ�1 − x� + x

(
1 − x+ α21x

)
for x ∈ �0�1��(6.2)

That is, h1�x�, 0 ≤ x ≤ 1, is the rate at which the transition 1 → 2 occurs if
x denotes the density of 2’s in the neighborhood, that is, x = f2. The function
h2�x� is the rate at which the transition 2 → 1 occurs if x denotes the density
of 1’s in the neighborhood, that is, x = f1. Throughout this section we assume
λ ≥ 1.

We define a biased voter model whose configuration at time t is denoted by
ξt ∈ �1�2�Zd

and which has the same neighborhood structure ��x	 x ∈ Zd� as
the process η. The dynamics for ξ are given by

1 → 2 at rate g1�f2� = κ1f2�(6.3)

2 → 1 at rate g2�f1� = κ2f1�(6.4)

where fi denotes the relative frequency of species i in the corresponding neigh-
borhood.

The following proposition provides the key ingredient to the proof of Theo-
rem 4.
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Proposition 3. Assume (6.1)–(6.4). If

κ1 > κ2�(6.5)

h1�x� ≥ g1�x� for x ∈
[

1
N
�1

]
�(6.6)

h2�x� ≤ g2�x� for x ∈
[

1
N
�1

]
�(6.7)

then 2’s take over with probability 1 in the process η if initially there are
infinitely many 2’s.

Proof. Since h1�0� = g1�0� = 0 and h2�0� = g2�0� = 0 and N is the
neighborhood size, conditions (6.6) and (6.7) imply for ξ ≤ η�

if ξ�x� = η�x� = 1� then c1�x� ξ� ≤ c2�x�η��
if ξ�x� = η�x� = 2� then c1�x� ξ� ≥ c2�x�η��

where c1�x� ξ� [respectively, c2�x�η�] is the rate at which the state ξ�x� [re-
spectively, η�x�] changes to the other state. Theorem III.1.5 in [18] then allows
us to couple the two processes so that if ξ0 ≤ η0, then ξt ≤ ηt with probability
1 for all t ≥ 0. Because of (6.5), 2’s take over in the process ξ which completes
the proof of the proposition. ✷

We will break up the region in the α21 − α12 plane defined in Theorem 4
into subregions. This is shown in Figure 2. In each subregion we define a
biased voter model which will allow us to employ the proposition. To check
the conditions in the proposition, the following properties of h1�x� and h2�x�
are useful.

h′
1�0� = λ and h′

2�0� = 1
λ

(6.8)

and for x ∈ �0�1�,

h′′
1�x� = 2λ�α12 − λ�

��λ− 1�x+ 1�3
�(6.9)

h′′
2�x� = 2λ�λα21 − 1�

�λ− �λ− 1�x�3
�(6.10)

Assuming λ ≥ 1, we find

h′′
1�x� > 0 for x ∈ �0�1� if and only if α12 > λ�(6.11)

h′′
2�x� > 0 for x ∈ �0�1� if and only if α21 >

1
λ
�(6.12)

Case 1. We assume

α12 > λ and α21 <
1
λ
�
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✘✘✘✘✘✘�
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1
λ

λ

1
λ

λ

α21

α12

Case 2

Case 1

Case 3

Case 4

Fig. 2. Subregions in the proof of Theorem 4. The thick lines are the phase boundaries from
Theorem 4. The thin lines are the mean field phase boundaries.

We define

g1�x� = xNh1

(
1
N

)
and g2�x� = xNh2

(
1
N

)
�

Observe that λ ≥ 1 implies h′
1�0� ≥ h′

2�0�; α12 > λ implies h′′
1�x� > 0 for

x ∈ �0�1� and α21 < 1/λ implies h′′
2�x� < 0 for x ∈ �0�1�. Therefore, h1�1/N� >

h2�1/N� which shows that (6.5) holds.
Since h1�0� = g1�0�, h1�1/N� = g1�1/N� and h′′

1�x� > 0 for x ∈ �0�1�, (6.6)
holds. Since h2�0� = g2�0�, h2�1/N� = g2�1/N� and h′′

2�x� < 0 for x ∈ �0�1�,
(6.7) holds.

Case 2. We assume

N− 1 + α21

λ�N− 1� + 1
< α12 ≤ λ and α21 ≤ 1

λ
�

We define

g1�x� = xh1�1� and g2�x� = xNh2

(
1
N

)
�

Since

h1�1� = α12 and Nh2

(
1
N

)
= N− 1 + α21

λ�N− 1� + 1
�
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condition (6.5) holds if

α12 >
N− 1 + α21

λ�N− 1� + 1
�

To show that (6.6) holds, we observe that h′′
1�x� ≤ 0 for x ∈ �0�1� if α12 ≤ λ.

Since g1�0� = h1�0� and g1�1� = h1�1�, it follows that h1�x� ≥ g1�x� for all
x ∈ �0�1�, implying (6.6).

To show that (6.7) holds, we observe that h2�0� = g2�0�, h2�1/N� = g2�1/N�
and h′′

2�x� ≤ 0 for x ∈ �0�1� if α21 ≤ 1/λ� which implies that h2�x� ≤ g2�x� for
all x ∈ �1/N�1�. This is condition (6.7).

Case 3. We assume

1
λ
< α21 < λ and α21 < α12 < λ�

We define

g1�x� = xh1�1� and g2�x� = xh2�1��

Since h1�1� = α12 and h2�1� = α21, (6.5) holds if α21 < α12.
Since h1�0� = g1�0�, h1�1� = g1�1� and h′′

1�x� < 0 for x ∈ �0�1� if α12 < λ,
(6.6) holds. Since h2�0� = g2�0�, h2�1� = g2�1� and h′′

2�x� > 0 for x ∈ �0�1� if
α21 > 1/λ, (6.7) holds.

Case 4. We assume

α21 >
1
λ

and α12 > max
{
λ�
λ− 1 +N

λ
α21 −N+ 1

}
�

We define

g1�x� = xNh1

(
1
N

)
and g2�x� = xh2�1��

Condition (6.5) holds if h2�1� < Nh1�1/N�, that is, if

α21 <
λ

λ+N− 1
�N− 1 + α12��

Solving for α12 yields

α12 >
λ− 1 +N

λ
α21 −N+ 1�

Since h1�0� = g1�0�, h1�1/N� = g1�1/N� and h′′
1�x� ≥ 0 for α12 ≥ λ, (6.6)

holds for α12 ≥ λ. Since h2�0� = g2�0�, h2�1� = g2�1� and h′′
2�x� ≥ 0 for

α21 ≥ 1/λ, (6.7) holds for α21 ≥ 1/λ.
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7. Proof of Theorem 5. The proof of Theorem 5 uses the same basic idea
as the proof of Theorem 4, namely, we couple the process η to a suitably chosen
biased voter model ξ. This time, however, we need to show that the 1’s in the
process η dominate the 1’s in the process ξ and that the 1’s are the favored
type in the biased voter model ξ. We will use Proposition 3 again, but reverse
the roles of 1’s and 2’s. Recall

h1�x� = λx

λx+ �1 − x��1 − x+ α12x� for x ∈ �0�1��(7.1)

h2�x� = x

λ�1 − x� + x
�1 − x+ α21x� for x ∈ �0�1��(7.2)

We define

g1�x� = xNh1

(
1
N

)
and g2�x� = xNh2

(
1
N

)
�(7.3)

Recall (6.11) and (6.12), namely,

h′′
1�x� < 0 for x ∈ �0�1� if and only if α12 < λ�(7.4)

h′′
2�x� > 0 for x ∈ �0�1� if and only if α21 >

1
λ
�(7.5)

Since h1�0� = h2�0� = 0 and h′
1�0� > h′

2�0� for λ > 1, if h1�1� < h2�1�
and if α12 < λ and α21 > 1/λ, then (7.4) and (7.5) imply that the graphs of
h1�x� and h2�x� have exactly one point of intersection whose x-coordinate is
in �0�1�. If the x-coordinate of the point of intersection is less than 1/N, it
follows from the convexity properties (7.4) and (7.5) that h1�1/N� < h2�1/N�
and consequently, g1�x� < g2�x� for all x ∈ �0�1� with g1�0� = g2�0� = 0. If
the biased voter model ξ has transitions

1 → 2 at rate g1�f2��
2 → 1 at rate g2�f1��

then 1’s are the favored type if g1�x� < g2�x� for all x ∈ �0�1� with g1�0� =
g2�0� = 0.

Our first task will therefore be to determine the point of intersection of
the graphs of h1�x� = h2�x� whose x-coordinate is in �0�1� and then to find
conditions so that the x-coordinate is less than 1/N. We need to solve h1�x� =
h2�x�, that is,

λx

λx+ �1 − x��1 − x+ α12x� = x

λ�1 − x� + x
�1 − x+ α21x�

The following discussion is illustrated in Figure 3. We first find the condition
so that the curves intersect at x = 1/N. This yields

α∗
12�α21� = 1

λ

N+ λ− 1
λ�N− 1� + 1

α21 − 1
λ

�N− 1�2�λ2 − 1�
λ�N− 1� + 1

�(7.6)
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✧
✧
✧
✧
✧
✧
✧
✧
✧
✧
✧
✧
✧
✧
✧
✧
✧✧

✘✘✘✘✘✘✘✘✘

1
λ

λ

α12

1
λ α̂21 λ α̃21 ᾱ21

α21

α∗∗
12�α21�

α∗
12�α21�

Fig. 3. Quantities involved in the proof of Theorem 5.

Since

∂

∂α12
h1�x� α12�

∣∣∣∣
x=1/N

= λ

N�λ+N− 1� > 0 for N ≥ 1�

it follows that the x-coordinate of the point of intersection is less that 1/N if
α12 < α∗

12�α21�.
We therefore conclude that if

α21 >
1
λ

and 0 ≤ α12 < min
(
λ� α∗

12�α21�
)
�(7.7)

then 1’s take over with probability 1 if initially there are infinitely many 1’s.
For α12 > λ we employ a different comparison. Note that if α12 > λ, then

h′′
1�x� > 0 for x ∈ �0�1�, and if α21 > 1/λ, then h′′

2�x� > 0 for x ∈ �0�1�. If
we set

g1�x� = xh1�1� and g2�x� = xNh2

(
1
N

)
�

then g2�x� > g1�x� for x ∈ �0�1� if

Nh2

(
1
N

)
> α12�

which implies

α12 <
1

λ�N− 1� + 1
α21 + N− 1

λ�N− 1� + 1
�(7.8)

If we define

α∗∗
12�α21� = 1

λ�N− 1� + 1
α21 + N− 1

λ�N− 1� + 1
(7.9)
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and define ᾱ21 through

α∗
12�ᾱ21� = λ�

we find ᾱ21 = λ+ �N− 1��λ2 − 1� and we see that also

α∗∗
12�ᾱ21� = λ�(7.10)

If we combine (7.7) with (7.8), we obtain Theorem 5; namely, 1’s outcompete
2’s if

α12 <


α

∗
12�α21�� for

1
λ
< α21 ≤ λ+ �N− 1��λ2 − 1��

α∗∗
12�α21�� for α21 ≥ λ+ �N− 1��λ2 − 1��

(7.11)

In the following we will discuss the implications of the conditions in (7.11).
First note that the slopes of the straight lines described in (7.6) and (7.9) are
positive for λ ≥ 1.

The mean-field region where 1’s competitively exclude 2’s is given by α21 > λ
and α12 < 1/λ. If we define α̃21 through

α∗
12�α̃21� = 1

λ
�

we find that

α̃21 − λ = �λ2 − 1��N− 2�N
λ+N− 1

≥ 0

if N ≥ 2 and λ ≥ 1. That is, the boundary line described by (7.6) intersects the
line α12 = 1/λ at a point �α̃21� α

∗
12�α̃21�� whose first coordinate is never outside

of the mean-field region where 1’s competitively exclude 2’s.
To check whether the region given in (7.7) ever extends into the mean field

coexistence region, we define α̂21 through

α∗
12�α̂21� = 0�

that is, α̂21 is the first coordinate of the point of intersection of the graph of
α∗

12�α21� and the line α12 = 0. We find

α̂21�N�λ� = �N− 1�2�λ2 − 1�
N+ λ− 1

�

We find that for λ > 1 and N > 2,

∂

∂λ
α̂21�N�λ� > 0 and

∂2

∂λ2
α̂21�N�λ� > 0

with α̂21�N�1� = 0. This implies that for each N > 2, there exists a nonempty
open interval >N (depending on N) so that

1
λ
< α̂21�N�λ� < λ for all λ ∈ >N(7.12)

and >N ⊂ �1�∞�.
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If we combine (7.7) and (7.12), it follows that for each N > 2, there exist
values of λ ∈ �1�∞� so that the region given in (7.7) has a nonempty in-
tersection with the mean-field coexistence region, implying that we can find
λ� α21 and α12 so that the mean-field model predicts coexistence, whereas in
the corresponding explicitly spatial model 1’s competitively exclude 2’s.

Since the mean-field founder control region is described by α21 > λ and
α12 > 1/λ, it follows from (7.8), (7.10) and the fact that the slope of the straight
line given in (7.9) is positive, that the region where 1’s competitively exclude
2’s also extends into the mean-field founder control region, thus reducing this
region.

Note that our discussion in this section does not improve the statements
concerning the mean-field coexistence region obtained in the previous section.
Condition (7.7) in the limit λ → 1 merely recovers the mean-field region where
1’s competitively exclude 2’s. But we already showed this in the previous sec-
tion. We do recover the region in the mean-field founder control region in the
limit λ → 1 where 1’s competitively exclude 2’s.
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