
Algebra &
Number
Theory

msp

Volume 13

2019
No. 6

On the ramified class field theory of relative curves
Quentin Guignard



msp
ALGEBRA AND NUMBER THEORY 13:6 (2019)

dx.doi.org/10.2140/ant.2019.13.1299

On the ramified class field theory of relative curves
Quentin Guignard

We generalize Deligne’s approach to tame geometric class field theory to the case of a relative curve, with
arbitrary ramification.
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1. Introduction

Let X→ S be a relative curve, i.e., a smooth morphism of schemes of relative dimension 1, with connected
geometric fibers, which is Zariski-locally projective over S. Let Y ↪→ X be a relative effective Cartier
divisor over S (see Section 4.10), and let U be the complement of Y in X .

The pairs (L, α), where L is an invertible OX -module and α is a rigidification of L along Y , are
parametrized by an S-group scheme PicS(X, Y ), the relative rigidified Picard scheme (see Proposition 4.8).
The Abel–Jacobi morphism

8 :U → PicS(X, Y )

is the morphism which sends a section x of U to the pair (O(x), 1), see Proposition 4.14. We prove the
following relative version of the main theorem of geometric global class field theory:

Theorem 1.1 (Theorem 5.3). Let 3 be a finite ring of cardinality invertible on S, and let F be an étale
sheaf of 3-modules, locally free of rank 1 on U , with ramification bounded by Y (see Definition 5.2).
There exists a unique (up to isomorphism) multiplicative étale sheaf of 3-modules G on PicS(X, Y ),
locally free of rank 1, such that the pullback of G by 8 is isomorphic to F .
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The notion of multiplicative locally free 3-module of rank 1 is defined in Definition 2.5, and it corre-
sponds to isogenies G→ PicS(X, Y ) with constant kernel 3×. We restrict ourselves in this article to 3×-
torsors, with3 as in Theorem 1.1, in order to simplify the exposition, since we are able to apply directly our
main descent tool in this context, namely Lemma 5.9. However, the latter lemma, and hence Theorem 1.1
can be extended to G-torsors, where G is an arbitrary locally constant finite abelian group on Sét.

The case where S is the spectrum of a perfect field is originally due to Serre [1959] and Lang [1956,
§6]. Their proof relies on the Albanese property of Rosenlicht’s generalized Jacobians [Rosenlicht 1954].
A similar proof was sketched in a letter of 1974 from Deligne to Serre [Deligne 2001]. However, a
more geometric proof was given by Deligne in the tamely ramified case; an account of his proof in the
unramified case over a finite field can be found in [Laumon 1990, Section 2]. We generalize the latter
approach by Deligne to allow arbitrary ramification and an arbitrary base S. This generalization is inspired
by notes by Alain Genestier (unpublished) on arithmetic global class field theory.

Deligne’s approach has the advantage over Serre and Lang’s to yield an explicit geometric construction
of the isogeny over PicS(X, Y ) corresponding to a local system of rank 1 over U . This feature of Deligne’s
approach carries over to ours, and is in fact crucial in order to handle the case of an arbitrary base S.

The author learned during the preparation of this manuscript that Daichi Takeuchi had independently
obtained a different proof of Theorem 1.1 in the case where S is the spectrum of a perfect field, also by
generalizing Deligne’s approach to handle arbitrary ramification. See [Takeuchi 2019].

Notation and conventions. We fix a universe U [SGA 43 1973, I.0]. Throughout this paper, all sets are
assumed to belong to U and we will use the term “topos” as a shorthand for “U-topos” [SGA 43 1973,
IV.1.1]. The category of sets belonging to U is simply denoted by Sets.

For any integers e, d we denote by [[e, d]] the set of integers n such that e ≤ n ≤ d and by Sd the
group of bijections of [[1, d]] onto itself.

In this paper, all rings are unital and commutative. For any ring A, we denote by AlgA the category of
A-algebras. For any scheme S, we denote by Sch/S the category of S-schemes. We denote by Sét (resp.
SÉt) the small étale topos (resp. big étale topos) of a scheme S, i.e., the topos of sheaves of sets for the
étale topology [SGA 43 1973, VII.1.2] on the category of étale S-schemes (resp. on Sch/S), and by SFppf

the big fppf topos of S, i.e., the topos of sheaves of sets for the fppf topology on Sch/S [SGA 43 1973,
VII.4.2]. If f : X→ S is a morphism of schemes, then we denote by ( f −1, f∗) the induced morphism of
topos from XÉt to SÉt. The symbol f ∗ will exclusively denote the pullback functor from OS-modules to
OX -modules.

2. Preliminaries

2.1. Let E be a topos and let G be an abelian group in E . We denote by GE the category of objects of
E endowed with a left action of G. If X is an object of E , we denote by E/X the topos of X -objects
in E . If X is considered as an object of GE by endowing it with the trivial left G-action, then we have
(GE)/X = G(E/X ) and this category will be simply denoted by GE/X .
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Definition 2.2. A G-torsor over an object X of E is an object P of GE/X such that P → X is an
epimorphism and the morphism

G× P→ P ×X P, (g, p) 7→ (g · p, p)

is an isomorphism. We denote by Tors(X,G) the full subcategory of GE/X whose objects are the G-
torsors over X . If f : Y → X is a morphism in E , we denote by f −1

: Tors(X,G)→ Tors(Y,G) the
functor which associates f −1 P = P ×X, f Y to a G-torsor P over X .

The category Tors(X,G) is monoidal, with product

P1⊗ P2 = G2 \ P1×X P2,

where G2 is the kernel of the multiplication morphism G × G → G, and where G2 ↪→ G × G acts
diagonally on P1 ×X P2. The neutral element for this product is the trivial G-torsor over X , namely
G× X , and each G-torsor P over X is invertible with respect to ⊗, with inverse given by

P−1
= HomGE/X (P,G× X),

where HomGE/X denotes the internal Hom functor in GE/X .

Example 2.3. If G =3× for some ring 3 in E , then the monoidal category Tors(X,G) is equivalent to
the groupoid of locally free 3-modules of rank 1 in E/X . The equivalence is given by the functor which
sends an object P of Tors(X,G) to the 3-module G \ (3× P), where the action of G =3× on 3× P
is given by the formula g · (λ, p)= (gλ, g · p). The functor which sends a locally free 3-module M of
rank 1 of E/X to the G-torsor of isomorphisms of 3-modules from M to 3 defines a quasiinverse to the
latter functor.

2.4. Let E be a topos, and let us denote by 1 its terminal object. Let us consider an exact sequence

1→ G i
−→ P r

−→ Q→ 1

of abelian groups in E . The morphism

G× P→ P ×Q P, (g, p) 7→ (i(g)+ p, p)

is an isomorphism, so that P is a G-torsor over Q. Moreover, the multiplication morphism

P × P→ P

factors though G2 \ P× P , where G2 ↪→G×G is the kernel of the multiplication morphism of G, acting
diagonally on P × P . We thus obtain a morphism

p−1
1 P ⊗ p−1

2 P→ m−1 P

of G-torsors over Q × Q, where p1 and p2 are the canonical projections and m is the multiplication
morphism of Q.
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The following definition is inspired by [Moret-Bailly 1985, I.2.3]:

Definition 2.5. Let G be an abelian group of E and let Q be a commutative semigroup of E (with or
without identity). Let m : Q× Q→ Q be the multiplication morphism of Q. A multiplicative G-torsor
over Q is a G-torsor P→ Q, together with an isomorphism

θ : p−1
1 P ⊗ p−1

2 P→ m−1 P

of G-torsors over Q× Q, where p1 and p2 are the canonical projections, which satisfy the following two
properties.

F Symmetry: If σ is the involution of Q× Q which switches the two factors, then the isomorphism

p−1
2 P ⊗ p−1

1 P→ σ−1(p−1
1 P ⊗ p−1

2 P) σ−1θ
−−−→ σ−1m−1 P→ m−1 P

is the composition of θ with the canonical isomorphism p−1
2 P ⊗ p−1

1 P→ p−1
1 P ⊗ p−1

2 P .

F Associativity: Let qi : Q × Q × Q→ Q be the projection on the i-th factor, where i ∈ [[1, 3]], and
define qi j : Q× Q× Q→ Q× Q similarly, where (i, j) ∈ [[1, 3]]2 with i < j . If m3 : Q× Q× Q→ Q
is the multiplication morphism, then the diagram of G-torsors over Q× Q× Q

q−1
1 P ⊗ q−1

2 P ⊗ q−1
3 P

q−1
1 P ⊗ (mq23)

−1 P

(mq12)
−1 P ⊗ q−1

3 P .

m−1
3 P

id ⊗ q−1
23 θ

q−1
12 θ ⊗ id

(q1×mq23)
−1θ

(mq12× q3)
−1θ

is commutative.

The category of multiplicative G-torsors is fibered in groupoids over the category of commutative
semigroups of E . We denote by Tors⊗(Q,G) the groupoid of multiplicative G-torsors over a commutative
semigroup Q of E .

Remark 2.6. If G =3× for some ring 3 in E , we use the term “multiplicative locally free 3-module
of rank 1” as a synonym for “multiplicative G-torsor”, when we want to emphasize the locally free
3-module of rank 1 corresponding to a given G-torsor, rather than the G-torsor itself (see Example 2.3).

Proposition 2.7. Let G be an abelian group in E , let Q be a commutative semigroup in E and let I be an
ideal of Q. If the projection morphisms Q× I → Q and I × I → I onto the first factors are morphisms
of descent for the fibered category of multiplicative G-torsors (see Definition 2.5), then the restriction
functor

Tors⊗(Q,G)→ Tors⊗(I,G)

is fully faithful.
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Let i : I → Q be the canonical injection morphism. Let p1 and p2 be the projection morphisms of
Q× I onto its first and second factors respectively, and let m : Q× I→ I be the multiplication morphism.
Let (P, θ) and (P ′, θ ′) be multiplicative G-torsors over Q. We have an isomorphism

βP : p−1
1 P (id×i)−1θ
−−−−−→m−1i−1 P ⊗ p−1

2 i−1 P−1,

and similarly for P ′. If α : i−1 P → i−1 P ′ is a morphism of multiplicative G-torsors over I , then
β−1

P ′ (m
−1α⊗ p−1

2 α)βP is an isomorphism from p−1
1 P to p−1

1 P ′, which is compatible with the canonical
descent datum for p1 associated to p−1

1 P and p−1
1 P ′. Since p1 is a morphism of descent for the fibered

category of multiplicative G-torsors, there is a unique morphism γ : P→ P ′ of multiplicative G-torsors
over Q such that p−1

1 γ = β−1
P ′ (m

−1α⊗ p−1
2 α)βP . The restriction of p−1

1 γ to I × I is the pullback of α
by the first projection, which is a morphism of descent for the fibered category of multiplicative G-torsors,
so that the restriction of γ to I is α.

Proposition 2.8. Let G be an abelian group in E , and let ρ : M → Q be a morphism of commutative
semigroups in E. If ρ (resp. ρ×ρ and ρ×ρ×ρ) is a morphism of effective descent (resp. of descent) for
the fibered category of G-torsors, then ρ is a morphism of effective descent for the fibered category of
multiplicative G-torsors.

A descent datum of multiplicative G-torsors for ρ yields a descent datum of G-torsors for ρ, hence
a G-torsor over Q by hypothesis. Since ρ× ρ and ρ× ρ× ρ are morphisms of descent for the fibered
category of G-torsors, the structure of multiplicative G-torsor descends as well. Details are omitted.

Proposition 2.9. Let G and Q be abelian groups in E. The groupoid Tors⊗(Q,G) of multiplicative
G-torsors over Q is equivalent as a monoidal category to the groupoid of extensions of Q by G in E , with
the Baer sum as a monoidal structure.

We have already seen how to associate a multiplicative G-torsor to an extension of Q by G. This
construction is functorial, and the corresponding functor is an equivalence by [Moret-Bailly 1985, I.2.3.10].

Corollary 2.10. Let G and Q be abelian groups in E. The group of isomorphism classes of multiplicative
G-torsors over Q is isomorphic to the group Ext1(Q,G) of isomorphism classes of extensions of Q by G
in E.

2.11. Let S be a scheme, let X be an S-scheme, and let G be a finite abelian group. Let P be a G-torsor
over X in SÉt. Since P → X is an epimorphism in SÉt, there is an étale cover (X i → X)i∈I such that
for each i ∈ I , the morphism X i → X factors through P→ X . In particular, for each i ∈ I the G-torsor
P×X X i → X i is isomorphic to the trivial G-torsor G× X i → X i , so that P×X X i is representable by a
finite étale X i -scheme. By étale descent of affine morphisms, we obtain:

Proposition 2.12. Let G be a finite abelian group, let S be a scheme, and let P be a G-torsor over an
S-scheme X in SÉt. Then the étale sheaf P : Sch/S→ Sets is representable by a finite étale X-scheme.

The topos (SÉt)/X coincides with XÉt. The category of G-torsors over X in SÉt is therefore equivalent
to the category of G-torsors over the terminal object in XÉt, and Proposition 2.12 yields:
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Corollary 2.13. Let G be a finite abelian group, let S be a scheme, and let X be an S-scheme. Then the
category of G-torsors over X in SÉt is equivalent to the category of G-torsors over the terminal object
in Xét.

2.14. Let S be a scheme, and let G be a finite abelian group. Let Q be a commutative S-group scheme,
and let M be a sub-S-semigroup scheme of Q.

Proposition 2.15. Assume that the morphism

ρ : M ×S M→ Q, (x, y) 7→ xy−1

is faithfully flat and quasicompact, and that M is flat over S. Then the restriction functor

Tors⊗(Q,G)→ Tors⊗(M,G)

is an equivalence of categories.

Let (P, θ) be a multiplicative G-torsor over M . For i ∈ [[1, 4]], let ri be the projection of R =
(M×S M)×ρ,Q,ρ (M×S M) onto its i-th factor. Similarly, for i, j ∈ [[1, 4]] such that i < j , we denote by
ri j : R→ M ×S M the projection on the i-th and j-th factors. We then have a sequence of isomorphisms

(r−1
1 P ⊗ r−1

2 P−1)⊗ (r−1
3 P ⊗ r−1

4 P−1)−1
−→ r−1

14 (p
−1
1 P ⊗ p−1

2 P)⊗ r−1
23 (p

−1
1 P ⊗ p−1

2 P)−1

r−1
14 θ⊗(r

−1
23 θ)

−1

−−−−−−−→(mr14)
−1 P ⊗ ((mr23)

−1 P)−1,

of G-torsors over R, where m : M ×S M→ M is the multiplication of M . Since mr14 = mr23, the latter
G-torsor is canonically trivial. We thus obtain an isomorphism

ψ : r−1
1 P ⊗ r−1

2 P−1
→ r−1

3 P ⊗ r−1
4 P−1,

of G-torsors over R. The associativity of θ (see Definition 2.5) implies that ψ is a cocycle, i.e.,
(p−1

1 P ⊗ p−1
2 P−1, ψ) is a descent datum for ρ. By Proposition 2.12 and since faithfully flat and

quasicompact morphisms of schemes are of effective descent for the fibered category of affine morphisms,
the conditions of Proposition 2.8 are satisfied, and thus there exists a multiplicative G-torsor P ′ over Q
and an isomorphism α : ρ−1 P ′→ p−1

1 P ⊗ p−1
2 P−1 such that ψ is given by the composition

r−1
1 P ⊗ r−1

2 P−1 r−1
12 α

−1

−−−→ (ρr12)
−1 P ′ = (ρr34)

−1 P ′ r−1
34 α−−−→ r−1

3 P ⊗ r−1
4 P−1.

The association P 7→ P ′ then defines a functor from Tors⊗(M,G) to Tors⊗(Q,G). For any multiplicative
G-torsor U over Q, we have an isomorphism U→ (U×Q M)′ by multiplicativity, which is functorial in U .

We now construct, for any multiplicative G-torsor (P, θ) over M , an isomorphism P→ P ′×Q M of
multiplicative G-torsors which is functorial in P . Let ν : M ×S M→ M ×S M be the morphism which
sends a section (x, y) to (xy, y). We have an isomorphism

(ρν)−1 P ′ ν−1α
−−−→ ν−1(p−1

1 P ⊗ p−1
2 P−1)→ m−1 P ⊗ p−1

2 P−1 θ−1
−→ p−1

1 P.
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The diagram

M ×S M

M ×S M

M

Q

ν

p1

ρ

is commutative; hence (ρν)−1 P ′ is isomorphic to p−1
1 (P ′×Q M). We thus obtain an isomorphism

β : p−1
1 P→ p−1

1 (P ′×Q M),

of multiplicative G-torsors. The morphism β is compatible with the canonical descent data for p1

associated to p−1
1 P and p−1

1 (P ′×Q M). Since p1 is a covering for the fpqc topology, Proposition 2.8
applies, hence there is a unique isomorphism γ : P→ P ′×Q M of multiplicative G-torsors such that β =
p−1

1 γ . The construction of this isomorphism of multiplicative G-torsors is functorial in P , hence the result.

2.16. Let A be a ring. If M is an A-module, we denote by M the functor B 7→M⊗A B from AlgA to Sets.

Definition 2.17 [SGA 43 1973, XVII 5.5.2.2]. Let M and N be A-modules. A polynomial map from M
to N is a morphism of functors M→ N . A polynomial map f : M→ N is homogeneous of degree d if
for any A-algebra B, any element λ of B and any element m of M(B), we have f (λm)= λd f (m).

For each integer d and any A-module M , let TSd
A(M) = (M

⊗Ad)Sd be the A-module of symmetric
tensors of degree d with coefficients in M . If M is a free A-module with basis (ei )i∈I , then we have a
decomposition

T Sd
A(M)=

( ⊕
β:[[1,d]]→I

Aeβ(1)⊗ · · ·⊗ eβ(d)

)Sd

=

⊕
α:I→N∑
i∈I α(i)=d

Aeα, (2.17.1)

where we have set

eα =
∑

β:[[1,d]]→I
∀i,|β−1({i})|=α(i)

eβ(1)⊗ · · ·⊗ eβ(d).

In particular T Sd
A(M) is a free A-module, and its formation commutes with base change by any ring

morphism A→ B.

Proposition 2.18. Let M be a flat A-module and let d ≥ 0 be an integer. Then TSd
A(M) is a flat module,

and for any A-algebra B the canonical homomorphism

TSd
A(M)⊗A B→ TSd

B(M ⊗A B)

is bijective.
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Any flat A-module is a filtered colimit of finite free modules. We have already seen that the conclusion
of Proposition 2.18 holds whenever M is free, hence the conclusion in general since the functor TSd

A

commutes with filtered colimits.

Proposition 2.19. Let M be a flat A-module and let d ≥ 0 be an integer. Let γd : M→ TSd
A(C) be the

functor which sends, for any A-algebra B, an element m of M(B) to the element m⊗d of TSd
B(M⊗A B)=

TSd
A(M)⊗A B (see Proposition 2.18). Then, for any homogeneous polynomial map f : M→ N of degree

d , there is a unique A-linear homomorphism f̃ : TSd
A(M)→ N such that f = f̃ γd .

As in Proposition 2.18, we can assume that M is free of finite rank over A. Let (ei )i∈I be a basis of M .
Let us write

f
(∑

i∈I

X i ei

)
=

∑
α:I→N

Xα fα

in N (A[(X i )i∈I ]) for some elements ( fα)α of N , where Xα
=
∏

i∈I Xαi
i . Accordingly, we have for any

A-algebra B and any element m =
∑

i∈I bi ei of M(B), the formula

f (m)=
∑
α:I→N

bα fα,

where bα=
∏

i∈I bαi
i , by using the naturality of f with the unique morphism of A-algebras A[(X i )i∈I ]→ B

which sends X i to bi for each i . By applying this to the element m =
∑

i∈I T X i ei of M(A[T, (X i )i∈I ]),
we obtain

f
(∑

i∈I

T X i ei

)
=

∑
α:I→N

T |α|Xα fα,

where we have set |α| =
∑

i∈I α(i). Since f is homogeneous of degree d , the left side of this equation is
also equal to

T d f
(∑

i∈I

X i ei

)
=

∑
α:I→N

T d Xα fα.

We conclude that T d fα = T |α| fα in N ⊗A A[T ] for any α : I → N, and thus that fα = 0 whenever |α|
differs from d . We therefore have

f (m)=
∑
α:I→N
|α|=d

bα fα,

for any A-algebra B and any element m =
∑

i∈I bi ei of M(B). Using the decomposition (2.17.1), we
also have

γd(m)=
∑

β:[[1,d]]→I

⊗
d
j=1bβ( j)eβ( j) =

∑
α:I→N
|α|=d

bαeα.

The conclusion of Proposition 2.19 is achieved by taking f̃ to be the unique morphism of A-modules
from TSd

A(M) to N which sends eα to fα.
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2.20. Let A→ C be a ring morphism such that C is a finitely generated projective A-module of rank d .
For any A-algebra B and any element m of C(B), we set

NC/A(c)= det
A(B)

(mc),

where mc is the A(B)-linear endomorphism of C(B) induced by the multiplication by c. This defines a
homogeneous polynomial map NC/A : C→ A of degree d (see Definition 2.17). By Proposition 2.19,
there is a unique morphism of A-modules ϕ : TSd

A(C)→ A such that NC/A = ϕγd .

Proposition 2.21 [SGA 43 1973, XVII 6.3.1.6]. The morphism of A-modules ϕ : TSd
A(C)→ A is a

morphism of A-algebras.

Let x be an element of C , and let us consider the morphism of A-modules f : y→ ϕ(γd(x)y) from
TSd

A(C) to A. For any A-algebra B and any element c of C(B), we have

f (γd(c))= ϕ(γd(x)γd(c))= ϕ(γd(xc))= NC/A(xc)= NC/A(x)NC/A(c)

by the multiplicativity of determinants, so that f (γd(c))= NC/A(x)ϕ(γd(c)). By the uniqueness statement
in Proposition 2.19, we obtain f = NC/A(x)ϕ, i.e., for all y in TSd

A(C) we have

ϕ(γd(x)y)= NC/A(x)ϕ(y). (2.21.1)

For any A-algebra B, one can apply this argument to the morphism B → C(B) instead of A → C .
Thus (2.21.1) also holds for any element x of C(B) and any element y of TSd

A(C)(B)= TSd
A(B)(C(B))

(see Proposition 2.18). Now, let y be an element of TSd
A(C) and let us consider the morphism of A-

modules g : z→ ϕ(zy) from TSd
A(C) to A. We have proved that gγd = ϕ(y)NC/A, hence g = ϕ(y)ϕ by

Proposition 2.19. Thus ϕ is a morphism of rings. Since ϕ is also A-linear, it is a morphism of A-algebras.

2.22. Let S be a scheme.

Definition 2.23 [SGA 1 1971, V.1.7].

F Let T be an object of a category C endowed with a right action of a group 0. We say that the
quotient T/0 exists in C if the covariant functor

C→ Sets, U 7→ HomC(T,U )0

is representable by an object of C .

F Let T be an S-scheme. An action of a finite group 0 on T is admissible if there exists an affine
0-invariant morphism f : T → T ′ such that the canonical morphism OT ′ → f∗OT induces an
isomorphism from OT ′ to ( f∗OT )

0.

Proposition 2.24 [SGA 1 1971, V.1.3]. Let T be an S-scheme endowed with an admissible right action of
a finite group 0. If f : T→ T ′ is an affine 0-invariant morphism such that the canonical morphism OT ′→

f∗OT induces an isomorphism from OT ′ to ( f∗OT )
0, then the quotient T/0 exists and is isomorphic

to T ′.
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Proposition 2.25 [SGA 1 1971, V.1.8]. Let T be an S-scheme endowed with a right action of a finite
group 0. The action of 0 on T is admissible if and only if T is covered by 0-invariant affine open subsets.

Proposition 2.26 [SGA 1 1971, V.1.9]. Let T be an S-scheme endowed with an admissible right action
of a finite group 0, and let S′ be a flat S-scheme. Then, the action of 0 on the S′-scheme T ×S S′ is
admissible, and the canonical morphism

(T ×S S′)/0→ (T/0)×S S′

is an isomorphism.

Let X be an S-scheme and let d ≥ 0 be an integer. The group Sd of permutations of [[1, d]] acts on the
right on the S-scheme X×Sd

= X ×S · · · ×S X by the formula

(xi )i∈[[1,d]] · σ = (xσ(i))i∈[[1,d]].

Proposition 2.27. If X is Zariski-locally quasiprojective over S, then the right action of Sd on X×Sd is
admissible. In particular, the quotient Symd

S(X)= X×Sd/Sd exists in the category of S-schemes.

Since X is Zariski-locally quasiprojective over S, any finite set of points in X with the same image in
S is contained in an affine open subset of X . Thus X×Sd is covered by open subsets of the form U×Sd

where U is an affine open subset of X whose image in S is contained in an affine open subset of S. These
particular open subsets are affine and Sd-invariant, so that the action of Sd on X×Sd is admissible by
Proposition 2.25.

Remark 2.28. If X = Spec(B) and S = Spec(A) are affine, then for any S-scheme T we have

HomSch/S (X
×Sd , T )Sd = HomAlgA

(0(T,OT ), B⊗Ad)Sd = HomAlgA
(0(T,OT ),TSd

A(B)),

see Section 2.16. Thus Symd
S(X) is representable by the S-scheme Spec(TSd

A(B)).

Proposition 2.29. If X is flat and Zariski-locally quasiprojective over S, then Symd
S(X) is flat over S.

Moreover, for any S-scheme S′, the canonical morphism

Symd
S′(X ×S S′)→ Symd

S(X)×S S′

is an isomorphism.

This follows from Remark 2.28 and from Proposition 2.18.

Proposition 2.30 [SGA 1 1971, IX.5.8]. Let G be a finite abelian group, let P be a G-torsor over an
S-scheme X in SÉt. Assume that P and X are endowed with right actions from a finite group 0 such that
the morphism P→ X is 0-equivariant, and that the following properties hold:

(a) The right 0-action on P commutes with the left G-action.

(b) The right 0-action on X is admissible (see Definition 2.23), and the quotient morphism X→ X/0
is finite.
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(c) For any geometric point x of X , the action of the stabilizer 0x of x in 0 on the fiber Px of P at x is
trivial.

Then the action of 0 on P is admissible, and P/0 is a G-torsor over X/0 in SÉt.

2.31. Let S be a scheme, let X be an S-scheme and let d ≥ 1 be an integer. Let G be a finite abelian
group, and let P→ X be a G-torsor over X in SÉt. By Proposition 2.12, the sheaf P is representable by
a finite étale X -scheme.

For each i ∈ [[1, d]] let pi : X×Sd
→ X be the projection on i-th factor, and let us consider the G-torsor

p−1
1 P ⊗ · · ·⊗ p−1

d P = Gd \ P×Sd

over X×Sd , where Gd ⊆ Gd is the kernel of the multiplication morphism Gd
→ G. By Proposition 2.12,

the object Gd \ P×Sd of SÉt is representable by an S-scheme which is finite étale over X×Sd . The group
Sd acts on the right on Gd \ P×Sd by the formula

(pi )i∈[[1,d]] · σ = (pσ(i))i∈[[1,d]].

This action of Sd commutes with the left action of G on Gd \ P×Sd .

Proposition 2.32. If X is Zariski-locally quasiprojective on S, then the right action of Sd on Gd \ P×Sd is
admissible (see Definition 2.23), so that the quotient P [d] of Gd \ P×Sd by Sd exists in Sch/S . Moreover,
the canonical morphism P [d]→ Symd

S(X) is a G-torsor, and the morphism

p−1
1 P ⊗ · · ·⊗ p−1

d P→ r−1 P [d]

where r : X×Sd
→ Symd

S(X) is the canonical projection, is an isomorphism of G-torsors over X×Sd .

By Propositions 2.27 and 2.30, it is sufficient to show that if x = (x i )
d
i=1 is a geometric point of X×Sd ,

then the stabilizer of x in Sd acts trivially on (Gd \ P×Sd)x . Assume that the finite set {x i | i ∈ [[1, d]}
has exactly r distinct elements y1, . . . , yr , where y j appears with multiplicity d j . Then the stabilizer of x
in Sd is isomorphic to the subgroup

∏r
j=1 Sd j of Sd . For each j ∈ [[1, r ]], the G-torsor Py j is trivial,

and if e is a section of this torsor then (e)d j
i=1 is a section of Gd j \ Pd j

y j
which is Sd j -invariant. The action

of Sd j on Gd j \ Pd j
y j

is therefore trivial, so that the action of
∏r

j=1 Sd j on the G-torsor

(Gd \ P×Sd)x = Gr \

( r∏
j=1

Gd j \ Pd j
y j

)
is trivial as well.

Proposition 2.33. If X is flat and Zariski-locally quasiprojective on S, then for any S-scheme S′, the
canonical morphism

(P ×S S′)[d]→ P [d]×S S′

is an isomorphism.
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By Proposition 2.29, the canonical morphism

Symd
S′(X ×S S′)→ Symd

S(X)×S S′

is an isomorphism. Thus the second morphism in the composition

(P ×S S′)[d]→ (P [d]×S S′)×Symd
S(X)×S S′ Symd

S′(X ×S S′)→ P [d]×S S′

is an isomorphism, while the first morphism is a morphism of G-torsors, hence an isomorphism.

3. Geometric local class field theory

Let k be a perfect field, and let L be a complete discretely valued extension of k with residue field k. We
denote by OL its ring of integers, and by mL the maximal ideal of OL .

3.1. Let us consider the functor

OL : Algk→ AlgOL
, A 7→ lim

n
A⊗k OL/m

n
L ,

with values in the category of OL -algebras.

Proposition 3.2. The functor OL is representable by a k-scheme.

Indeed, if π is a uniformizer of L , then we have an isomorphism k((t))→ L which sends t to π , so
that the functor OL is isomorphic to the functor A 7→ A[[t]], which is representable by an affine space
over k of countable dimension.

Corollary 3.3. The functor L=OL ⊗OL L is representable by an ind-k-scheme.

We can assume that L is the field of Laurent series k((t)). In this case, we have

L(A)= A((t))= colimn t−n A[[t]]

for any k-algebra A, and for each integer n the functor A 7→ t−n A[[t]] is representable by a k-scheme, see
Proposition 3.2.

Proposition 3.4. Let G (resp. H ) be the functor from Algk to the category of groups which associates
to a k-algebra A the subgroup G(A) of A((t))× consisting of Laurent series of the form 1+

∑
r>0 ar t−r

where ar is a nilpotent element of A for each r > 0 and vanishes for r large enough (resp. of Laurent
series of the form 1+

∑
r>0 ar tr where ar belongs to A for each r > 0). Let Z be the functor which sends

a k-algebra A to the group of locally constant functions Spec(A)→ Z. For any uniformizer π of L , the
morphism

Gm,k ×Z×G× H → L×, (a, n, g, h) 7→ aπng(π)h(π),

is an isomorphism of group-valued functors.
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Let A be a k-algebra. By [Contou-Carrère 2013, 0.8], every invertible element u of A((t)) uniquely
factors as u = tn f (t)h(t) where f (t) and h(t) are elements of A[[t]]× and G(A) respectively, and
n : Spec(A)→ Z is a locally constant function. Moreover, there is a unique factorization f (t)= ag(t)
where a and g(t) belong to A× and H(A) respectively, hence the result.

Corollary 3.5. The functor L× is representable by an ind-k-scheme. Moreover, its restriction to the
category of reduced k-algebras is representable by a reduced k-scheme.

The groups Z and H from Proposition 3.4 are representable by reduced k-schemes, and so is Gm,k .
The group G from Proposition 3.4 is the filtered colimit of the functor n 7→ Gn , where Gn is the functor
which associates to a k-algebra A the subset Gn(A) of A((t))× consisting of Laurent series of the form
1+

∑n
r=1 ar t−r where an

r = 0 for each r ∈ [[1, n]]. For each n, the functor Gn is representable by an
affine k-scheme. Thus G is representable by an ind-k-scheme, and so is L× by Proposition 3.4. The last
assertion of Corollary 3.5 follows from the fact that G(A) is the trivial group for any reduced k-algebra A.

Corollary 3.6. Let d ≥ 0 be an integer. Let U
(d)
L be the subfunctor of L× given by 1+md

LOL if d ≥ 1 and
by O×L if d = 0. Then the functor

L×/U
(d)
L : Algk→ Sets, A 7→ L×(A)/U(d)L (A),

is representable by an ind-k-scheme. Moreover, its restriction to the category of reduced k-algebras is
representable by a reduced k-scheme.

According to Proposition 3.4, it is sufficient to show that (Gm,k × H)/U(d)k((t)) is representable by a
reduced k-scheme. The case d = 0 is clear, while for d ≥ 1, we have for any k-algebra A a bijection

A×× A[[1,d−1]]
→ (Gm,k × H)(A)/U(d)k((t))(A), (ai )0≤i≤d−1 7→

d−1∑
i=0

ai t i
;

hence the result.

3.7. From now on, we consider Spec(L), L× and L×/U
(d)
L for each integer d ≥ 0 as objects of the topos

Spec(k)Ét. Let π be an uniformizer of L . We denote by 5 the element of L(k) corresponding to π via
the canonical identification L ' L(k). Thus the functor L× is given by

L× : A ∈ Algk 7→ A((5))×.

In particular, the Laurent series (5− π)−15 = −
∑

n≥1 π
−n5n defines an L-point of L×. We denote

by ϕ : Spec(L)→ L× the corresponding morphism. We follow here Contou-Carrère’s convention; in
[Suzuki 2013], the morphism ϕ corresponds to the point (5−π)5−1 instead. This is harmless since the
inversion is an automorphism of the abelian group L×.

Theorem 3.8 [Suzuki 2013, Theorem A(1)]. Let G be a finite abelian group. The functor

Tors⊗(L×,G)→ Tors(Spec(L),G), P→ ϕ−1 P,

is an equivalence of categories (see Definitions 2.2 and 2.5).
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In the case where k is algebraically closed, Serre [1961] constructed an equivalence

Tors(Spec(L),G)→ Tors⊗(L×,G).

Suzuki [2013] shows that the functor from Theorem 3.8 is a quasiinverse to Serre’s functor when k is
algebraically closed, and extends the result to arbitrary perfect residue fields. In particular, the equivalence
from Theorem 3.8 is canonical, even though its definition depends on the choice of π . Suzuki’s proof of
Theorem 3.8 relies on the Albanese property of the morphism ϕ, previously established by Contou-Carrère.

Let Lsep be a separable closure of L , and let GL be the Galois group of Lsep over L , so that the small
étale topos of Spec(L) is isomorphic to the topos of sets with continuous left GL -action. By Corollary 2.13,
the category of G-torsors over Spec(L) in Spec(k)Ét is isomorphic to the category of G-torsors in the
small étale topos Spec(L)ét. Correspondingly, for each finite abelian group G, the group of isomorphism
classes of the category Tors(Spec(L),G) is isomorphic to the group of continuous homomorphisms from
GL to G.

We denote by (G j
L) j≥−1 the ramification filtration of GL [Serre 1962, IV.3], so that G−1

L = GL and
G0

L is the inertia subgroup of GL , while G0+
L = ∪ j>0G j

L is the wild inertia subgroup of GL .

Definition 3.9. Let G be a finite abelian group and let d ≥ 0 be a rational number. A G-torsor over
Spec(L) (in Spec(k)Ét), corresponding to a continuous homomorphism ρ : GL → G, is said to have
ramification bounded by d if ρ(Gd

L)= {1}. A G-torsor over Spec(L) with ramification bounded by 0 or 1
is said to be unramified or tamely ramified, respectively.

Proposition 3.10. Let G be a finite abelian group, let d ≥ 0 be an integer, and let P be a multiplicative G-
torsor P over L× (see Definition 2.5). Assume that k is algebraically closed. Then ϕ−1 P has ramification
bounded by d (see Definition 3.9) if and only if P is the pullback of a multiplicative G-torsor over L×/U

(d)
L

(see Corollary 3.6).

This follows from [Serre 1961, 3.2 Theorem 1] and from the compatibility of ϕ−1 with Serre’s
construction [Suzuki 2013, Theorem A(2)].

3.11. Let π and ϕ be as in Section 3.7. Let K be a closed subextension of k in L , such that K → L is a
finite extension of degree d . Since L is a finite free K -algebra of rank d , we have a canonical morphism
of K -schemes

ψ : Spec(K )→ Symd
K (Spec(L))

by Proposition 2.21.

Proposition 3.12. The composition

Spec(K ) ψ
−→ Symd

K (Spec(L))→ Symd
k (Spec(L)) Symd

k (ϕ)
−−−−−→Symd

k (L
×)→ L×,

where the last morphism is given by the multiplication, corresponds to the K -point Pπ (5)−15d of L×,
where the polynomial Pπ is the characteristic polynomial of the K -linear endomorphism x 7→ πx of L.
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We first describe the morphism ψ . The scheme Symd
K (Spec(L)) is the spectrum of the k-algebra

TSd
K (L) of symmetric tensors of degree d in L , see Proposition 2.27. The elements ei = π

i−1 for
i = 1, . . . , d form a K -basis of L , so that we have a decomposition

TSd
K (L)=

⊕
α:[[1,d]]→N∑

i α(i)=d

K eα,

where we have set (see Section 2.16)

eα =
∑

β:[[1,d]]→[[1,d]]
∀i,|β−1({i})|=α(i)

eβ(1)⊗ · · ·⊗ eβ(d).

Let us write the norm polynomial as

NL/K

( d∑
i=1

xi ei

)
=

∑
α:[[1,d]]→N∑

i α(i)=d

fαxα,

where xα= xα(1)1 · · · xα(d)d , and the fα are uniquely determined elements of K . The morphism TSd
K (L)→K

corresponding to ψ is the unique K -linear homomorphism which sends eα to fα (see Proposition 2.19
and its proof).

Next we describe the composition

Symd
K (Spec(L))→ Symd

k (Spec(L)) Symd
k (ϕ)

−−−−−→Symd
k (L
×)→ L×.

Its precomposition with the projection Spec(L)×K d
→ Symd

K (Spec(L)) corresponds to the element of
L⊗K d((5))× given by the formula

d∏
i=1

((5− 1⊗(i−1)
⊗π ⊗ 1⊗(d−i))−15)= P(5)−15d ,

where the polynomial P(5) can be computed as follows:

P(5)=
d∏

i=1

(
5−1⊗(i−1)

⊗π⊗1⊗(d−i))
=

d∑
r=0

(−1)r5d−r
∑

(i1,...,id )∈{0,1}d
|{s|is=1}|=r

π i1⊗· · ·⊗π id =

d∑
r=0

(−1)r eαr5
d−r ,

where αr : [[1, d]] → N is the map which sends 1 and 2 to d − r and r respectively, and any i > 2 to 0.
The image of P(5) by ψ in K [5] is the polynomial

d∑
r=0

(−1)r fαr5
d−r
= NL[5]/K [5](5e1− e2).

Since e1 = 1 and e2 = π , we obtain Proposition 3.12.
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Proposition 3.13. Let G be a finite abelian group, and let Q be a G-torsor over Spec(L) (in Spec(k)Ét)
of ramification bounded by d (see Definition 3.9). Then ψ−1 Q[d] (see Proposition 2.32) is tamely ramified
on Spec(K ).

Let K ′ be the maximal unramified extension of K in a separable closure of K . The formation of
Symd

K (Spec(L)) is compatible with any base change by Proposition 2.26 or by Proposition 2.29, and so is
the formation of ϕ. Moreover, a G-torsor over Spec(K ) is tamely ramified if and only if its restriction to
Spec(K ′) is tamely ramified. By replacing K and L by K ′ and the components of K ′⊗K L respectively,
we can assume that the residue field k is algebraically closed.

Let P be the multiplicative G-torsor on L× (see Definition 2.5) associated to Q (see Theorem 3.8), so
that Q is isomorphic to ϕ−1 P . Then ψ−1 Q[d] is isomorphic to the pullback of P along the composition

Spec(K ) ψ
−→ Symd

K (Spec(L))→ Symd
k (Spec(L)) Symd

k (ϕ)
−−−−−→Symd

k (L
×)→ L×

considered in Proposition 3.12. By Proposition 3.12, this composition corresponds to the K -point of L×

given by Pπ (5)−15d , where Pπ is the characteristic polynomial of π acting K -linearly by multiplication
on L . Let us consider the morphism of pointed sets

ρ : L×(K )→ H 1(Spec(K )Ét,G)

ν→ ν−1 P

where an element ν of L×(K ) is identified to a morphism Spec(K )→ L×. If ν1 and ν2 are elements
of L×(K ), then using the isomorphism θ : p−1

1 P ⊗ p−1
2 P → m−1 P from Definition 2.5, we obtain

isomorphisms

(ν1ν2)
−1 P← (ν1× ν2)

−1m−1 P
(ν1×ν2)

−1θ
←−−−−−− (ν1× ν2)

−1(p−1
1 P ⊗ p−1

2 P)← ν−1
1 P ⊗ ν−1

2 P.

Thus ρ is an homomorphism of abelian groups.
We have to prove that ρ(ν) is the isomorphism class of a tamely ramified G-torsor over Spec(K ),

where ν = Pπ (5)−15d . Since Pπ is an Eisenstein polynomial, it can be written as Pπ (5)=5d
+cR(5),

where c = Pπ (0) is a uniformizer of K , and R is a polynomial of degree < d with coefficients in OK ,
such that R(0)= 1. Thus we can write

ν = c−1ν1ν2,

where ν1 = R(5)−15d and ν2 = (1+ c−15d R(5)−1)−1, so that ρ(ν)= ρ(c)−1ρ(ν1)ρ(ν2).
Since Q has ramification bounded by d (see Definition 3.9), the restriction of ρ to U

(d)
L (K ) is trivial

(see Proposition 3.10). In particular, ρ(ν2) is trivial since ν2 belongs to U
(d)
L (K ).

The element ν1 belongs to L×(OK ), so that the morphism ν1 :Spec(K )→L× factors through Spec(OK ).
This implies that ρ(ν1) is the isomorphism class of an unramified G-torsor over Spec(K ). It remains to
prove that ρ(c) is the isomorphism class of a tamely ramified G-torsor over Spec(K ). Since c belongs to
K× = Gm,k(K )⊆ L×(K ), this is a consequence of the following lemma:
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Lemma 3.14. Let T be a multiplicative G-torsor over the k-group scheme Gm,k (see Definition 2.5).
Then T is tamely ramified at 0 and∞.

Let Gk be the constant k-group scheme associated to k. By Proposition 2.9, there is a structure of
k-group scheme on T and an exact sequence

1→ Gk→ T → Gm,k→ 1 (3.14.1)

in Spec(k)Ét, such that the structure of G-torsor on T is given by the action of its subgroup G by
translations. Since the fppf topology is finer than the étale topology on Sch/k , the sequence (3.14.1)
remains exact in the topos Spec(k)Fppf. In particular, we obtain a class in the group Ext1Fppf(Gm,k,Gk) of
extensions of Gm,k by Gk in Spec(k)Fppf.

Let n = |G|. In the topos Spec(k)Fppf we have an exact sequence

1→ µn,k→ Gm,k
n
−→Gm,k→ 1, (3.14.2)

where µn,k is the k-group scheme of n-th roots of unity. By applying the functor Hom(·,Gk), we obtain
an exact sequence

Hom(µn,k,Gk)
δ
−→Ext1fppf(Gm,k,Gk)

n
−→Ext1fppf(Gm,k,Gk).

Since n = |G|, the group Ext1Fppf(Gm,k,Gk) is annihilated by n, so that the homomorphism δ above
is surjective. Thus the exact sequence (3.14.1) in Spec(k)Fppf is the pushout of (3.14.2) along an
homomorphism µn,k → Gk . Let n′ be the largest divisor of n which is invertible in k. Then the
largest étale quotient of µn,k is the epimorphism µn,k → µn′,k given by x 7→ xn/n′ . In particular, the
homomorphism µn,k→ Gk factors through µn′,k , so that (3.14.1) is the pushout of the extension

1→ µn′,k→ Gm,k
n′
−→Gm,k→ 1

along an homomorphism µn′,k → Gk . Since the morphism Gm,k
n′
−→Gm,k is tamely ramified above 0

and∞, so is the morphism T → Gm,k .

4. Rigidified Picard schemes of relative curves

4.1. Let f : X→ S be a smooth morphism of schemes of relative dimension 1, with connected geometric
fibers of genus g, which is Zariski-locally projective over S.

Proposition 4.2. The canonical homomorphism OS→ f∗OX is an isomorphism.

If S is locally noetherian, then OX is cohomologically flat over S in dimension 0 by [EGA III2

1963, 7.8.6]. This means that for any quasicoherent OS-module M, the canonical homomorphism
f∗ f ∗OX ⊗OS M→ f∗ f ∗M is an isomorphism. This implies that the formation of f∗OX commutes

with arbitrary base change: if f ′ : X ×S S′→ S′ is the base change of f by a morphism of schemes
S′→ S, then the canonical morphism f∗OX ⊗OS OS′ → f ′

∗
OX×S S′ is an isomorphism, see [EGA III2

1963, 7.7.5.3]. By applying this result to the inclusion Spec(κ(s))→ S of a point s of S, we obtain
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that f∗(OX )s ⊗OS,s κ(s) is isomorphic to H 0(Xs,OXs )= κ(s). Since f∗(OX ) is a coherent OS-module,
Nakayama’s lemma yields that the canonical morphism OS → f∗(OX ) is an epimorphism. It is also
injective since f is faithfully flat, hence the result.

In general one can assume that S is affine and that X is projective over S, in which case there is a
noetherian scheme S0, a morphism S→ S0 and a smooth projective S0-scheme X0 with geometrically
connected fibers such that X is isomorphic to the S-scheme X0 ×S0 S, see [EGA IV3 1966, 8.9.1,
8.10.5(xiii); EGA IV4 1967, 17.7.9]. We have already seen that in this case the canonical homomorphism
OS0 → f∗OX0 is an isomorphism, and that the formation of f∗OX0 commutes with arbitrary base change.
In particular, both morphisms in the sequence

OS→ f∗OX0 ⊗OS0
OS→ f∗OX

are isomorphisms.

Proposition 4.3. Let d≥ 2g−1 be an integer, and let L be an invertible OX -module with degree d on each
fiber of f . Then, the OS-module f∗L is locally free of rank d − g+ 1, the higher direct images R j ( f∗L)
vanish for j >0, and the formation of f∗L commutes with arbitrary base change: if f ′ : X ′→ S′ is the base
change of f by a morphism S′→ S, then the canonical homomorphism f∗L⊗OS OS′→ f ′

∗
(L⊗OX OX ′)

is an isomorphism.

We first assume that S is locally noetherian. For each point of s of S and for each integer i , the
Riemann–Roch theorem for smooth projective curves implies that the k(s)-vector space H i (Xs,Ls) is of
dimension d− g+1 for i = 0, and vanishes otherwise. This implies that R j f∗(L⊗OX f ∗N ) vanishes for
any integer j > 0 and any OS-module N by the proof of [EGA III2 1963, 7.9.8]. Let

0→N →M→ P→ 0

be an exact sequence of OS-modules. Since f is flat and since L is a flat OX -module, the sequence

0→ L⊗OX f ∗N → L⊗OX f ∗M→ L⊗OX f ∗P→ 0

is exact as well. Since R1 f∗(L⊗OX f ∗N ) vanishes, the sequence

0→ f∗(L⊗OX f ∗N )→ f∗(L⊗OX f ∗M)→ f∗(L⊗OX f ∗P)→ 0

is exact. The OX -module L is therefore cohomologically flat over S in dimension 0, see [EGA III2

1963, 7.8.1]. By [EGA III2 1963, 7.8.4(d)] the OS-module f∗L is locally free, and the formation of f∗L
commutes with arbitrary base change. By applying the latter result to the inclusion Spec(κ(s))→ S of a
point s of S and by using that H 0(Xs,Ls) is of dimension d− g+ 1 over κ(s), we obtain that the locally
free OX -module f∗L is of constant rank d − g+ 1.

In general one can assume that S is affine and that X is projective over S, in which case there is
a noetherian scheme S0, a morphism S → S0, a smooth projective S0-scheme X0, and an invertible
OX0-module L0 such that X is isomorphic to the S-scheme X0×S0 S and L is isomorphic to the pullback
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of L0 by the canonical projection X0×S0 S→ X0, see [EGA IV3 1966, 8.9.1, 8.10.5(xiii); EGA IV4 1967,
17.7.9]. We have seen that the OS0-module f0∗L is locally free of rank d − g+ 1, and that its formation
commutes with arbitrary base change. By performing the base change by the morphism S→ S0, we
obtain that f∗L is a locally free OS-module of rank d − g+ 1 and that the formation of f∗L commutes
with arbitrary base change.

4.4. Let f : X→ S be as in Section 4.1. The relative Picard functor of f is the sheaf of abelian groups
PicS(X)= R1 fFppf,∗Gm in SFppf. Alternatively, PicS(X) is the sheaf of abelian groups on S associated to
the presheaf which sends an S-scheme T to Pic(X ×S T ), the abelian group of isomorphism classes of
invertible OX×S T -modules. For any S-scheme S′, we have (SFppf)/S′ = S′Fppf, and we thus have:

Proposition 4.5. For any S-scheme S′, the canonical morphism

PicS′(X ×S S′)→ PicS(X)×S S′

is an isomorphism in S′Fppf.

The elements of Pic(X ×S T ) which are pulled back from an element of Pic(T ) yield trivial classes in
PicS(X)(T ), since invertible OT -modules are locally trivial on T (for the Zariski topology, and thus for
the fppf-topology). This yields a sequence

0→ Pic(T )→ Pic(X ×S T )→ PicS(X)(T )→ 0, (4.5.1)

which is however not necessarily exact. The following is Proposition 4 from [Bosch et al. 1990, 8.1],
whose assumptions are satisfied by Proposition 4.2:

Proposition 4.6. If f has a section, then the sequence (4.5.1) is exact for any S-scheme T .

By a theorem of Grothendieck [Bosch et al. 1990, 8.2.1] the sheaf PicS(X) is representable by a
separated S-scheme. By [Bosch et al. 1990, 9.3.1] the S-scheme PicS(X) is smooth of relative dimension
g, and there is a decomposition

PicS(X)=
∐
d∈Z

Picd
S(X),

into open and closed subschemes, where Picd
S(X) is the fppf-sheaf associated to the presheaf

Schfp
/S→ Sets

T 7→ {L ∈ Pic(X ×S T ) | ∀t→ T, degX t
(Lt)= d}.

Here the condition degX t
(Lt)= d runs over all geometric points t→ T of T .

4.7. Let f : X→ S be as in Section 4.1, and let i : Y ↪→ X be a closed subscheme of X , which is finite
locally free over S of degree N ≥ 1. A Y -rigidified line bundle on X is a pair (L, α) where L is a locally
free OX -module of rank 1 and α :OY → i∗L is an isomorphism of OY -modules. Two Y -rigidified line
bundles (L, α) and (L′, α′) are equivalent if there is an isomorphism β : L→ L′ of OX -modules such
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that (i∗β)α = α′. If such an isomorphism β exists, then it is unique. Indeed, any other such isomorphism
would take the form γβ for some global section γ of O×X such that i∗γ = 1. Since f∗OX = OS (see
Proposition 4.2), we have γ = f ∗δ for some global section δ of O×S . Since the restriction of δ along the
finite flat surjective morphism Y → S is trivial, one must have δ = 1 as well, hence γ = 1.

Proposition 4.8. Let PicS(X, Y ) be the presheaf of abelian groups on Schfp
/S which maps a finitely

presented S-scheme T to the set of isomorphism classes of YT -rigidified line bundles on XT . Then, the
presheaf PicS(X, Y ) is representable by a smooth separated S-scheme of relative dimension N + g− 1.

We first consider the case where N = 1:

Lemma 4.9. The conclusion of Proposition 4.8 holds if N = 1.

Indeed, if N = 1 then Y is the image of a section x : S→ X of f . For any finitely presented S-scheme T ,
we have a morphism

Pic(X ×S T )→ PicS(X, x)(T ), L→ (L⊗ ( f ∗x∗L)−1, id).

The kernel of this homomorphism consists of all invertible OX×S T -modules which are given by the
pullback of an invertible OT -module. Moreover, any isomorphism class (L, α) in PicS(X, x)(T ) is the
image of L by this morphism, hence its surjectivity. We conclude by Proposition 4.6 that the canonical
projection morphism

PicS(X, x)→ PicS(X), (L, α)→ L,

is an isomorphism of presheaves of abelian groups on Schfp
/S . This yields Lemma 4.9 since PicS(X) is a

smooth separated S-scheme of relative dimension g (see Section 4.4).
We now prove Proposition 4.8. Since X×SY→Y has a section x= (i×idY )◦1Y where1Y :Y→Y×SY

is the diagonal morphism of Y , we deduce from Lemma 4.9 and its proof that the canonical projection
morphism

PicY (X ×S Y, x)→ PicY (X ×S Y )= PicS(X)×S Y

sending a pair (L, α) to the class of L is an isomorphism. Let Z be the Y -scheme PicY (X ×S Y, x), and
let (Lu, αu) be the universal x-rigidified line bundle on X ×S Z . The morphism Y ×S Z → Z is finite
locally free of rank N , so the pushforward A of OY×S Z is a locally free OZ -algebra of rank N , and the
pushforward M of i∗ZLu is a locally free OZ -module of rank N . Let λ :M→ OZ be the surjective
OZ -linear homomorphism corresponding to α−1

u : x
∗

ZLu→OZ .
Let T be a Y -scheme, and let (L, β) be a YT -rigidified line bundle on XT . The section xT : T → XT

uniquely factors through YT and we still denote by xT the corresponding section of YT . The pair (L, x∗Tβ)
is then an xT -rigidified line bundle on XT , so that there is a unique morphism z : T → Z such that
(L, x∗Tβ) is equivalent to the pullback by z of (Lu, αu). Let us assume that (L, x∗Tβ) is equal to this
pullback. The section β of i∗TL over Y ×S T provides a section z∗M over T , which we still denote by β,
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such that (z∗λ)(β)= 1 and z∗M= (z∗A)β. Conversely, any such section produces a YT -rigidification of
L on XT . The functor PicS(X, Y )×S Y = PicY (X ×S Y, Y ×S Y ) is therefore isomorphic to the functor

Schfp
/S→ Sets, T 7→ {(z, β) | z ∈ Z(T ), β ∈ 0(T, z∗M), λ(β)= 1 and MT =ATβ}.

This implies that PicS(X, Y )×S Y is representable by a relatively affine Z -scheme, smooth of relative
dimension N−1 over Z . By fppf-descent of affine morphisms of schemes along the fppf-cover PicS(X)×S

Y → PicS(X), this implies the representability of PicS(X, Y ) by an S-scheme, which is relatively affine
and smooth of relative dimension N − 1 over PicS(X). Since PicS(X) is separated and smooth of relative
dimension g over S (see Section 4.1), the S-scheme PicS(X, Y ) is separated and smooth of relative
dimension g+ N − 1.

4.10. Let f : X→ S be as in Section 4.1, and let i : Y ↪→ X be a closed subscheme of X , which is finite
locally free over S of degree N ≥ 1. A Y -trivial effective Cartier divisor of degree d on X is a pair (L, σ )
such that L is a locally free OX -module of rank 1 and σ :OX ↪→ L is an injective homomorphism such
that i∗σ is an isomorphism and such that the closed subscheme V (σ ) of X defined by the vanishing of
the ideal σL−1 of OX is finite locally free of rank d over S. Two Y -trivial effective divisors (L, σ ) and
(L′, σ ′) are equivalent if there is an isomorphism β : L→ L′ of OX -modules such that βσ = σ ′. As in
Section 4.7, if such an isomorphism exists then it is unique.

Proposition 4.11. The map (L, σ ) 7→ (V (σ ) ↪→ X) is a bijection from the set of equivalence classes of
Y -trivial effective Cartiers divisor of degree d on X onto the set of closed subschemes of U which are
finite locally free of degree d over S.

Let (L, σ ) be a Y -trivial effective divisor of degree d on X . The ideal I = σL−1 is an invertible ideal
of OX such that the vanishing locus V (I) is finite locally free of rank d over S and is contained in U . The
pair (L, σ ) is equivalent to (I−1, 1), and I is uniquely determined by V (I). Conversely for any closed
subscheme Z of U which is finite locally free of rank d over S, the scheme Z is proper over S hence
closed in X as well, and its defining ideal I in OXT is invertible by [Bosch et al. 1990, 8.2.6(ii)]. The
pair (I−1, 1) is then a Y -trivial effective Cartier divisor of degree d on X .

Proposition 4.12. Let d be an integer and let Divd,+
S (X, Y ) be the functor which to an S-scheme T

associates the set of equivalence classes of YT -trivial effective Cartier divisors of degree d on XT . Then
Divd,+

S (X, Y ) is representable by the S-scheme Symd
S(U ), the d-th symmetric power of U = X \Y over S

(see Section 2.22). In particular Divd,+
S (X, Y ) is smooth of relative dimension d over S.

By Proposition 4.11, the functor Divd,+
S (X, Y ) is isomorphic to the functor which sends an S-scheme

T to the set of closed subschemes of UT which are finite locally free of rank d over T . In other words,
Divd,+

S (X, Y ) is isomorphic to the Hilbert functor of d-points in the S-scheme U .
If x is a T -point of U , we denote O(−x) the kernel of the homomorphism OX×S T → x∗OT , which is

an invertible ideal sheaf, and by O(x) its dual, which is endowed with a section 1x : OX×S T ↪→ O(x).
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The morphism

Symd
S(U )→ Divd,+

S (X, Y ), (x1, . . . , xd)→

( d⊗
i=1

O(xi ),

d∏
i=1

1xi

)
,

is then an isomorphism of fppf-sheaves by [SGA 43 1973, XVII.6.3.9], hence Proposition 4.12.

Remark 4.13. Let T be an S-scheme. Let Z be a closed subscheme of UT which is finite locally free
of rank d over T , therefore defining a T -point of Divd,+

S (X, Y ) = Symd
S(U ) by Proposition 4.11. By

[SGA 43 1973, XVII.6.3.9], this T -point is given by the composition

T → Symd
T (Z)→ Symd

T (UT )→ Symd
S(U ),

where the first morphism is the canonical morphism from Proposition 2.21.

Proposition 4.14. Let d ≥ N + 2g− 1 be an integer, and let Picd
S(X, Y ) be the inverse image of Picd

S(X)
by the natural morphism PicS(X, Y )→ PicS(X). Then the Abel–Jacobi morphism

8d : Divd,+
S (X, Y )→ Picd

S(X, Y ), (L, σ ) 7→ (L, i∗σ),

is surjective smooth of relative dimension d − N − g+ 1 and it has geometrically connected fibers.

Let Z be the scheme Picd
S(X, Y ), and let (Lu, αu) be the universal Y -rigidified line bundle of degree d

on X Z . By [Bosch et al. 1990, 8.2.6(ii)], the closed subscheme YZ of X Z is defined by an invertible ideal
sheaf I.

Let E be the pushforward of M = Lu ⊗OX Z
I by the morphism fZ : X Z → Z . By Proposition 4.3,

the OZ -module E is locally free of rank d − N − g+ 1, and for any morphism T → Z the canonical
homomorphism

E ⊗OZ OT → fT∗(M⊗OX Z
OXT )

is an isomorphism, where fT : XT → T is the base change of f by the morphism T → S. We thus obtain
an isomorphism

E→ E ′, (4.14.1)

of functors on the category of Z -schemes, where E is the functor T 7→ 0(T, E ⊗OZ OT ) and E ′ is the
functor T 7→ 0(XT ,M⊗OX Z

OXT ). Let F be the pushforward of Lu by the morphism fZ . By the
same argument, we obtain that the OZ -module F is locally free of rank d − g+ 1, and that we have an
isomorphism

F→ F ′, (4.14.2)

of functors on the category of Z -schemes, where F is the functor T 7→ 0(T,F ⊗OZ OT ) and F ′ is the
functor T 7→ 0(XT ,Lu ⊗OX Z

OXT ). Let us consider the exact sequence

0→M→ Lu→ Lu ⊗OX Z
OYZ → 0.
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Since R1 fZ∗M= 0 by Proposition 4.3, we obtain an exact sequence

0→ E→ F −→ G→ 0,

where G is a locally free OZ -module of rank N . Together with (4.14.1) and (4.14.2), this yields an exact
sequence

0→ E ′→ F ′ b
−→G→ 0,

of Z -group schemes in Zfppf, where G is the functor T 7→ 0(T,GT ⊗OZ OT ). The section αu of G over
Z corresponds to a morphism αu : Z→ G, and we have an isomorphism

Divd,+
S (X, Y )→ F ′×b,G,αu Z , (L, σ ) 7→ (σ, (L, i∗σ)).

Since b is an E ′-torsor over G in Zfppf, we obtain that Divd,+
S (X, Y ) is an E ′-torsor in Zfppf. Since E ′ is

isomorphic to E by (4.14.1), it is smooth of relative dimension d − N − g+ 1 over Z with geometrically
connected fibers, hence the conclusion of Proposition 4.14.

5. Geometric global class field theory

5.1. Let f : X→ S be a smooth morphism of schemes of relative dimension 1, with connected geometric
fibers of genus g, which is Zariski-locally projective over S, and let i : Y ↪→ X be a closed subscheme of
X which is finite locally free over S of degree N ≥ 1. Let j :U → X be the open complement of Y . Let
3 be a finite ring whose cardinality is invertible on S.

Definition 5.2. A locally free 3-module F of rank 1 in UÉt has ramification bounded by Y over S if for
any geometric point x of Y with image s in S, the restriction of F to Spec(ÔXs ,x)×Xs Us has ramification
bounded by the multiplicity of Ys at x (see Definition 3.9).

Theorem 5.3. Let F be a locally free 3-module of rank 1 in UÉt with ramification bounded by Y over S
(see Definition 5.2). Then, there is a unique (up to isomorphism) multiplicative locally free 3-module G of
rank 1 on the S-group scheme PicS(X, Y ) (see Remark 2.6) such that the pullback of G by the Abel–Jacobi
morphism

U → PicS(X, Y ),

which sends x to (O(x), 1), is isomorphic to F .

In Section 5.4, we study the restriction of the locally free 3-module F [d] of rank 1 on Divd,+
S (X, Y )

(see Proposition 2.32 and Proposition 4.12) to a geometric fiber of the Abel–Jacobi morphism (see
Proposition 4.14)

8d : Divd,+
S (X, Y )→ Picd

S(X, Y ), (L, σ ) 7→ (L, i∗σ).

This study will enable us to prove Theorem 5.3 in Section 5.10.
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5.4. Let k be an algebraically closed field, let X be a smooth connected projective curve of genus g over
k and let i : Y → X be an effective Cartier divisor of degree N with complement U in X . Let L be a
line bundle of degree d ≥ N + 2g− 1 on X , and let V be the (d − N − g+ 1)-dimensional affine space
over k associated to the k-vector space V = H 0(X,L(−Y )), i.e., V is the spectrum of the symmetric
algebra of the k-module Homk(V, k). Let τ be a global section of L on X such that i∗τ :OY → i∗L is an
isomorphism.

Proposition 5.5. Let 3 be a finite ring of cardinality invertible in k, and let F be a locally free 3-module
of rank 1 in UÉt, with ramification bounded by Y (see Definition 5.2). Then the pullback of F [d] (see
Proposition 2.32) by the morphism

V → Divd,+
k (X, Y ),

which sends a section s of V to (L, τ − s), is a constant étale sheaf.

The morphism

V → Divd,+
k (X, Y ),

which sends a point σ of V to (L, τ − σ), is an isomorphism from V to the fiber of 8d over the k-point
(L, i∗τ), see Proposition 4.14. Proposition 5.5 thus implies:

Corollary 5.6. Let F be as in Proposition 5.5. Then the locally free 3-module F [d] on Divd,+
k (X, Y )Ét is

constant on the fiber at (L, i∗τ) of the morphism

8d : Divd,+
k (X, Y )→ Picd

k (X, Y )

from Proposition 4.14 .

We now prove Proposition 5.5. To this end, we consider the morphism

ψ : A1
V → Divd,+

k (X, Y ),

which sends a pair (t, σ ), where t and σ are points of A1
k and V respectively, to the point (L, τ − tσ) of

Divd,+
k (X, Y ). Let F be as in Proposition 5.5, and let G be the pullback byψ of F [d] (see Proposition 2.32).

Denoting by ιt : V → A1
V the section corresponding to an element t of k = A1

k(k), we must prove that the
sheaf ι−1

1 G is constant. The sheaf ι−1
0 G is constant, since ψι0 is a constant morphism, hence it is sufficient

to prove that ι−1
1 G and ι−1

0 G are isomorphic. The latter fact follows from the following lemma:

Lemma 5.7. The locally free 3-module G is the pullback of an étale sheaf on V by the projection
π : A1

V → V .

We now prove Lemma 5.7. We start by proving that G is constant on each geometric fiber of the
projection π . Since the formation of ψ and G is compatible with the base change along any field extension
of k, it is sufficient to show that G is constant on each fiber of the projection A1

V → V at a k-point σ of V .
If σ = 0, then the restriction of ψ to the fiber of π above σ is constant, hence G is constant on this fiber.



On the ramified class field theory of relative curves 1323

We now assume that σ is nonzero. Since σ vanishes on the nonempty divisor Y and τ does not, the
sections σ and τ are k-linearly independent in H 0(X,L). Let D be the greatest divisor on X such that
D≤ div(σ ) and D≤ div(τ ). Since the divisor of τ is contained in U , so is D. We can then write σ = σ̃1D

and τ = τ̃1D , where 1D is the canonical section of O(D) and σ̃ , τ̃ are global sections of L(−D) on X
without common zeroes. Thus f = [τ̃ : σ̃ ] is a well defined nonconstant morphism from X to P1

k . Thus,
if W is the closed subscheme of X ×k A1

k defined by the vanishing of τ − tσ , where t is the coordinate on
A1

k , then we have

W = D×k A1
k ∪ (Graph( f )∩ X ×k A1

k) ↪→U ×k A1
k .

Moreover, the projection W → A1
k is finite flat of degree d, and the restriction of ψ to the fiber at σ

factors as

A1
k
ϕ
−→ Symd

A1
k
(W )→ Symd

A1
k
(U ×k A1

k)→ Symd
k (U )→ Divd,+

k (X, Y ),

where the first morphism ϕ is obtained from Proposition 2.21, and the last morphism is the isomorphism
from Proposition 4.12. Moreover, the pullback of F [d] to Symd

A1
k
(W ) coincides with (p−1

1 F)[d], where

p1 :W →U is the first projection. In particular, the sheaf G is isomorphic to ϕ−1(p−1
1 F)[d].

Set K = k((t−1)) and let η = Spec(K )→ A1
k be the corresponding punctured formal neighborhood

of∞. Consider the commutative diagram

η

A1
k

Symd
η(W ×A1

k
η).

Symd
A1

k
(W )

ϕ

We can then write

W ×A1
k
η = D×k η∪Graph( f )×P1

k
η = D×k η∪ X × f,P1

k
η.

The divisors D×k η and X × f,P1
k
η of X ×k η are disjoint, since the former lies over closed points of X ,

while the latter lies over the generic point of X . We thus have a decomposition

W ×A1
k
η = D×k ηq X × f,P1

k
η =

∐
i

Spec(L i )

where L i is either of the form K [T ]/(T di ) if Spec(L i ) is a connected component of D×k η, or a field
extension of degree di of K if Spec(L i ) is a connected component of X × f,P1

k
η. In the former case, the

restriction of p−1
1 F to Spec(L i ) is constant, while in the latter case, we have the further information

that the restriction of p−1
1 F to Spec(L i ) has ramification bounded by di (see Definition 3.9), since the

ramification index of f at a point x above∞ is greater than or equal to the multiplicity of Y at x , and
F has ramification bounded by Y by assumption. Moreover, we have

∑
i di = d, and the morphism



1324 Quentin Guignard

η→ Symd
η(W ×A1

k
η) factors through the canonical morphism∏

i

Symdi
η (Spec(L i ))→ Symd

η(W ×A1
k
η).

By Proposition 3.13, we obtain that the restriction of G to η is tamely ramified. Since the tame fundamental
group of A1

k is trivial, we conclude that G is a constant étale 3-module on the fiber of π at σ . The
conclusion of Lemma 5.7 then follows from a descent result, namely Lemma 5.9 below.

Remark 5.8. While the proof of Proposition 3.13, which constitutes the core of the proof of Lemma 5.7
above, uses geometric local class field theory, it should be noticed that its statement does not refer to it.
This explains why no form of local-global compatibility is required in the proof of Lemma 5.7.

Lemma 5.9. Let g : T ′→ T be a quasicompact smooth compactifiable morphism of schemes of relative
dimension δ with geometrically connected fibers, and let G be an étale sheaf of 3-modules on T ′ét which
is constant on each geometric fiber of g. Then G is isomorphic to the pullback by g of an étale sheaf of
3-modules on Tét.

By [SGA 43 1973, XVIII 3.2.5] the functor Rg! on the derived category of 3-modules on T admits the
functor g! : K 7→ g∗K (δ)[2δ] as a right adjoint. Let us apply the functor H0 to the adjunction morphism
G→ g!Rg!G. The morphism

G→H0(g!Rg!G)= g∗R2δg!G(δ)

is an isomorphism, as can be seen by checking the stalks at geometric points with the proper base change
theorem.

5.10. We now prove Theorem 5.3. Let F be a locally free 3-module of rank 1 over UÉt. The family
(F [d])d≥0 of locally free 3-modules of rank 1 yields a multiplicative étale 3-module of rank 1 over the
S-semigroup scheme

Div+S (X, Y )=
∐
d≥0

Divd,+
S (X, Y ).

For each integer d ≥ N + 2g, Corollary 5.6 implies that the locally free 3-module F [d] of rank 1 on
Divd,+

S (X, Y ) (see Propositions Proposition 2.32 and 4.12) is constant on the geometric fibers of the
smooth surjective morphism (see Proposition 4.14)

8d : Divd,+
S (X, Y )→ Picd

S(X, Y ), (L, σ ) 7→ (L, i∗σ).

This morphism satisfies the conditions of Lemma 5.9 by Proposition 4.14. We can therefore apply
Lemma 5.9, and we obtain a locally free 3-module Gd of rank 1 over Picd

S(X, Y ) such that 8−1
d Gd

is isomorphic to F [d]. By Proposition 2.8, the family (Gd)d≥N+2g yields a multiplicative locally free
3-module of rank 1 on the S-semigroup scheme

M =
∐

d≥N+2g

Picd
S(X, Y ).
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Since the morphism

ρ : M ×S M→ PicS(X, Y ), (x, y) 7→ xy−1,

is faithfully flat and quasicompact, we can apply Proposition 2.15, which yields a multiplicative locally free
3-module G of rank 1 over PicS(X, Y ) whose restriction to Picd

S(X, Y ) coincides with Gd for d ≥ N +2g.
The families (F [d])d≥0 and (8−1

d Gd)d≥0 yield multiplicative locally free 3-modules of rank 1 on the
S-semigroup scheme Div+S (X, Y )=

∐
d≥0 Divd,+

S (X, Y ), whose restrictions to the ideal

I =
∐

d≥N+2g

Divd,+
S (X, Y )

of Div+S (X, Y ) are isomorphic. We obtain by Proposition 2.7 an isomorphism from F [d] to 8−1
d Gd for

each d ≥ 0. In particular, the locally free 3-module 8−1
1 G1 of rank 1 is isomorphic to F .
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